
Integration of Heterogeneous Building Automation
Systems using Ontologies

Christian Reinisch, Wolfgang Granzer, Fritz Praus and Wolfgang Kastner

Vienna University of Technology, Institute of Computer Aided Automation

{cr, w, fpraus, k}@auto.tuwien.ac.at

Abstract—The challenge of integrating heterogeneous systems
in order to combine their functionality is of utmost importance
for the further deployment of building automation systems.
The goal is to allow comprehensive communication among the
systems. This will provide enhanced possibilities thus making
way for intelligent buildings. Traditionally, integration is achieved
using gateways which require considerable configuration effort.
To alleviate this overhead and provide a unified system view, a
generic application model is proposed that can accommodate
all functionality found in building automation systems. The
employment of this model promises several benefits such as a
central point for configuration and system access. The method of
choice are ontologies, which allow to offer a seminal representa-
tion of knowledge, an abstraction of the heterogeneous network
infrastructure and automatic reasoning on the stored knowledge.

I. INTRODUCTION

Today’s building automation systems (BAS) allow the auto-

matic control of a variety of fields. While originally only the

core domains lighting/shading and heating, ventilation and air-

conditioning (HVAC) were targeted, nowadays other systems,

such as access control and fire alarm systems, are considered

for an integration.
The ideal BAS is an all-in-one solution that allows total

control of all conceivable scenarios in a building. Although

a shift towards higher integrated systems can be observed,

this wish still contrasts reality. Current BAS allow to span

all application fields only if they are composed of several

independent subsystems. However, this integration is very

challenging and mostly does not give the desired impression

of a homogeneous network to the users.
Still, it is a good idea to build on existing protocols due

to compatibility and cost reasons. The main open protocol

contenders that can be considered as part of an all-in-one

system are BACnet [1], KNX [2], LonWorks [3] and ZigBee

[4]. All of them span more than one application domain,

but are not completely versatile (e.g., KNX supports light-

ing/shading and HVAC applications, but has limited features

regarding security and safety). Apart from these protocols,

also stand alone solutions exist that are dedicated to a specific

application domain. Two prominent examples are DALI and

MBus, which are used exclusively for lighting and metering,

respectively. Furthermore, numerous proprietary systems for

various domains exist, which can not be considered suitable

for an integration as protocol details are seldom published.
Obviously, it is not sufficient to deploy several systems

each covering one domain, but these different systems need

to be interconnected to allow an information exchange for

the distributed applications. From the communication point

of view this interconnection can be achieved using gateways

or multi-protocol devices [5], thus allowing to establish the

2-tier model for BAS. In the 2-tier model, different building

automation networks are interconnected with the help of a

common backbone. This introduces two challenges. First, all

devices of each technology employed need to be configured

independently, probably with vendor-specific tools. Second,

also the gateways require considerable effort for configuration.

All data points of interest in a particular subsystem need to be

translated by the gateways to allow their use in other systems.

This is even complicated due to the fact that most technologies

are based on different assumptions and concepts of the outside

world and thus represent these concepts differently.

The first step towards a homogeneous view is to define

BAS in a general and abstract way. A promising technology

for this task are ontologies, which cannot only be used to

represent knowledge but also to (automatically) generate new

knowledge. In the following section, an introduction into

ontologies is given and related work is reviewed. In Section III,

the different application models of the four major open BAS

protocols are presented and their main differences are pointed

out. Ontologies and their benefits in BAS are discussed in

Section IV, while the generic application model is presented

in Section V. Finally, an example use of our ontology is given

in Section VI.

II. OVERVIEW OF ONTOLOGIES

An appropriate definition of ontologies is given in [6]:

(An ontology is) “A shared and common understanding of

a domain that can be communicated between people and

heterogeneous and distributed systems”. Derived from this

definition an ontology is basically a way to store, organize

and represent knowledge. More specific, concepts belonging

to a particular domain and their relations can be defined

in a generic way, thus forming a model of this domain.

Additionally, ontologies allow to reason on the stored data, so

that an automatic generation of new information is possible.

Ontologies are commonly designed and developed with

tool support and are often based on the Resource Descrip-
tion Language Schema (RDFS) [7] and the Web Ontology
Language (OWL) [8] as description languages. Probably the

most prominent tool for this purpose is Protege1 which was

developed at Stanford University.

Ontologies are already used in various scientific fields,

ranging from biology to linguistics. Also technical systems are

considered to be augmented with their help. In the industrial

automation field, ontologies allow to access fieldbus device

information (device descriptions) using Semantic Web tech-

nologies and thus easier creation, processing and management

of this information becomes possible (cf. [9]). In [10], an

ontology called DomoML representing data of household

appliances and their environment (i.e., rooms, furniture, etc.)

is defined. The main target is human home interaction with the

goal to improve pervasiveness and interoperability of domestic

devices. A similar approach as DomoML but for industrial

and building automation systems is outlined in [11]. The

main aim is to establish interoperability among heterogeneous

automation networks at the level of web services.

All three examples primarily intend to make systems

”ready” for the Semantic Web, thus exposing and matching

their services over the web. However, ontologies hold many

more possibilities than merely providing an access point for

the Semantic Web. In particular, ontologies allow the repre-

sentation of application specific knowledge in an abstract and

organized way. In BAS, this is especially promising regarding

the heterogeneous network infrastructure often found there.

III. APPLICATION MODELS IN BAS

Devices that are proven to comply with a particular tech-

nology – even if sold by different vendors – are able to

communicate with each other. This vendor-independent com-

pliance is called interoperability. Interoperability not only has

to be guaranteed for communication but also for distributed

applications, so that devices of different vendors can be

deployed in one system.

Therefore, all technologies define their own application

model which states how data is represented (data format,

encoding) and how the communication between applications

has to be realized (methods to manipulate data). Obviously,

each application model is specific for a particular technology,

which prevents a direct (i.e., translation/gateway-free) commu-

nication across technology borders.

A. BACnet

While BACnet defines the services that are used by ap-

plications to communicate with each other, the internal data

structures that are used to store application data are left open

by the standard. However, to guarantee interoperability, the

network-visible representation of the data structures has been

defined by the standard. This network-visible part of a single

data element is called a BACnet object. Each object has a

dedicated object type and represents a collection of properties.

Each property has a data type that defines the size and the

encoding of the particular data element.

In the current BACnet standard, 25 different objects and

nearly 200 different property types as well as different object

1http://protege.stanford.edu/

access services are defined. The most important services used

to access and manipulate objects are ReadProperty (i.e., read

the value of a property), and WriteProperty (i.e., set a new

property value).

For example, BACnet 2004 defines generic binary and

analog object types such as BACnet Binary Output
Object Type and BACnet Analog Input Object
Type. It is the responsibility of the application program to

map the functionality of a simple light to a BACnet Binary
Output Object Type or a room temperature value to a

BACnet Analog Input Object Type. However, there

are efforts underway to standardize more application-specific

object types in BACnet. For example, in Addendum i, basic

BACnet objects for lighting have been defined [12].

B. KNX

The KNX interworking model [13] distinguishes between

different application domains (e.g., HVAC, lighting). Within

these domains, models for the desired applications are de-

fined (application models). The functionality of these mostly

distributed applications is spread across various so called

functional blocks. Each functional block is implemented by

a single device, and each device can host multiple functional

blocks. Each functional block is described by a well-known

behavior and consists of one or more datapoints. A single dat-

apoint represents a single data of the application. Depending

on the type, this may be an input or an output as well as a

parameter that influences the behavior of the functional block.

To be able to guarantee interoperability, each datapoint has a

defined datapoint type. This datapoint type states the format

(i.e., the bit length), the encoding, the range (e.g., the upper

and lower bound of the value) and the unit (e.g., percent) of

the datapoint. Each datapoint can be accessed using a specific

KNX communication service as well as a particular address

(e.g., group object datapoints use group addresses and are

accessible through group communication services).

C. LonWorks

In LonWorks, applications define so called network vari-
ables (NVs), which are shared by devices over the network.

For interoperability reasons, the LonMark Association2 stan-

dardizes the NVs through the definition of standard network
variable types (SNVT). A SNVT is an exactly defined (e.g.,

encoding, physical unit), calibrated, filtered and linearized

engineering value which allows its doubtless interpretation.

Besides the SNVTs, also so called standard configuration
property types (SCPTs) are defined and used to access config-

uration functions within a device (e.g., changing parameters).

To satisfy the demands of special domains such as building

automation, the LonMark Interoperability Association defines

so called standard functional profile templates (SFPTs) for

interoperability. These SFPTs are application-specific and in-

clude NVs and configuration properties, defaults, and power-

up behaviors.

2www.lonmark.org

D. ZigBee

ZigBee applications are implemented by so called appli-
cation objects that are distributed across the ZigBee devices,

with one ZigBee device hosting a maximum of 240 appli-

cation objects. Each application object hereby implements a

specific functionality of the distributed application. Within the

application object, the functionality is represented by so called

clusters. A cluster is a collection of commands and attributes.

While a single attribute of a cluster represents a single data

of the process to be controlled (i.e., the state of a light),

commands are used to manipulate these attributes as well as

to initiate actions within the device. Therefore, clusters act as

interfaces to the application object.

The exact structure of the application objects and their

associated clusters (including the specification of the clusters’

attributes and commands) are not defined by the core speci-

fication. However, to enable interoperability between ZigBee

devices, so called application profiles are defined. An example

of such an application profile is the recently published ZigBee
home automation public application profile [14].

Application profiles are defined for a specific application

domain. They contain a set of logical device descriptions that

define the functionality to be implemented. This functionality

is represented by so called clusters, whose implementation can

either be mandatory or optional. An application object is thus

an implementation of a logical device description (or at least

of all its mandatory clusters) within a physical ZigBee device,

e.g., an On/Off Light.

IV. ONTOLOGIES IN BAS: BENEFITS

As mentioned in Section I, an integration of distributed

applications that are spread over heterogeneous networks is not

a trivial task. In such a case especially the different application

models pose a significant problem. These application models

do not only use different communication services at the

application layer but also different data structures to store

application data. Therefore, a mapping between the different

application models is necessary. In a concrete installation,

this means that the network-visible data structures of the

application data, i.e., the datapoints, must be mapped from one

protocol to the other (datapoint mapping). Likewise, also the

services used to access them have to be translated (application
layer service translation). Additionally, it has to be defined

which datapoints shall be used for data exchange and which

of them are interoperable with the other technology. This step

is referred to as binding.

Considering the integration of heterogeneous networks, the

employment of an ontology holds major benefits. First, in-

tegrated BAS can be configured centrally by accessing and

modifying the ontology only. For all protocols that are em-

ployed, an (automatic) translation of the (centrally managed)

configuration data into the technology-specific form (i.e., the

instances representing the used BAS) becomes possible. This

central management approach facilitates BAS management

and guarantees system consistency. Second, the ontology with

its machine-readable data representation also provides a con-

venient access point for other systems. The accessing systems

may comprise all kinds of web services (e.g., system visual-

ization over the web) and also enterprise resource planning

(ERP) and facility management tools.

Finally, the ontology alleviates the overhead that is en-

countered when heterogeneous systems shall be integrated. In

particular, even two possibilities exist to realize the integration.

On the one hand, it is possible to allow data exchange on

the web service level. This shifts the interconnection on top

of the application layer. If two or more different technologies

shall exchange data, matching web services of each technology

have to be found and bound. However, this approach requires

the use of web services even if they are not needed for any

other purpose. Therefore, it is likely to introduce overhead. On

the other hand, the currently more common way of system

integration is the use of gateways. These dedicated devices

cater for a translation of protocol specifics up to the application

layer. A drawback of this approach has always been the effort

needed for gateway configuration. As we will show in the

remainder of this paper, this effort can be considerably reduced

with the help of ontologies.

The basic idea of the ontology for BAS is to separate generic

information from an installation dependent one through the

definition of the abstract model (e.g., the abstract BAS device

description) and concrete instances of it (e.g., a BAS device

instance representing a particular technology with specific pa-

rameters). Additionally, protocol-specific and domain-specific

knowledge (e.g., BAS specific vocabulary) are part of the

ontology and can be referenced from other ontology parts.

A BAS ontology thus can be used to abstract an existing

BAS installation and represent this particular installation in

a generic form. All configuration and management tasks can

now be performed directly on the abstracted representation

and be automatically distributed to the different underlying

technologies. This generic application model will be described

in detail in the next section.

This approach allows two major improvements of inte-

gration effort, which are also shown in Figure 1. First, it

is no longer necessary to define mapping rules covering all

different protocols, but it is sufficient to map each protocol

to the abstract representation (the ontology), which acts as

a common base for all protocols. In a BAS that uses four

different protocols, normally at least six mappings (pairwise

for each two protocols) would be needed. Using the ontology,

four mappings are sufficient. Furthermore, if a new technology

is considered for integration, again just a single mapping must

be defined (i.e., from the technology to the ontology), while

the other approach would require four additional mappings.

Therefore, future extensions are highly facilitated.

Another advantage is that the required bindings can be

established directly in the generic application model using a

comprehensive integration tool. This binding could for exam-

ple be accomplished using the ontology design tool itself (e.g.,

Protege), while advanced functionality could be added in form

of plugins. On the one hand, a centralized binding approach

Generic application
model (Ontology)

Integration tool (binding
of heterogeneous
applications)

KNX
application

model

KNX
application

model

ZigBee
application

model

LonWorks
application

model

BACnet
application

model

Export of configuration for datapoint mapping
(reasoned knowledge)

Gateways

Multi-
protocol
devices

Routers

KNX LonWorks ZigBeeBACnet/MS-TP

BACnet/Ethernet

KNX LonWorks ZigBeeBACnet/MS-TP

BAS engineering tool export

System
engineer Binding

Instances

Fig. 1. BAS integration and advanced use cases enabled by ontologies

facilitates the identification of interoperable devices (e.g., the

abstract representation allows to determine that a KNX light

switch can be used with a ZigBee light). On the other hand,

all configuration is performed centrally and can thus be easily

exported. Changes that are made are automatically converted

to meet the respective protocol semantics and committed to

these protocols. Additionally, also the gateway configuration

can be derived automatically using the reasoning capabilities

of ontologies. Consider, for example, a ZigBee light switch

that shall be integrated into a KNX lighting system. To achieve

this, the engineer now binds the generic datapoints of these

two functions. After having finished the binding of all desired

functions, it is possible to automatically generate and export

this binding in form of configuration data. This configuration

data can then be loaded into the gateways or multi-protocol

devices respectively.

V. GENERIC APPLICATION MODEL

The key challenge of the proposed solution is the definition

of the generic application model. This application model shall

be expressive enough to be able to model all different types

of distributed applications typically found in the building au-

tomation domain. A possible solution would be to evaluate the

application models of the existing BAS standards, and decide

on the most suited one for further development. However, such

a process is not likely to yield acceptable results for all targeted

systems, as each model has particular advantages and disad-

vantages and is sometimes focused on a particular domain.

Therefore, instead of preferring an existing model, our goal

is to define a new and generic application model. This model

shall allow an easy mapping between the generic application

model and the standard-specific application models of the most

popular open BAS standards (cf. Section III). At the same

time, our model shall be generic enough to accommodate to

the application models of future BAS standards.

The basic structure of the generic application model is

shown in Figure 2. In this model, the nomenclature is based

Application domains

Applications

Access control...

...

...... ...

Devices

Function blocks

Gates

Process datapoints

Binding

Management datapoint
Function block

On/Off light in room x ...

Lighting

Fig. 2. Basic structure of the generic application model

on the one used in IEC 61499 [15], but modifications were

made with respect to the building automation domain vo-

cabulary. The functionality of BAS is realized by distributed
applications which are spread across different devices. Each

application belongs to a different application domain (e.g.,

the application ”On/Off light in room x” is a member of the

application domain ”lighting”). In a distributed BAS, devices

host one or more so called function blocks. Each of these

function blocks implements a particular part of the application

functionality. While a device can host multiple function blocks

(different or even of the same type), we assume that one

function block is always dedicated to exactly one device.

Each function block consists of one or more process data-
points (PDP), one or more management datapoints (MDP) and

so called gates. A single PDP represents a single data of the

application process (e.g., the current state of a light switch

or light) that can be read and (optionally) be written. The

structure of a process datapoint used in our model is similar

to the one defined in [16]. Each process datapoint has a present

value and some associated meta-data. This meta-data further

characterizes the datapoint by describing, for example, the

datapoint type, valid range and unit of the present value.

A MDP is comparable to a PDP. It also consists of an actual

value and has meta-data associated. Additionally, it can be

declared as read-only or writable. The main difference to the

PDP is that a MDP does not represent any application data.

Rather, it is used for configuration and/or maintenance (e.g.,

to change a setpoint or access logging information).

Finally, function blocks also contain one or more gates,

which do not represent any data. Gates are used to read

and/or write PDPs and therefore they can invoke particular

actions within a function block. The necessary association

between a gate and its corresponding datapoint is established

via a binding. Since multiple gates can be bound to multiple

PDPs, m:n relations are possible. The binding of gates to

MDPs is not foreseen in this model. The reason is that MDPs

are only accessed by dedicated management devices (e.g., a

logging station) which are not considered as part of the actual

application process. Thus, a binding is not required. Figure

4 shows an example of a lighting application where a gate

belonging to the function block On/Off_Switch is bound

to the function block On/Off_Light.

The generic application model is defined through an on-

tology using the web ontology language OWL. The ontology

consists of multiple OWL classes that are derived from the root

OWL class owl:Thing. Figure 3 partially shows the main

classes without their properties. These classes are explained

in the rest of this section.

Fig. 3. Excerpt of the BAS ontology

A. OWL class Function_Block

This class contains different so called application domain
subclasses that group the function blocks of each application

domain (e.g., lighting or HVAC). Each application domain

class has three subclasses. One contains the classes that

implement actuator functionality, one for implementing sensor

functionality and one for implementing controller functional-

ity. These, in turn, contain the different classes that represent

the specific function block types.

Since each function block has different PDPs, MDPs and

gates, each function block class has a list of references to other

datapoints3. In OWL, these references are represented as OWL

3The term datapoints is used as a collective term for process and manage-
ment datapoints.

object properties. Gates are represented as object

properties to PDPs (i.e., one PDP can be referenced by multi-

ple gates). PDPs and MDPs are represented as OWL inverse
functional object properties. Therefore they only

reference to exactly one instance of a datapoint (i.e., a PDP or

MDP can only be referenced by exactly one function block).

B. OWL class Datapoint

The OWL datapoint class contains different subclasses

where each subclass represents a specific, generic datapoint

type (e.g., boolean or unsigned integer of length 8 bits). Each

generic datapoint class has again several subclasses that are

used to further restrict the range of the datapoint type or to

specify a different encoding scheme (e.g., a subclass of a 8 bit

unsigned integer may represent a percentage or an enumeration

type that specifies some configuration modes).

Each datapoint class has an OWL datatype property

is_of_type that specifies whether the datapoint is a MDP

or PDP. Additionally, a class has an OWL datatype property

value that represents the actual value as well as additional

OWL datatype properties that are used to store the datapoint

meta information.

Furthermore, gates shall have access to both PDPs and

MDPs. Therefore, each datapoint has an OWL object
reference to an instance of the class Datapoint_
Address (cf. Section V-C).

C. OWL class Address

This class and its subclasses are used to store address

information. The three different subclasses Datapoint_
Address, Network_Address and Device_Address
are differentiated. Each of them has again multiple (one for

each supported BAS standard) subclasses to represent technol-

ogy specifics (e.g., BACnet_Datapoint_Address, KNX_
Device_Address).

All Address subclasses and the instances of

Datapoint_Address are used to store the addressing

information and to allow this information to be referenced

by PDPs and MDPs. Therefore, the address information is

used by the gates and management devices to access the

corresponding datapoints.

VI. AN IMPLEMENTATION FOR LIGHTING

The following paragraphs shall give an impression how the

generic application model is used in practice. Clearly, not

all features can be outlined in full detail, but an example

use shall be shown. Therefore, an ontology that represents

the application domain lighting has been defined using

the OWL engineering tool Protege. The goal is to support

a mapping of the application models of all four major BAS

standards into the generic model. Figures 4 and 5 show four

different instances of function blocks:

• On/Off_Switch_A is an instance of the OWL class

On/Off_Switch which is a subclass of Lighting_
Sensor. The function blocks implements the function-

ality of a basic light switch that can be used to switch

a light ”on” and ”off” via the gate on/off_switch_
state_change.

• On/Off_Light_A is an instance of the OWL class

On/Off_Light which is a subclass of Lighting_
Actuator. It represents the corresponding actuator that

can be used in combination with a On/Off_Switch
sensor via the PDP on/off_light_state.

• Dimming_Switch_B is an instance of the OWL class

Dimming_Switch which is a subclass of Lighting_
Sensor. It implements the functionality of a switch

that can be used to dim a light, for instance, via its

corresponding gate relative_dimming_change.

• Dimming_Light_B is an instance of the OWL class

Dimming_Light which is a subclass of Lighting_
Actuator. The light is dimmed when a binding to PDP

relative_dimming is established.

On_Off_Switch_A On_Off_Light_A
PDP: on/off_light_stateGate: on/off_switch_state_change

PDP: on/off_light_state_info

MDP: on/off_light_configMDP: on/off_switch_config

Gate: on/off_light_state_change

Binding

Lighting device
On_Off_Switch_B

Double switching device

Configuration tool

Fig. 4. Basic lighting function blocks including a (possible) binding

Dimming_Switch_B Dimming_Light_B
PDP: on/off_light _stateGate: on/off_switch_change

MDP: on/off_switch_config

Gate: on/off_light_state_change

Binding

PDP: relative_dimmingBinding

PDP: absolute_dimmingBinding
Gate: relative_dimming_change

Gate: absolute_dimming_change

MDP: relative_dimming_switch_config

MDP: absolute_dimming_switch_config

Gate: relative_dimming_change

Gate: absolute_dimming_change

PDP: on/off_light_state_info

PDP: relative_dimming_info

PDP: absolute_dimming_info

MDP: on/off_light_config

MDP: relative_dimming_light_config

MDP: absolute_dimming_light_config

Lighting deviceSwitching device

Fig. 5. Dimming function blocks including (possible) bindings

VII. CONCLUSION

In this work it was shown how ontologies can be used to

facilitate an integration of heterogeneous building automation

networks. A generic application model is proposed that ab-

stracts technology-specific information and provides a generic

view of the BAS. Therefore, this representation acts as single

access point for configuration and maintenance tasks. Addi-

tionally, the reasoning capabilities of ontologies are exploited

to allow the automatic calculation of gateway configuration

data.

Future development intends to extend the generic applica-

tion model and thus the ontology to span even more parts of

the building automation domain. On the one hand this concerns

other application domains than lighting, the integration of

building automation specific vocabulary as middle ontology

and further building related knowledge (e.g., more global

concepts such as floors, rooms, doors, etc.). A valuable source

for the latter can be the Industry Foundation Classes (IFCs)

[17]. Although not actually organized in an ontology (yet), the

IFCs already provide a data model structure of buildings and

building elements.

On the other hand, the ontology shall be extended to cover

other scenarios. A conceivable one is the definition of a whole

BAS first only in the ontology and in an abstract way. From

this representation, all configuration data, an automatic choice

of appropriate devices, and best gateway placement can be

derived and distributed to the different networks. An ontology

can also help to improve security. Through a data capturing

component attached, the regular behavior of a BAS (abstracted

of technology specific details) can be logged. This is then a

potential input for intrusion detection systems that monitor any

derivation from standard system behavior.

ACKNOWLEDGMENT

The work presented in this paper was funded by FWF (Austrian Science

Foundation) under the project P19673.

REFERENCES

[1] “BACnet – a data communication protocol for building automation and
control networks,” ANSI/ASHRAE 135, 2004.

[2] “KNX specification,” Version 1.1, 2004.
[3] “Control Network Protocol Specification,” ANSI/EIA/CEA 709.1, 1999.
[4] ZigBee Specification 2007, ZigBee Alliance, San Ramon, 2007.
[5] C. Reinisch, W. Granzer, and W. Kastner, “Secure Vertical Integration for

Building Automation Networks,” in Accepted at 7th IEEE Int. Workshop
on Factory Communication Systems (WFCS ’08), May 2008.

[6] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman,
and J. Dominque, Enabling Semantic Web Services, 1st ed. Springer,
2007, ch. 3.

[7] D. Brickley and R. Guha, “RDF Vocabulary Description Language 1.0:
RDF Schema,” Feb. 2004, W3C Recommendation 10 February 2004.

[8] D. L. McGuinness and F. van Harmelen, “OWL Web Ontology Language
Overview,” Feb. 2004, W3C Recommendation 10 February 2004.

[9] S. Hegler and M. Wollschlaeger, “The Semantic Web in action: seman-
tically enabled Device Descriptions,” 5th IEEE Int. Conf. on Industrial
Informatics, vol. 2, pp. 1013–1018, June 2007.

[10] L. Sommaruga, A. Perri, and F. Furfari, “DomoML-env: an ontology
for Human Home Interaction,” in SWAP 2005: Proc. of the 2nd Italian
Semantic Web Workshop, P. Bouquet and G. Tummarello, Eds., vol.
166, Dec. 2005. [Online]. Available: http://ceur-ws.org/Vol-166/34.pdf

[11] K. J. Charatsis, A. P. Kalogeras, M. Georgoudakis, and G. Papadopoulos,
“Integration of Semantic Web Services and Ontologies into the Industrial
and Building Automation Layer,” EUROCON, 2007. Int. Conf. on
”Computer as a Tool”, pp. 478–483, Sept. 2007.

[12] “BSR/ASHRAE Add. i to ANSI/ASHRAE Standard 135-2004,” March
2008, second Public Review Draft.

[13] KNX Specification - Part 7: Interworking Model, Version 1.0, Konnex
Association, 2002.

[14] ZigBee: Home Automation Public Application Profile, ZigBee Alliance,
2008.

[15] IEC 61499-1: Function Blocks - Part 1: Architecture, 1st ed., Interna-
tional Electrotechnical Commission, Jan. 2005, International Standard.

[16] W. Burgstaller, S. Soucek, and P. Palensky, “Current Challenges in
Abstraction Data Points,” in IFAC Int. Conf. on Fieldbus Systems and
their Applications, 2005, pp. 40–47.

[17] “Industry Foundation Classes Specification - IFC2x Edition 3,” Interna-
tional Alliance for Interoperability, Feb. 2006.

