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On a Tree Collision Resolution Algorithm
in Presence of Capture

ULRICH SCHMID

Abstract. We investigate some characteristic parameters of trees underlying a collision reso-
lution with a simple tree-algorithm. An extension of the usual assumptions about the basic
model provides the ability of treating capture effects: in case of a collision it is not necessary
to assume the destruction of all packets involved. Our investigations are based on the analysis
of complicated alternating sums of a certain type already known from the analysis of search
trees. By using an extension of techniques applied in those studies, which are mainly based
on Rice’s approach, we obtain asymptotic expansions for a number of interesting quantities.

1. INTRODUCTION

We study one of the simple tree-algorithms (Capetanakis, Hayes, Tsybakov, Mikhailov)
for collision resolution in a random access broadcast system, where a lot of results (through-
put, delay-characteristics, stability . .. ) are well known from the past, see for example [1]
for a nice survey. Most of the investigations mentioned base on a mode] which is similar
to the following:

(1) A (infinite) large population of identical transmitters is supposed to have access to
a common time-slotted noiseless collision-type channel.

(2) The transmitters are constrained to transmit independent information in the form
of “packets” whose length is one time slot, and the packet generation in the whole
system is according to a Poisson-process with fixed rate \.

(3) The channel feedback is supposed to be identical for all transmitters, and in case of
a collision all packets involved in that collision are completely lost.

Our intention is to study the behavior of the algorithm (or exactly, parameters of the
underlying tree) in the presence of capture effects. In many real communication systems
the “strongest” of the actually colliding packets is able to capture the receiver und thus
be received without error. To handle this subject we have to change (3) of the common
used model.

In [3] the population of transmitters is statically divided into two disjoint groups (the
dominating and nondominating group). A transmitter of the dominating group is supposed
to capture out one or more transmitter(s) of the other group. Since choosing the strongest
of two or more colliding packets is not enough to determine the presence of an actual
capture (e.g., in a radio system we have the influence of atmospheric effects like fading),
we model our capture in a (very simple) different way: We assume a fixed probability p
for the complete lost of all packets involved in a collision. This destruction probability
does not depend on the multiplicity of the collision. Moreover, we assume disjoint packets,
so 1 — p is the probability that exactly one of two or more colliding packets is received
successfully.
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However, we should admit that our approach is not able to cover all possible varieties
of capture effects sufficiently!. For instance, capture is sometimes a local phenomenon,
le., concerns not all receivers in the network in the same way. The assumption of all
stations agreeing on the destruction/non destruction of all packets involved in a collision
is therefore sometimes too optimistic. Another question concerns the assumption of a
destruction probability which is independent of the multiplicity of the collision. In radio
networks, the possibility of a capture is determined by the ratio between the strongest and
the sum of the other signals, which is clearly not independent of the multiplicity of the

conflict.

2. BAsIcs

We study a Q-ary CRA (Collision Resolution Algorithm) with the obvious BAP (Blocked

Access Protocol, see [1]), which works as follows:

(1) No collision resolution. If the system is in an idle state, each transmitter who has
a ready packet transmits it in the very next slot.

(2) Collision resolution. If the system manages the resolution of a (previous) conflict,
all transmitters not involved in the initial collision remain blocked until the com-
plete resolution. They may contend for the following idle slot(s), thus eventually
forcing a new initial collision. After a collision, each transmitter involved flips a
fair “Q-sided coin” with values from 1,2,...,Q. This value is used for determining
the relative number of the slot in which the packet should be transmitted, e.g., all
transmitters with 1 flipped transmit in the very next slot. If a new collision occurs,
it is resolved immediately, suspending the resolution of the other values. Trans-
mitters who are not involved in the current collision but who have already a value
flipped, have to keep track with the current resolution process, e.g., to add Q — 1
to their relative slot number.

We may represent the resolution of each initial conflict by a Q-ary tree containing two
types of nodes. We distinguish C-nodes (Capture-nodes, representing a successful transmis-
sion of a packet in a collision slot, or a single transmission ), and NC-nodes (NonCapture-
nodes, representing a collision slot with total destruction of all packets involved, or an
empty slot), each labelled with the multiplicity of the corresponding conflict (0 1s the label
for empty slots, 1 for a slot used by a single transmitter). Since the coin-flipping process
splits the set of collided transmitters in exactly @ subsets, we use the cardinality of them
for labelling the Q successors of the root, recursively for each subtree.

If we examine the trees generated by the application of these rules, further denoted
by p-triees (p mixed radix search trie and digital search tree), we obtain the following
properties:

(1) For each resolution of a conflict of multiplicity n there exists a unique representation
of the resolution process with exactly n C-nodes, and conversely (if we assume
indistinguishable transmitters, of course).

(2) Traversing the tree in preorder, we obtain the “traffic” on the channel; each C-node
represents a slot with a successful transmission.

1We should like to thank the anonymous referee for stressing some possible directions of further research.
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(3) Nodes with no successors correspond to empty slots (label 0) or to single transmis-
sion slots (label 1).

(4) Nodes with successors correspond to collision slots of multiplicity equal to their
label.

(5) Each such tree may be viewed as a “mixture” of a digital search tree and a radix
search trie, see [4] for a survey. For we are interested in parameters investigated for
both type of trees, one could argue, that it might be possible to extend techniques
used in these studies, and in fact, this is true.

3. OUTLINE

We are mainly interested in studying parameters of the underlying p-triee rather than
obtaining results concerning the performance of the algorithm. Of course, it is possible
to derive results like throughput easily from our computations, see [2] for a very complete
survey.

Assuming a p-triee as mentioned before with exactly n C-nodes, we are interested in the
following questions:

(1) What is the expected number of nodes in the whole tree? This problem corresponds
to the computation of the CRI-length (Collision Resolution Interval) of an initial
collision of multiplicity n.

(2) What is the expected number of nodes with label 0? This problem corresponds to
the computation of the number of empty slots in the CRI, when resolving an initial
collision of multiplicity n.

(3) What is the expected number of nodes with label V 2 27 This problem corresponds
to the computation of the number of collision slots with given multiplicity V' when
resolving an initial collision of multiplicity n.

We use the same general outline for the derivation of all three results: First, we obtain a
recurrence relation for the desired parameter, say L,. Starting from a functional equation
for the corresponding EGF (Exponential Generating Function) L(z) we derive a simpler
one by introducing the PoGF (Poisson Generating Function) H(z). Now we are able
to obtain a simple linear recurrence for the Taylor-coeflicients A, of the PoGF, which
leads to an explicit expression involving a sum of some partial products. Eventually, an
explicit expression for the desired quantity L, may be found, which is an alternating
sum 3, (3)(=1)* fi with fi essentially hy. _

The remaining problem is to determine an asymptotic expression for L, as n gets large.
This task is done by means of the so called Rice’s method, see for example [5], Exer-
cise 5.2.2-54. Rice’s method is based on a classical formula from the calculus of finite
differences, which states an identity for alternating sums involving binomial coefficients
and a special type contour integral. All we need to find the asymptotic expansion of our
sum 1s a function F(z) with the property F(k) = f; for all summation values k, analytically
in a skinny region covering the (positive) real axis.

Unfortunately, easy computations show that limp oo fn = 0o, thus no appropriate func-
tion could be found. Instead, we determine the asymptotic expansion of fa=cin+cy+
(exponential small terms) and investigate the alternating sum on g, = f, — cin — ¢y with
the approach mentioned. The evaluation of the contour integral is done by expanding the




integration curve in an appropriate way and taking into account the residues of encounterd

poles.

Here we present our results stated as theorems:

THEOREM (1). The average number L,, of nodes in a p-triee with exactly n C-nodes is

Lo =nQ (2 + (L~ p/Q)Bu(p) = ax + (1 - )29

+nQqoP(logg n) + O(1)

The function P(u) is periodic with periode 1, has very low amplitude, mean 0 and its
Fourier expansion is given by

— 1 ki } _ 2kmi
P(u) = 020 k;ox:cl’( 1~ xk)e with x; = Iog O

THEOREM (2). The average number E, of nodes with label 0 in a p-triee with exactly
n C-nodes is

Ba=n(Q=0) (225 + (1~ p/QB0) — s +1 - )

+n(Q — p)go P(logg n) + O(1)

The function P(u) is periodic with periode 1, has very low amplitude, mean 0 and its
Fourier expansion is given by

1 .
P —_— —1 _ 2kmiu . — )
(u) oz 0 k#ZOXkF( 1 — xx)e with xy oz 0

THEOREM (3). The average number I, = I, (V) of nodes with label V > 2 in a p-triee
with exactly n C-nodes is

v
1 Z qv—k qv-1 .
In= — 4 ——— —_— k — —_ _ d 7.
n(=1) (1ong=2( % k(k—1)+logQ o 1+A(“p))

i i
tn (Z ((;1_)]?)1; Py _j(loggn) - (‘1)VQV—1P0(10gQ n)) + O(1)

j=0
The functions P,(u) are periodic with periode 1, have very low amplitude, mean 0 and the

Fourier expansions are given by

2kmi
log @

— 1 2kmiu . _
Pi(u) = @Z‘:F(t—l—xk)e with ;. =




The constants refered to in the theorems are defined as

1—pQ~/
9= ]| ———
k—1 1 pk—j
gk = 1/k;q,- QZI((Q'“U"“" ~ @) frkzl
_ 9-—1
1 P\ =1y L=pQ (l) i
(p) = - - for
e IOZt(Qk-l Qk—p)lg;j:l 1-07 ) =

K(V,p) =(1-p/Q)Bv(p) + (1 - 2p/Q)Bv _,(p) — p/QBv—-2(p)

At last, we list some numerical results for different values of @ and p. The first table
shows the major term in the asymptotic expansion of the quantity L

a/7, i.e., the average
number of nodes in a p-triee with exactly n C-nodes:

D ,
0 0.1 0.2 | 0.3 0.4 0.5 0.6 0.7 | 0.8

1.25 | 1.32 | 141 | 1.52 | 1.64 | 1.76 | 1.92 | 2.10
1.57 | 1.64 | 1.72 | 1.81 | 1.90 | 2.00 | 2.11 | 2.24
1.86 | 1.94 | 2.02 | 2.10 | 2.18 | 2.28 | 2.38 | 2.48

Table 1 Major term of L, /n

0.9 1

2.30 | 2.56 | 2.86
2.38 | 2.54 | 2.72
2.60 | 2.72 | 2.86

e | O

The next table shows the major term of the ratio E,

/n, that is the average number of
label 0 nodes in a p-triee with exactly n C-nodes:

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 | 0.8

0.26 | 0.27 | 0.28 | 0.30 | 0.31 | 0.33 | 0.34 0.36
0.57 | 0.59 | 0.61 | 0.63 | 0.66 | 0.68 | 0.70 0.73
0.88 | 0.90 | 0.93 | 0.95 | 0.98 | 1.02 | 1.04 1.07

Table 2 Major term of E, /n

0.9 1

0.38 | 0.41 | 0.44
0.76 | 0.79 | 0.82
110 | 1.13 | 1.17

Bl | O

4. PROOF (1)
Denoting by L, the avera
following basic recurrence

— 9 -1 —-n <
et (7 e B 2 (7 e

ge number of nodes in a p-triee with n C-nodes, we have the

=1 Zje=n—1 =1
n n—1
TrRe Z (n) QT (1-1/Q)" 'L+ (1-p)Q }: ("]f 1) Q7(1-1/Q)1L,
1= j=

)




for n > 2. The initial values resulting from the physical model are
Ly=1 and Ly=1

This comes from the following easily established facts. First, the number of nodes in the
triee is 1 plus the sum of the nodes in the Q subtriees. Second, with Probability p the sum
of C-nodes in the subtriees is n, with Probability (1 — p) it is only n — 1, because the root
is a C-node. Third, the splitting of the n resp. n — 1 C-nodes in Q subsets is according to
a multinomial probability-distribution. At last, the subtriees themselves are built in the
same manner. Proving the simple multinomial identity is given to the reader.

We first introduce some notational conviences. D denotes the ordinary differential operator,
N the O-substitution and I the 1-substitution operator, all with respect to a variable clear
from the context or explicitely given, e.g., the differential operator w.r.t. ¢ is denoted by
D,. Let L(t) be the EGF of L,, it is clear that L, = A'D" « L(t), all operators w.r.t. ¢.
Using this in our recurrence, we obtain for n >2

Ln=1+pQN(1-1/Q+D/Q)" + L(t) + (1 ~ p)QN (1 - 1/Q + D/Q)*" « Lt)

the star * means application of the operator to the left on the function to the right.
Multiplying both sides with z"~1/(n — 1)! and summing over n > 2 with mentioning the

fact Ve « f(t) = f(z) yields
L'(z) = perMDL(/Q) + Q1 - p/Q)e* 1 VIL(2/Q) +¢* - Q

Introducing the PoGF of the sequence L,

H(z)=L(z)e7" =y h,,—z—r:

n.
n>0

which induces the following inverse pair

(4-1) ho = Z (Z)(—l)""‘z;k and L, = Z (Z) hi

k=0

yields a simpler functional equation

H'(z)+ H(z) =1+ QH(2/Q) + pH'(z/Q) — Qe~*
h() =1 and hl =0

We will investigate a little generalisation of the above, which helps us to treat the proof of
theorem (2) with the same approach. We look at the functional equation

H'(z)+ H(z) = 1+ QH(2/Q) + pH'(:/Q) — Ae™*
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with some ho and h;. In the previous case we have 4 = @, ho =1and h; =0.
Starting our treatment by equating the coefficients of z" /n! on both sides yields a simple
recurrence for the h, with n > 1.

A

1-Q-n
+ (-1)"H!
=1 1-pQ—"

4‘2 hn = —hn_——'—_‘
(42 e
Let P, = [];5, :—:ﬁ;—:;, then P, = 0, because the numerator of the product for n = 1 has

a zero factor. Proving the convergence of the product is easy and therefore suppressed in
this paper. Moreover, let a, = h, P, then a; = 0 and multiplying both sides of the former
recurrence with P, shows a linear recurrence for the a,. The iterated solution is

N Piyg
ant1 = (=1)""14 Z 1 —oO—F
k=1 1 —pQ

After some algebraic manipulations we get the following explicit expression for the coeffi-
cients h,, with n > 2.

A n—1n-2 l_Q_J'
hp =(-1) —— _
e L e

The desired quantity L, is expressible from (4-1) and yields

k—1 k=2 1— Q_J

=5 (™) - ()L 1-Q77
(4-3) Ln—-z<k)hk-—h0+nhl +Ak§.—_:;(k)( 1) l_le_k?_;Hl_pQ—j

k=0 =1 j=I

The alternating sum is treatable by the formulae of Rice, so we need a meromorphic
function F(z) with the property

n—1n-2

. 1 1-Q~J
)= fo= g 2 1
=1 j=k
_ (="
(4'4) = A hn
for all n > 2.

As already mentioned, we are not allowed to treat the sum with Rice’s approach directly.
We first have to determine the high-order terms of their asymptotic expansion and to
manage the remaining sum of residual terms.

We define for n > 0

Oulp) = [[(1-pQ7)  and Q(p) = Que(p)

n

Tp)= [[-=2"  and T(p) = Tu(p)

jop 1= pQ77




An empty product is assumed to be equal to 1, so both Qo(p) = To(p) = 1 and further
Th(p) = Qn(1)/Qn(p). Moreover, we introduce

1 1 1

Pu(p) = Tn(p)(To(p) + Ty (p) Tt m)
n+l n 1 _Q"j
=2l

which enables us to express £, in the following simple manner

_ Pn—Z(p>
e

We should note that P,(p) must not be confused with the similar products P,, which we
used for determining a closed expression for the h,. Fortunately, we are able to provide the
ordinary GF (Generating Function) S,(z) of the sequence 1 /Tn(p), see Appendix (A-1).
The GF of their partial sums, denoted by R,(z), evaluates to

S()_ 1 Q)
-z (1-2)? Q(2)

and using the known Taylor-expansion of Q(pz)/Q(z) at z = 1 from (A-2) leads to

Rp(z) =

S S (NS i) P
RP(Z)_(].-Z)Z Q(l) I—ZQ(].)( (1) p (p))+ ( )

where r(z) has a radius of convergency of @ around z = 0. Choosing an arbitrary but
fixed e > 0 and ¢ = Q — ¢, we find the asymptotic expansion of the coefficients of Ry(z)

5 - B ) s s
k=0

To obtain the asymptotics of frn, we need two easily proved expansions

(4-5) TTFIQT; =140(¢™") ;
Tn(p) =T(p)(1+ O(g™™)) = g—%(l +0(g™™) .

Multiplication of all expansions concerned with fn yields
n=n=1-(a(l) = pa(p)) +O(g™") =n+v+0(¢g™")

with the shorthand

(4-6) 7 = =1-{(a(1) - pa(p))
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Now it is time for the introduction of a new sequence g,, defined by
gn = fn—(n+7)

Before treating the new subject, we deal with manipulating the expression for the desired
quantity L,. From (4-3) we have

(47)
Lo ot nia 43 (k)(—l)kfk

=2

=n (b + Apolp) = (1)) +ho + A0 +0(1) = pale) + 43 (7)1t
k=2

where we used the well known expressions for Y (D)(=D*and (})(=1)%k and (4-6) for
replacing v by its definition. The remaining task is the computation of the alternating

sum involving the ¢, with Rice’s method.
It is clear that g(n) = O(¢~™"), and remembering (4-2) and (4-4) yields after some algebraic

manipulations a recurrence for the g, with n > 2.

_ 1-pQ@™"  (n+y-(n+7+1)p/Q)Q*-"
gn-gn'“l_Ql—-n 1_Ql-n

It should be noted that the condition limy,_.co g» = 0 inhibits the existence of more than
one solution, as can be shown with an indirect proof using iteration. We investigate a corre-
sponding functional equation rather than the recurrence, because we need a function G(z)
with the property G(n) =g, forn > 2. Thisisa simple task, of course. Let

1—pQ~*

1 __Ql—z
_E+r-(C+y+1)p/Q)Q >

b(z) = o

We may iterate it and together with the assumption that G(z) vanishes if R(z) — oo in
a certain region of the complex plane we obtain a solution of the functional equation as

desired.

a(z) =

G(z) = a(z)G(z + 1) + b(2) with

1—2 k _ —z—j+1
G(z)zl—f?—b—l:}znl PQ -,'J+1 (z+7+k=(z+v+k+1)p/Q)Q*

—_ a4
k>0 j=1 1 Q

The function is meromorphic in the complex plane with poles at most at

2kms
z2=1—-74x& with j > 0 and y; = logWC; for all integers k.

i
!
;
i
i
;
i
|
i
i



For we are interested only in asymptotic terms of higher order than O(1), it is necessary
to obtain the residues of
I'(n + 1)[(-2)
®,.(2)G(z) = — G
(2)6() =~ o)

only in the strip 0 < R(z) < 2, see (A-7). This fact, together with our previous statement
about G(z) guarantees potential poles only at

2kmi
log @

The point z = 1 plays a special role, because if it were a pole of G(z), our function
®,(2)G(z) would have a pole of order greater than 1. A deeper investigation of Rice’s

z=1+4x; with i = for all integers k.

method shows, that logarithmic terms would occur in this case. Fortunately, easy compu- ..

tations show that the desired quantity L, is of order O(n), so we could expect the existence
of G(1), e.g., G(z) has no pole at z = 1.
The key for our further investigations is the function
k .
1-pv@Q~7 4 &
Flu,v) = ZHET@?{Q u
k>1j5=1

for which we derive some properties in the Appendix. Rewriting G(z) in terms of this
function yields

@8 G = g (e 4y = v+ 0p/Q) (F1LQ5) 4 1) 4

(1~p/QF(1,Q'79)) .

We evaluate the first few coefficients of the Laurent-series at z =1+ i, which expresses
to

(4-9)
F(1,Q'%) = F(1,1) - logQF2(1,1)(z=1—x1) +O((z - 1 - x:)?)

Fi(1,Q'"%) = Fi(1,1) — log Q Fy,(1, D(z=1=xx)+0((z =1 - xk)?)

The indices of the function indicate parital derivatives w.r.t. the first (index 1) or the
second (index 2) argument. Furthermore, an easy computation shows

Ql—z _ 1 1
1-Q= TlogQr-1-y /ATOET1-x)  frzoiiy

so we are able to determine the expansion of (4-8). Paying attention to (A-4.2) when
investigating the principle part of the expansion shows (after some tedious computations)
that it vanishes.

G(z) = %é%—Q(F(L D+1) = (r+1- (7 +2)p/Q) (Fa(1,1) + %(F(L 1)+1)-

(1-p/Q)(Fi2(1,1) + %Fl(l, 1)) +0(z=1)  forz—1.
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We should note the abbreviation 8(p) = 4 (p) to get the connection to the constants given
in the outline. With the identities of (A-4) and resubstituting ~ this simplifies to

60 = (R + 1) (L + (1= Q)+ 1 -3/0) -

o+ 0+ 22 4 561 - 9/0)
_9 9N () p/Q _
S0z * (1 Q(1)> ( (1) = pa(p) + 7 —-p/Q) +8(p)(1-p/Q)

Now we treat the points z = 1 + Xk With k # 0 by multiplying the local expansions in the
same manner as above. Here we may not expect the cancellation of the whole principal
part, because ®,(z) does not have any poles at these points. In fact, only the real part
vanishes similar to the former derivation.

6e) = (1~ p/@pa Tt L

+ 0O(1) for z = 1 4 y;.
k

Using the identity of (A-4.1) we finally obtain for & # 0

_ _Xxx_Q(p)
150 S = 6 000

The application of (A-7) makes it necessary to find a sequence of rectangular contours,
which will be used for expanding the skinny one of the integral. We may select such a
sequence with the property that G(z) = O(z) for all = lying on such a contour as following.

Ak R(z)=p>0 with p arbitrary small but fixed

' __(2k+1)1r
72 8((2)— lOgQ
75 : R(z) =
Y4 S(z)"' IOgQ

For each z lying on such a contour the stated property results from easy established facts, E
see (4-8). First, F(1,Q'~%) and all derivatives w.r.t. the first argument are meromorphic g
functions and no poles lie on the contours. Moreover, the second argument Q1= is limited
even on 7§, because R(z) = p > 0. Second, the function Q=% /(1 — QU =1/(Q*"1-1) i
1s limited even on v and v¥ because of choosing the imaginary part as stated above.
The order of the residual term would be O(n?), but the fact that the next poles of the |
integrand lie at the vertical line ®(z) = 0 allows us to state O 1) instead.

The application of (A-7) yields the following expansion for the alternating sum involving !
the g,.
-nG(1) — ng-((ll%)P(IogQ n)+ 0(1)
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with the function

____1_ 1 _ 2kmiu
P(u)—logQg_;xch( 1 — xe)e

Collecting all terms according to (4-7) gives

A (OB 1o Q5G| b
Lo =nd (G g + 0 -pi@) - W oy patp) + 720500 + L2 ) 4

Qp)
nhy + nAa(l—)P(logQ n)+ O(1)

We simplify the expression by using the notation of (A-2), e.g.,

_w e
QO—Q(I) d QI—Q(I)( (1) pa(p))

which leads to

L,=nA (10?42 +(1-p/Q)Bi(p) —q1 + (1 - 0T f/p% ) +

nhy + nAgoP(logg n) + O(1)

The result as stated in section 3, theorem (1) is obtained by substituting 4 = Q, hy = 1
and h; = 0, as mentioned in the beginning of this section. J

The technique used for the determination of the first term in the asymptotic expansion
may be extended to obtain higher accuracy. This could be done by extending the integra-
tion path, e.g., shifting v¥ more to the left and taking into account the residues of newly
encountered poles. For example, the computations for the linear term are more tedious,
but manageable, for the sake of shortness we decided to suppress them in this paper.

5. PROOF (2)

Denoting by E, the average number of empty nodes in a p-triee with n C-nodes, we
have the following basic recurrence

Q Q
S O O L L BRI S (R L ol
Ti,=n v I=1 Zi=n—1 vt i=1
for n > 2. The initial values again resulting from the physical model are
Ey=1 and E, =0
This comes from similar reasoning as in the previous section with mentioning that the

number of empty nodes in the triee is the sum of the empty nodes in the @ subtriees.
Fortunately, we need not be concerned with treating this subject for its own, we may
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adapt the results of section 4 instead. Denoting by E(z) the EGF of E,, and introducing
the PoGF

W(z) = E(2)e™* = Z w"%

n>0

we obtain a functional equation

W(2)+ W(2) = QW(z/Q) + pW'(z/Q) — (Q - p)e™*

w0=1 and wp = —

For using the previous results, we have to modify the functional equation making it looking
like the universal one treated there. Let
1

H(z)=W(z2) - o-1

and therefore

hozl————l—-— and hlz—l

we obtain the functional equation
H'(z)+ H(z) =1+ QH(z/Q) + pH'(z/Q) — (Q ~ p)e™*

as desired for the application of the general solution from chapter 4. The connection
between the L,, and E, is given by

eZ

Q@ -1
1

E(z)=L(z) + e.g.,

En=Lot 5=

Therefore, we must substitute A = Q — p, hg = 1 — 1/(Q — 1) and h; = —1 and add
1/(@ — 1) to the final expression in chapter 3 in order to obtain theorem (2). 1

6. PROOF (3)

Denoting by I,, = I,(V) the average number of nodes with label V' > 2in a p—tfiee with t
n C-nodes, we obtain the following basic recurrence

In = 6n,V+

pZ( " )Q‘"ils,+(1—p) >

; T1yennyl
Yig=n I 1 1Q I=1 Zjie=n-—1

n-1 9
(~ )Ql—nzlh

Ji,... ,]Q =1 [
for n > V. The initial values resulting from the physical model are
;=0 for0<:<V —1.
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The reasons are similar to those in the sections before and not further mentioned. How-
ever, following the general strategy of section 4 we obtain the functional equation for the
PoGF H(z) = I(z)e™* with I(z) the EGF of the sequence I, eg.,

zV—-l

H') + H(z) = QH(:/Q) + pH'(:/Q) + e
hi =0 for0<:<V-—1.

Extracting the coefficients of z"/n! forn > V — 1 yields the simple recurrence

L 1-Qin s ) _(=DV

Introducing again P, = Hk> n _11_:_}7%1:_:_ with P, = 0 and a, = hnP,, we obtain a linear

recurrence for the a, by multiplying both sides of the former recurrence with P,;;. The
iterated solution is

n41
antr = (=11 " _——;7( >(‘1)
= 1 - pQ! V-1

After some algebraic manipulations we get the following explicit expression for the coeffi-
cients h, with n > V.

1 n—1 -2 1 — Q_j k
— (__1\n—-V —_—
hn"( 1) 1—-pQi-n Z H 1—pQ-J (V——l)

k=V—~1j=k

Let in analogy to section 4 for n > V

1 = Tl-Q7 / k
F) = fu= 1o O H1—pQ‘f(V—1)

k=V -1 j=k
(6-2) =(-1)""Vh,
For n > V — 2 we introduce |
(YD), (D) (D) (V43
Palp) = Tn) (i e + To(p) )
= ril ﬁi;Q:;k(k—l)---(k—V+2)
k=V -1 j=k 1 __pQ !

which enables us to express f, for n > V in the following simple manner

- Pn—-2(p)
(1 =pQ'=m)(V - 1)!

14
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The products Ty,(p) are defined in section 4, but we should note that P,(p) must not be
confused with the similar products P, which we used for determining a closed expression
for the h,, and with the products P, (p) of the section 4, too.

Now we have a look at the ordinary GF of the sequence involved and obtain

(n+1)---(n—V+2) n
Wy(z) = z
€= 2 To(2)

(6-4) =2V7'DY"125,(z)  with S,(z) from (A-1).

From (A-1) it is clear that W,(z) has a pole of order V at z = 1, so

Wy wy
e P T s TR
The function w(z) has radius of convergency Q around z = 0 and w(0) = 0. To evaluate
the unknown coefficients we expand z5p(z) with respect to (A-2), which yields

z85p(z) = g—%l—_}_—z - ;(qn +gnt1)(z =1)" . |

Using the operator approach (6-4) we find after a short algebraic manipulation

V’z.) for2<j<Vv

w; = (-1)"Q(p—)(v - 1)!(V iy

Q1)
w; = O
wo = —(V = 1)l (gv-1 + qv)

The GF of the partial sums, denoted by Ry(z2), is Wp(2)/(1 - 2) and choosing an arbitrary
but fixed ¢ > 0 and ¢ = Q — ¢ we obtain the asymptotic expansion of the coefficients

~ (k+1)---(k=V +3)
Z Ti(p)

v V-1
_ (—1)"(”“; )wv +(—1)"-1(";_ 1 )wv—1 + - wo £ O(g™™)

Multiplying all expansions concerned with f, according to (6-3) with mentioning (4-5)
yields

Qv -

Substituting the evaluated w; and mentioning the combinatorial identity from [8], p. 11
S (00 = (3)
. k p+k m+p
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finally yields the asymptotic expansion

fo = ({j) ~Ty_,+0(¢™™)  with Ty = g%@v Favar).

We define a new sequence g, by

n

gn = fa — ((V) —Ty-1)

Before treating this subject, we deal with manipulating the expression for the desired
quantity I,. In analogy to (4-3) we obtain after some straightforward computations and

mentioning the identity (})(§) = () (RZY) an expression

n

(©-5) L=3 (3)0 s

k=V

=Tyv_, ::;—: (Z)(_l)k—v +§ (Z)(__l)k-vgk

The remaining task is the computation of the alternating sum involving the g,, with Rice’s
method. It is clear that g(n) = O(¢™™), and remembering (6-1) and (6-2) we obtain a

recurrence for the g¢,.

— —-n n —T.__ . n41 __T_ 1—n ;
gn = gn+1 1 _ng—n + (<V) e ﬁ/?gl‘:n) 4 1))Q . !

The condition lim,, .., g, = 0 again inhibits the existence of more than one solution, as |
can be shown with an indirect proof using iteration. We treat the corresponding functional E
equation

a(z)=1___lc.2__i
| - Qi
G(z) =a(2)G(z b(z) with
() = alz)G(= +1) + (=) wit o () =Tvos —piQ(3) -1y ) @i~

1-— Ql—-z

by iterating it, and mentioning the assumption that G(z) vanishes if R(z) — oo in a certain
region of the complex plane yields a solution :

1-z k _ —2—j+1 z , = .
) | £ B A (AR

- ()—r—1+1
k>0 j=1 1 Q |4

meromorphic in the complex plane with poles at most at

L
z2=1—-74+xs with 7 > 0 and v = ligWQZ for all integers k.
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For we are interested only in asymptotic terms of higher order than O(1), it is necessary
to obtain the residues of

3(:06(2) =~ g

only in the strip 0 < R(z) < V, see (A-7). We start our treatment by investigating the
function-values G(z) for integer 2 < ¢ < V — 1. At these points we obtain a simple
pole from &,(z), and looking at (6-5) with mentioning the fact that simple computations
show I, = O(n), we could argue that these contributions yield to the cancellation of the
higher-order terms.

For m = 0,1 we define

(6-6)
. .
()41 1—-pQ~=7+! (z +k+ m) —
JU( ) kzzog 1— Qi+l Vv Q
|4
= U Q) 4 1) = [~ 1w (P, @) 4 1

with the function F(u,v) defined in section 4. G(z) may be rewritten in terms of these
functions, which yields to

(67) Gz)=—2 (796) = p/QI () = (1= p/Q)Ty s (F(1, Q%) + 1))

With I(u, z) = F(u,Q~%) we obtain for integer 2<z <V -1
J™(z) = [(u ~ 1)V] ™™ (I(u,2 - 1) + 1)
and obviously

FLQ™")+1=1I1,z-1)+1

First, we evaluate an explicit expression for I(u, z), which leads after some tedious algebraic
manipulations to

Qpu) v . 1-Q7 & 1-Q7 .,
I(u,z) = - 1-pQ7 " "
( ’ ) (200 1__Fm/g) IIZl—ng—J gggﬁnll+ll Q

J=1

and therefore

Qpy) wmt! T 1-Q7
aw) T-mg ¢ 05

r~1 z-1

I_Q—j z+m—
Z H I__:WQICU + k

u:+m(1(u,a: -1)+1)=

TR

e




For an integer ¢ > 0 we easily obtain the Taylor-expansion at u = 1 of

w® = PIQ" TNt (1-p/Q\*
S uOu-1 win | PO ; <k> < P/Q )
1-pu/Q n>0 i w® = (P/Q)n—t forn >t

" (1-p/Q)mH
Moreover, for special values of ¢ we find the property

1 forn=20
(6-8) w —p/Qu® ={ 1 forn=1
0 forn>2.

Now we are ready with collecting the expansions at u = 1 of all functions concerned with
our J(™)(z), remembering Lemma (A-2), too. Extracting the V-th Taylor-coefficient yields
after some straightforward but nasty computations the desired expressions

|

r—1 -V :

- 1- Q-J ‘ m-+1 ) [

T =@ [ 15 el
Jj=1 p k=0 ‘

Putting all things together we obtain an expression for G(z) with2 <z <V -1 according §
to (6-7) E
;

G(z) =Tv—1(1-p/Q)bs—y  with b, = I__Q_fQ:_;Z [ =9

k=1j=z+1—k 1-pQ=

(6-9) LEMMA (PARTITION-IDENTITY). For all integers ¢ > 1 we have

1
by = ——— independent of z.
1-p/Q
PROOF: Mentioning the easy to find recurrence relation
1—=01-¢ 1=z E
b, = __Q__._bx—l + ﬁ*_- ;
1-pQ~* 1-pQ-* ;

for z > 2 the proof by induction is trivial. |
Thus we finally obtain
Glz)=Ty_, for2<z<V-1,

The previous computations could be done in principle even in the case 2 = 1, but unfor-
tunately this leads to an expression 0- oo and the only statement which we could derive is
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that it is of order O(1), e.g., that G(1) exists. Thus we have to take into account higher
order terms of the functions involved in G(z). We start this task by investigating the
functions from (6-6) and using the Taylor-expansion of F (u,v) from (4-9) to obtain the
first few terms of

(6-10)
JM(z) = [(u - l)v] I (F(u, Q77) + 1)
= [(u - D] (F(w, 1) + D) +
[(v = 1)Y] (u1+mlogu(F(u, 1)+ 1) — log Qu*™ Fy(u, 1))(z — 1)+
O((z - 1)%)

Mentioning the cancellation of the principal part.of the whole function G(z) for z — 1 we
need not be concerned with the constant term of the functions J (m)(2). This fact becomes
clearer when we recall (6-7). The potential pole comes from the function QI /(1-Q' %)
and is cancelled by a zero of the bracketed expression. Therefore, the constant term of
G(z) only results from the coefficient of (z — 1) in the bracketed expression, e.g., from the
functions actually investigated, times the residue of

Q- 1 1
(6-11) -0 " lg0:-1-n 1724+ 0(z =1~ x4) for 2 = 1+ y&.

Now we start with the first term in (6-10) and use (A-4.1) to obtain

u!*™  Q(pu)
1 -pu/Q Qu)

Using the well known Taylor-expansion log(1 + z) = 2ons1(=1)" 12" /n and the result
from (A-2) we are able to derive the Taylor-series at u = 1 of all functions concerned.
After some computations we find the V-th Taylor-coefficient

" logu(F(u,1) +1) = logu

V1, 1+m . (=1 (14+m)
[(u-1) Ju*™ logu(F(u,1) + 1)= Z Z T Wak 4V-n
n=0 k==1
Collecting the terms form = Qand m = 1 according to (6-7) yields after some computations
and mentioning the property of w{l) — p/ Qu'? from (6-8) and the expansion (6-11) the
contribution

1 z n qV-n
log Q (fi—;(—l) n(nv~ 1) + QV—1)

The second term in (6-10) is treatable by using the expansion of Fy(u,1) from (A-6) and ‘

the trivial one of u!*™ at the point u = 1. The requested V-th Taylor-coefficient evaluates

to
1%
[(u = DY u!*™ Fy(u,v) = Z (1 Z m)SV—k

k=0
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The upper limit of the sum could be replaced by 1+ m, because 1 + m < V. Collecting
this for m = 0 and m = 1 according to (6-7) yields after using (A-6) for replacing s, by
rn and applying the recurrence from (A-5) the following contribution

—(a(1) = pa(p))qv + qv41) + K(V,p)  with
K(V,p) =(1~p/Q)Bv(p) + (1 - 2p/Q)By_1(p) — p/QBv_2(p)

The derivation of the stated expression is straightforward, but a little tedious. The residue
log @ of (6-11) cancels with the factor in the second investigated term of the Taylor-
expansion of J(™)(z) in (6-10), so it disappears.

After treating the contributions of J (m)(2) we have to deal with the last term in the
large bracket of (6-7), which is simply evaluated by mentioning the Taylor-expansion of
F(1,Q'~*%). The whole contribution is g

(1-p/QTy1Fo(1,1)  with Ty = g%@v T avar).

Note again the cancellation of the residue log Q. The Appendix provides an alternative
expression for F(1,1), see (A-4.3).

Collecting all contributions yield after some algebraic manipulations the desired value

|4
C1) = g 1" 7ot 4 2 g -G — )+ K (V)

n=2

The remaining problem is the determination of the residues of G(z) at the points z = 1+ Xk
with k # 0. Remembering (6-7) we see that the poles come from (6-11), thus we need the
values of all functions concerned at the points z = 1 + x;. Remembering (A-4.1) and the
definition of Ty there is no problem when treating the last part of the bracketed expression
in (6-7). Moreover, for m = 0,1 we evaluate the remaining terms

T+ x) = [(w = 1DV] ((Flu, 1) + Duttmxe)

Following the derivation of the previouse value G(1), we compute the Taylor-expansion of
the functions concerned at the point u = 1 and extract the V-th coefficient of the whole
product. Using (A-4.1) we obtain

ul Tt Q(pu)

(F(u, 1) + 1ul*+mHxe =

1-pu/Q Q(u)
Similar to (6-8) we find the Taylor-expansion
uirm ~(1+m+ (p/Q)"
1 —pu/Q ; Yn (u ) 1 Yn J=ZO ] (1 _ p/Q)n-—J-H
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and the property
I+ xk
v —p/QuyD = ( . )

as can be seen by a straightforward computation. Therefore, we can state

1%
T+ x0) =5 qayl™,

n=0

and collecting all. contributions according to (6-7) we finally obtain the desired residue

V-1
_ 1 T+ xe)  gqva
ml}isx;. G(z) = log @ = (V - n)q" log @

Now we have computed all values of G(z) in order to apply Rice’s method (A-T). The
behaviour of G(z) along the rectangular contours defined in section 4 is proved to be
O(zV) with similar reasoning, so no problems occur on the application. Using (A-7)
together with (6-5) and

Ty = 20 0y 4 v

Q(p)

yields after some cosmetic manipulations the statement of theorem (3) in section 3.

A. APPENDIX

This is the place to establish some Lemmas refered to in the sections before. (A-1)
and (A-2) are related with the products Qn(p) and T,(p), the following theorems (A-3)
to (A-6) deal with properties of the function F(u,v), all defined in section 4. Finally,
theorem (A-7) is a simple version of the formula of Rice, tuned to the application on our
problems.

(A-1) LEMMA (GENERATING FUNCTION Sp(z)). The ordinary generating function of the
sequence 1/T,(p) is given by

1 Q(pz)

Sp(z) = =200

PROOF: We state the following remarkable identity from the theory of partitions, see [6]
for a proof and further details. For lg] <1 and |z] < 1 we have ‘

1 - azq™ 1 —ag’~1 n
gmﬂ‘*Z[IT_—qr‘z

Recalling the definition of T,.(p) from section 4, the substitution a = p/Q and ¢ = 1/Q
yields to

n 1— Q..j . 1 — ZQ—n-l
S =3 Il 1205+ =I5

n>0 j=1 n>0

Remembering the definition Q(z) = I[I,5,(1 = 2Q7™) yields the desired result. §
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(A-2) LEMMA (TAYLOR-EXPANSION Q(pz)/Q(z)). The function

Q(pz) 7 1-pzQ~i
Q(z) JIZII 1-2Q~7

1s analytic near the point z = 0 with radius of convergency Q). Moreover, the Taylor-
expansion at the point z =1 is

Q(p2) "= a0
) = an(z —-1)" and = '
n>0 dn =;qu(a(l,n-—j)——p""-’a(p,n—j)) forn >1

where
-kl

a(p,l) = Z (—1-—:1—)—@7;7 with the abbreviation a(p) = a(p, 1).
E>1
PROOF: The maintained analyticity is clear by mentioning the fact, that the first pole
lies at the point z = Q. Computation of go is straightforward, the recurrence for the dn
with n > 1 comes from using the so-called logarithmic derivation Dlog f(z) = Zf%)i) for

computing the derivative, e.g.,

Q(pz) _ Qpz) Q~* PO~ | _ Q(pz)
P = Q(z) é(l —2Q-% 1..sz-—/¢) =00 (&1 = pa(pz, 1))

For n > 1 we have

— _l-uD"..Q_(_p_zl — i_ Dn—IDQ(pz)

ERYT00) T Q)

and using the Leibnitz-formula for derivations of higher order together with
Dra(pz,1) = k'p*a(pz, k + 1)

leads to the desired result. 1

(A-3) THEOREM (FUNCTIONAL EQUATION F(u,v)). The function

& »
Flu,v) = z H _lj_pf’g__JQ—kuk

- -7
k21 j=1 1 UQ
solves the functional equation

uv) = 2 =p/Q) o
) = g
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PROOF: Multiplying F(u/Q,v) with v and subtracting it from F(u,v) yields after some
algebraic manipulations ' :

Flu,0) = vF(u/Qv) = u/Q(F(w, ) + 1= p/Q(F(u/Q,v) +1))

Iterating this functional equation with mentioning the fact img(y)— 40 F(u,v) = 0 within
a certain region of the complex plane yields

F(u,v) = (1-po/@)—2LQ_ , ,Lopu@2 0

-v/@ "V T-u/Q
u = pu0~2) .- .(1 — puO—~* :
= (= Q20 + (1= oy Y G2 L0 s

E>2

After shifting the range of summation to k 2 1 and some algebraic manipulations we
obtain the desired result. J

(A-4) THEOREM (VALUES F(u,v)). The function F(u,v) has the following special values.

W Pl D) = G s 1 |
@) Bt 1) = PP 1) = (Pl ) + 1) = paiou) + 222 )

®) B0 =UDFL) = = + (F(L1) + 1(a(1) - pa(p) - 1

(4) Fiz(u,v) = DyDy F(u,v) = (a(v) = pa(pv))Fy(u,v) — B(u,v) with

k-1 1

_ Q* pQ* 1—pvQ~7 1y
)= g~ The) LI g

and the abbreviation B(p) = Bi(p) = A(1, 1). | !

=1 j=1

PROOF:
(1) This follows directly from the application of the identity stated in the proof of (A-1)
with 2 = u/Q, a=p/Q and ¢ = 1/Q. 1
(2) We apply the logarithmic derivation on (1) and mention the definition of the a(p)
from (A-2), which yields to the desired result. I |
- (3) Differentiating (A-3) with respect to u leads to ;

_ w1 =pu/Q) o) _ 1 o u
) = T o) ) T ) T
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Substituting u = v = 1 and using the result from (2) completes the proof. §
(4) The function F(u,v) is represented by a uniform convergent series, so we may
exchange the order of differentiation and summation, which yields to

Fi2(u,v) = D, D, F(u,v)

11— puQ-i
=2 I 3=05 @7 k! (@(v) - peu(pw)
k>1 j=1

Differentiating with respect to v is done in the same manner as in the proof of (A-2),
with an(p) = an(p,1) and

’ n Q—kl
an(p, 1) = k; T=p0—*7

We should note that o(p,1) = aco(p, ), of course. Let ¢ be an arbitrary parameter,
we use Abels transformation, e.g.,

n n n—1 k
Doarbe=a, ) b — > (artr —a) > b

k=c =c k=c Jj=c

for investigating the following expression.

- PR e ke
) [ =0 kutayt) = a(t)F1(u,v)—

E>1 j=1 1-vQ™
—k k-1 1 —
1—po@Q~7 . 1
Zl—tQ"‘ ZH 1—vQ-J Q"

k>1 =1 j=1

Using this in the former equation and mentioning the abbreviation A(u, v) yields to
the desired result. J

(A-5) LEMMA (TAYLOR EXPANSION F(u,1)). The expansion of the function F(u,1) at
the point u =1 is

PN U R (/@)%
F( ,1)—’; n( 1) and n"kz:;q"(l_p/Q)n-i-l—k bn0

with g, from (A-2) and 6n,k denoting the Kronecker-symbol. Moreover, the coefficients
solve the following recurrence relation

p/Q In p/Q
Tn = Tp— + + Opo1,0T—— forn >1
"1-p/Q T 1-p/Q M1-p/Q
g0
re = -1
T 1-p/Q
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PRrROOF: The Taylor-expansion easily follows from extracting the coefficients of the Cauchy-
product from (A-4.1)
Qpu) 1 1

Qu) 1-pu/Q
The recurrence relation comes from a trivial direct manipulation of the explicit expression,
so the proof is completed. J

F(u,1) =

(A-6) LEMMA (TAYLOR EXPANSION F3(u,1)). The expansion of the function Fy(u,1) at
the point u = 1 is

Fy(w,1)=) sa(u=1)"  and sn=ra(a(l) - pa(p)) — fa(p) + én,0(a(1) — pa(p))

n>0

with r, from (A-5), 6, ; denoting the Kronecker-symbol and

Q—-k Q_.k k—1 1 1— Q__J I _
ﬁ"(p)=2(1_q-k"1_121,@-&)21—1_1__%7(”)@I forn 2 1

, k>n l=n j=1
_ Q) 1
0= Vg

PROOF: Remembering the fact that s, = F3(1,1) is known from (A-4.3) the case n = 0 is
trivial to show. For n > 1 we have

1,
Spn = ;;'L{D 1F12(U, 1)

Using (A-4.4) and

1
Ba(p) = —UD"f(u,1)
we achieve the desired result mentioning the Taylor-expansion of F(u,1) from (A-5).
(A-7) THEOREM (RICE’s METHOD). The asymptotic expansion of the alternating sum

n

An=>" (Z)(—l)kfk with b > 0

k=b
is given by
A, = — n(z ’
D, Res (2.(:)F(x) + O(n)
p<p<d

on the premises
(1) F(z) is a meromorphic function with at most simple poles at z = p + xr with
integers p < b and v = %’% for all integers k, exept points z = p with 0 < p<b,
where no poles are allowed. Moreover, F(z) has to fulfill the condition F(k) = fi
forall b < k < n.
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(2) There exists a sequence of closed, rectangular contours v; with the left margin fixed
on R(z) = p, enclosing the whole halfplane R(z) > p as | — oo, and the property
that for all z lying on such a contour F(z) = O(z*) with an arbitrary but fixed

constant a > 0.
(3) The function ®,(z) is expressible in terms of the Gamma-function in the following

manner.
(=1)*n! _ _T(n+1)I(~2)
2(z=1)---(z=n) T(n+1-2)

®,.(z) =

The contributions to the sum of residues are
(1) For the integers 0 < p < b we obtain

Res (2a(:)F(2) = (<17 () F(p
(2) For all integers p < 0 we have

—————— Res F(z)
lpl(nmp') =P (

(3) The remaining points with nonzero imaginary part yields to

Res (8(z)F(2)) = -

Z Res (®.(2)F(z2)) = —n?P(logg n) + O(n?1)

z=p+Xi

k#0
P = R F I{(—p — 2kmiu
() éo 28 F(2)I(=p — xx)e

supposing the convergence of the infinite sum, of course.

PROOF (Sketch): Rice’s method bases, as already mentioned, on an old identity from the
calculus of finite differences, see [7] for example. Let F(z) be a meromorphic function
with finite F(k) = fy for 0 < b < k < n, and v a positive oriented contour enclosing the
points b,b+1,..., n but no other poles of the integrand below, we have

. /n o ——1_ (_l)nn! s
Z(k)( 1) fk_27ri ,yz(z—l)...(z_n)F(")d

k=b

Extending the skinny contour 7Y to our rectangular ones, we obtain

®,(2)F(2)dz = / ®.(2)F(2)dz + ZResidues of newly encountered poles.
v

"

The computation of the first integral shows that it contributes O(n?) for I — oco. This
follows from the following facts. F irst, the properties of the Gamma-function ensures that
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the integration along the horizontal part of Y1 is of order O(I°) with a constant ¢ < 0.
Second, with the same argument one can prove, that the contribution of the integration
along the right vertical part of the contour is of order O(1?) with a constant d < 0. In
the limiting case, all these terms vanish. The main term comes from the left vertical part,
which lies on R(z) = p. Using the so-called limes relation of the Gamma-function and
other estimations of the function ®.(2) yields the stated contribution after some tricky
valuations.

Evaluating the contributions (1) and (2) to the sum of residues is straightforward, the
expression for (3) is obtained by using the limes relation of the Gamma-function again.
We should mention that the latter mainly comes from poles with small imaginary part,
say [x| < n® with some fixed ¢ > 0.

Actually, the complete computation is too long for this paper and not very interesting
for practical applications. Most of the “usual” appearing functions simply allows to deal
with the sum of residues only, neglecting all estimations above. A simple pole, say ¢ with
R(¢) = r yields a contribution O(n") to the asymptotic expansion of the desired quantity.
If the order of the pole is greater than 1, logarithmic terms occur in the expansion, but we
will not treat this case here.
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