The Booch Components

Description

The Ada 95 Booch Components (http://www.adapower.net/booch/; http://www.pushface.org/components/bc/) are a pretty faithful translation from the C++ Booch Components. They have been used on at least 3 real projects, one related to Air Traffic Control and one for a point-defence missile system.

The style of programming is heavily generic, involving child generics to several levels.

The “monolithic” containers supported are Bags, Collections, Dequeues, Maps, Queues, Rings, Sets, Stacks and AVL Trees (Collections and Queues come in an “ordered” flavour too).

The “polylithic” containers are Graphs (directed and undirected), Lists (single and double), and binary and multiway Trees. Polylithic containers provide structural sharing.

The monolithic containers come in three structural forms: Bounded, Unbounded and Dynamic. Bounded forms have a fixed maximum size and are allocated entirely on the stack. Unbounded forms are allocated on the stack but all the contained items are allocated from a storage pool. Dynamic forms are a halfway house.

The monolithic containers also support concurrent programming in two styles: Guarded and Synchronized. The Guarded form extends the selected structural form to provide seize/release operations, and is available generically, while the Synchronized form requires special programming.

Iteration is supported, in both closed and open forms, over all container types, without dynamic allocation.

The algorithms supported are sorting (shellsort and quicksort) and filtering.

Problems

Polylithic containers are problematic; the name List has caused endless problems for users, since it’s the first container they try to use and doesn’t behave the way they expect (that would be Collections).

With hindsight, Dynamic forms should have been implemented using the Unbounded form with an appropriate storage pool.

The Synchronized form has only been provided for a couple of the containers.

There is at present no support for reverse iterators or read/write synchronization.

Way ahead

We need a specification and a reference implementation. The reference implementation should be under the GNAT-modified GPL. The specification should be licensed like the standard ARM package specs.

We need Iterators.

We need bounded forms as well as unbounded, so as to address the embedded problem space.

We need Lists (BC Collections), Maps (dictionaries) and Queues; Priority (ordered) Queues would be good, too.

We need to be able to sort Lists.

I’m not at all sure about concurrency support. I think that it’s more likely that the Containers would be used in the implementation of a particular problem, rather than being responsible for the full solution, since user requirements are likely to be quite specific.

Simon Wright

Work: +44(0)23 9270 1778, simon.j.wright@amsjv.com
Home: simon@pushface.org
