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The Analysis of the Expected Successful Operation Time of Slotted ALOHA

M. DrMOTA! AND U. ScHMID?

Abstract. It has been well-known for nearly twenty vears that the bistable behavior of infinite
population slotted ALOHA networks causes the unpleasant effect of eventually reaching a
overloaded state, where the number of backlogged stations becomes larger and larger and
the useful throughput reduces to zero. The detailed analysis reveals that this statement
is true for any average offered load A > 0, regardless of the retransmission probability p.
A challenging and to the best of our knowledge not sufficiently solved problem within this
context concerns the time taken until this destabilization occurs. We succeeded in answering
this question based on the fact that the operation of the system may be viewed as a sequence
of consecutive busy periods, each starting from backlog 0 and returning to backlog 0. It
turns out that the whole period of successful operation & consists of a finite sequence of
busy periods of finite lengths, which is “terminated” by an infinite busy period (which never
returns to backlog 0). A further analysis of this simple renewal process leads to an infinite
dimensional system of linear equations, which is shown to have only one meaningful solution.
A pair of upper and lower asymptotic bounds for that solution eventually provide the key to
our major result, namely the average number of slots up to the beginning of the infinite busy
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1. INTRODUCTION

It has been more than 20 years since N. Abramson developed his famous paradigm for
multiuser communication networks, the ALOHA system of the University of Hawaii. Since
then, a considerable amount of research has been devoted to the analysis, the improve-
ment, and the generalization of such collision resolution algorithms for contention-based
broadcast networks; an overview may be found in [GA]. However, despite the development
of certain non-ALOHA algorithms offering very much better characteristics, the ALOHA
algorithm is still important due to its simplicity; even Ethernet uses a modification of the
scheme.

A well-known variety of original ALOHA is the slotted ALOHA algorithm, which works
as follows: Consider an infinite population of identical stations sharing a single time-
slotted communication channel. Data is transmitted in form of fixed-size packets fitting
into exactly one slot. The whole population generates new data packets according to a
Poisson process with an overall rate A. Each station generating a new packet transmits it
immediately during the very next slot. If more than one station transmits during one and
the same slot, a collision occurs and all packets involved become garbled and therefore lost;
this occurrence may be detected using certain checksumming methods. Now, if a station
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has been involved in a collision, it transmits its data packet during each subsequent slot
with a fixed probability p until a successful transmission of the packet occurs. Note that
a station being in this backlogged state is assumed to be unable to generate new packets.

Denoting the backlog at slot &, that is, the number of stations being in the backlogged
state at the beginning of slot k, by Nk, it is clear that {AV; k = 0,1,...} is a homogeneous .
Markov chain with (stationary) transition probabilities p, m = P[Niy; = m|N} = n} and
Ny = 0. The transition probabilities are independent of the “time” k and follow most
easily from the model above:

pn,n—j =0 forj Z Qa

Prn-1 =np(1 —p)"~le™?,
Pnn = (1 - p)n)‘e‘)\ + (1 - Tlp(]. - p)n~l>6_,\v (1 1)
pn,n+l = (1 - (1 _p)n)/\e-—)\7
Mo .
Pnnt; = _:]Te A for j > 2.

For example, the equation for p, n, where the backlog remains unaltered by newly gener-
ated packets and/or successful transmissions during a single slot, follows from these two
possibilities (1) none of the n backlogged stations transmits and exactly one new packet has
been generated during the previous slot, and (2) zero or more than one of the n backlogged
stations transmit and no new packet has been generated during the previous slot.

The usual analysis of the behavior of slotted ALOHA relies on the investigation of this
Markov chain, cf. for example [KL]. In [FGLB], it was shown that this particular chain
is nonergodic and therefore unstable in the following sense: P[NV; < n] — 0 for k — oo
for any finite n. Alternative proofs concerning the nonergodicity of {N}} may be found in
[FGL] and [K], too. The clearer result that the Markov chain is transient® and therefore
P(limi—oo My = oo] = 1 was first derived in [RT] by means of a martingale approach.
It also follows as a byproduct from an interesting result in [KE], namely that the total
number of successful transmissions during the operation of slotted ALOHA is finite with
probability 1.

Intuitively, this unstable behaviour becomes clear by considering the drift

Dy = EWit1 = NilWVi =n] = A= (1~ p)"Xe™ 4 np(1 —p)"~Le™),  (1.2)

which is positive for all n > ny; for large A > e~! it is not hard to establish that D, > 0
for all n > 1 (if p is sufficiently small). Anyway, for reasonable values of A\ < e~! and
p there is a region of backlogs ny < n < n; where D,, < 0, and the size of this range
increases as A decreases and as p decreases. Consequently, ny might be considered as an
“attractive” stable operation point, and n; as a “critical” backlog where destabilization 1s
almost mevitable.

Naturally, one is interested in quantifying the implications of instability in the operation
of slotted ALOHA. One obvious approach in attacking this problem, as pursued in [KL],

3Note that nonergodicity, as established in [K], does not necessarily imply transience due to the possibility

of null recurrence.
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1s to partition the possible states into two regions, the safe region {0,1,..., N} and the
unsafe region {N + 1, N +2,...}. A reasonable idea for choosing the (constant) value N
is the critical backlog ny, where the drift D, becomes non-negative again. An interesting
parameter within this context 1s the average first entrance time (FET) into the unsafe
region, which has been derived in [KL] by analyzing a modified Markov chain with an
absorbing state for all backlogs larger than N.

However, there are several difficulties with (the analysis of) models based on such ideas
(cf. [CH], [GW] for different examples). The first point of criticism concerns the choice
of N, because there is always a small but non-zero probability that it is able to return into
the safe region of small backlogs. The major difficulty, however, concerns the appropriate
analysis. With traditional approaches ({KL], [CH]), closed form solutions are usually not
available. Moreover, the numerical evaluation of results like FET requires the solution of a
large (1.e., infinite) dimensional system of linear equations, which becomes computationally
intractable when A and p are small.

An alternative analysis is based on large deviation methods (cf. [GW]), which asymp-
totically describe the behavior of the Markov chain for small p. The appropriate results
show that the system will operate near the stable operation point ngy for a long period £ of
time, after that the process begins to follow an almost deterministic path out of the safe
region n < nj. L is approximately exponentially distributed with a mean of

E{E} — GC(/\)/P'FO(]/P) as p — 0, (13)

where ¢()) is expressible via a certain integral which is easily solved by some numerical*
methods. The major deficit of large deviation techniques, however, lies in the fact that
some of the results have not been completely proven yet.

This paper presents a fundamentally different approach for investigating the period of
successful operation of slotted ALOHA, which was stimulated by some of our research
on dynamic task scheduling in hard real-time systems (cf. {SB], for example). Our —
completely proven— technique explicitely avoids the use of large deviation methods and
provides an analytic result for small p and A. The derivations are organized as follows:
Section 2 contains some preliminaries and the statement of our major theorems, Section 3
is devoted to considerations concerning the existence of a solution of an infinite dimensional
system of linear equations. Sections 4, 5 and 6 contain the derivation of (matching) upper
and lower asymptotic bounds for the expected duration of the successful operation of slot-
ted ALOHA, which establish our major results. Finally, some conclusions are summarized

in Section 7.
2. PREPARATIONS AND MAJOR RESULTS

Consider our slotted ALOHA system starting from an idle state, e.g. after turning the
power on. The very first slot is obviously bound to be an idle slot. Depending on the

* Actually, we are grateful to an anonymous referee for pointing out that our major result E[S] (asymptot-
ically) coincides with the large deviation result E[£] obtained by an asymptotic evaluation of the integral
above; we give a sketch of the idea in our concluding Section 7.

3



number n of new packets generated during that slot, we have to distinguish between 3
cases:

(1) n = 0 new packets
In this case, an idle slot follows, and the backlog at the beginning of the next slot
is 0 again.

(2) n =1 new packets
Here, a slot with a successful transmission follows, and the backlog at the beginning
of the next slot is 0 again.

(3) n > 2 new packets
In this case, a collision slot follows, which is caused by the simultaneous transmission
attempts of the n stations, bear in mind the description of slotted ALOHA in
Section 1. Hence, at the beginning of the next slot, we observe a backlog n, and
the slotted ALOHA collision resolution algorithm carries on according to (1.1).
However, despite the inherent instability of ALOHA mentioned in Section 1, there
is a non-zero probability that our system reaches backlog 0 again.

In all cases, we (probably) reach a renewal point, which enables us to repeat our previous
expositions. The role of the very first idle slot mentioned above is taken by the last slot of
the previous period. That is, the operation of our system may be viewed as a sequence of
consecutive, mutually independent and identically distributed busy periods, each starting
with backlog 0 and returning to backlog 0. The following diagram provides an example:

backlog
!
3¢ 2
b
24 2
Y
1+3 1 1 2 1
L b 4L b i
ICSSCCSISSIISS’EICSCSSCSS time
0 busy period 1 23 '

The generation of n new packets during a slot is represented by a small lightning symbol
with n above. Each slot is marked with I ... idle, S ... successful transmission, C ...
collision, respectively.

Letting aside the trivial varieties of busy periods (1) and (2) for a moment, we focus our
interest on the non-trivial case (3), where an initial collision slot causes an initial backlog
n 2 2. This backlog is handled by a subsequent resolution process {NV* k=0,1,...},n>
1, which is very similar to the process {Ny} from Section 1. It relies on the same transition
probabilities (1.1), the only differences concern the state corresponding to backlog 0, this
time representing an absorbing state, and the initial state NG = n.

Let the random variable Q,, n > 1 denote the number of slots necessary for {N ~} to
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reach the absorbing state (backlog 0), i.e., the length of the collision resolution interval
necessary for (completely) resolving an initial collision of n stations. Note that this CRI-
length is crucial in the analysis of certain non-ALOHA collision resolution algorithms,

cf. [MF}| for details. Defining the probabilities

dna = P{Qn = i} (21}

and the corresponding probability generating function (PGF)

Qulz)=) gniz', (2.2)
i>0
we obtain
Gn.o =0 forn > 1,
~A
11 = pe
q1,i+1 = Zpl,j(b’,i for 7 > 1, (2.3)
121
Gnit1= ) P forn22,i>0
jEn—1

Multiplying (2.3) by z*T! and summing up, we obtain by recalling definition (1.1)
. A
Qi(z) =z (p+ (1= p)1+ Q1 (2) + ApQa(2) + > 5Qy(2))
izz I

Qn(z) = zE“*(np(l —p)" T Qna(2)+ (A1 =p)" +1—np(l —p)" )Qn(z)  (24)

by
+ A1~ (1=p)")Qnt1(z) + Z ﬁQn-i—j(Z)) for n > 2.

122

Now we are ready to write down the PGF of the length of a busy period of arbitrary
type. Defining :

Br = P[Length of a busy period is exactly & slots], (2.5)
we easily obtain
. k —X - —A /\j )
B(z) = Zﬁk: =e z4+ e "z +te zZ—_TQJ-(z). (2.6)
k>0 j>2 J:

Note the first and the second term, which represent the trivial varieties (1) and (2) of busy
periods.

Remembering the fact that the Markov chain for slotted ALOHA {A}} is transient
(cf. our remarks in Section 1), we have by definition

B(1) = P[3k > 0 such that My = 0] < 1. (2.7)
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Thus, the period of successful operation & = max{k|Vy; = 0} of a slotted ALOHA system
consists of a finite number of busy periods of finite length, terminated by an infinite busy
period of destabilization. Defining s = P[S = k], the appropriate PGF evaluates to

. 1-DB(1
S(z) = Zskzk = i—_—é—((—:—% (2.8)

k>0

This follows from the fact that the PGF of the length of an arbitrary number of finite
busy periods is 3 ., B(z)", and that the probability of the occurrence of the terminating

infinite busy period equals 1 — B(1).
It 1s easy to derive the desired expectation of the successful operation of slotted ALOHA

from equation (2.8). Differentiating and substituting = = 1 yields

B'(1)

ElSl=—51 2,

S = 15 (29)

Our problem is therefore reduced to the computation of

1-B(l)=1—e" <1+A+Z QJ )

]>2 )

e }: —Q;(1)) (2.10)
_7>2 !
and

B'(1) = B(1) + —AZ Q (1), (2.11)

i/
which leads to the problem of solving the infinite dimensional system of equations (2.4)
for Qn(z) and Q! (z), n > 1 at z = 1. Our first aim is to show that we are concerned with
several different solutions, cf. Section 3. These considerations lead to an elegant direct
proof of the already known

THEOREM 2.1 (TRANSIENT MARKOV CHAIN Ny ). The Markov chain for slotted ALOHA
{Nk; E=0,1,...}, My = 0 and transition probabilities (1.1) is transient.

After determining the (unique) solution of interest, we provide an upper and a lower
bound for @,(1) and therefore 1/(1 — B(1)) in Sections 4 and 5, respectively; Section 6
is devoted to the bounds for @;,(1) and hence B'(1). The appropriate asymptotic analysis
reveals that the resulting bounds for E[S] are equivalent up to some lower order term,

finally establishing

THEOREM 2.2 (ASYMPTOTICS OF E[S]). The expected duration of the successful opera-
tion of slotted ALOHA, which is the average number of slots up to the beginning of the
busy period of destabilization, is

og? A~ log A~ loglog A~ log A~
EiS] = e (gt * i O i)
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uniformly® for p — 0 and A — 0: exp(z) = ¢* denotes the exponential function.

For notational convenience. we finally introduce the abbreviations

Qn = Qnll),
Qn = Q,(1), (2.12)
B = B(1),
B’ = B'(1)

to be used in the subsequent sections.

3. O~ THE EXISTENCE OF A SOLUTION

With the beginning of this section, we will change our point of view from an applica-
tion-oriented to a pure mathematical one. We focus our attention on the solution(s) of the
infinite dimensional system (2.4) of linear equations for @, = @,(1), n > 1, which can be
reformulated in terms of a fixed point problem of an affine mapping.

Consider the Banach space 1°°. the space of all bounded sequences® x = (2(9);>; with

norm [|x]| = [|x[jec = sup;>; |z(V| and define
F:I"—1*° x—Lx+ec, (3.1)

where N

(Lx) =) pinz™, 21 (3.2)

m2>1

and .

G { pe™?, fori=1 (3.3)

¢ T he= 0, otherwise. '

(Note that the p; n are the same of Section 1.) Then Q = (Qn)n>1 = (Qn(1))n>1 1s
apparently a fixed point of F(x) = x. -

To ask for solutions is of vital importance, since (¥ = 1 for all ¢ > 1 is obviously a
solution of F(x) = x. However, remembering the inherent instability of slotted ALOHA,
one would rather expext a solution with lim, . @» = 0. Indeed we will show that there
is (at most) one solution for every lim, .o @, = @ fixed a priori.

The general plan of our subsequent derivations is as follows: Introducing the notations
x <y if 2 <y for all ¢ > 1, 1°°(I) for the set of sequences x = (x(i));zl with
lim;_.oo 2 = I, and 1°°[a, b] for those sequences x € 1°° with a < x < b, our essential aim
is to find sequences 0 < a < b € 1°°(0) such that F(a) > a and F((b) < b (cf. sections 4
and 5), which ensure that there are solutions x € 1%°[a,b] of F(x) = x (Lemma 3.3).
Assuming the existence of such sequences a,b € 1°°(0), it can be shown that our solution
(Qn)n>1 of F(x) = x satisfies limp—oo @ = 0 (Lemma 3.6). However, since there is at

5The phrase uniformly for p — 0 and A — 0 means that there exist po, Ao such that the asymptotic
expansion (i.e., the remainder term) holds for any 0 < p < po and 0 < A < A¢. Therefore, our result can
be applied to some fixed A > 0 and p — 0 and for some fixed p > 0 and A — 0 as well.

8We will use the notation x = (I(i))521 or X = (z;)i»1 interchangeably.
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most one solution x € 1°°(0) of F(x) = x (Lemma 3.2), Q = (Qn)n>1 must be contained
in 1°°{a, b]. The (known) upper and lower bounds b, a for @, however, will enable us tc

get asymptotic upper and lower bounds for 1/(1 — B(1)).
Now we return to our mathematical considerations. It is worth noting that a mapping of

the kind F(x) = Lx +c has a unique fixed point x € 1°° if |[L|| = supj<; [|Lx[| < 1 by Ba-
nach’s fixed point theorem. Unfortunately, we have ||L|| = 1 here becauseof >, pim =1
for: >1(and 3o, p1.m < 1). Consequently, the inequality ||F(x)—F(y)|| = ||Lx~Ly| <
|x — y|| cannot be generally improved. However, if we restrict ourselves to the subset
1°(¢) C I*° of all convergent sequences x = (:r(i))i21 with lim; o z(*) = £, it is not hard
to establish

LEMMA 3.1 (CONTRACTION PROPERTY). For every x # y in1°°({), the mapping F(x) =
Lx + ¢ with L according to (3.2) and ¢ arbitrary provides

[F(x) = F(y)ll = [lLx — Ly|| < {lx —ylI

Proof: It is sufficient to show ||Lx|| < ||x]| for every sequence x with ||x|| > 0 and
lim;— o |z¢Y| = 0. Now, the last condition ensures that for any ¢ > 0 there is an I(¢), such
that |z(V] < ¢ for ¢ > I(e). Setting ¢ = ||x||/2, we have for ¢ > I(¢) + 1

(Lx)P =] > pimz'™] <<= |x]l/2,

m=1—1

since p;m = 0 for m < 7 — 1. On the other hand, for : < I(¢) 4+ 1 we have the bound
|(Lx)D| < |1,

which follows from the obvious fact that |z{™}| = ||x|| for finitely many m only, according
to lim;_o (¥ = 0, and Pim >0form > -1
Thus, we obtain

Jxl] < max (J(Lx) V), .., [(Lx) T i) /2) < [ix])

which completes the proof of Lemma 3.1. I

Now 1t is easy to get
LEMMA_ 3.2 (UNIQUENESS). Let [ be real and fixed. Then there exists at most one solution
x = (zV);>; € 1°(]) of F(x) = x.
Proof: If there are two different fixed points x,y € 1°°(Q) of the mapping (3.1), then
0<|x—y] =|ILx+c—Ly —c| <|x—y| vields a contradiction. B

- In order to prove the existence of solutions, we reformulate Theorem I of Chapter 2 in
[KK] (also compare with [GMB] and [MB]):
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LeMmMA 3.3 (EXISTENCE). Leta,b € I°° be two sequences satisfving0 < a < b, F(a) > a,
and F(b) < b. Then there are solutions x € 1%[a.b] of F(x) = x.

Proof: Set a; = a and a,+; = F(a,) for n > 1. Then it is clear that a, < a,;; < b,

1.e., the real sequences (agf))nZI monotonically increase and are bounded above for all

1 > 1. Setting 0 = lim,, o aif) and x = (x(i))iZI, Lebesgue’s theorem on dominated
convergence establishes
(4 — 1 (1)
= A
= Jlim > pima™ + pig
m>1
= > pime™ +pig.
m2>1

Therefore, x € 1°°[a, b] is a solution of F(x) =x. I

C‘ombining Lemmata 3.2 and 3.3 we obtain

LEMMA 3.4 (EXISTENCE AND UNIQUENESS; ). Suppose that there are sequences a,b €
1°°(¢) with 0 < a < b, such that the mapping F(x) = Lx + ¢ with L according to (3.2)
and c arbitrary satisfies F(a) > a and F(b) < b. Then there exists a unique fixed point
x € 1°°[a, b] of F(x).

It should be noted that Lemma 3.3 can be interpreted from a more topological point
of view considering only subsets 1°°[a, b] with 0 < a < b and a,b € 1°°({) for some fixed
real I. It is not hard to verify that in this case 1°°[a, b] is a compact subset of the Banach
space 1°°. Furthermore, if F'(a) > a and F(b) < b then F(1*°[a, b]) C 1°°[a, b], where F
1s obviously a continuous mapping. Therefore, we can restrict ' to 1°°[a, b] and can apply

the following easy

PROPOSITION 3.5 (EXISTENCE AND UNIQUENESS,). Let (X,d) be a compact metric space
and f : X — X a continuous function satisfying d(f(z), f(y)) < d(z,y) for z # y. Then,
f has a unique fixed point.

Proof: Set X; = X and X,4; = f(X,)forn > 1. Then X, # 0 is closed and X, 4+1 C X,.
According to the finite intersection property of closed subsets of compact spaces, it follows
that ¥ = () X,, # 0, and of course all (possible) fixed points of f(z) are contained in Y.
n>1

Trivially, f(Y') C Y. On the other hand, for every y € ¥ the subsets Yy = X, 0 f~1({y})
are closed and satisfy the finite intersection property. Thus Y N f~1({y}) # @ and so
Y C f(Y). Now d(f(z), fly)) < d(z,y) for ¢ # y immediately shows that Y contains
exactly one point which must be the only fixed point of f(z). I

Our next aim is to justify the intuitively clear limiting value lim, .o @, = 0 for the
desired solution. We make use of the following

- THEOREM [FE1, p. 403]. If the state space S = TU R of a Markov chain with transition
probabilities p,, » consists of a finite set of recurrent states R and a set of transient states T,
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the probabilities y, of ultimate absorption in R when starting from state n € T are given

by the minimal non-negative solution of

Yn = Z Prn,mlYm + Z Pn,m forneT.

meT meER

(The solution (yn )ner is minimal when for every non-negative solution (z,)ner the in-
equalities y, < x, for alln € T hold.)

Now, since R = {0} and T = {n|n > 1}, the desired (@n)n>) are the minimal non-
negative solution of our system F(x) = x. We therefore obtain

LEMMA 3.6 (LIMITING VALUE OF Q). We have limn oo Q. =0.

Proof: We claim that the solution of F(x) = x, x € 1°°(0) with lim,_.., () = 0 which
exists by Lemma 3.4 and by the results of sections 4 and 5 is indeed the minimal solution,
. the required sequence Q = (Q@n)n>1: Suppose there exists a non-negative solution
y E 1°° of F(y) = y having the property y < x. Then, y) < () for all 1 > 1 guarantees
y € 1°°(0), and the uniqueness of the solution in 1°°(0) by virtue of Lemma 3.4 establishes
y=x.1
The following Sections 4 and 5 are devoted to finding sequences 0 < a < b in 1°°(0) with
F(a) > a and F(b) < b as required by Lemma 3.4. They actually establish the existence
of (@n)n>1 and form lower and upper bounds, respectively. It is worth mentioning that it
is possible to employ a simple iteration to provide tighter bounds: a < F(a) < F(Q) <
F(b) < bimplies F(a) < Q < F(b), and ||F(a)—F(b)|| < |la—b|| according to Lemma 3.1.
By the way, note the possibility of the (initial) choice a = 0.
In addition, Lemma 3.4 says that, besides the trivial solution T = (T, )n»1, Tn = 1 for
all n > 1, there exists another solution Q = (Q,)n>1- This fact, however, suffices to prove
that the Markov chain {N} is transient, i.e., our Theorem 2.1. We only need to apply

the following

CRITERION [FE1, P. 402]. In an irreducible Markov chain with states {0,1,...} and
transition probabilities p, m, the state 0 is recurrent if, and only if, the linear system

n = Z Pr,mTm forn >1
m2>1
admits no solution with 0 < z, < 1 except =, = 0 for all n.

Therefore, { N} being a recurrent Markov chain would require that Lx = x admits only
the trivial solution x = 0. However, T — Q # O provides another solution, yielding a
contradiction and proving Theorem 2.1.

4. AN UprPER BOUND FOR @,

This section is devoted to the construction of a convergent sequence b = (b, ),>1 € 1°°(0)
with the properties limp—co bn = 0 and F(b) < b, forming an upper bound for (@n)n>1

10



according to our expositions in Section 3. Consider the following infinite dimensional

svstem of linear equations
by = e (p-’r (1 =pi1+ )by + ((i/\ —1-=X(1 —p))b2>

b = e‘*(npu = )" b + (M1 = p)" + 1= np(1~p)" )b, (4.1)

+ (e)‘ —1— A1 —p)")an) for n > 2,

which is similar to our original one; it corresponds to a modified Markov process where all
(former) state transitions from state n to state n + j, 57 > 2 lead to state n + 1 instead.
Note that the general equation for b,, above is valid for n = 1, if we define

In the sequel, we will prove the existence of a solution of (4.1) with limp,—s b = 0,
which is monotonically decreasing, i.e.. bpt; < bpyy forn >1, 7 > 1. Using this property
in (4.1), the required validity of F(b) < b for our solution follows immediately.

Now, a close inspection of system (4.1) reveals

(bn - bn+l)(e/\ -1~ /\(1 - p)n) - (bn-—l - bn)np(l _p)n—] =0 for n Z 1.

Defining
bn - bn+l np(1 B p)n——l
= = T >1 .
T b —bn P _1-Nl-pp = (4:3)
and
n p n Tl'(]. _p’)n(n——l)/Q
P, = qi = forn > 1,
E <e*—1> (1-550-p) - (1- 2501 -pn) (4.4)
Po = 1,

we obtain b, — b, 41 = (1 — b )P, for n > 0 by multiplying equation (4.3) by P,-1, and

therefore

n—1
bn=1-(1=b)> P,
=0
for n > 1. That is, every solution of (4.1) depends on the choice of b; only. Setting

by =1-1/S where S=ZP,~=1+q1+q1q2+---<oo, (4.5)
i>0
we have lim, __ . b, = 0. Moreover, (bn)nzl is monotonically decreasing as required since

all g, > 0.
In order to develop an asymptotic expansion for S as A — 0 and p — 0, we need more

detailed informations concerning P,. Actually, we shall establish that the sum for S has

a dominating term P,,, 1 < m < co.
In order to show that the denominator of P, provides (relatively) small contributions,

we shall need the following
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LEMMA 4.1 (ASYMPTOTICS OF AN INFINITE PRODUCT ). We have

. 72 logp log2= i
g [J1-(1-p") = - - =+ =5+ 0] forp—0

n>1

Proof: See Appendix. §
By virtue of this result, it is not hard to prove that the denominator of (4.4) obeys the

following bounds:

LEMMA 4.2 (BOUNDS FOR THE DENOMINATOR OF P,). The denominator of P,, n > 1

= A ,
Dn:IIH—BA_1U—pf)
=1

fulfills

1< D! :exp(O( p))) for p — 0.

—log(1 —
Proof: Noting that

n

[la-a-p9) < [J0- 50 -pr) <1

i>1 i=1

since A < e* — 1, the lower bound for D! follows immediately; the upper bound is a
consequence of a very weak form of the result of Lemma 4.1. I

Next, we concern ourselves with the numerator of (4.4). We prove the following

LEMMA 4.3 (MAXIMUM OF THE NUMERATOR OF P,). The numerator of P,, n > 1

_ p " n(n—-1)/2 __ np(l—p)n_I
Fn'(e’\—l) n'(]‘_p) - 6’\—1 Fé—l

attains its maximum value F,, at

log A7 +loglog A™1 + O(1)
m =
—log(1 - p)

and \
(log A™1)" + 2log A"t loglog A™1 4+ O(log A7)

—2log(1 - p)

log Fyy =
Proof: Expanding the logarithm of the positive function

yp(1 = p)¥7!
My)=—F—"7—"

12



by using the straightforward expansions

1
log — =log A7 + O(X) for A — 0,
et —1
—log(1 —p)=p(1+0(p))  forp—0, (4.6)
log(—log(1 —p)) =logp+O(p)  forp— 0,
we obtain
log h(y) = ylog(1 — p) +logy + log A™! + logp + O(p) + O(\). (4.7)
for A — 0, p — 0. Hence it follows that there is a single zero yg of log h(y) and
g 2log A1 48
Y = ———, .
Yo = W1 Tlog(1 - p) (4.8)

since 1t is easily checked that log h(y1) < 0 (provided that A and/or p is sufficiently small,
of course). Repeated bootstrapping vields an asymptotic expression of yo for A — 0, p — 0,

namely
log \=1 + log log A=1 + O (‘—f’ﬁ%——) +O(p) + O(\)

Yo = —log(1 - p) ‘

Now, since h(y) > 1 for y < yp and h(y) < 1 for y > yyg, it is clear that F, attains its
maximum at n = m = |yo| = yo + O(1). Finally, the desired asymptotic expression for
log Frn is easily derived by using Stirling’s formula

logm
2

logm! =logl'(m + 1) = mlogm — m + + O(1) for m — oo.

Putting everything together, we are able to show

LEMMA 4.4 (ASYMPTOTIC EXPANSION OF S). For A — 0 and p — 0, we have

(log /\_1)2 + 2log A7 loglog A7 + O(log A™1)
—2log(1l — p) '

log § =

Proof: Remembering the proof of Lemma 4.3, especially equation (4.8), we obviously

have )
2log A7

P,<S= P, < ———— P, + O(1).

2P S Sy P O)

Taking logarithms and applying the result of Lemma 4.3, our result follows. §

Now we easily obtain

13



THEOREM 4.5 (AsyMpToTIiC UPPER BOUND). We have the following asvmptotic upper
bound:

1 (log A™1)” + 2log A= loglog A~} + O(log A™1)
1-B —2log(l — p) )
Proof: Remembering equation (2.10), we obtain

M A
L B= TR0z T )

iz2 722

< exp(

> e Met = A= 1)(1 = by)
= (1—e M1+ 2)(1+q)(1 = by),

cf. definition (4.3). Applying definition (4.5) and Lemma 4.4, our result follows. NI

5. A LOWER BOUND FOR @,

The purpose of this section is the construction of a sequence a = (an)n>1 € 1°°(0) with
F(a) > a and a < b, forming a lower bound for our desired sequence (@n)n>1 according
to Section 3. Consider the following infinite system of linear equations

a; =e N <P+ (1 =p)1+é1)a; + (ff(:51 —1-9(1 —P))GZ‘)
an = "% (np(l =P)" anoy + (¢l = p)" + 1= np(1 = p)"H)a, (5.1)
+ (€¢" —-1-9¢,(1 -p)n)an-f—l) for n > 2,

which is very similar to the (upper bound) system (4.1) of Section 4 and has an obvious
Markov chain interpretation too. Note that the general equation is valid for n > 1, if we

define ay = 1 by convention.
Now, the “lucky” replacement of A by ¢, depending on n > 1 allows the construction

of a lower bound, too, by means of choosing a suitable “large” sequence ® = (In)n>1-
Actually, we shall show that system (5.1) has a unique solution a € 1°°(0) satisfying the
conditions mentioned at the beginning of this section, if

5 _{Cl/\z/‘o’, forn <1/p

= 5.2
Ca A, forn>1/p (5:2)

with ¢, > A for all n > 1 and Cy, C» fixed accordingly in the sequel.
First, it is clear that our considerations from Section 4 carry over almost literally. We

easily obtain

n-—1
anzl—(l—al)Zﬁi
=0

for n > 1, where



&
i
:
£
£

VO v

S T YRR BT

and o

_ Ap — An4y _ np(l - P
q"—an_l—an eor — 1 — ¢p(l—p)n’

Again, the solution depends on the choice of a; only. Setting

ag=1-1/5 where S=) P,=1+473+3,§,+ <o, (5.3)
>0
we obtain lim,_.,a, = 0, and (an)n>1 is monotonically decreasing since all g, > 0.

Moreover, we have the following coarse estimation

LEMMA 5.1 (ESTIMATION OF §,). For alln > 1. we have

__ np(l-pn! <
Qn - : g
efr —1— ¢n(1 - p)n

Proof: Using 1 =(1—-p+p)" > (1 —=p)" +np(l —p)*~ ! and z < €% — 1 for any z > 0,
we find

1 1
— <
$n T A

T
et — 1

1> np(l — p)*~!

1_ n
(1-p) +

and therefore .

fo=——plopt 1 1
‘ en—1—¢n(1—p) ¢n A
since ¢, > A according to (5.2). i

We find it convenient to rewrite our system (5.1) as a mapping similar to Section 3, i.e.,

Ge 1 — 1%, x— Mgx + cs, (5.4)
where
(Mq,x)(l) = e ¥ ((1 —p)1+¢1)z1 + (e —1—¢1(1 "P))l'z)
(Max)™ = ¢4 (np(l =) T ana + (¢a(l=p)" + 1= np(1 —p)" Nz,  (5.5)

+ (eén -1~ ¢n(1 —p)n)xn+l) for n > 23 ’

and

4 =

~# forn=1
{r (5.6)

0, otherwise.

In order to establish that F(a) > a, we consider the difference
an = (F@)™ = [(Gaa) ™ = (Gala) ] + [(Gata) ™ - (Fa)™],  (5.7)

remember that a is the unique fixed point of G&. The sequence A denotes the sequence
with all elements equal to A\. Thus, G4 coincides with the upper bound scenario in Section 4
and has the unique fixed point b = (b, ),>; € 1°°(0).

We start working on the second term above by the following
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LEMMA 5.2. Let ® be a real sequence with ¢, > A forn > 1, and a € 1°°(0) the unique
fixed point of Gg. Then we have

e Gala)™ = (F(a))™ < £22
Iy (@nt1 = @nga) < ( TA(a)) - ( \a)) < 5 (@ntr = any2).

<

Proof: See Appendix.
Now, in order to establish that F(a) > a, we only have to show that our special

choice (5.2) ensures that
n n €
(Ga(a)™ = (Ga(@)™ £ =22 (tns1 — ansa) (5.8)

for all n > 1, according to equation (5.7) and Lemma 5.2. We need the following prepera-

tional lemma:
LEMMA 5.3. We have

(GA(a))(n) - (G‘b(a))(n) > (an = @nt1)(dn — A (1 =™ (1 - p)" = %’l)

Proof: See Appendix. §

Since @n41 ~ @ngg = Gppq(@n — @ny1) and g,y < 1/¢nyy according to Lemma 5.1, it

remains to show that
—'¢n n ¢Tl 2
Brr(gn = V(1= e (1=p)" = 1) = A (5.9)

in order to justify equation (5.8). We have to distinguish 2 cases, namely
(1) Forn<1/p-1,

- ¢n bn _ Pn P2

1 — bn 1 - n > 1 — —¢n —_——_— Ll _

e (1-p) ‘ 2 =2 T2

reveals that there is a constant C; > 1 such that inequality (5. 9) is satisfied for
$n = dny1 = C1A?/3 provided A is small enough and p > 0, of course.
(2) For n > 1/p, it is possible to sharpen the bound

1—e'¢"(1—p)"—%’321~(1—p)" ¢”>C>0

Hence, there exists a constant C, > 1 such that inequality (5.9) is justified for
n = ¢nt1 = C2A, provided A is small enough and p > 0, too.
The “mixed case” ¢, = C;A*/? and ¢,4, = C;)\ may be handeled by choosing

C> large enough.
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Thus, we have proved that our sequence a satisfies £(a) > a. In order to establish that
a < b, it suffices to show that Ga(b) < b. This follows from a pendant of our Lemma 3. 4,
this time applicable to Gg (the proof runs along the very same way). It says that, 1f
Ge(b) < b, there exists a unique fixed point a* € 1°°(0) with 0 < a* < b. Now, since
a € 1°°(0) 1s a fixed point of Gs. it is clear that a = a* < b.

In order to show that Gg(b) < b, we use

hn(p) = e™* (np('l—p)"'lbn—x+(#(1*p)"+1—np(1-P)"ﬁl)bn+(6“—1*#(1—P)”)bn+1)-
Then, we have h,(¢,) = (G@(b))(n) and h,(A) = b,. Now
(i) = =™ (np(1 = )" {byos = ba) + (1= (1= )" + 4(1 = p)")(by = buyy)) < 0

and ¢n = A lmply
bn = ha(A) 2 hal6n) = (Ga(b))™
and we are done.

At last, we complete our derivations by providing the necessary asymptotics. However,
since ¢, is close to A according to (5.2), we may use the proofs of Lemma 4.3 and 4.3

almost literally to establish

LEMMA 3.4 (ASYMPTOTIC EXPANSION OF S). For A — 0 and p — 0, we have

(log A1 )+ + 2log A7 loglog A™! + O(log A~ 1)
—2log(1 — p)

log S =

Now it is easy to get

THEOREM 5.5 (ASYMPTOTIC LOWER BOUND). We have the following asymptotic lower
bound

1 (log A1 ) + 2log A" loglog A™! + O(log A~ 1)
2o )
1-B —2log(1 — p)

Proof: Remembering equation (2.10) and Lemma 5.1, we find

22
Y Ny
e)‘Z_—'(l—aJ)—e (I—GI)Z‘TZPk
iz2 iz2 77 k=0

=(1-a)(1-e 1+ N)+eM1=a)y Pr, -

<(l—ap)\* +e? 1—a1))\z Z +k)'

k>2 T >0

S (1 - al))\C

for some constant C. Applying definition (5.3) and Lemma 5.4, our result follows. J
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6. BOUNDS FOR Q)

In this section, we shall establish an upper and a lower bound for B’ = B’(1). We start
with the derivation of the upper bound, which is much more involved than the lower one,

and claim

THEOREM 6.1. There is a constant C > 0 such that

B’ Sexp(g—log/\']) (6.1)

uniformly for A — 0, p — 0.

By (2.4), the generating functions Q/,(z) satisfy the functional equations

Qi) = S@u(e) + 27 (1 =p)(1+ NG} (=) 4 30Q5() + 3 T2 Q)

J>2
Q) = 2@n(2) + ze™ (mpl1 = p)" Q=) + (L= mp(1 = p)" ™ + A(L = p)") QL)

FAL=(1=p)) Qo () + > - ‘Qnﬂ:) for n > 2. (6.2)

]>2

Setting Q(z) = (Qn(z)),,, and Q’( ) = (QL(2)) n>10 We may rewrite system (6.2) as a
mapping similar to Q(z) 2, z(LQ(z) + c), namely

! 1 !
Q(2) = -Q(=) + sLQ'(2). (6.3)
Having solved this fixed point problem for some specific z < 1, B'(z) may be evaluated via
1
ey = —-A
B'(z) = -B(z) + ¢ J};z -Q (6.4)

Thus, setting z = 1 we get a problem quite similar to the already solved one, with the only

(but essential!) difference that Q) = @,,(1) = 1, n > 1 is no solution. Nevertheless, the
basic properties stated in the following lemma are almost the same as before: Using our

well-established notation Q = (@Qn)n>1 and Q' = (@', )n>1, we have

LEMMA 6.2 (AN UPPER BOUND FOR @',). Suppose that there is a non-negative sequence
¢ = (cn)n>1 € 1°°(0) with ¢ > Q + Lec. Then, Q' is the unique solution of x = Q + Lx
under the restriction x € 1°°(0) and 0 < Q' < c.

Proof: Since 1Q(z) < Q(1) for 0 < = < 1 we conclude by Lemma 3.4 thata=0<b = ¢

are bounds for the unique solution x of x = 1Q(z) + zLx under the restriction x € 1°°(0).
But, this fixed point problem has exactly one solution for |z| < 1 by Banach’s fixed point
theorem, namely Q'(z). So we have 0 < Q'(z) < c for 0 < z < 1, which implies that Q'(1)

exists and is bounded by 0 < Q/(1) < c. §
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Therefore. the remaining problem is to find such a sequence c¢. Our basic idea is to look
for certain partial solutions first, and to put them together in order to construct a global
solution ¢ satisfying ¢ > Q + Lec. Keep in mind that, if ¢ = {¢n)n>; denotes a sequence
with ¢ — Lc > Q, any sequence d = (I{Cn)nZI fulfills d — Ld > EZ, too, provided that
> 1. ;

Denoting the nearest integer to (log A™1)/{~ log(1 —p)) by ny (which causes (1—p)mo—t >
Aand (1 —p)**t! < A), it is not hard to establish

LEMMA 6.3 (APPROXIMATION FOR LARGE n). There exists a constant C' > 0 such that
¢ = (cn)u>1, where

C
cn = bn_y exp(-— log /\—l)
p
with b, denoting the solution of the (upper bound) system (4.1) satisfies

Cn — (LC)(n) 2 bn 2 Qn

for n > ng.
Proof: See Appendix. i
Next, we have

LEMMA 6.4 (APPROXIMATION FOR MEDIUM n). There exist some constants C; > 0,
Ca > 0 such that ¢ = (¢, )n>1, where

satisfies
cn = (Le)™ 212> Qn

for max(1,CyA?/p) < n < ny.
Proof: A simple computation shows
_(Le)™ = Slon-a(1 n-1 Loy e2A A
en = (Le)™ = 327%™ (Sap(1 = p)" ™ 4 A1 = p)" — P 4
> %2"63/\2 >CCy > 1
for max(1,CA?/p) <n < ng. R

Lemmata 6.3 and 6.4 permit the construction of a sequence ¢ with ¢ > Q + Lc¢ as
required by Theorem 6.1 in the case p > C,\?: By Lemma 6.3 there exists a constant

C' > 0 such that ¢’ = (¢}, )p>; with

n

el =bn_, exp(—g- log /\‘1)
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satisfies ¢, — (Le')(™) > Q,, for n > ng, and by Lemma 6.4 there exists a constant C, >0
such that

Cp = — 20 for n < nyg

Cn = bn_1 exp(% log /\_l) for n < nyg.

Cyan C -
FQ ° > bno_lexp<; log A ),

set C) = C A ~22m0 exp(—%log /\_1)/6,10__1 and
Cp = —27 for n < ng
" C -1
cn =Clbp exp(— log A > for n < ny.
p

This sequence ¢ = (cn)nZI obviously satisfies ¢ > Q + Lc. Therefore, using a coarse
estimation of (2.11), we find

! C, -1
B §1+11111§%<cn_<_e:\p<—p—log)\ ) (6.5)

for some constant C' > 0, which establishes Theorem 6.1 in the case of p > Co A2

Unfortunately, the case p < C3A? introduces unpleasant difficulties. This fact becomes
intuitively clear when the drift D, is considered: According to our remarks following
equation (1.2), there is some n; such that D, < 0 for n < n; and D, > 0 for n > n;y.
However, the range where the drift D, is negative starts with ng = 1 only if p > CoA2.
For p < C,A?%, there exists some 1 < ng < n; such that D, > 0 for n < ng, D, < 0 for
ng <n < ny,and D, > 0 for n > n;. This means that an ALOHA system with backlog
between ng and n, tends to decrease the backlog towards ng, but is very reluctant to pass
the gap between ng and 0; an actual collision resolution regarding a small backlog needs
more time if p is decreased, since the number of idle slots increases.

Nevertheless, the asymptotic expansion for the probability B that a busy period is finite
is uniform for A — 0, p — 0, i.e., gets larger if p and/or A are reduced. Note that B/(1—B)
is the expected number of busy periods and B'/B is the expected length of a busy period.

Now, using some technical refinements it is possible to prove
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LEMMA 6.5 (APPROXIMATION FOR SMALL n AND SMALL p). Let n; be the nearest integer
to CoA?/p and suppose that n; > 1. Then there exist constants Cs > 0, Cy > C5 such

that ¢ = (Cn)nZI with
ny

Cp = Z ag (6.6)

k=n,~n<+1

for n < n,, where

= 1) (C“Q)k (6.7)

!
ny. P

ay = exp (Cg log )\_1>

and
Cn = ag2" T 4 e, (6.8)

for n > n; satisfies
cn — (Le)™ > 1> Q,

forn < nj.

Proof: See Appendix. §

Using this additional lemma, it is not hard to construct a global sequence ¢ = (Ccr)n>1
satisfying ¢ > Q + Lc for p < CyA2, too. This construction runs along our considerations
preceeding equation (6.5); however, we suppress details for the sake of shorteness. Now,

by virtue of
1 (ny — k) €F
e
nj ny! ny
we easily obtain the coarse estimation
1

C
max ¢, < exp(——log /\“1>
1<n<n; P

for some suitable constant C" > 0 (by summing up definition (6.7) for 1 < k < ny). This
result combined with inequality (6.5) completes the proof of Theorem 6.1.

What remains to do is to collect our results: Remembering (2.9), it is clear that Theo-
rem 4.5 1n conjunction with Theorem 6.1, and Theorem 5.5 together with

B'=) jb>> b=B>1/2

i>1 i1

uniformly for A — 0, p — 0, establish our major result as stated in Theorem 2.2 of
Section 2: both the resulting upper and the lower bound for E[S] are of the same order.

7. CONCLUSIONS

In the previous sections, we computed the average time until destabilization of the slotted
ALOHA collision resolution algorithm occurs. Relying on a specific renewal approach based
on busy periods (starting from backlog 0 and returning to backlog 0 again), we found that
the whole period of successful operation S consists of a finite number of finite busy periods
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B terminated by an infinite one, and derived a uniform asymptotic expression for E[S] as
A — O and p — 0. As a byproduct, we obtained a simple proof of the (already known}) fact
that the Markov chain for slotted ALOHA is transient.

Our actual computations use a pair of upper and lower bounds, which are shown to
be asymptotically equivalent up to a factor(!) of order exp(O(log A~!/p)), which is rela-
tively large. However, the asymptotic evaluation is already somewhat technical (and long
enough), and establishing more accurate expressions would involve much more sophisti-
cated techniques, e.g., multivariate Mellin transform techniques. Besides, it is questionable
if our bounds are still asymptotically equivalent if lower order terms are considered.

It 1s clear that such results for small A and p are (despite of uniformity, cf. the footnote
at the end of Section 2) a bit unrealistic from an engineering perspective since, for small
A, one usually chooses a relatively large p. Nevertheless, numerical results for large values
may be obtained by a simple numerical iteration of Q"*! = F(Q™) starting from Q% =0,
n 2 1 (and similar for Q™*! with @ = 0). It produces gradually improved, monotone

approximations of @, and QJ; cf. our remarks following Lemma 3.6.

It is naturally interesting to compare our E[S] with the large deviation result E[£] derived
in [GW]. As already mentioned in Section 1, it is possible to extend the latter analysis in
order to obtain an asymptotic expression of E[{] as p — 0 and A — 0, cf. equation (1.3).
A sketch of the derivations looks as follows: Using the “small-p” approximation of the
drift D, =~ A — () + np)e~(A+7P) and substituting y = np, we define the drift function
dy) = A~ (A +y)e~ ¥ which is presumed to have two roots Yo and y;; we suppress the
obvious dependence from A for notational convenience. According to the large deviation
results, the required quantity ¢ = ¢()\) evaluates to

n
c= 0% (y)dy
Yo

where ©*(y) = ©*(y, A) is defined by the following equation concerning the moment gen-
erating function M(©,y) of the “small-p” approximations of our Q,,, cf. equation (2.3):

M(0*(y),y) = T _ (@7 L )aem ) L (=07 W) )~ g

First, 1s 1s not hard to see that asymptotically, for small X, y, ~ 0 and y; ~ logA\~1 +
loglog A™!. In addition, for y becoming large, we find

Fy) = 2e®" W x yev.

After a straightforward evaluation, the integral above yields

log”? A7! + log A7 log log AL,

[SV NI

Cc =

Therefore, we see that the major terms of E[£] of [GW] and our result E[S] are equiv-
alent, though we deal with apparently different models. It seems that the differences are
in fact not essential and that we provided another —completely proven— approach to
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the same result; for example, there is a obvious coincidence between our terminating (i.e.,
infinite) busy period and the almost deterministic path out of the safe region as predicted
by large deviation methods.

It is clear that our approach provides a method of attacking certain related problems, too.
For example, a forthcoming paper shall establish that S is approximately exponentially
distributed with parameter 4 = 1/ E[S] (as already predicted by large deviation methods,
too). In addition, other interesting quantities arising in this context might be investigated.
For instance, it is easily seen that B/(1 — B) is the expected number of busy periods until
destabilization, and that B'/B is the expected length of a finite (that is, a terminating)
busy period. Another challenging problem is the development of an asymptotic expression
for the average CRI-length Q,, which is the average number of slots necessary for resolving
an initial collision of n stations. cf. our remarks preceeding definition (2.1).

Finally, we should note that we successfully employed our approach in a very different
context, namely queueing systems with deadlines. Due to the general nature of the results
obtained (cf. [DS]) we presume that certain problems in different fields might be tackled,
too. On the other hand, we readily confess that it is questionable if our approach will
be successful in conjunction with multi-dimensional Markov chains arising in the analysis
of more complex collision resolution algorithms like binary exponential backoff (employed
for Ethernet, cf. [A]): Our general renewal technique naturally applies, but establishing
soluble upper and lower bounds is actually much more complicated than shown in this

paper.
APPENDIX

Proof of Lemma 4.1: Defining

f) =3 log(1—e™) = = 3" LY e

n>1 . k>1 n>1
we have
log [[(1=(1=p)") = f(~log(1 - p)). (A.1)
n>1

The asymptotic expansion of f(t) as ¢ — 0+ is easily developed by means of Mellin

transform techniques, cf. [VF] for an overview.
Using the most useful “harmonic” property M (f(ct);s) = ¢~*M (f(t);s), the Mellin

transform f*(s) = M(f(t);s) of f(t) evaluates to
Frir = [ e = ~ols + 10Ts),

which is analytic within the fundamental strip R(s) > 1. Using the well-known inversion
theorem of the Mellin transform, we have

1 c+100

fty=5= [ fs)ds,

2m f,._;

23



£
5
E
i
i
]
:

where ¢ > 1 denotes an arbitrary real constant within the fundamental strip. An asymp-
totic expansion of f(t) for t — 0+ may be obtained by extending the contour to a closed
rectangle (beyond the left of the fundamental strip) and taking into account the residues
of the enclosed singularities. We therefore obtain

f(t) =res(f*(s)t7 ;s =1) +res(f*(s)t™% s = 0)

1 ~1/2+100
- Fr(s)t™ ds
2me c+ioc0
- — fr(s)it™’ ds

27t Jo1/24ic0
1 =100
- fr(s)t™ ds.
2T J_1/2—iso

The required residues are easily evaluated. At s = 1, we have a simple pole from ((s).
Using the well-known expansions ‘

((5) = —— 45+ O(s = 1),

s—1
2
C(3+1)='g‘+0(3—1)
for s — 1, we find
P =-2 L 001)  forso1
T e e e —_— .
N 6t s —1

At s = 0, we obtain a double pole resulting from I'(s) and ((s + 1). Since

I(s) = = — 7 + O(s),

8

((s) = —1/2 = 2824 o),

t™ =78t = 1 _slogt + 0(s?%)

for s — 0, we easily obtain the expansion

for s — 0.

1 logt log2nr v 4.1
* -8 __ —_— — JEARL A B
fi™ =53~ (5 7 37 3); o0
Applying certain standard estimations, it is possible to show that the integrals along the
horizontal segments provide vanishing contributions towards +ico, and that the integral
along the vertical contour R(s) = —1/2 contributes a remainder term O(t!/?) to the
asymptotic expansion of f(t); see [VF] for details. Therefore we obtain

2 t 1
F(t) = “%7 - 1°§ + Og;” +O0(Y?)  fort — O+
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Note that we may improve the remainder term to O(t), since the next singularity (a simple
pole) of the transform lies at s = —1. Moreover, it would be easy to derive a full asymptotic
expansion by shifting the horizontal contour further left.

Finally, since t = —log(1—-p) = p+O(p?) and log t = log(— log(1 -p)) =logp+O(p) for
p — 0, equation (A.1) establishes the asymptotic expansion as asserted in Lemma 4.1. [}
Proof of Lemma 5.2: Bearing in mind the connection between F and G, mentioned
after the introduction of system (4.1), we obtain the upper bound

k
(Ga@)™ = (F(@) ™ = e T 2 (anps = anss)

k>2
k k=1
_ A A ,
=e T (@nt; = Gnyjt1)
k>2 7 j=1
- Ak
=€ (Gntj = Gnpj1) ) o
j>1 k>j+1

:e—’\(an+1—an+2)z H g Z 7»"7

j2li=n42  k>j5+1

iy At (7 + 1)
< A atl — Gn A—G=1) Ak
S ¢t~ ani) ) P )

j21 k>0
_ A2 1
iz Y TS
€12
= 5/\ (an+1 - an+2)-

The lower bound follows trivially from the first line equation. J

Proof of Lemma 5.3: Introducing the notation

gnlp) =€ (np(l—p)""an—x +(#(l—p)"+1—np(l—p)"”‘)an+(e“—14y(1—p)")an+1),

we have gn(¢n) = (Ga(a))™ and ga(\) = (Ga(a))™. Therefore,

(Ga(@)™ = (Ga(@)™ 2 61($n)(A = 6a) + min g;;(,l)&\_:ééi,

Now, providing

gn(p) = —e™* (np(l —p)" Nan1 —an)+ (1= (1= p)" + (1 = p)")(an — an+1))

g::(ﬂ) =e ¥ (np(l ‘p)n—l(an—l ~an) + (1 -2(1- p)" + p(l - P)n)(an - an-!—l))
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yields
G($n) = =™ (@n = ani) (np(1 = p)"" 2 + (1= (1= p)" + hu(1 = p)"))
=—(1-¢e"%(1-p)")(an — Ant1)

and, by almost the same computation,

gn(s) = €7*(an = ans1)(e® + p(1 = p)" = (2 + ¢,)(1 — p)™)

Z -6-#(0‘72 — an+1)

since
e’ +u(1—p)" —(2+8,)(1—p)" 2 1+6n—2— 4, = —1.

We therefore obtain

n—A)? _ n— A
~gulen)(6=2)+, min, 920 2L 2 (an-ann)ga ) (1m et (1-pyr - £

and an additional, trivial minorization completes the proof of Lemma 5.3. J

Proof of Lemma 6.3: First notice that
by > e (np(l —p)" by + (1 —np(l —p)»~1 + A1 - p)")bn_l
+ (= 1= A1 =p)")bn)

is equivalent to gn < g¢n-1, cf. definition (4.3), and that the latter is easily established for
n > 1/p. So we trivially get

(n) —,\)‘_2
bn—1 — (L(bn—l)nZI) > € 5 (bn - bn+1),

recall the proof of the lower bound of Lemma 5.2. Since b, — brt1 = (1 - b;)P, according
to our derivations in Section 4 and therefore

Qn S bn 2(1 —bl)Pn(1+Qn+l +qn+19n+2+"'),
we only have to show that there is a constant C > 0 such that

2e? C
7 (1 nt1 + dnprgniz +-00) < eXP(; log /\-1)

for n 2 ng. But this is an easy exercise: For j > ny we have

nop/\

— -1
G S e = Olegd™)
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and for j > ng + %loglog A1

2 -1 1
- —1(1 . p); loglog A =
q3_0<10g)\ (1-p) ) O(log/\“l)'
Hence we obtain

2 - - %loglogz\"l
14 gns1 + gnt1gntz + - < ;108;10%)\ (Cl log A ) (1 + 0(1))

< exp (% (log log /\'1)2)

for n > ny, and 2¢*/A? < exp(C;log A™!) finally establishes Lemma 6.3. §

Proof of Lemma 6.5: First, certain straightforward algebraic manipulations easily es-
tablish that ¢, — (Lc)(™ > 1 is equivalent to

1
Cn — Cp—1 = )n—l (e)‘ + (e’\ -1- )‘(1 _p)n)(cn+1 - Cn)

np(l —p
bV
+ Z =7 (Cnyj — Cn+1))-
iz 7

(A.2)

We start proving (A.2) by an appropriate upper bound for the last term on the right hand
side. Mentioning that ay_; < a; for 1 < k < n,, a similar derivation as in the proof of

Lemma 5.2 yields

Z %(Cn-}-j - Cn+1) = Z(Cn+k+l - Cn+k) Z 3\';

i>2 E>1 i>k 7’
ni—n-l k+1 S k+1
A A
< E Qny—n—k e + E ag2ntk-m et
= 1 2 !
Pt (k+1)! M (k+ 1)
ny—n-—1 2. k+1 ny—n+1
Cy) koA AT
< Y a _,,(—--) Apgg D3
S oz ) D TR S
= O(anl_n/\Q)

for n < ny, uniformly for C4 > C,. Furthermore, we easily obtain

(1-p)" 2 1-CsA?,
e~ 1= \(1-p)" = O(\?),
et < ag(e* — 1= \(1 —p)") S an,—n(e* —1- A1 -p)")
for n < ny, if C3 > 2 is chosen properly.
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Putting everything together it follows that the right hand side of inequality (A.2) is
bounded above by

Cy\? ( )
Cnt+1 — C
np n+1 n
for some Cy > C;. Finally, mentioning that our ¢, from (6.6) exactly solve
Cy 2
Cn— Cpey = 4 (Cnt1 — Cn) forn < n,

with ¢ = 0 and ¢,, — ¢p, -1 = ag, the proof of Lemma 6.5 is complete. B
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