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Asymptotics of the CRI-Length of Slotted ALOHA

On the Asymptotics of the average CRI-Length of the
Slotted ALOHA Collision Resolution Algorithm!

ULRICH SCHMID?

Abstract. We provide uniform asymptotic expansions of a finite sum L, , of essentially ge-
ometric type, which arises in the investigation of the average CRI-length of the well-known
slotted ALOHA collision resolution algorithm with retransmission probability p. In partic-
ular, our investigations establish large regions of uniform validity w.r.t. p as n — oo. By
means of a direct asymptotic method based on the analysis of a certain sum involving bi-
nomial coefficients, we obtain an asymptotic expansion of Ly p, which is uniformly valid for
p <n~%%1 /2¢ n — oco. The application of some well-established methods relying on complex
analysis yields another result, this time uniformly valid for p > n=99% as n — co.

1. INTRODUCTION

This paper deals with the derivation of uniform asymptotic expansions of a simple sum
of essentially geometric type, which arises in the investigation of a certain parameter of the
well-known slotted ALOHA collision resolution algorithm. Such algorithms are necessary
for computer networks based on random multiple access broadcast channels: A number of
stations (i.e., transmitting/receiving units) share a single communication channel. Data
are sent in form of packets without any centralized channel arbitration mechanism. Hence,
a distributed algorithm for resolving conflicts arising from simultaneous transmission at-
tempts of multiple stations is needed.

The whole subject came up with the developement of the AL OHA system at the Uni-
versity of Hawaii in the late 1970’s. Since this time, a number of varieties of the original
ALOHA algorithm and, most important, a family of tree algorithms have been proposed,
which offer better characteristics, e.g., average packet throughput; cf. [2] for an overview.
A well-known variety is the slotted ALOHA algorithm, which works as follows: If a station
has been involved in a collision, it transmits its packet in each subsequent slot with a fixed
probability p until a successful transmission of the packet occurs. Packets are assumed to
have fixed size and fit into exactly one slot. Note that a collision causes the destruction
of all packets involved, hence may be detected by all stations via certain checksumming
methods.

An important parameter of such an algorithm is the length of a collision resolution
interval (especially the average CRI-length L, ), which is the number of slots necessary for
resolving an initial collision of n transmitters when packets generated during the resolution
process are not considered. Note that the CRI-length is independent of the underlying
packet generating process. This parameter is well-known from the troughput analysis of
certain tree algorithms (cf. [1] for a nice survey) and allows a significant estimation of the
performance of a collision resolution algorithm. However, we should mention that the usual
analysis of ALOHA algorithms is based on queueing theory, cf. [2] for an introduction.
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Our primary objective is not at all the straightforward derivation of the exact value
of Lp, = Ly p for the slotted ALOHA algorithm, but rather the computation of uniform
asymptotic expansions of L, , which are valid for reasonable values of p. As we shall see,
it would be merely an exercise for undergraduate students to derive uniform asymptotic
expansions for very small p (say, p < 1/n) and very large p (say, p > ¢), respectively. But,
simple considerations reveal that the optimal choice of p for a given n, i.e., that value of p
which provides the smallest CRI-length when resolving an initial collision of multiplicity
n, is approximately p = C/n for some positive constant C.

However, enlarging the region of uniform validity requires some effort. First, by means
of a direct asymptotic method based on the analysis of a certain sum involving binomial
coefficients we shall derive a uniform expansion valid for p < n7%51/2¢, n — co. Note that
our major development was the somewhat surprising relation between L, , and the sum
mentioned above. Second, adopting some well-established methods relying on complex
analysis (cf. [3]) it is possible to obtain another expansion of Ly ,, uniformly valid for

—0.99 |

p=n as n — 00.

2. PRELIMINARIES AND RESULTS

According to the slotted ALOHA collision resolution algorithm, we have n stations
transmitting with probability p in the slot following the initial collision slot of multiplicity
n > 2. The probability that exactly one of them transmits, thus decrementing the number
of stations concerned by one, is np(1 — p)*~!. With the complement probability, their
number remains unchanged.

Thus, the resolution process of a collision of multiplicity n may be represented by a finite
automaton with n + 1 states Qy, 0 < k < n, each representing a collision of multiplicity k.
Qo denotes the terminal state. A state transition corresponds to a slot and is marked
by the probability of the occurrence of the transition. Each path from the initial to the
terminal state corresponds to a possible resolution, and its probability is the product of
the markings of the transitions concerned.

This situation translates into a recurrence relation for the appropriate probability gen-

erating functions (PGF)
Qn(z) = Z(In,kzk’
k

where ¢n ) denotes the probability that the CRI-length of an initial collision of multiplic-
ity n equals k slots. We obtain

@n(2) = (1 =np(1 =p)" )2Qn(2) + np(1l = p)" ' 2Qn-1(z)  forn 2 2
Q1(z) = =

Obviously, Q;(z) represents the state Q;, where exactly j packets are waiting for trans-
mission; the second equation handles the terminal transition, e.g., the case where exactly
one packet is waiting for transmission. Solving the system of equations, we find
jp(l = py "
Qu(z) = =" . —
" Hl—Z(l—Jp(1~p)’ b
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Differentiating Q,(z) w.r.t. z using the logarithmic derivative and substituting z = 1, we
obtain the desired expectation of the CRI-length, namely

1+;m(1- p)

Our major goal is the derivation of an asymptotic expression for the quantity L, , as
n gets large, uniformly valid for reasonable values of p. The sum above is very sensitive
w.r.t. the retransmission probability p: For small values of p it is clear that L, , is asymp-
totically equivalent to H,/p with H,, = logn + O(1) denoting the Harmonic numbers. On
the other hand, for large values of p, we may expect an exponential growth of the sum.
Therefore, we have to divide the investigations in two parts, (1) for small values of p, where
we use a direct method, and (2) for large values of p, were we apply a generating function
method. Our major result, proved in the following section, is

THEOREM 2.1. For0 <p <1 andn > 2, the sum

1+Zp](1- p)y~!

has the uniform asymptotic expansions

Hn Z(np') + O(e™) for p <n~%51 /2
p P& 4!
frr = 1 1
og' n ~0.99
1+ 0 forp>n
np*(1 —p)"“l( ( np )

as n — 00.

Those results require some additional remarks:

(1) The uniform validity of the first formula may be extended to p < n~%51/qa for some
fixed 0 < a < co. We choose a = 2e, because this ensures all our inequalities valid
for all n > 2 and p — 0. This restriction is not necessary as n gets large.

(2) The infinite sum in the first formula is related to an exponential integral by

Fi(e) =1+ logz + 3
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see [4, p.228] for additional informations. Simple comparisons with the function e*
yield the estimation
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(3)

(4)

Hence we may expect that the optimal retransmission probability is p = ¢(n)/n
with g(n) a slowly increasing function like loglogn (necessarily o(logn)), causing
a minimal L, , ~ O(%)- This is an approximate asymptotic lower bound for
the expected CRI—lengtgh of any controlled ALOHA algorithm, which estimates the
multiplicity of the initial collision and adjusts the retransmission probability.

For all values of p, we have the uniform bound

logn
)

L= O(np2(1 —p)n-!

y

which is already established for p > n7 9% by Theorem 2.1. For other values
of p, we use the substitution p = t/n with ¢ < n%% and the well-known relation
(1—t/n)" < e~!, which implies e = O(1/(1—p)"~!). Remembering the estimation
in remark (2) provides the bound for the sum; the other terms are trivial.

The O(.)-term in the second formula is very large, even for large n. The results
of an elaborate computer simulation showed indeed a very good approximation via
the major term of the first formula, but a weak one via the second.

3. ANALYSIS

We start our treatment for small p by investigating a quantity h,,, which we found
accidentially by expanding L, , in powers of p:

(12
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Using the fundamental recurrence of the binomial coefficients, we obtain

j+n—-1\p j4+n—1\p
S 5] (A L S S L
izt Joom N J
jH+n-—-1\ ; 1
—hyry+1/n ( . ) e iyt —— —1/n
1,p /J—; ] pJ Lp n(l—p)” /

i 1
=hop+ S ——— — H, = —log(1 —p) — Hu +
0, ;](l_p)J g(1 —p) >

= (1 -p)

We may rewrite our desired quantity in terms of h, ,, e.g.,

1 1-
Ln,=1- - -—;ﬁ(hn,p + Hy +log(1—p)).

Defining a fixed ¢ < 1/2, we restrict ourselves to the case p < n®*71/2e. For j < n¢, we

have

(n ij) _ [[a+ L= %a +0(%/n))
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where we used the fact
0

log H(1 + i—) = Zlog(l + -i—) = 0(j%/n).

Now we divide the sum for h, , into two parts. First, we treat the sum for 1 < 5 < nf,

which yields the main contribution.

S oy <”;;>’)

We may extend the upper limit of the previous sum to infinity, as can be seen from

(np)) _ (np)™ [ 1 np (np)?
) <ne+<n€+1>(ne+1>+<ne+2>(nf+1><ne+2>+ )

!
S 77! ne!

(np)™ (np)? | \_(mp™ 1
(1+ £ ( 5)2 +- )_— nene! 1_pnl-—e

B P

n3¢/2

where we used Stirling’s expansion for the factorials in its weakest form. Because of the
restriction p < n®~!/2e, the last term has lower order than O(pe™?), so we may discard it.
Now we investigate the second part of the sum h,, 5, which disappears too. We have

5 E <n+]>

j>n®
(n+n“")---(n+1)p"z<_1_ (n+n®+1)p (n+n5+1)(n+n5+2)p2+'”>
(n®+1)(n® +1) (n® + 2)(n® + 1)(n¢ +2)

nel
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(n4n)(n4nt—1) - (n+1)p" 1
- nene! 1—(ni=¢+1)p

where we used the fact

n+n®+k n 1 -
= 1)p < 41 1.
N Qﬁ+k+)p_01 +1)p<
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Mentioning n 4 n® < 1.9n for n > 2, we find

o (Lonp)™ 1 (1.9n1~<pe)™* Lo e el
~— nfnfl 1 —p(ni-c+1) =0 n3c/2 = O(pn' 7%(1.9n' ~*pe)™ 7).

Similar to the previous case, this term is of lower order than O(pe™?). Now we have
completed the estimations and obtain

J
wp = pZ("p.) LA, + = Llog(1 - )+ 1= -+ O(e)
= i p p

The result as stated in Section 2 is derived by considering

L P og(1— p)= O(1) = O(e™)  and

Z (”P)’ Z (np) O(em?).

1|
i1 ]’7 i>1

The last problem is to find an asymptotic expression for

Lnp=1+) ————
P zm(l—p)J 1

as n gets large and p is relatively large. We use the fact

- 1 — 1 -n (1_
;J’(l—p)”‘1 - Z

with f, , denoting the n-th Taylor-coefficient of the generating function

)"’

= (1 - p)l_nfn,p

Fy(z) = —log(1 — z).
1-(1-p)

Following the method proposed in [3], we express f, , via Cauchy’s formula using a contour
a composed of a circle-segment 3 of radius 2 around 0, with a “C-notch” v along the
positive real axis, consisting of two horizontal segments and a semicircle with radius 1/n
around 1. Obviously, we use the branch of log z, where the function is real-valued when
the argument is negative.

First, from Cauchy’s inequality, it is clear that the contribution from f is exponentially
small in n, thus we have to investigate the main term coming from . We use the substitu-
tion z = 1 +t/n and therefore dz = dt/n, where t lies on a (negatively oriented) contour I
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consisting of two horizontal segments $(¢) = £1 and 0 < R(¢t) < n, and a semicircle with
radius 1 around 0. We obtain for some fixed R < 2

1 —n—1
zm./;F(z)z dz

= _1_/ log(_n/t) (1 + t/n)—n—l dt + O(R—n)
r

n

fn,p =

2t Jpp— (1 —=p)t/n
! 1
=22 L +0R™
np np

with the abbreviation

- 1 ]‘ogl(_t) n —-n—-1
T om /I‘ 1—(1—p)t/np(1+t/ ) t.

In order to obtain an asymptotic expression of the integral, we choose the contour I'; to
be the part of ' with the property |t| < logZn. We replace I' by I'; and estimate the
error-term by mentioning

(14 /)77 < (1+log?n/n) ™! = e71°8" (1 + O(log* n/n)) = O(n~ '8 ™)
llog’(—t)l = O(logl n)

for t on I'y = I' — I';. Moreover, because (1 — p)/p monotonically tends to 0 as p — 1, we

have
1—1t/3n > 1/2, for p > 3/4

I1—(1-p)t/np| > { S(1-=(1-p)}t/np) >1/3n, forp<3/4

and therefore !

Il -1 —P)lf/npI

Thus, the integral along I'; yields the error-term O(n~198m"n? logln). Now we replace
(1+t/n) "t = e %1+ O(t*/n)) by e, which leads to

= 0(n).

log*n 1 log'(~t) — -1
I = ogn, 2 { )
1= (1+ 0O( n ))27rz' /pl 1 _(1_p)t/npe dt +O(n n”log n)

Expanding the fraction of the integrand above yields
1 log'(—t
: / og (=1) et dt = —l— log'(—t)e™" dt
271 Jr, 1= (1 —=p)t/np 271 Jp,

l-p 1 =) logl(—-t) o=t
/p I -pimp’

The main contribution comes from the first term, which is related to Hankel’s expression
of the I'-function. We extend the contour I'y to a contour H of Hankel’s type, e.g., coming
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from 400 it encircles the origin clockwise, reaching +o00 again. The error-term computes

to
l/ log'(—t)e™ dt| = O(/ ze *dz) = O(n~'°8"log? n).
H-T, z>log?n

Treating the estimation of the second term, we need the restriction to p > n?~1 with p > 0.
Mentioning the fact (1 — p)/np < n™*, we find

(~t)log'(=8) _, o loall et
| I‘ll"(l—p)t/npe dtISCI/( t)log'(—1t) dtl

< C|/ (—t)log!(—t)e™* dt| + Cl/ t)log'(—t)e™ dt|
= 0(1).
The O(1)-term comes from relating the first of the integrals above to Hankel’s expression

of the I-function. The second integral is of lower order, as can be proved by the previous
estimation, too. Mentioning the negative orientation of the contour H, we obtain by using

the well-known formulas of Hankel (cf. [5, p.244])

2#1/( t)TeT dt = P(z)

77 [ os(=t)(— e at = e

where ¥(z) = I'(2)/T(z) is the logarithmic derivative of the I'-function. Putting all things
together, we have

A=Q+0H€”»mio=miq

.rl=(1+0(1°gn4”))(3i__0‘1f8+0( ) = -1+0(1°i4”).

Here we used the well-known limiting value of the fraction above. Substituting this in the
expression of the f, ,, we obtain

logn 1 log* n 1 log* n
—= )+ —4+0 =—+0
(np)z) np ( n’p ) np ((np) )

frp = O(

Y

and the result stated in Section 2 follows from

1 (1—-pt™
Lap=1--+"2—f
Y4 P p r
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