
Automation Systems Group

Secure Software Programming

and Vulnerability Analysis

Christopher Kruegel chris@auto.tuwien.ac.at

 http://www.auto.tuwien.ac.at/~chris

Secure Software Programming 2

Automation Systems Group

Race Conditions

Secure Software Programming 3

Automation Systems Group

Overview

• Parallel execution of tasks

– multi-process or multi-threaded environment

– tasks can interact with each other

• Interaction

– shared memory (or address space)

– file system

– signals

• Results of tasks depends on relative timing of events

! Indeterministic behavior

Secure Software Programming 4

Automation Systems Group

Race Conditions

• Race conditions

– alternative term for indeterministic behavior

– often a robustness issue

– but also many important security implications

• Assumption needs to hold for some time for correct behavior,

but assumption can be violated

• Time window when assumption can be violated

! window of vulnerability

Secure Software Programming 5

Automation Systems Group

Race Conditions

• Window of vulnerability can be very short

– race condition problems are difficult to find with testing

and difficult to reproduce

– attacker can slow down victim machine to extend window

and can often launch many attempts

• Deadlock

– special form of race condition

– two processes are preventing each other from accessing a

shared resource, resulting in both processes ceasing to

function

Secure Software Programming 6

Automation Systems Group

Race Conditions

• General assumption

– sequence of operations

• is not atomic

• can be interrupted at any time for arbitrary lengths

– use proper countermeasures to ensure deterministic results

! Synchronization primitives

• Locking

– can impose performance penalty

– critical section has to be a small as possible

Secure Software Programming 7

Automation Systems Group

Race Conditions

• Case study

public class Counter extends HttpServlet {

 int count = 0;

 public void doGet(HttpServletRequest in,

 HttpServletResponse out)

 {

 out.setContentType("text/plain");

 Printwriter p = out.getWriter();

 count++;

 p.println(count + " hits so far!");

 }

}

Secure Software Programming 8

Automation Systems Group

Race Conditions

• Time-of-Check, Time-of-Use (TOCTOU)

– common race condition problem

– problem:

 Time-Of-Check (t1): validity of assumption A on entity E is checked

 Time-Of-Use (t2): assuming A is still valid, E is used

 Time-Of-Attack (t3): assumption A is invalidated

 t1 < t3 < t2

• Program has to execute with elevated privilege

– otherwise, attacker races for his own privileges

Secure Software Programming 9

Automation Systems Group

TOCTOU

• Steps to access a resource

1. obtain reference to resource

2. query resource to obtain characteristics

3. analyze query results

4. if resource is fit, access it

• Often occurs in Unix file system accesses

– check permissions for a certain file name (e.g., using access(2))

– open the file, using the file name (e.g., using fopen(3))

– four levels of indirection (symbolic link - hard link - inode - file descriptor)

• Windows uses file handles and includes checks in API open call

Secure Software Programming 10

Automation Systems Group

Overview

• Case study

/* access returns 0 on success */

if(!access(file, W_OK)) {

f = fopen(file, "wb+");

write_to_file(f);

} else {

fprintf(stderr, "Permission denied when trying
 to open %s.\n", file);

}

• Attack

$ touch dummy; ln –s dummy pointer

$ rm pointer; ln –s /etc/passwd pointer

Secure Software Programming 11

Automation Systems Group

Examples

• TOCTOU Examples

– Filename Redirection

• Paper: Checking for Race Conditions in File Accesses

– Setuid Scripts

1. exec() system call invokes seteuid() call prior to executing program

2. program is a script, so command interpreter is loaded first

3. program interpreted (with root privileges) is invoked on script name

4. attacker can replace script content between step 2 and 3

Secure Software Programming 12

Automation Systems Group

Examples

• TOCTOU Examples

– Directory operations

• rm can remove directory trees, traverses directories depth-first

• issues chdir(“..”) to go one level up after removing a directory

branch

• by relocating subdirectory to another directory, arbitrary files can be

deleted

– SQL select before insert

• when select returns no results, insert a (unique) element

• when DB does not check, possible to insert two elements with same

key

Secure Software Programming 13

Automation Systems Group

Examples

• TOCTOU Examples

– LOMAC

• Linux kernel level monitor

• checks system calls (similar to “Secure execution environment” paper)

• arguments copied to module and checked

• then, arguments are copied again to invoke actual system call

– Web site user management

• user is authenticated at portal page

• no session management used

• further pages are not checked because unauthorized user cannot “know” about

them

Secure Software Programming 14

Automation Systems Group

Examples

• TOCTOU Examples

– File meta-information

• chown(2) and chmod(2) are unsafe

• operate on file names

• use fchown(2) and fchmod(2) that use file descriptors

– Joe Editor

• when joe crashes (e.g., segmentation fault, xterm crashes)

• unconditionally append open buffers to local DEADJOE file

• DEADJOE could be symbolic link to security-relevant file

Secure Software Programming 15

Automation Systems Group

Temporary Files

• Similar issues as with regular files

– commonly opened in /tmp or /var/tmp

– often guessable file names

• Secure procedure

1. pick a prefix for your filename

2. generate at least 64 bits of high-quality randomness

3. base64 encode the random bits

4. concatenate the prefix with the encoded random data

5. set umask appropriately (0066 is usually good)

6. use fopen(3) to create the file, opening it in the proper mode

7. delete the file immediately using unlink(2)

8. perform reads, writes, and seeks on the file as necessary

9. finally, close the file

Secure Software Programming 16

Automation Systems Group

Temporary Files

• Library functions to create temporary files can be insecure

– mktemp(3) is not secure, use mkstemp(3) instead

– old versions of mkstemp(3) did not set umask correctly

• Temp Cleaners

– programs that clean “old” temporary files from temp directories

– first lstat(2) file, then use unlink(2) to remove files

– vulnerable to race condition when attacker replaces file between
lstat(2) and unlink(2)

– arbitrary files can be removed

– delay program long enough until temp cleaner removes active file

Secure Software Programming 17

Automation Systems Group

Prevention

• “Handbook of Information Security Management” suggests

1. increase number of checks

2. move checks closer to point of use

3. immutable bindings

• Only number 3 is acceptable!

• Immutable bindings

– operate on file descriptors

– do not check access by yourself (i.e., no use of access(2))

drop privileges instead and let the file system do the job

• Use the O_CREAT | O_EXCL flags to create a new file with open(2)

and be prepared to have the open call fail

Secure Software Programming 18

Automation Systems Group

Prevention

• Some calls require file names

link(), mkdir(), mknod(), rmdir(), symlink(), unlink()

– especially unlink(2) is troublesome

• Secure File Access

– create “secure” directory

– directory only write and executable by UID of process

– check that no parent directory can be modified by attacker

– walk up directory tree

checking for permissions and links at each step

Secure Software Programming 19

Automation Systems Group

Locking

• Ensures exclusive access to a certain resource

• Used to circumvent accidental race conditions

– advisory locking (processes need to cooperate)

– not mandatory, therefore not secure

• Often, files are used for locking

– portable (files can be created nearly everywhere)

– “stuck” locks can be easily removed

• Simple method

– open file using the O_EXCL flag

Secure Software Programming 20

Automation Systems Group

Locking

• Problem

– NFS up to version 2 does not support O_EXCL

– multiple processes can capture the lock

• Solution (man page for open(2))

– create unique file on file system (e.g., using host name)

– use link(2) to make a link to lock file

– when link(2) succeeds, or when the link count of the unique file is 2,

then the locking operation was successful

• POSIX record locks

– using fcntl(2) calls

– can lock portions of files, and are automatically removed on process exit

Secure Software Programming 21

Automation Systems Group

Non-FS Race Conditions

• Linux / BSD kernel ptrace(2) / execve(2) race condition

• ptrace(2)

– debugging facility

– used to access other process’ registers and memory address
space

– can only attach to processes of same UID, except being run by root

• execve(2)

– execute program image

– setuid functionality (modifying the process EUID)

• not invoked when process is marked as being traced

Secure Software Programming 22

Automation Systems Group

Non-FS Race Conditions

• Problem with execve(2)

1. first checks whether process is being traced

2. open image (may block)

3. allocate memory (may block)

4. set process EUID according to setuid flags

• Window of vulnerability between step 1 and step 4

– attacker can attach via ptrace

– blocking kernel operations allow other user processes to run

Secure Software Programming 23

Automation Systems Group

Non-FS Race Conditions

• Signaler handler race conditions

• Signals

– used for asynchronous communication between processes

– signal handler can be called in response to multiple signals

– signal handler must be written re-entrant

or block other signals

• Example

– sendmail up to 8.11.3 and 8.12.0.Beta7

• syslog(3) is called inside the signal handler

• race condition can cause heap corruption because of double free
vulnerability

Secure Software Programming 24

Automation Systems Group

Non-FS Race Conditions

• Windows DCOM / RPC vulnerability

– RPCSS service

– multiple threads process single packet

– one thread frees memory,

while other process still works on it

– can result in memory corruption

– and thus denial of service

Secure Software Programming 25

Automation Systems Group

Detection

• Static code analysis

1. specify potentially unsafe patterns

and perform pattern matching on source code

• Paper -- “Checking for Race Conditions in File Accesses”

• RATS (Rough Auditing Tool for Security)

2. source code analysis and model checking

• based on finite state machines

• more precise analysis possible

• MOPS (MOdel-checking Programs for Security properties)

Secure Software Programming 26

Automation Systems Group

Detection

• Static code analysis

3. source code analysis and annotations / rules

• RacerX (found problems in Linux and commercial software)

• rccjava (found problems in java.io and java.util)

• Dynamic analysis

1. inferring data races during runtime

• “Eraser: A Dynamic Data Race Detector for Multithreaded Programs”

