. . . Technische
Institut fiir Automation Uni it
Abt. fiir Automatisierungssysteme nrversita

Wien

Projektbericht Nr. 183/1-37
August 1993

Process Control Education for Computer Science:
Facts and Fiction
U. Schmid, H. Haberstroh, St. Stockler

Ausschnitt aus: Salvador Dali, "Die Bestindigkeit der Erinnerung”

Process Control Education for Computer Science:
Facts and Fiction

U. Scumip, H. HABERSTROH, ST. STOCKLER

Technical University of Vienna
Department of Automation
Treitlstrale 3, A-1040 Vienna.
Email: {s, hh, stoe}@auto.tuwien.ac.at

August, 1993

Abstract

We survey our efforts and experiences regarding the primary practical Process Auto-
mation for undergraduate students of all branches of computer science at the Technical
University of Vienna. It is argued that this task is very different from teaching process
control in traditional engineering disciplines, imposing considerable restrictions to con-
tents and organization of a suitable practical. The particular design of two generations
of practicals Process Automation and our experiences obtained during the last few years

are also presented.

Keywords. process control practical, computer science.

1 Introduction

Teaching principles of process control to undergraduate students with a strong technical back-
ground, for example in mechanical or electrical engineering, is an enjoyable task. The fami-
liarity of the audience with engineering mathematics, e.g., differential equations and time and
frequency domain analysis, helps greatly with introducing topics like system and control theory.
A similar statement holds for basic process interfacing topics, namely, sensor and actor devices.
Moreover, since most traditional engineering disciplines’ curricula provide introductional cour-
ses on computer science topics like programming languages, one can even rely on some basic
knowledge in that field.

The situation is radically different when teaching process control to undergraduate computer
scientists, in particular at the Technical University of Vienna'. Only a minority of all first-
year students of computer science, namely, those who have attended a (secondary) Hohere
Technische Lehranstalt have got a technical background; the majority, however, have been
in some Allgemeinbildender Héherer Schule. Therefore, most first-year students have almost
no knowledge of technical disciplines, and even the mathematical and physical background

1 Computer science at the TU Vienna splits into several branches, e.g., technical computer science, artificial
intelligence, and graphical data processing. The appropriate curricula consist of a first general part which is
the same for all branches, and a subsequent specific one. The general part aims at a broad general introduction
to all important topics of computer science, of course including process control.

varies considerably. Although the first part of the computer science’ curricula provide some
introductional technical courses, e.g., electrical engineering and computer hardware, they are
by far not sufficient to establish a reasonable leve] of technical knowledge among all students.

Designing a selfcontaining primary course in process control for such an audience is of course
very difficult: It should assume almost no prior engineering knowledge, should contain topics
which are interesting for all participants (of all branches), must allow for approximately 200-400
students per year, and, last but not least, must be run by a very small staff.

Our Department of Automation is responsible for teaching such a primary course, namely
Process Automation, located in the first part of all computer science curricula. The course
consists of a lecture and an associated practical. The lecture —designed and run by the depart-
ment’s head, O.Prof. G.-H. Schildt— aims at an overview of process control, see [Sch93]; the
purpose of the practical —designed and run by the authors— is to consolidate the knowledge
of some selected areas. In this paper, we concentrate on our efforts and experiences regarding
the practical Process Automation only. Note that it constitutes a matter of its own right (i.e.,
is relatively independent of the lecture) because of the required selection of topics.

The remainder of the paper is organized as follows: In Section 2, we elaborate on some
principal issues characterizing our particular framework. The following Section 3 contains
a description of our “first generation” practical (1989-1993) and the resulting experiences.
Section 4 finally presents the intentions and expectations underlying our “second generation”
practical, which is to be started in 1994.

2 Principal Issues

The facts pointed out in the previous section impose some invariants which must of course be
observed when planning a practical in process control:

e Most students have no technical /engineering background. What topics can reasonably
be taught in spite of that situation?

e Students of some non-technical branches of computer science do not need any(?) process
control knowledge. What topics should nevertheless be taught?

e Very limited time for lecture (2 hours/week) and practical (~ 1 hour/week). What
may reasonably be done within that time?

® Location of the course in a particular semester of the computer science curriculas, deter-
mining:
— The number of participants (e.g., ~ 350 in the 4. semester, ~ 200 in the 6.). How
to organize a practical for that many students?

— Basic knowledge from previous courses (mathematics, programming, electrical engi-
neering, ...) one may rely upon. What if a required course like Computer Architec-

tures is located in a later semester?

e Limited teaching staff (3 assistant professors, 10 tutors, one semester per year) and equip-
ment (16 networked workstations, connected to a few process control target systems).
What kind of practical may be run by that few people on the available equipment?

Planning a practical means answering two questions, subjected to the invariants above:

o Contents: What topics should be taught?

» Organization: How should those topics be taught?

In order to shorten and simplify the presentation of the particular contents and organization
of our two practicals (contained in Sections 3 and 4), we proceed with some issues which may

be regarded as general ones:

e It is almost impossible to introduce process control at a level of system complexity where
problems within the scope of a computer scientist? arise, e.g., real-time systems, fault
tolerance, and Al in process control, without introducing basic technical issues first.

We should mention that we explicitly deny exercises which are solely based on playing
around with existing tools, e.g., process visualization systems or robots providing capa-
bilities for high-level (e.g., teach-in) programming. Such tasks may be fun for students,
but we feel that they do not contribute to an understanding of process control issues.

e Lacking technical and engineering background necessiates a thorough mathematical in-
troduction to system and control theory. This is usually covered by dedicated courses in
other disciplines; an integration into a basic course takes a lot of the available total time

— with questionable success.

Moreover, the value of classical control theory for the average computer scientist is que-
stionable. Apart from the fact that somebody alming at the graphical data processing or
artificial intelligence business will hardly ever need control theory, it becomes more and
more exceptional even for a technical computer scientist to deal with a standard control

problem directly (e.g., at the programming level).

e Hardware-related problems of process interfaces, e.g., noise, grounding problems, and
debouncing, are usually beyond the scope of a primary course. However, understanding
and, in particular, programming of process interfaces should be of interest even for a non-
technical computer scientist; the interaction between a device driver and a peripheral

controller ultimately relies on similar principles.

e Given the limited time provided for the practical, a project-like organization (possibly
relying on complicated tools) required for working on (a few) comprehensive exercises
does not make sense. Preferable are several small examples, aiming at one particular
topic directly, without unnecessary “overhead”. V

On the other hand, an exercise should be interesting (ideally fun), which is usually only
the case with more complex ones. A switch and a LED panel is simple to understand
and to handle; most students, however, would prefer exercises dealing with more realistic
technical processes — provided they are easy to handle!

® In view of the limited time it is also of vital importance to exploit existing knowledge.
For example, in a primary course, one cannot usually afford the overhead associated
with introducing a new programming language like PEARL or Ada. Relying on the C
language, which is the “heart” of an (earlier) course in System Programming, is surely a

better choice (in this respect).

To support the discussion of organizational matters, we finally summarize some advantages
and disadvantages of the most important “standard models” for computer science practicals:

?In fact, we think that there are too much of too advanced topics — they are often beyond the scope of
researchers in the field as well

(1) Workshops

Organized like a seminar, the participants are split up into small groups of 5-10 students
each. Working on the exercises is performed more or less collectively, with a strong
interaction between the students and the responsible teacher.

+ Optimal knowledge acquisition by individual care and control.

+ Personal relationship between students and teacher, optimal feedback.

+ High utilization of equipment enforced.

+ Knowledge and didactical capabilities of teachers are continuously improved.

— Very high teaching capacity required (because of the large number of groups); pre-
perational effort for teachers very high.

— No suitable way to employ tutors.

~ Fixing a date for regular meetings needed; individual scheduling of work time im-

possible.

— Individual assessment (i.e., marking) difficult.

(2) Lab groups
The participants are split up into groups of approximately 20-30 students each. All
members of a group have to individually work out a number of exercises and meet their
teacher regularily (weekly) for a (spot-checking) examination and discussion.
+ Individual understanding enforced.

Individual assessment possible.

Tutors may efficiently be used for supporting participants.
Good feedback.

— Require a large number of short examples, which have to be approximately equivalent
(among the different groups) for reasons of fairness.

+

+ Individual scheduling of work time possible.
+

+

— Fixing a date for (long) regular meetings needed.
~ Examination in front of the whole group is stressing.

— Discussion requires supporting equipment, e.g., a video beamer.

(3) “Classical” computer practicals

Examples are individually assigned to participants (or, alternatively, to small teams of
2-3 students each) and examined. The final assessment, however, depends on the results
of a few additional tests.

+ Individual understanding enforced.

+ Individual assessment possible.

+ Individual schedule of work time allowed.

+ Tutors may efficiently be used for supporting participants.
+ Reasonable feedback.

— Require a very large number of short examples, which have to be approximately
equivalent for reasons of fairness.

— Separate provisions for discussions/teaching needed.

— Examination is time-consuming (source-code reading!), boring and not very efficient
due to possibly copied solutions.

— Marking of the tests required.

So every standard model has its particular advantages and disadvantages. We tried to find
ways how to merge and extend them in order to combine the most important advantages, but

without retaining the most cumbersome disadvantages.

3 The “First Generation” Practical (1989-1993)

When we started planning the practical Process Automation in 1988 we had the opportunity to
design a completely new course, i.e., there were no need to use already existing equipment or to
teach certain topics. This gave us the possibility to design an up-to-date practical, taking into
account all the facts mentioned in the preceding section (see [SS91] for a detailed presentation

of contents and organization).

3.1 Contents

In a first step we decided which topics are to be taught and defined three major subjects,
nameley Control Theory, Petri Nets, and Development of Process Control Software.

e Control Theory. Because of the lack of technical background, we restricted the topics
in this field to an introduction to the basics of classical (continous) control theory. The
aim was to impart a rather intuitive understanding of simple closed-loop controls to the

participants.
A special visualization software has been developed which allows to explore the behavior of
basic control loop elements (e.g., PID-controller, PT;, PT,, .. .) and closed-loop systems

in the time domain. This software (offering only a limited choice of elements and input-
signal waveforms, thereby stressing the essentials only) allows to inspect the influence of
characteristical parameters on the behavior of control systems in the time domain without
dealing with formal/mathematical methods (like Laplace-Transformation).

¢ Petri Nets. An important step in designing software for process control is modeling of
parallel tasks and their interactions. Petri Nets provide a simple and expressive means

to do this.

The ability to model given systems using state-transition systems (like Petri Nets) is vital
not only in the field of process automation but also in many other branches in computer
science. The basic teaching objective is to enable the participants to recognize the struc-
ture (states and transitions) of a parallel system and to identify standard situations (e.g.,
synchronization or mutual exclusion). Once modeled, it is (more or less) easy to analyze
the behavior of the abstract system. The analysis of Petri Nets comprises the examination
of a multitude of different possible transition sequences (i.e., execution sequences).

Again, a special graphical software was developed to support computer aided teaching of
Petri Nets models. This software allows to create (syntactically correct) Petri Nets and

to perform simple analysis tasks.

® Development of Real-Time Software. This most important part of the practical
(consuming approximately 66% of the total time) gives a first introduction to the work of
an computer scientist in the field of process automation. The objectives of this part are
twofold; on one hand the students should learn how to write device driver routines for the
installed process interfaces, on the other hand, they have to develop (simple) application
software controlling the connected models (using their own device drivers).

Although, it is difficult to keep pace with the rapid evolving fields of process control hard-
ware, real-time operating systems, and software development tools, we tried to provide
a state-of-the-art environment according to the actual industrial standard. This system
consists of standard VME-Bus components (M68000 CPU and several analogous and di-
gital I/O-cards), a real-time operating system, a C-programming language cross compiler,
and a high level language debugger. This microprocessor system is connected to several
models including a train set.

3.2 Organization

The invariants listed in Section 2 (number of students, limited teaching staff and equipment)
severly constrained our choices regarding the form of organization; obviously, teaching in work-
shops or lab groups is very time consuming and therefore not adequate to our resources. F acing
the facts, we decided to develop a new concept of teaching the topics introduced above. The

main components of this concept are:

o Leave the scheduling of time to the participants. This induces a maximum of flexibility
because the students may choose an individual schedule, for example, just two extensive
sessions or weekly sessions all over the semester. To support planning, each workstation
can be reserved one week in advance (however, the weekly working time is limited).

¢ Provide eztensive literature, containing all topics in detail and including necessary ma-
nuals. These scripts ([SS93a, SS93b, 5593c]) make students independent of the pre-
sence/absence of an assistant professor or tutor.

¢ Exploit the advantages of computer aided teaching by means of specially designed software
for teaching certain topics.

The scripts appertaining to the practical include a large collection of exercises the students
are free to choose from (see [SS93c]). Each example is classified according the objectives it
covers, a crosstable of all learning objectives and all problems helps to choose appropriate ones.
During certain times (all over the week) the participants can address tutors to discuss particular
problems or to verify their solutions; tutors are selected students trained in a special course
preceding the practical. To support the students four special lectures and two discussions are
held by the assistant professors during the semester. The individual marking is done in two

independent written test.

3.3 Experiences and Conclusions

This form of practical has been run by the authors five times (1989-1993) and gave them the
opportunity to gather a lot of experiences:

¢ The most interesting and surprising one is that many students do not appreciate the pos-
sibility of individual schedules over the whole semester. They claim for certain milestones
where solutions to particular problems are to be delivered.

o On the other hand, the (short term) reservation of work time/workstations is appreciated.

e The idea underlying our selection of topics, namely, to cover a relatively broad range of
process control topics at some reasonable high level, has proved unsuccessful.

In fact, we found that the average participant —even if he/she is willing to spend some
time on the practical, which is by far not obvious— has considerable difficulties in ma-
stering the whole bulk of exercises. This is mainly because of (1) the fact that some of
the topics seem to be more or less uninteresting for a computer scientist, (2) the missing
mathematical and technical background, and (3) the heterogeneity of the selected topics.
The problem is further complicated by the quickly approached (high) level of view, which
of course imposes a very brief treatment of seemingly(?) straightforward trifles.

* Our complex process models (in particular the railway model) have proved deficient in
operation and inflexible with respect to the development of additional exercises.

o Lacking knowledge in computer architecture and system programming led to unexpected
problems in solving problems concerning these topics (e.g., writing device drivers).

These experiences were considered when the ‘second generation’ of the practical was planed.
The next section will give an overview of the new structure.

4 The “Second Generation” Practical (1994-199x)

The contents and organization developed for our second generation practical are of course
based on the experiences with the first generation one. However, in order to keep the paper
concise, we omit a detailed reasoning of each and every decision — the key issues are usually

straightforward anyhow.

4.1 Contents

The contents of our second generation course cover a very restricted topic only: programming
of process interface hardware, however, treated in some detail. Qur catalogue of exercises is
based on a (fine-grain) collection of subject matters, primarily

e Digital I/0: Both preliminaries and more advanced features like change-of-state detection
for digital inputs, port I/0 with handshaking, ...,

¢ Analog 1/0: Basics and more advanced exercises covering timer-triggered analog input,
basic signal processing,

For each subject matter, we selected® a number of (equivalent) exercises which stress the major
issue directly, i.e., without unnecessary overhead.

The process models required for the exercises are kept as simple and robust as possible;
LED and switch panels, oscilloscope, and waveform generator are often sufficient. All models
are connected to an M68030-based VME microprocessor target system via the low-cost, multi-
vendor M-Modules 1/0-System, which provides dozens of different process interface modules,
see [MMSa] and [MMSb] for details. The programming of more complex exercises is supported
by the target’s real-time operating system (ISI/SCG’s pSOS*™ and add-on’s).

3In fact, at the time of writing we were still in the phase of selection.

In fact, the development environment employed is similar to the one used in the first prac-
tical. It consists of several* identical development cells, each comprising four PC-based work-
stations and one (abovementioned) M68030 VME target system (including all process models)
connected via Ethernet. The workstations provide a C' cross-development environment (Mi-
crotec MCC68K™, XRAY68K™) supporting our target systems. All development cells are also
connected to an additional DEC Alpha (file) server.

Programs may be developed and compiled at any workstation simultaneously; the actual
degree of simultaneity depends on the number of software licences we can afford. Debugging is
also commanded and controlled from the workstations, but requires (of course) the target system
and is therefore mutual exclusive (that is, per development cell). Note that any workstation
provides the same capabilities to the users since all user data are located at the file server and

all development cells are identical.

4.2 Organization

We have decided that our practical should be organized as a combination of lab groups and
classical practicals. Each student has to solve several exercises which have to be presented
within a certain schedule. In addition the teacher will ask some questions to the topic of the
exercise. This allows a relatively objective determination of the individual capabilities which
is based on several ratings. For each of the examinations the student has to register separately
by reserving a time slot with his teacher.

The time for working out the exercise on the computer can be chosen individually. During
the practical the students are supervised by assistant professors and tutors. In order to realize
such a practical with an acceptable effort, it has to be organized strictly. To support the
organization as well as the examinations we have developed a special software. This system
includes registration and both scheduling and support of ezamination. In the sequel we describe
the (planned) course of the practical and the supporting software.

Within the first week of the semester each student has to register on the computers of
the practical. The registration program records the essential data and allocates an assistant
professor and a first exercise to the student. It also installs the programming environment of
the student (accounts, home directory, e)-

During the first week the students can also buy the scripts which include the collection
of all possible exercises. After this week reserved for registrations, the students can use the
computers at any time for their exercises.

The examinations for each exercise take place within a specified week. Each teacher can
create schedules (by computer) where he can determine the time slots for examination indivi-
dually. The only restriction is that there should be no more than two examinations concurrently
so that the third assistant professor can step in when one of the two drops out. The students
can chose a time slot for their examination, but only for the current exercise.

The course of an examination will be as follows: The candidate has to present and discuss
his/her solution which must be provided before the examination week at a specified location.
He/she has to provide the listing of the program too. To get an idea of the candidate, the
assistant professor can look into all relevant data (Name, exercise, present marks etc.) of that
candidate during the examination. Additional questions to the topic of the exercise will be
asked to which the student may answer verbal or in writing.

There can be used predefined rating criteria for the records the teacher makes during the
examination. A mark will be computed and proposed by the system. If the assistant professor

*We will start with two development cells in 1994; one or two additional ones are planned for 1995.

1s not satisfied with the proposition, he can of course enter any text and rating him/herself.
Finally, the student gets his next exercise.

The system automatically computes statistics of the marks of every exercise and question.
This provides a feedback for the teachers to find out the topics the students have problems
with.

The examinations are executed on the same computers the students work with, so that they
can use their familiar environment for the presentation of their solutions. Therefore the data
of the students has to be stored only encrypted on floppy disks to avoid manipulations. The
catalogue with questions and the collection of all exercises are available via network but also
encrypted and not readable by students.

The questions and collection of solutions are additionally kept in hard copies so that ex-
aminations can also be held in the case of a computer breakdown. For this case separate forms
are developed to enable the easy offline recording of the examination data.

4.3 Expectations

e An important feature of the contents of our new practical is flezibility and scalability.
Since we aim at teaching particular subject matters by means of short examples relying
on dedicated small (and therefore cheap) process models, it is affordable to discard in-
appropriate ones. Moreover, additional subject matters and related examples —possibly
including some basic control theory or even fuzzy control— are easily added later on if
desired.

e The personal supervision of the students by assistant professors should provide optimal

feedback.

¢ The personal examination with additional questions shows the understanding of the topic
(students cannot “cut and paste” the examples).

e Computer supported tutoring could be introduced in the next generation course to make
individual scheduling of work time more flexible for students.

References
[MMSa] MUMM e.V.: Basic M-Modules Specification, Niirnberg, Germany.

[MMSb] MUMM e.V.: M-Module Directory, Niirnberg, Germany, August 1993.
[Sch93] Schildt, G.-H.: Prozeflautomatisierung, Techn. Univ. Wien, Inst. f. Automation, 1993.

(in german)

[SS91] Schmid, U.; Stockler, St.: Konzept der Laboriibung Prozeflautomatisierung, Techn.
Univ. Wien, Inst. f. Automation, Report 183-1/21, June 1991. (in german)

[SS93a] Schmid, U.; Stéckler, St.: Prozefautomatisierung — (jﬁungsskriptum, Pedhn Univ.
Wien, Inst. f. Automation, 1993. (in german) L

[SS93b] Schmid, U.; Stéckler, St.: Prozefautomatisierung — Anhinge (Manuals), Techn.
Univ. Wien, Inst. f. Automation, 1993. (partly in german)

Schmid, U.; Stockler, St.: Prozefautomatisierung — Beispielsammlung, Techn. Univ.

5593
[c] Wien, Inst. f. Automation, 1993. (in german)

