T .
Institut fiir Automation Ue‘,:hms.d.]_e
Abt. fiir Automatisierungssysteme e sitat
Wien

Projektbericht Nr. 183/1-31
April 1992

A Case—Based Reasoning Approach to
Dynamic Job—Shop Scheduling
A. Bezirgan

Ausschnitt aus: Salvador Dali, "Die Bestandigkeit der Erinnerung”

A Case-Based Reasoning Approach to
Dynamic Job-Shop Scheduling

Extended Abstract

Atilla Bezirgan
Insttute for Automation, Technical University Vienna
Treitlstrasse 3 /183 / 1, A-1040 Vienna, Austria
Tel.: 0043 -1-58801-8184
Fax: 0043 -1-563260
e-mail: aberziga@email.tuwien.ac.at

Introduction

This section gives a brief introduction to the dyna-
mic job-shop scheduling problem and to case-based
reasoning.

The problem

Scheduling is the task of assigning resources (o
operations over a period of time in order to achieve
certain goals. The job-shop environment has the
following characteristics

] the goals to be achieved are to process some
discrete parts,

U there are several different kinds of goals, e.g.
different products,

. usually, there are several different plans to
achieve one goal, and

. different plans consist of partially different
operations requiring different resources.

Scheduling in such an environment involves select-
ing a plan to achieve a goal. The term dynamic job-
shop scheduling refers to a scheduling process in
job-shop environment which is able to deal with
unforeseen events in the execution of a schedule.
Unforeseen events can be new orders which arrive
during the execution of a schedule or events like
the break down of a machine.

Why is this problem complex?

There are several reasons for the complexity of this

problem.

¢ There is a combinatorial explosion in the num-
ber of possible schedules in each problem
dimension such as the number of machines and
operations. This makes it necessary to use

implicit representations of the search space
such as with constraints instead of enumerating
the elements of the search space.

e There are a number of constraints which a
valid schedule must satisfy such as due dates
and constraints concerning operation
sequences. Interactions of these constraints
make scheduling decisions difficult.

* Scheduling decisions very often depend on
context. This makes it difficult to write down
an explicit goal function.

¢ Dynamic scheduling involves reacting in time
to changes in the environment.

What is case-based reasoning?

To reason from cases means to use experience
made earlier in solving a certain problem to solve
the current problem rather than to solve the current
problem from scratch using first principles. A case
usually consist of the description of a problem, a
solution to the problem as well as of knowledge
used in solving the problem. A case memory
contains cases organised in a way to make efficient
retrieval possible. In case-based reasoning, given a
new problem a retrieval component retrieves the
case most similar to the current problem. Using this
case an adaptation component tries to generate a
solution to the new problem. See [BEZI92] for a
detailed discussion.

Why use case-based reasoning for dy-
namic job-shop scheduling?

Since case-based reasoning does mnot involve
exploring the whole search space, the problem of
combinatorial explosion is avoided. One strength of
case-based reasoning lies in its ability to deal with

context dependent information. Thus constraint
interactions and scheduling decisions depending on
context may be modelled efficiently in a case-based
manner. One weakness of case-based reasoning is
that it is not well suited for optimisation problems
since it does not explore the whole search space.
However, the impact of this weakness becomes
smaller in a real-time environment in which a
timely, good solution is often better than the strive
for a perfect solution that misses deadlines. Further,
case-based reasoning is usually faster than other
enumerative methods. Thus case-based reasoning
seems to have the characteristics needed for a
method suitable for dynamic scheduling tasks.

Has case-based reasoning been used
for scheduling yet?

There are some successful applications of case-
based reasoning to scheduling tasks though no
application to dynamic job-shop scheduling for job-
shops of considerable size is known to me.
[BAHES9], [MARKS&9], and [HEHI91] describe an
application of case-based reasoning to autoclave
scheduling. The system is reported to be used in
real-world environment. [MISY??) describes an
interactive scheduling assistant for job-shop
schedule repair. [KOTO89] describes plans to build
a system to schedule large-scale airlift operations.

Further contents of this paper
The first steps in building a case-based reasoning
system are

1. define what cases contain and how they are
represented,

2. define case memory organisation,

define retrieval and how similarity of cases is
assessed, and

4. define the adaptation process.

This list does not imply a strict linear development
process. As will be seen later, there are mutual
dependencies between these steps.

The rest of this paper represents the results of these
steps for the dynamic job-shop scheduling problem.
Among the issues not discussed in this paper is
"how cases get into the case memory”, i.e. know-
ledge acquisition is not a topic here. Assuming a
non-empty case memory, an outline of case-based
scheduling will be given.

Assumptions
There are a few assumptions which have been made
in the rest of this paper.

. For the following discussion, a production
environment is assumed. So problems of as-
sembly or other kinds job-shop environments
are not regarded.

. Beside the case-based reasoning specific
components described below, the scheduling
system possesses static knowledge of ma-
chines, parts that can be produced, and plans
for the production of parts. Usually, there are
several plans per part. These knowledge
structures are not part of the case memory.
However, they are connected by pointers to
the case memory. For example, plans have
pointers to instances of their use. As will be
seen further below, this helps in retrieval and
adaptation.

Cases

Since the scheduling of incoming orders is influen-
ced by the schedules of earlier and later orders,
cases do not have sharp boundaries. A case can be
said to start at the point in time when an order
comes in and to end when the ordered product
leaves the production hall. However, such a case
has pointers to earlier and later cases which influ-
ence it and which it influences. These pointers and
the cases pointed in some sense belong to the case,
thus leading to unsharp boundaries.

The components of a case are described below.
Their representation and organisation is described
in the section titled "Case Memory Organisation”.

The problem

The problem description in a case consists of the
following components:

e the goals,
¢ the constraints on the goals, and

¢ the problem environment.

An internal model of the factory and its current
status makes up the problem environment. This
model is kept as part of the case memory (see "Case
Memory Organisation”) and updated when neces-
sary, ¢.g. when events like machine breakdown
occur. Thus it does not have to be specified
explicitly in every problem description.

The main goal is always the generation of a sched-
ule. However, this goal can be triggered by a num-
ber of events, e.g. new orders coming in or tardi-

ness of an operation. In the following, only schedul-
ing new orders will be regarded as a goal.

The constraints give restrictions on the kinds of so-
lutions to be generated, e.g. cost or quality re-
quirements. The different types of constraints
which can be specified here are much like the ones
in the ISIS system. However, the language used in
expressing constraints must be a restricted one
since retrieval and adaptation must be able to check
equality and subsumption relations between con-
straints which would not be possible if unrestricted
first order predicate calculus expressions were allo-
wed for defining constraints. This language has not
been developed yet.

The solution

The solution consists of an assignment of resources
to operations over time. This represents a prediction
of the development of the activities on the shop-
floor. The output of the system is an event-driven
schedule and a set of commands to machines and
personnel ensuring the execution of the schedule.

Justification structures for scheduling
decisions

A case further contains, for each scheduling de-
cision, a justification structure that gives the rea-
sons for this decision. In this justification structure
a rich causal vocabulary is used which facilitates
adapting previous schedules. This vocabulary
makes it possible to express causal dependencies
like "scheduling operation O; on machine My at
time Ty made scheduling operation O7 on machine
M; at time T, impossible". This way the relations
of the scheduling decisions and constraints which
were important in a certain decision process can be
modelled. The language of causal configurations
does not exist yet. It will contain relations like "A
enables B", "A causes B", "A disables B", "Ais a
side-effect of B", "A is the desired effect of B".

Case Memory Organisation

The case memory is organised around a time-line.
This time-line provides a model of time which is so
important in scheduling. Any suitable model of
time - interval-based or time-point-based, continu-
ous or discrete - is possible. The case memory also
contains a model of the factory and its current
status as well as pointers to the static knowledge
sources of the system. Orders are registered at the
time points at which they come in and have point-
ers to other components of a case, e.g. solution,

belonging to them. Past and current schedules are
also recorded using this time-line. Each scheduling
decision has pointers to objects, orders, plans, ma-
chines, and - over a justification structure - to other
scheduling decisions and constraints related to it.

The case memory is one large semantic network in
which the boundaries of cases are fuzzy and
floating. Events on the shop-floor such as machine
breakdown are registered in the model at the time
of their occurrence and connected by pointers to the
schedules they invalidated as well as to the cases
representing the rescheduling processes. Note that
objects, events, and constraints common to two
cases are represented once and pointed to by both
cases. This makes it possible to reach one case from
the other using their common features.

Retrieval

When a new order arrives the retrieval component
searches the case memory for a previous order that
is most similar to the current one. Similarity of
orders is judged by comparing the constraints on
the orders, i.e. similarity of orders is assessed using
the similarities of the constraints. One golden rule
of case-based reasoning says "do not retrieve what
you cannot adapt”. Thus similarity of two
constraints is judged by the ease of adapting a
solution satisfying one constraint to become a
solution satisfy the other constraint. This means
that the definition of similarity - and hence the
whole of retrieval - depends crucially on the
capabilities of the adaptation component.

The most similar old order is not found by
comparing all old orders to the new one but by
exploiting the semantic net to get from one similar
case (case sharing one or more constraints with the
new order) to another one.

For example, given a new order we can easily
retrieve all previous orders for the same product.
This is possible since all cases have pointers to the
description of the products produced as well as to
the plans used. The associated cases are similar to
the new order in the sense that they deal with the
same product. Using further constraints on quality
or quantity we can further differentiate between
these cases. Following several links we can get to
other cases which may be of use. For example,
having decided to use a certain plan we can take a
look at previous usages of that plan and the pro-
blems that were encountered then. Further, using

3

some deeper features such as constraint looseness
may help in retrieving more useful cases. Finally,
the adaptation component is not bound to use one
case in generating a new schedule. It can as well
use several cases, one in solving a specific
scheduling decision problem. In the following,
adaptation from a single case is assumed.

After the most similar old order is selected
adaptation is performed. The result of the
adaptation is a new case including a solution to the
new problem. Next it is checked either the new
solution satisfies all constraints. If it does, we are
done. Else the next similar old order is tried. If after
several adaptation tries no solution is found then
the system is unable to deal with the given problem
and the user must be consulted. For example, the
adapted unsuccessful solutions may be presented to
the user or he may be requested to relax some
constraints.

Adaptation

Given a new order and an old case the adaptation
component proposes a solution for the new
problem. In doing so it utilises the Justification
structure of the old case, analyses the old solution
and the differences between the old and the new
order. It uses rules that map the above pieces of
information to changes that must be made to the old
solution to make it fit the new order. Further, the
adaptation component can incorporate some
algorithms for doing local search and partial
scheduling. It can also use local dispatch rules in
adaptation.

For example, a simple adaptation process would
involve using another machine if the new order has
higher quality requirements than the old order and
these requirements cannot be met by the old
solution.

The justification structures in the case memory play
a central role in adaptation. They make it possible
to make "plausible and rational” changes to old
cases. For example, if the justification structure in
an old case states that a certain machine M had to
be used because M is fast and the due dates were
tight then the adaptation component can check if
these conditions are valid for the new order and if
not select another machine which may be slower
but also cheaper in operation.

Conclusion

This paper tried to outline the beginnings of a case-
based reasoning approach to dynamic job-shop
scheduling. The outlined research is being
conducted at the Institute for Automation in
co-operation with the Interuniversitary Centre for
Computer Integrated Manufacturing (IUCCIM).
The task at hand is to solve the dynamic job-shop
scheduling problem for the production of toy cars
(Ferarri Testarossa),

Much remains to be done. Languages for defining
constraints and for building justification structures
must be defined. Retrieval and adaptation
algorithms must be formulated. The incompleteness
of the discussion of these two components in this
extended abstract is indeed due to the fact that these
algorithms do not exist yet. Further, a prototype has
to be built and the approach has to be evaluated
using this prototype and more theoretic evaluation
methods. Though not much can be said about the
success of the approach at this stage of the project,
using case-based reasoning in conjunction with
justification structures seems promising in getting
good schedules quickly.

References

[BAHES89] Case Adaptation in Autoclave Layout
Design, Ralph Barletta, Dan Hennessy, in Proc.
Case-Based Reasoning Workshop, Morgan
Kaufmann Pub., Inc., 1989, p. 203-207.

[BEZI92] Case-Based Reasoning Systems, Atilla
Bezirgan, Technical Report, Christian Doppler
Lab. f. Exp. Sys., Vienna, 1992, forthcoming.

[HEHI91] Initial Results from Clavierr A Case-
Based Autoclave Loading Assistant, Daniel
Hennesy, David Hinkle, in Proc. Case-Based
Reasoning Workshop, Morgan Kaufmann Pub,,
Inc., 1991, p. 225-232.

[KOTO89] SMARTplan: A Case-Based Resource
Allocation and Scheduling System,
Phyllis Koton, in Proc. Case-Based Reasoning
Workshop, Morgan Kaufmann Pub., Inc., 1989,
p. 285-289.

[MARK89] Case-Based Reasoning for Autoclave
Management, William Mark, in Proc. Case-
Based Reasoning Workshop, Morgan Kaufmann
Pub,, Inc., 1989, p. 176-180.

{MISY??] CABINS: Case-Based Interactive
Scheduler, Kazuo Miyashita, Katia Sycara, in
77, p. 47-51.

