Institut fiir Automati Technische
nstitut fiir Automation ; o
Abt. fiir Automatisierungssysteme Universitiit

Wien

Projektbericht Nr. 183/1-15
Janner 1991

Qualifying Dynamic Task Scheduling
in Hard Real—Time Systems:
A Novel Approach
J. Blieberger, U. Schmid

Ausschnitt aus: Salvador Dali,

"Die Bestindigkeit der Erinnerung”

QUALIFYING DYNAMIC TASK SCHEDULING IN
HARD REAL-TIME SYSTEMS:
A NOVEL APPROACH
(EXTENDED ABSTRACT)

J. BLIEBERGER AND U. SCHMID

ABSTRACT. This paper surveys our recent research on qualifying algorithms
for dynamic task scheduling with hard deadline constraints. Our abstract
model of the real world relies on a system consisting of a task scheduler, a
task list, and a single server. This system serves indeterministically arriving
tasks, with arbitrary but independent task arrival and task execution time
distributions. Our qualification of different scheduling techniques is based on
the probability distribution of a random variable SRD(TY), which is the length
of time that passes before a task’s service time violates a fixed deadline 7. Our
investigations quantify the (superior) performance of FCFS scheduling (which
corresponds to the earliest deadline first discipline due to our fixed deadline
assumption, of course) and the (poor) behaviour of systems using preemptive
or nonpreemptive LCFS scheduling. The mathematical methods used for the
derivation of the results are well-established in the analysis of algorithms and
data structures, and form the basis of ongoing research by the authors in the
area of real-time systems, too.

1. INTRODUCTION

A well-known design problem for hard real-time systems concerns methods for
a suitable task scheduling. Scheduling goals for hard real-time systems are comple-
tely different from those fitting the needs of ordinary computer systems. The whole
problem is sufficiently well-understood in the case of deterministic task arrivals,
mainly periodic tasks. Requirements of this type may be scheduled in advance, i.e.,
offline; systems relying on this idea are usually called static. On the other hand,
sufficient theoretical foundations for indeterministic task arrivals are lacking. Sche-
duling in such dynamic systems has to be performed during normal operation, i.e.,
online.

Some of our recent research addresses the problem of qualifying scheduling tech-
niques for indeterministic task arrivals in hard real-time systems. Relying on a
simple but general abstract model we succeeded in defining a (mathematically trac-
table) quality measure for scheduling algorithms. The complete derivation of our
major results, which rely on some well-established combinatorial and asymptotic
methods from the analysis of algorithms and data structures, is contained in a num-
ber of “mathematically-oriented” papers, cf. [BS92b], [SB92b], [BS92a), [SB92a).

Key words and phrases. real-time behaviour, FCFS scheduling, LCFS scheduling, probability
generating functions, asymptotic methods.

2 J. BLIEBERGER AND U. SCHMID

This paper summarizes some of our results and presents insights gained from
the work on the subject (obviously with an eye to presenting them to researchers
working on the theory of real-time systems, but not being primarily mathematically
inclined). The outline of the rest of the paper is as follows: Section 2 contains a
description of the underlying model and the definition of the quantity of interest.
Section 3 provides some notational conventions, Section 4 is devoted to our major
results. At last, some conclusions are appended in Section 5.

2. THE MODEL

Our investigations rely on a system consisting of a task scheduler, a task list of
(potential) infinite capacity, and a single server. Arriving tasks are inserted into
the task list by the scheduler, according to the scheduling discipline, of course. The
server always executes the task at the head of the list, that is, scheduling is done
by rearranging the task list. A dummy task will be generated by the scheduler if
the list becomes empty. If the server executes a dummy task, the system is called
idle, otherwise busy.

Rearranging the task list is assumed to occur at discrete points on the time
axis only, without any scheduling overhead. The (constant) time interval between
two such points is called a cycle. Due to this assumption we are able to model
tasks formed by indivisible, i.e., atomic actions with duration of 1 cycle. The task
ereculion time of a task is the number of cycles necessary for processing the task
to completion if it might occupy the server exclusively. An ordinary task may have
an arbitrary task execution time, a dummy task as mentioned above is supposed to
consist of a single no-operation action (1 cycle). The service time of a task is the
time (measured in cycles) from the beginning of the cycle in which the task arrives
at the system to the end of the last cycle of that task.

Obviously, the time axis is covered by idle periods and busy periods, which are
supposed to include the initial idle cycle, too. A sequence of nonviolating busy /idle
periods followed by a busy period containing at least one deadline violation is
called a run, the sequence without the last (violating) busy period is refered to by
successful run. Supposing a fized service time deadline of T cycles, we gain a quality
criterion for a scheduling algorithm by introducing the random variable successful
run duration SRD(T). This random variable denotes the time interval from the
beginning of an initial idle cycle to the beginning of the (idle) cycle initiating the
busy period containing the first violation of a task’s deadline T. Thus, even the
expected value of SRD(T) allows to estimate a particular scheduling algorithm,
since it provides some insight into how long the system will operate from a time it
is found idle (for example, initially turned on) to the first violation of a deadline.

‘The probability generating function (PGF) of the number of task arrivals during
a cycle is denoted by

A(z) = Z a2, where aj, = prob{k tasks arrive during a cycle}
£>0

and should meet the constraint ay = A(0) > 0, i.e., the probability of no arrivals
during a cycle should be greater than zero. This assures the existence of idle
cycles. Note, that our definition implies that arrivals during two different cycles
are independent.

QUALIFYING DYNAMIC TASK SCHEDULING IN HARD REAL-TIME SYSTEMS 3

The PGF of the task execution times (measured in cycles) is denoted by

L(z)= Z 2%, where [, = prob{task execution time is k cycles}
E>0

with the additional assumption L(0) = 0, i.e., all task execution times should be
greater than or equal to one cycle. Again, this definition implies that task execution
times are independent from each other and from the arrival process.

It turns out that the overall execution time, i.e., the number of cycles necessary
for processing all actions induced by task arrivals during one cycle, plays a central
role. The appropriate PGF evaluates to P(z) = A(L(z)). For technical reasons we
need some additional conditions on A(z), L(z), and P(2), respectively. We omit
a detailed discussion for the sake of simplicity since most of these conditions are
usually easy to establish. Note however, that we explicitely exclude the trivial case

P(z)=po+(1- Do)z.

3. NoTaTioNaL CONVENTIONS

We use the following standard notations:

(1) f(z) = O(g(x)) for z — =g, if there exists some real constant C' > 0
independent of ¢ which guarantees [f(z)| < Clg(z)| for all z in a suitable
neighbourhood of 2.

(2) f(z) ~ g(z) for 2 — =z, if limg .., f(2)/9(z) = 1.

Furthermore, we use an intuitively clear notation for comparing functions with
different asymptotic growth ratios (cf” [GKP8Y, p. 426ff]). We write

dy < by, <> lim 32:0
e b,
and
a4 <b, = lim=C, 0<C<1
nsoo by

n order to “compare” functions with the same asymptotic growth ratio.

For example, let a, = n? and b, = 2n?. Then we have neither n? < 2n2 nor
2n® < n®. But, since b, grows only “a little bit” faster than a,, we have the
intuitively meaningful notation a, = n2 < 2n%=b,.

4. KNowN RESULTS

This section lists some of our major results. In fact, we summarize asymptotic
expressions for the mean of SRD(T) as T gets large, for FCFS and both nonpre-
emptive and preemptive LCFS Scheduling.

We have to consider three different cases, namely

(1) Normal Case
This (most important) case is characterized by an average load of less

than 100%, which may be expressed by P'(1) < 1 (since P'(1) equals the
average number of actions caused by task arrivals within a cycle). That is,

4 J. BLIEBERGER AND U. SCHMID

our system has to deal with task arrivals keeping it not totally busy on the
average.
(2) Balanced Case
Here, our system is kept 100% busy on the average, i.e., P(ly=1
(3) Overloaded Case
This case may be characterized by an average (offered) load which is higher
than the maximum load the system is able to cope with, that is, P/(1) > 1.
First, we present the average length of a successful run (measured in cycles) for
the normal case. It turns out that these values grow exponentially in 7', for all
scheduling techniques investigated. Note, that we derived asymptotic expressions
for all higher moments, too. In fact, it should be possible to prove that the limiting
distribution is an exponential one; details may be found in our original papers.

Theorem 4.1 (Theorem FCFS). (FCFS scheduling in the normal case, cf. [SB92b,
Theorem 1]). The mean of SRD(T) is given by

HFCFS§ ~ Pl(n) -1 o
(&= 1)(1 -~ P1(1))?

where k£ > 1 is the solution oft=Pz),z>1. [

for T — oo,

Theorem 4.2 (Theorem npLCFS). (nonpreemptive LCFS scheduling in the nor-
mal case, cf. [SB92a, Theorem 5.1]). The mean of SRD(T') is given by

PnpLors ~ CT32,T for T — oo,

where

o = 2VT(p = 1)(r — ag)L(7) ((1 —a0) (L(7) — L(ao)) ag(p — 1)
bL(p)(1 - P(1)) L{ao)(r — ao)
(=Dt —aop)l'(r) _ \7*
L(T) + 7 a0)
T > 115 the solution of P(z) = 2P'(z), p=17/P(t) > 1 and b = V2P(T)/P"(T).
a
Theorem 4.3 (Theorem PLCFS). (preemptive LCFS scheduling in the normal
case, cf. [BS92a, THeorem 2]). The mean of SRD(T) is given by
2P (r\Y* 1 p—1) 4
~ T /2. T
prrers (P(r)) AO-PD) "7
where 7> 1 is the solution of P(z) = zP'(z)and p=7/P(r)>1.

for T — oo,

The following theorems list the results concerning the expected value of SRD(T)
for the balanced case. Note that we derived expressions for the variance of SRD(T),
too, but no results concerning the limiting distributions as yet.

Theorem 4.4 (Theorem FCFS—). (FCFS scheduling in the balanced case, cf. [BS92a,
Theorem 2]). The mean of SRD(T) is given by

7!

1 ! ; |
e~ — i T
HFCFS GG oDEo D) for T — oo, :

QUALIFYING DYNAMIC TASK SCHEDULING IN HARD REAL-TIME SYSTEMS 5

where i > 2 denotes the order of the zero of P(z) ~z at z = 1, t.e., the smallest
tnteger value of i such that

PE)=z=v¢i(e -1+ O0((z - 1)) forz—1
and ¥; #0. [

Theorem 4.5 (Theorem npLCFS™). (nonpreemptive LCFS scheduling in the
balanced case). We are able to show that the mean of SRD(T) is given by

Brprocps— ~1T forT —oco. O

Theorem 4.6 (Theorem PLCFS™). (preemptive LCFS scheduling in the balan-
ced case). We are able to show that the mean of SRD(T') is given by

HBoLcrs— ~T forT — co. O

At last, we summarize the results concerning the mean of SRD(T) in the over-
loaded case. As one might have expected, we obtain a very short average successful
run duration, even for large 7. Again, we derived expressions for the variance of
SRD(T), too, but no results concerning the limiting distribution as yet.

Theorem 4.7 (Theorem FCFS"). (FCFS scheduling in the overloaded case, cf. [BS92a,
Theorem 1]). The mean of SRD(T) is given by

1
o~ T = 0o
HFCFS 1-B1=P(H) for ,

where 8 < 1 is the solution ofx=Pz),z<1. O

Theorem 4.8 (Theorem npLCFS"). (nonpreemptive LCFS scheduling in the over-
loaded case). The mean of SRD(T) is given by

1
BnpLCFsT ~ 1—_—?’1—_—]3,—(7‘;) for T' — oo,

where B <1 is the solution of z = P(z), z < 1. [J

Theorem 4.9 (Theorem PLCFS"). (preemptive LCFS scheduling in the over-
loaded case). The mean of SRD(T) 15 given by

1
UL T
HpLCFS - 31=P @) for 00,

where 3 < 1 is the solution of x = Plz),z<1. O

5] J. BLIEBERGER AND U. SCHMID

5. CONCLUSIONS

This section provides general discussions and ratings of the previous results. To
save space, we have omitted details concerning the methods used for deriving our
results, which may be found in our original papers. However, we should mention
that we were successful in deriving our results using combinatorial and asymptotic
methods from the analysis of algorithms and data structures, and not queueing
theory. We are convinced that there are a lot of problems in the field of real-time
systems, which may be attacked by similar methods; we will mention some possible
directions of further research at the end of this section.

We investigated the ability of a scheduling algorithm to meet the deadlines of
all tasks arriving at the system, namely, the random variable successful run dura-
tzon SRD(T'). The most important results concern exponentially growing means
of SRD(T') (as T gets large), for FCFS and both nonpreemptive and preemptive
LCFS scheduling, in the normal case of low average load. By virtue of such results
one might expect that our system will operate properly a very long time, regardless
of the scheduling policy. Numerical results concerning a particular example showed
very impressive results, too. By the way, note that a simulation approach for rea-
sonable values of T seems to be impossible; such an attempt would last too long,
even on a CRAY computer! Thus, we have solved a problem by means of analytic
modelling, which is not tractable by simulation, contradicting the widespread view
of simulation being a panacea!

Though we expected a superior performance of FCFS scheduling because it is
equivalent to the earliest deadline first scheduling discipline (due to our fixed dead-
line assumption), we never expected such a significant difference concerning the
deadline meeting properties between FCFS and LCFS scheduling. In fact, since x
is larger' than p, both LCFS algorithms are found to be inferior to FCFS in the
normal case, which is summarized in the following theorem:

Theorem 5.1 (Low Load Theorem). If the system is concerned with low load
only, we have
HpLCFS < HnpLCFS < pFcrs. [

The balanced case shows that FCFS is still superior to both LCFS scheduling
algorithms. Comparing our Theorems pLCFS™, npLCFS™, and FCFS— yields the
following rating:

Theorem 5.2 (Balanced System Theorem). In the balanced case, we have

BpLCFS— ™~ UnpLCFS§—~ < rpcps—~. []

At first sight, the results of the overloaded case are a little bit puzzling because
they are asymptotically equivalent. Deadline missing in the case of overload, ho-
wever, seems to be mainly caused by the general inability of the system to deal
with the whole work, and not by the scheduling strategy. Thus, our results do not
provide an example demonstrating that FCFS is not optimal in this case.

Though our results are limited due to our somewhat stationary probability mo-
del, they are still useful because of their non-equilibrium nature. For example,

I This fact may be proved in general and will be supported by providing numerical comparisons
in the final paper.

QUALIFYING DYNAMIC TASK SCHEDULING IN HARD REAL-TIME SYSTEMS 7

using appropriate probability distributions for task arrivals and for task execution
times, we may determine some limits regarding the tolerable length of successful
run durations. That is, given a (tolerable) probability of deadline missing (say,
107%), we are able to compute the maximum duration of such periods (assuming
that the limiting distribution of SRD(T') is exponential, of course).

Needless to say, the whole approach is only a modest start to analytic modelling
of systems for real-time applications; there are a lot of more or less important
problems left:

(1) Definition and investigation of other quantities which describe real-time
behaviour better than our SRD(T) does.

(2) Application of our approach to other scheduling algorithms, such as priority
based scheduling.

(3) Adding system overhead for scheduling and dispatching.

(4) Dropping the limitation of a single server.

(5) Considering the occurrence of deterministic and cyclically created tasks.

(6) Releasing the fixed deadline assumption.

Obviously, a crucial point is how to model the task arrival process to meet
practical requirements. This problem, which is central to all attempts of analytic
modelling a real application, is not solved sufficiently. In order to preserve the trac-
tability of the computations, one is traditionally tempted to use the well-thumbed
exponential or geometric distributions, or parameter variant normal distributions
such as in diffusion approximation. Unfortunately, these approaches are Justified
for some traditional applications only (large timesharing systems, for example), but
1t seems questionable to be successful with them in real-time applications.

Hence, the developement of an approach which allows the extension of our sta-
tionary probability model to a more suitable dynamic one seems to be of central
importance. In order to obtain an adequate model, it is necessary to investigate
real applications with regard to the stimuli they are concerned with, i.e., there is
a need of know-how in monitoring real-time systems; both how to do it and what
quantities are to be monitored to obtain desired characteristics. On the other hand,
refined techniques for tracting the theoretical part are necessary in order to make
use of an adequate model; in fact a broad field of theoretical and practical research!

REFERENCES

[BS92a] Johann Blieberger and Ulrich Schmid. FCFS scheduling in a hard real-time environment
under rush-hour conditions. BIT, 32(3):370-383, 1992.

[BS92b] Johann Blieberger and Ulrich Schmid. Preemptive LCFS scheduling in hard real-time
applications. Performance Evaluation, 15(3):203-215, 1992.

[GKP89] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Conerete Mathematics.
Addison-Wesley, Reading, MA, 1989.

[SB92a] Ulrich Schmid and Johann Blieberger. On non-preemptive LCFS scheduling with dead-
lines. (to appear), 1992,

[SB92b] Ulrich Schmid and Johann Blieberger. Some investigations on FCFS scheduling in hard
real-time applications. Journal of Computer and System Sciences, 45(3):493-512, 1992,

DEPARTMENT OF AUTOMATION (183/1) AT THE TECHNICAL UNIVERSITY OF VIENNA, TREITL-
STRASSE 3/4, A-1040 VIENNA, AUSTRIA

E-mail: blieb@auto.tuwien.ac.at

E-mail: s@auto.tuwien.ac.at

