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probability generating function Br(z) it follows that Sy is approximately exponentially dis-
tributed with parameter Ap = Vup, pr = BL.(1)/(1 - Br(1)), which tends to infinity for
T — co. We provide uniform asymptotic expansions for the appropriate probabilities and for

all moments, too.
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1. INTRODUCTION

There is a relatively young and flourishing branch of computer industries, which has
been somewhat neglected by traditional computer science: the development of real-time
systems controlling spacecrafts, power plants, or automated factories, for example. Gener-
ally speaking, a real-time system is concerned with tasks, which have to be performed not
only correctly, but also in a timely fashion; usually, they are are forced to finish within a
predefined deadline. Otherwise, there might be severe consequences.

A well-known design problem for real-time systems concerns methods for a suitable
task scheduling. Scheduling goals for real time systems are much different from those
fitting the needs of ordinary computer systems, since timeliness is by no means equivalent
to throughput or similar performance measures. The whole problem is sufficiently well-
understood in the case of deterministic task arrivals (“total knowledge”), mainly periodic
tasks. Requirements of this type may be scheduled in advance, L.e., offline: systems relying
on this idea are usually called static. On the other hand, sufficient theoretical foundations
for indeterministic task arrivals (without “total knowledge”) are lacking. Scheduling in
such dynamic systems has to be performed during normal operation. i.e., online. A brief
survey of scheduling algorithms for real-time systems may be found in [CSRY], for example.

Some of the recent research of one of the authors has been devoted to the problem of
qualifying scheduling for indeterministic task arrivals in real-time svstems. As a result,
a mathematically tractable quality measure for such scheduling algorithms was found by
means of a certain queueing system approach, which is based on the following idea: Con-
sider a queueing system consisting of a task scheduler, a task list of (potential) infinite
capacity, and a single server. Newly arriving tasks are inserted into the task list by the
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scheduler, according to the scheduling discipline. The server always executes the task at
the head of the list. A dummy task will be generated by the scheduler if the list becomes
empty. If the server executes a dummy task, the system is called idle, otherwise busy.
Rearranging of the task list is assumed to occur at discrete points on the time axis only,
without any scheduling overhead. The (constant) time interval between two such points
1s called a cycle. Due to this assumption we are able to model tasks formed by indivisible
actions with duration of 1 cycle. The task ezecution time of a task is the number of cycles
necessary for processing the task to completion if it might occupy the server exclusively.
An ordinary task may have an arbitrary task execution time, a dummy task as mentioned
above is supposed to consist of a single no-operation action (1 cycle). The service time of
a task is the time (measured in cycles) from the beginning of the cycle in which the task
arrives at the system to the end of the cycle which completes the execution of that task.
Obviously, the time axis is covered by a sequence of busy periods, which are supposed to

is called a run, the sequence without the last (violating) busy period is refered to by a
successful run.

Now, it turned out that the random variable successful run duration St provides a
suitable point of application for gaining a quality criterion for a scheduling algorithm. Sy
1s obviously the time interval from the beginning of an initial idle cycle to the beginning
of the (idle) cycle initiating the busy period containing the very first violation of a task’s
deadline T. Different scheduling algorithms may be compared via the distribution of Sr,
evenif the arrival process is modeled very simple (as we did): We assume an arrival process,
which provides an arbitrary distributed number of task arrivals within a cycle, independent
from the arrivals in the preceding cycles, and independent from the arbitrary distributed
task execution times, too.

Based on this model, the first few moments of St for a number of different scheduling
algorithms were analyzed in some former papers (preemptive LCFS: [BS1], FCFS: [SB1],
nonpreemptive LCFS: [SB2]). Note that the derivations relied on the combinatorial and
asymptotic analysis of certain random trees representing feasible busy periods (and not on
queueing theory!). The appropriate results, however, gave us the idea that Sy might (al-
ways) be approximately exponentially distributed, with a parameter A\r = 1/ur depending
on the scheduling discipline considered, of course.

This paper provides a generalization of the problem based on recurrent events and,
most important, rigorously justifies the assumption mentioned above. It is outlined as
follows: Section 2 contains the generalization of the problem and an overview regarding
the derivation of our major theorems, actually provided in Section 3. The closing Section 4
is devoted to the application of our theorems to the scheduling algorithms investigated in
the papers cited above.

As a cousequence, it is possible to reduce the analysis of the distribution of St for an
arbitrary scheduling algorithm to the computation of ur, a quantity concerning a single
feasible busy period only. A single feasible busy period, however, is usually tractable by a
number of powerful (combinatorial and analytical) devices from the analysis of algorithms
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and data structures, as mentioned above. Therefore, our method as a whole provides a no-
ticeable extension to the limited power of queueing theory within this contex. Note that we
recently solved the old problem of analyzing the duration of the successful operation of the
well-known slotted ALOHA collision resolution algorithm (which we found exponentially
distributed, too) by a very similar approach; cf. [DS] and [D] for details.

2 GENERALIZATION AND OVERVIEW

Consider a certain repetitive pattern & connected with repeated trials. £ is called a
recurrent event if at each occurrence of £ the trials start from the scratch again. Thus, the
waiting times {X); i =12 } between the i-th and i +1-th occurrence of & are mutually
independent nonnegative random variables having the same distribution. Common exam-
ples of recurrent events are the arrival of a job in a computer system or a telephone-call
arrival to a switchboard. An introduction to the appropriate field of renewal theory may
be found in [FE], for instance. We should mention that it 1s sometimes convenient to view
a sequence {X();; = L,2,...} of mutually independent nonnegative random variables
having a common distribution without regarding the associated recurrent event. Such a
sequence is therefore occasionally called a renewal process, cf. [TR], for example.

A well-known recurrent event is the end of a busy period in queueing systems. Consider a
single server system employed with servicing arriving tasks. Starting from an idle server,
a task arrival causes the transition to the busy state. Additional tasks arriving during
the service become queued (according to a specific queuing discipline) until the server has
finished the whole amount of earlier work. A transition back to the idle state, 1.e., the end
of the busy period, occurs when the server succeeded in emptying the queue (that is, if it is
not kept busy by new arrivals). Note, that we restrict ourselves to discrete time queueing
systems, where all time values are an integral multiple of some unit time interval.

Providing certain independent task arrival and service time distributions, it is not dif-
ficult to imagine that the times {BY); § = 1,2,...} between the ends of successive busy
periods are indeed mutually independent and identically distributed discrete random vari-
ables. Of course, B(Y) corresponds to the length of the i-th busy period. Let (Q, F, P)
denote a suitable common probability space for B (that is, for any of the B®): Qs a
countable set and each w € represents a certain busy period. The random variable B is
a mapping B : Q — {0,1,2, ... }, by definition.

It is conceiveable to extend the model developed so far in the following way: We define
another random variable Cr : Q — {0,1} on the probability space (8, F, P), which depends
on an arbitrary T € {1,2,... }. It provides a certain interpretation of a busy period w € §:
if w satisfies a certain condition (which depends on T') we define Cr(w) = 0. otherwise
Cr{w) = 1. Obviously, the interpretation may be defined by the corresponding partition
of {2 into sets Qe¢r=0 = Q7 and the complement Qep=1 = 25 as well. An example is the

feasibility of a busy period with regard to service timet deadlines: C{) = g <= all tasks
serviced during the i-th busy period have a service time less than T time units.

tIn classical queueing theory, service time denotes the time a task occupies the server. We prefer the term
task execution time for this quantity; the service time of a task denotes the time interval between the
arrival of the task and its completion, i.e., the time spent in the queue plus the execution time.
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That is, we are faced with a sequence of independent and identically distributed two-
dimensional random variables { (B(‘),Cgf) )ii=1,2,... }, where B() represents the length
of the i-th busy period and Céf) 1ts feasibility. Within this context, the following question is
of importance: How long does it last until the first non-feasible busy period is encountered?

The rest of this section is devoted to some preliminaries and an informal overview to
our derivations, which establish the following general result: The distribution of the ran-
dom variable mentioned above is approximately exponential with a certain parameter Ap,

getting small for large 7.

We start from an arbitrary discrete nonnegative random variable B defined on an prob-
ability space (2, F, P). The appropriate probability distribution P[B] is defined via the

probabilities
bn = prob{B = n}. (2.1)

Regarding our example, we have b, = prob{a busy period has length n}.
Let Qr CQ, Qr #£ Qfor T € {1,2,...} denote an arbitrary sequence of subsets of
with the property that limy_ Qr = Qf. For any fixed T, the conditional probability

distribution P[B|Qr] is given by
bn,r = prob{w : B(w) =n|w € Qr}. (2.2)

In our example, we have bn,7 = prob{a feasible busy period has length n}.

It is obvious that the “probabilistic condition” limp o Qr =Q implies the convergence
by T — b, for all n. Moreover, by < b, for all n and T, and Zn>0 by < Zn>0 b, =1
for all finite T. Since our subsequent treatment is solely based on analytical methods, we
will rely on the convergence condition

Tlim bnr =b, for all n (2.3)

in conjunction with some additional assumptions. However, all our further results remain
valid under the probabilistic preconditions mentioned above.
The corresponding probability generating functions (PGFs) read

B(z) = Z b,z" (2.4)

n>0

and
Br(z) = by rz™. (2.5)

n>0

First, we show the equivalence of condition (2.3) and a limiting condition on the corre-

sponding PGFst.

tA sequence of sets {An}nZI has limit lim, 4, = A, written 4, — A if lim mnf, A, = lim sup, 4, = 4
where liminf, A, = U:f__l ﬂ:i_n Ak and limsup, A4, = :D:l U:in Ak, as usual.
tThis is a well-known fact, cf. [FE, p.280] for a similar continuity theorem.
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LEmMMA 2.1 (CONTINUITY LEMMA). Under the basic assumption b, v < b, for all n and
T, the following holds: limsup,_ {‘/m =1/R,0 < R < o, and limy_oo by = b, for
all n if and only if B(z) has radius of convergence R and limp_,o, Br(z) = B(z) uniformly
for all |z2] <r < R.

Proof: Since limsup,,_,_ Vlba,r| < limsup,_,  3/]b,] = 1/R for all T, B(z) has radius
of convergence R and Br(z) has radius of convergence which is at least R for all T
Now, for any € > 0 it is possible to find some N = N(e,r) such that Do bar® < e

Thus, if |z] < r < R then

N
IB(2) = Br(2)| £ ) (ba =buz)r™+ 3 bur® + > by

n=0 n>N n>N
N

<Y by ~bur)r™ + 2
n=0

< 3e,

provided that T is chosen large enough to guarantee the e-bound for the finite sum above,
too. Therefore, limr_.o, Br(z) = B(z) uniformly for |z] <r < R.

On the other hand, the convergence limr_, o, bn, 7 = b, for all n is most easily seen by
considering the trivial inequality

0 S (bn - bn,T)'Tn S B(iI)) - BT(I")’

for an arbitrary 0 < z < r, since the right hand side tends to 0 for T — 00, too.

Note, that the convergence Br(z) — B(z) for an arbitrary argument value z > 0 suffices
to conclude b, 7 — b, for all n. However, the assumption b, v < b, for all n and T is
crucial here.

This completes the proof of Lemma 2.1 |

A simple corollary of the lemma above (in conjunction with the well-known Weierstralian
double series theorem, cf. [HE, pp.133-136]) is the fact that ngm) (2) = B™)(z) uniformly
for |2 <r < Rand T — oo.

We require the following (technical) conditions for our derivations:

(1) limp_ o b = b, for all n > 0.

(2) bnyr < b, for all n and T.

(3) Br(1) < B(1) =1 for all finite T,

(4) The radius of convergence R of B(z) should be larger than 1. Condition (3) only
implies R > 1; however, this is no serious restriction for our practical purposes.
Note, that by virtue of condition (2) the radius of convergence of Br(z)is Rr > R.

(8) B'(1) > 0, which is equivalent to B(z) # 1, that is, by < 1. This condition has a
probabilistic meaning: the expectation of B should be greater than zero.

Note, that this condition and Br(1) — B'(1) for T — oo according to the
corollary above reveals Bi(l)>e>0for T sufficiently large.
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(6) d = ged{n : b, > 0} = 1, which ensures that |B(2)| < B(|z]) for any z not real
and positive. The probabilistic interpretation is a certain non-periodicity property
of the corresponding renewal process. Note however, that this is no real restriction
for our derivations since d > 1 implies B(z) = E(zd) = D k>0 biz%* with by = bak
and ged{k : by > 0} = 1. Thus, we could use B(z) instead of B(z).

Due to the convergence Br(z) — B(z) it is obvious that the condition on B(z)
carries over to a condition on Br(2), namely ged{n : bnr >0} =1forT sufficiently
large.

The random variable Sy in question is defined on a probability space (', 7', P! ), where
Q = {wlwg...wnw,,+1 fwi € Qrforl <i<n, n>0and Wnt1 € Q%} consists of ar-
bitrary sequences of w € Qp terminatedt by a single w® ¢ £2%. The field ' and the
probability measure P’ are the obvious extensions of F and P.

To be more specific, we define St —={0,1,...} for ' = w, .. - WnWai1 € ' by

Sr(wr - wnwngr) = Y BO(wy). (2.6)
=1

Note, that we omit the terminating wn4; € Q5 in the summation above.

Regarding our introductional example, St denotes the sum of the lengths of an arbi-
trary number of feasible busy periods followed by a single non-feasible busy period. The
terminating non-feasible busy period is not taken into account.

The probablility distribution P[ST], i.e., the probabilities

$n,7 = prob{St = n}, (2.7)

are uniquely determined by the appropriate PGF, which reads

Sr(z) =) sape" = %—:%—g. (2.8)

n>0

This follows from the fact that

(1) the PGF of a sum of an arbitrary number of mutually exclusive random variables
with PGF Br(z)is ¥, Br(z)
(2) the probability of the terminating w¢ € 17 equals 1 — Bp(1).

After these preliminary discussions we give a short and informal overview to the following
treatment, which establishes that the distribution of Sy for T — oo is approximately
exponential with parameter Ay = 1 /ur. The latter is evaluated to

_ _Br(1)
HT = I“TE“(ET (2-9)

tNote the resemblance with geometric trials.




which tends to infinity for ' — oo due to our conditions on B(z). We provide two different
ways for establishing the result:

(1) Using a well-known continuity theorem for characteristic functions we show the weak
convergence (convergence in distribution) of the distribution of the (normalized)
random variable Yr = S7/ur to the exponential distribution with parameter \ = 1.
The related mathematical treatment is simple, but unfortunately it provides no
informations concerning the quality of convergence.

(2) Using singularity analysis on S7(z) yields uniform asymptotic expressions for Sn,T
and 3/ o sk when n — 0o and T — oo, In addition to the general statement
(ie., the exponential type limiting distribution) we obtain remainder terms which
provide the required informations concerning the quality of convergence. Moreover,
using Mellin transform techniques, we derive uniform asymptotic expansions for the
m-th moment E[S?] of S7, too.

3. MAJIOR RESULTS

First, we should mention that we rely on the notations and conditions stated in Section 2
(unless otherwise noticed). That is, we avoid their reformulation in the following theorems
for the sake of readability. ,

The following theorem states the weak convergence (that is, convergence in distribution,
cf. [BI, p.338]) of the probability distribution of the normalized discrete random variable
Yr = St/ur to the exponential distribution with parameter A = 1. Note, that if a random
variable ¢X, ¢ > 0, is exponentially distributed with parameter A, then X is exponentially
distributed with parameter \ /c.

THEOREM 3.1 (WEAK CONVERGENGE PROPERTY). The distribution of the normalized
random variable Y = St/pT converges weakly to the exponential distribution with pa-
rameter A = 1.

Proof: Using (2.8), the characteristic function Y7(t) of Yr evaluates to

1 - Br(1)

Y7(t) = Sp(e™/rr) = 1 — Br(ett/er)’

The Taylor expansions of Br(z) around z = 1 reads
BT(z)=BT(I)+B}(1)(2—-1)+O((z— 1)%) for = — 1, (3.1)
and it is easy to show that the remainder term is uniform for T — oo, Essentially, it
is only necessary to use the fact that the remainder is bounded by a function involving
Br(z), which converges uniformly to B"(z) for |z| < r < R according to the corollary of

Lemma 2.1. ‘
Providing the straightforward expansion

T =14 it/ur + O 4k for t = o(ur),
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we obtain

A Br(1) = Bp(1)(e**/#7 — 1) + O((eit/nr — 12)
1
= 1 - B’ (1) it 0 12 O( 1 _ﬁ_)
=Er 0 (ar + () + O3 Wz

1
C1=it+ Ot ur)

by using (2.9) and condition (5). Thus, for any t fixed, the expression above converges to
1/(1 ~ it). This function is continuous at t = 0 and represents the characteristic function
of the exponential distribution with parameter A = 1. The application of the continuity
theorem of characteristic functions (cf. [BI, p.359]) completes the proof. |

Next, we will perform singularity analysis on (2.8) in order to obtain asymptotic results
for s, . We start with

for t = o(pr) and T — o

LEMMA 3.2 (SINGULARITIES OF S7(z)). The function St(z) has radius of convergence

b1 =1+ 1/pr +0(1/p}) = 7' (1400 ur)) g

which is the solution of Br(¢r) = 1 for T sufficiently large. In addition, S7(z) has only a
simple pole z = ¢ on its circle of convergence. The residue is

1 - Bp(1)
Br(or)

Proof: Since Br(z) is a monotonically increasing function for positive z, it is clear from
condition (3) that Sy(z) has a pole at =z = ¢7 > 1 resulting from the vanishing denominator
1 — Br(z). Note, that R > ¢ for T sufficiently large avoids difficulties with additional
singularities originated in Br(z) itself. That is, there are no other singularities within the
disk |2| < ¢. Moreover, condition (6) ensures that there are no other zeros of 1 — Br(z)
for |2| = é7 but z # ¢, too.

An asymptotic expression for ¢ is easily determined via bootstrapping. Using simple
geometric arguments, we find 1 < ¢, < 1 + (1- Br(1))/BH(1) = 1+ 1/ur. Hence, we
provide the (coarse) first estimation

res(Sr(z); z = ¢r) = — = —up (14 O(1/ur)) for T — oo.

¢ =1+ vy where g = O(1/pur) for T —
and use the Taylor expansion of Br(z) at z =1 to improve it. Substituting z = ¢7 in
1= Br(z) =1~ Bp(1) - Bp(1)(z - 1) + O((z=-1?*)  forz—1
yields

_ 1= Bg(1)

Yy = B(1) + O(‘?’QT/BII"(l)) =1/ur + O(1/u%) for T — oo.

I
i
t
;
|
;
3
|
i
}
;
i



Note, that the remainder term is uniformly in T, cf. condition (5) and the remark on
equation (3.1). Using e* =1+ z + O(z?) for small z, we find

¢~T=1+1/,UT+O(1/1L¢%~)=e";1(1+0(1/”)) for T — o

as asserted.
The asymptotic expansion for St(z) near z = ¢r is easily derived by substituting the

Taylor expansion
Br(z) =1+ Bp(¢r)(z = é7) + O((z - ¢r)?)  for z — ¢p

in (2.8). By the same arguments as in the proof of Theorem 3.1 it follows that the remainder
term is uniformly in T, cf. the remark on equation (3.1). We obtain

1 - Bp(1)
=Br(dr)(z ~ ¢7)(1 + O(z - ¢7))

_ _1-=B7p(1) 1
= " Bl(sr) ( . 0(1))

for z — ¢7 and T — co. Obviously, the uniform remainder O(1) represents a function
analytic at z = ¢7. Using the Taylor expansion of Bp(z) at z = 1, namely Bi(z) =
Br(1)+0(z—1) for z — 1, we find Br(¢1) = BY(1)+O(1/pur) for T — oo. Substituting
this in the expression above yields

St(z) =

Sr(e) =~ 1+ 01 /u) (- + ow)

Br(1) z—¢r

for z — ¢p and T — oo, which completes proof of the lemma. i

Remark: It is easy to provide a more accurate asymptotic expansion for ¢ by addi-
tional bootstrapping steps. For example, a second step yields

3 B”(l) N _
_ 1_ br 2 3

for T — oco. Thus, we could improve all our subsequent asymptotic results which involve
this quantity.

Lemma 3.2 reveals that the Taylor coefficients s, 7 of St(z) are mainly determined by
the simple polar singularity at > = ¢7. Their asymptotics are easily evaluated via Cauchy’s
formula. However, some additional investigations are necessary in order to obtain error
terms which are uniform in 7.

We will point out that additional polar singularities of S7(z), i.e., points lz0] > &1
providing 1 — Bp(z) = 0, lie completely outside the closed disk 5( 0,1+ 6) for some 6 > 0.
In addition, for T sufficiently large, we will establish a uniform bound [1—-Bpr(z)|>A >0

for |z| =1 +6.




LEMMA 3.3 (UNIFORM BOUND). There exists some 6 > 0 such that ] — Br(z) # 0 for
|z| < & (with the only exception of the point z = ¢7) for T sufficiently large. Moreover,

we have the uniform bound

in [1-B > A
Ilﬁ?}w[ r(z)| >

for some A > 0 and T sufficiently large.

Proof: Since B(1) =1 and B'(1) # 0 there exists a neighborhood of z = 1, i.e., an open
disk D(1,n), n > 0 where

B(z)# 1 for z € D(1,n)\{1}, (3.2)

by virtue of the implicit function theorem.

Due to condition (6) we have [B(z)| < 1 for |z = 1, z # 1 and hence max [B(z)| < 1
when [z[ = 1 and |z — 1] > 5/2. But, continuity of B(z) implies that there exists some
6 > 0 (restricted to 1 + 6 < R, of course) such that the inequality above remains valid for
|z| =1+ §. We obtain

B <A
Jmax IB(2) < Ag
[z=1|>7n/2

for some Ag < 1.
Since Br(z) — B(z) uniformly, it is clear that this property of B(z) carries over to a

property of Br(z) for T sufficiently large, i.e., that there exists some Tp such that

Jax - |Br(z)| S Ag/2<1  forall T > Ty, (3.3)
z|=14+
[z=1[>n/2

Provided that our constant ¢ is chosen not too large, that is, § < n/2, we obviously have
{z:]z] =14+6}nD(1,n/2) 0. Remembering (3.2) it is clear that

min |1 - B(z)| > Ay > 0.
jzf=1+46
265(1,1]/2)

By the same argument as before it follows that there exists some T} such that

' 1-B > A/2> 0. 3.4
xﬁﬁéi (z)]| = A/ (3.4)

Putting inequality (3.3) into the minimum form like (3.4) it is obvious that

min [1—-Bp(z)|>A >0
jzf=146

for T > T" = max{Ty,T;}, where A = min{A¢/2. A;/2}. This completes the proof of the
lemma. J
With this preparations we are able to state
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THEOREM 3.4 (ASYMPTOTICS OF s, 7). There exists some § > 0 such that the n-th
Taylor coefficient sn 1 of St(z) has the uniform asymptotic expansion

s _ 1-Bp(1)
mT = ¢TBr(dT)
= w7 (14 0(1/pr)e ™' (1+00/m0)n 1 0(u71(1 4 6)-n)

87" +O(up'(1+6)™")

forn — oo and T — oo.

Proof: Using Cauchy’s formula, we have

1 Sr(z)

Sp,T = ——
n, 2ms Cilz|=~ Zn+1

dz

for some v < 1, for example. Extending C to the circle |z| = 1 + 6, we have to add the
residue of the integrand at the newly enclosedt singularity z = ¢7. Thus, we obtain

i ST(Z)

proEI—

2m C':)zl=1+6 znt+l

dz = s, 7+ res(ST(z); z= ¢T) p7" L.

But, the integral on the left hand side is trivially bounded by (1 4 §)~" max| =145 S1(z).
Substituting the uniform bound of Lemma 3.3 in (2.8) we find

max Sr(z) <

1 - BT(I)
|zl=146 A

for T sufficiently large. Remembering the result of Lemma 3.2 and (2.9), we finally obtain

$n,1 = —1es(S7(2); 2 = ¢7)$7 67" + O(%——f%)%l)

= uz' (1+ O(1/pr))e=sr (HOU/MD)n | o(=1(1 4 §)™™)  for n — oo,

where the remainder is uniformly in T, of course. J

By the same devices it is possible to prove a similar theorem concerning the distribution
function of St, that is, Un,T = prob{Sr < n} = > heo Sk.T-

THEOREM 3.5 (ASYMPTOTICS OF >_sk,1). There exists some 6 > 0 such that the distri-
bution function Un,T = 3 p—o Sk.7 Of S has a uniform asymptotic expansion

o= 1 — 1-Bpr(1)
YT 0= ér)erB;
=1 - (1 + O(l/peT))e—";l(H“O“/“T))” + O(#;l(l +8)7")

( ¢T)¢;" +O0(pr' (1 +6)™)

tFor T sufficiently large, we obviously have ¢ < 1+ 6. E
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forn — oo and T — oo.
Proof: The GF Vp(z) of v, 7 is obviously

1 _ 1 1-B.1)
V() = =7 Sr(e) = 7= - 1= Br(z)’

-z

(3.5)

according to (2.8). Thus, Vr(z) has an (additional) simple pole at = = 1, the residue is
res(Vp(z); 2z = 1) = -1.
The next singularity z = ¢ comes from ST(z), its residue reads

res(Sp(z);z = o)

=14 0O(1/ur) for T — o0
I —o¢r

res(Vr(z);z = ¢r) =

due to Lemma 3.2.
The rest of the proof runs along the proof of Theorem 3.3: Using Cauchy’s formula, we

have ' ) Ve(z)
{2z

nT = 57 —d

Un,T 91 Clzl=y Zn+1 z

for some v < 1, for example. Extending C to the circle |z] = 1+ 8, we have to add the
residues of the integrand at the newly enclosed singularities z = 1 and z = ¢7. Thus, we
obtain

1 Vr(z)

2rt Je lzj=146 271 dz = vy 7 + res(Vr(z); z = 1) +res(Vp(z); 2 = ¢T)¢§:n—l'
lzf=14

Again, the integral on the left hand side is trivially bounded by (14 6)—" max| ;=144 Vr(z).
Substituting the uniform bound of Lemma 3.3 in (3.5) we find

1 - Br(1)
V. < ==
;zrfrzlzllf-ﬁ r(z) < 6A

for T sufficiently large. We finally obtain

1 —BT(1)>
(1+46)"

=1-(1+ O(l/uT))e—“;‘l(HO(I/"T))" +O(ur'(1 + 6)™") for n — oo,

Un, T = —~res(VT(z);z = 1) — res(VT(z);z = ¢T)¢r;1¢555n + O(

where the remainder is uniformly in T, of course. [

Theorem 3.4 provides all informations required for the computation of the m-th moment
E[ST] of St. Using Mellin transform techniques, it is easy to obtain asymptotic expansions
which are uniformly in m. We start with the following
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LEMMA 3.6 (A BIVARIATE ASYMPTOTIC EXPANSION).

- m! Bm+1 Bm+2 m! 3
- — m —an _ _ 9] /2
fm(a) ’;n ¢ a™tl ;41 + m+2a+ ((271)"‘ (ma)

uniformly for a — 0+ and m — oo, m > 1. B,, denotes the m-th Bernoulli number, that
is, the coefficient of [z"/n!] in z/(e* — 1). Note, that B, = 0 for n = 2k + 1, k> 1 and
|Bn| < 4n!/(27)".

Proof: The function fn,(a) is a so-called harmonic sum, which is tractable by Mellin
transform techniques, cf. [VF] for an introduction. The Mellin transform

ale) = | " fa(a)a’" da

= Z n™ /000 e o'l da = Z nnT°I(s)

n>1 n>1

= D(s){(s = m)

1s analytic within the fundamental strip R(s) > m+1 and has a simple pole resulting from
Riemann’s zeta function {(z) at s = m + 1. Using the well-known inversion formula

¢+ 100

fm(s)a™ ds,

Cc—1

1
fm(a) = é?z‘

where ¢ > m + 1 denotes an arbitrary real constant within the fundamental strip, an
asymptotic expansion of fm(a) for @ — 0+ is obtained by extending the contour to a
closed rectangle (beyond the left of the fundamental strip) and taking into account the
residues of the enclosed singularities. We therefore have

fm(a) =res(fr(s)a™*s =m + 1) +res(fr(s)a™%s = 0) + res(fr(s)a™"s = ~1)
e * =5 d
2wy c+io0 fm(S)a ’
- — fm(s)a™?%ds
270 J 3 /24400 (s)
1 c—100
—— frm(8)a™? ds. (3.6)

- m
27 —3/2—ic0

The residues are easily evaluated. Since ¢ (2) has a simple pole with residue 1 at z = 1, we
obtain

. _ m!
res(fr(s)a™%s =m+1) = e (3.7)
The singularities at s = 0 and s = —1 are simple poles resulting from I'(s). However, if
m = 2k, k > 1 is even, the singularity at s = 0 is removeable since ({z)=0for z = —2k.
Similarily, the singularity at s = —1 is removeable if m = 2k — 1, k>1.
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Using the well-known values (cf. [AS])
(1 —-2k)= ——= for k > 1,

where B, denotes the n-th Bernoulli number, and the fact that

res(I'(z);z = -n) = (_n!) for n > 0,

we obtain

B B,,
(om0 = B o

for m = 2k — 1, k > 1. However, formula (3.8) is valid for all m > 1 since Bty =0 for
m = 2k, k > 1. Similarily,

- By Bom *
res(fr(s)a™%;s = -1) = 2(k(-:i))a = m:;a (3.9)

for m =2k, k > 1 at first, remaining valid for all m > 1 as before.

The last task is the estimation of the contour integrals in (3.6). We will use the intuitively
meaningful abbreviations I._, I 1, and I, respectively, and proceed with treating I;. Using
the functional equation for {(z), namely

((z) = 277" Vsin(rz/2)1(1 - 2)¢(1 - z)
we find

fa(s) = T(s)((s —m)

9371,.9-—-1

= ~(27r)’" L(s)sin(m(s = m)/2)T(m +1 - s)¢(m +1 - s). (3.10)
Due to the estimate
[sin(r(z — m +iy)/2)| < cosh(ry/2) < eI/ (3.11)

for real z,m,y, the functional relation I(z +1) = zI'(2), and |T(1/2 + iy)|* = 7/ cosh(ry)
we obtain

i o ' Nz cosh(my/2)
T3t ) sinlrte = mt )/ )| < s T i
~ 20/7 cosh(my) + 1 1z
= (1 +4y2)1/2(9+4y2)1/2( 2 cosh(wz) )
N (3.12)

< .
T 14 4y?
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From [I'(z + 1y)| < |[(z)| and the well-known limes relation I'(z 4+ a)/T(z +b) ~ 2%~
for |z| — oo (which is valid for all values of z bounded away from singular points of the
functions involved) follows

IT(m+1+3/2—1wy)| < C,\T(m + 2)vVm +5/2 < Co(m + 1)Wm + 1 (3.13)
for some constant Cj. At last, it is easy to see that

[{m +143/2—dy)| < " n=(m45/D < 9 (3.14)
n>1

Substituting (3.12), (3.13) and (3.14) in (3.10), we obtain

+oo ]
il < / | £a(=8/2 + it)ad/2¥ | |y

] o0
<C3(m+1).\/m+1a3/2.2/ dt
o

= (2r)m 1 14442
DIvVm +1 m! 3/2
- o( (m *("Zr))mﬂ + a3/2) - o( g (ma)®! ) 3.15)

since the (arcus tangens) integral in the second line above obviously converges.

Finally, we have to deal with the contributions of I and I_., which will be shown to
be neglible. We start with an additional estimation on I (2) for large imaginary parts. By
virtue of a weak form of Stirlings formula, namely

D(2) =0(e™"2""%)  for |z| = oo,
which is valid for |arg(z)| < 7 ~ § and |z| > 0, we obtain
IT(z + iy)| < Cye=%e(z=1/2)1og \/z?+y7 ~yarctan(y/z)
= Cye~?+(E=1/Dlog lyl+(z-1/2)log \/14+27 /42 ~|y|( = /2~ /|y [+O(z? /y?))
< Cyly|F~12e~lvIm/2,0(2%/y*)+0(=* /y)
< Csly|=~1/2e—lin/2

provided that r = o(,/y) as |y| — oo. In addition, by weakening well-known estimations
concerning ((z) for large imaginary parts (cf. [WW, p.276]) we have

(e =m+iy) < ColyP/*~+™  for y| — 0.

Thus, choosing ¢ = m +3/2 > m + 1 we find

~3/2 ;
| = tlim }/ fml(z +1t)a™" 7" dg|
< Hm Crft[mHemlT2q=m=3/2 (1 3)
— 00

= (,
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and by the same devices |I—.| = 0, too. This completes the proof of Lemma 3.6; collect-
ing (3.7), (3.8), (3.9), and (3.15) according to (3.6) establishes the result. J

Remark: It is not difficult to extend the derivations above in order to develop a more
accurate expansion for f,(a). In fact, we have

o) = e 4 3 Bremi (oL
m\&) = et k+m+1 K (27)m ’

where the remainder depends on K but is still uniformly for m — oo and o — 0.

THEOREM 3.7 (UNIFORM EXPANSIONS FOR THE MOMENTS OF St). There exists some
6 > 0 such that the moments E[ST] of St have the uniform asymptotic expansion

E[SF]=) n"sur

n>1
_1-B) s ( _, mlym )

= milir (1 +00/ur)]" +0 (17 L)
for T — oo and m > 1.
Proof: According to Theorem 3.4, we have for some § > 0
o p= L= Br(1)
" ¢rBr(ér)

where ¢ = 1+ uz! + O(uz?). Using the result of Lemma 3.6 (that is, the remark on this
lemma) we obtain

97"+ O(ur' (14 8)™) = uz' (14 O(1/p1)) 67" + O(pgte™m),

m o —n m! m!ly/m
2 = Gagaryen +© (G257
!
1 : 9 m+1+0(rg\/’?¢‘)’
(k7" + O(uz?) (2me)
where we used log(1 + z) = 2 + O(22) for z — 0. Similarily, we find

2 e =0 ((;n;@>

n>1

m!

Putting this together yields the statement of Theorem 3.7. §
Remark: Using the more accurate asymptotic expansion of ¢ from the remark on
Lemma 3.2 yields

-1 BR1)+ Bi(1) _ _
logor = 7' - P2 2 4 o
“~T

for T'— oco. Hence we could improve the asymptotic expression for E[ST], too.
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4. APPLICATIONS

Now, we shall return to the problem of qualifying scheduling techniques for indeter-
ministic task arrivals in hard real-time systems presented in Section 1, 1.e., to apply the
theorems developed in Section 3 to the scheduling algorithms investigated in our earlier
papers.

In order to do that, we need some additional details concering our discrete time queueing
system model: With the notations from Section 1, the PGF of the number of task arrivals

during a cycle is denoted by

A(z) = Z apz*, where a; = prob{k tasks arrive during a cycle} (4.1)
k>0

and should meet the constraint ap = A(0) > 0, i.e., the probability of no arrivals during a
cycle should be greater than zero. This assures the existence of idle cycles. Note, that the
definition implies the independence of arrivals within two arbitrary different cycles.

The PGF of the task execution times (measured in cycles) is denoted by

L(z) = Z Iz where Iy = prob{task execution time is k cycles} (4.2)

k>0

with the additional assumption L(0) = 0, i.e., all task execution times should be greater
than or equal to ome cycle. Again, this definition implies that task execution times are
independent from each other and from the arrival process.

We should mention that the number of probability distributions meeting our constraints
is considerably limited due to the required independency. An example for a suitable model
is based on an interarrival distribution with the so-called memoryless property, i.e., an
exponential or geometric distribution, leading to (well-thumbed) Poisson- or Bernoulli-
type arrivals within a cycle, respectively.

It turns out that the overall execution time, i.e., the number of cycles necessary for
processing all actions induced by task arrivals within a cycle, plays a central role. We ob-
viously have P(z) = A(L(z)). Note, that the function B(z), which provides the connection
to this paper, is (essentially) the solution of the functional equation B = zP(B).

For technical reasons we need some additional conditions on A(z), L(z) and P(z), respec-
tively. We omit a detailed discussion for the sake of simplicity; most of them are analyticity
conditions, which are usually easy to establish. Note however, that we explicitely exclude
the trivial case P(z) = py + (1 — pg)z.

It turns out that it is necessary to distinguish three different situations, namely

(1) Normal Case
This (most important) case is characterized by an average offered load of less than
100%, which may be expressed by P'(1) < 1 (since P'(1) equals the average number
of actions caused by task arrivals within a cycle). That is, our system has to deal
with task arrivals keeping it not totally busy on the average. This situation is
reflected by the fact that B(z) has a radius of convergence R > 1, which makes the

theorems of Section 3 applicable.
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(2) Balanced Case
Here, our system is kept 100% busy on the average, l.e., P'(1) = 1. Since B(z) has
radius of convergence R = 1 here our theorems are no longer applicable. However,
some tedious computations showed that the expectation of Sy fulfills E{S7] ~T
for T — co for all scheduling techniques investigated so far.

(3) Overloaded Case
This case may be characterized by an average offered load which is higher than
the maximum load the system is able to cope with, that is, P'(1) > 1. Again,
our theorems are not suitable here since the radius of convergence of B(z) is less
than 1. However, more or less simple computations showed a constant expectation
E[S7] ~C for T — oo.

In what follows we restrict ourselves to the normal case for FCFS and both nonpre-
emptive and preemptive LCFS scheduling. The very complete derivation of the basic
results, which rely on some well-established (combinatorial and asymptotic) methods from
the analysis of algorithms and data structures, is contained in a number of other papers,
of. [SB1], [SB2], [BS1]. They provide asymptotic results concerning the crucial quantity
KT, cf. equation (2.9). Using those results and our Theorem 3.4 of Section 3, we obtain

THEOREM 4.1. (FCFS scheduling in the normal case, cf. [SB1, Theorem 1]). The success-
ful run duration St for FCFS scheduling in the normal case is approximately exponentially
distributed with parameter 1/ pECFS where

_ Pl(g)-1
H = T Pt (LHOWT) T e

& > 1 is the solution of r = P(z),z > 1.

THEOREM 4.2. (nonpreemptive LCFS scheduling in the normal case, cf [SB2, Theo-

rem 5.1]). The successful run duration St for nonpreemptive LCFS scheduling in the
normal case is approximately exponentially distributed with parameter 1/uz? LCFS & here

pgPLers - CT**pT(14+0(1/T))  for T — oo,

and

o - 2V/m(p = 1)(7 ~ ag)L(r) ((1 — o) (L(1) — L(a0)) as(p— 1) _
bL(p)(1 - P'(1)) L(ao)(r — ao)
(=D -awpl(r) 7
I(7) Frem)
7 > 1 Is the solution of P(z) = zP'(z), p = T/P(r) > 1and b= \/2P(r)/P"(r). 1

THEOREM 4.3. (preemptive LCFS scheduling in the normal case, cf. [BS1, Theorem 2]).
The successful run duration Sy for preemptive LCFS scheduling in the normal case is

approximately exponentially distributed with parameter 1/ u%LCFS where

rers _ (2xP"(O\Y? 22(p—1) /2 T
,ug, = (——]—5@_—)*—) mT3 2p (1+0(1/T)) forT—»oo,
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7 > 1 is the solution of P(z) = zP'(z) and p = T/P(t)>1. §

Due to the exponential growth results for pr for any scheduling discipline mentioned one
might expect that our system will operate properly a very long time, even for a high average
offered load and a short deadline 7. Numerical results concerning a particular example
(assuming a constant task execution time of 1 cycle) showed indeed very impressive results:
For example, in the case of FCFS scheduling with Poisson arrivals with rate A = 0.5
tasks/cycle, a service time deadline of T = 10 cycles causes E[ST] = ur ~ 10° cycles;
T = 20 cycles yields ur ~ 10'? cycles. Note however, that FCFS scheduling shows always
the best performance since x > p- This is not too unexpected, since FCFS scheduling is
equivalent to the so-called earliest deadline first schedulingt here (due to our fixed deadline
assumption).

Moreover, it is obvious that Theorem 3.4 provides an answer to the following practical
question: Given the probability distributions (4.1) and (4.2) for certain stress situations,
and a (tolerable) probability p for deadline missing (say, p = 10~?), what is the maximum
duration of such a stress period to guarantee a deadline missing probability of at most p?

Finally, we should repeat that the results of this paper reduce the investigation of dif-
ferent scheduling techniques (in the normal case) to the task of establishing an asymptotic
expression for Br(1) and Bf(1). However, those derivations are sometimes complicated

enough as ma; be seen in our cited apers.
g, y pap
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