T Technische

Institut fiir Automation e i
Abt. fiir Automatisierungssysteme V(} Sita
Wien

Projektbericht Nr. 183/1-44
August 1993

Determining the Size of Dedicated Shared Memory Areas for

Client—Server Applications
U. Schmid

Ausschnitt aus: Salvador Dali, "Die Bestindigkeit der Erinnerung”

Determining the Size of Dedicated Shared Memory Areas
for Client-Server Applications

U. Scumip?!
August, 1993

Abstract. Many client-server applications exchange commands and parameters by means of a
dedicated shared memory area. Designing an appropriate memory size is difficult in practice:
If it is chosen too small, clients will frequently experience “memory exhausted” situations,
causing them to block, to retry, or even to fail; making it too large wastes (usually scarce)
high-speed shared memory. Our analysis provides a powerful yet easy-to-apply analytic tool
supporting that design process: It allows to determine whether a given memory size T is suf-
ficient to guarantee a certain duration of non-exhausting operation with a certain probability.
Employing a combinatorial (i.e., a non-equilibrium rather than a queueing theory) approach,
we established that the period of non-exhausting operation is asymptotically exponentially
distributed with parameter Ay = 1/ur, where pr ~C-£~T k> 1for large T'. The resulting
uniform asymptotic formulae for the distribution function and all moments are easily applied

in practice.

Keywords. dedicated shared memory size, client-server applications, FCFS scheduling, ran-
dom trees, combinatorial and asymptotic probabilities.

1. MOTIVATION

We are currently developing a monitoring system Versatile Timing Analyzer VTA? de-
signed for an (experimental) timing analysis of distributed real-time systems (see [SSt] for
a short overview). During the development process, we encountered several instances of
“low-level” client-server applications: Multiple client processors using a dedicated® shared
memory area for posting commands and parameters which are to be executed by a single

Server processor.
Here are a few application examples from very different contexts:

(1) LAN coprocessors like Intel’s 82596 employ a dedicated shared memory region or-
ganized as a pool of equally sized buffers (e.g., 64 bytes) for received data packets.
During reception of a packet, the LAN coprocessor aquires buffers from the region
and fills it with the incoming data. Note that multiple buffers needed for a large
data packet may be aquired arbitrarily since modern LAN coprocessors support
transparent buffer chaining via pointers (so that buffers must not be contiguous).
Then, the CPU is notified that a packet has arrived (if necessary), causing it to per-
form some data processing. After that, the buffers are returned to the free buffer

pool.

! Department of Automation, Technical University of Vienna, Treitlstrae 3, A-1040 Vienna. FEmail:

s@auto.tuwien.ac.at
?Supported by the Austrian Science Foundation (FWF), grant P8390-TEC.
3Dedicated means that the memory region may not be used for other purposes, even if parts of it are

{currently) free.

Experiencing a “memory exhausted” situation affects the overall system perfor-
mance considerably since there is no other way than to discard the received packet
and to signal “data lost” to the CPU. Higher level transmission protocols must
provide for a necessary (and costly!) packet loss recovery.

(2) A second buffer area with a similar structure is used by LAN coprocessors to hold
data packets which are to be transmitted. After aquiring and filling one or more
buffers with the data, the CPU notifies the LAN coprocessor that some work has
arrived (if necessary), causing it to perform packet transmission (connection setup,
data transmission, retries, ...) and finally buffer reclaiming without further CPU
intervention.

In case of “memory exhausted”, a requesting client must be blocked until sufficient
buffer space is available, causing some (unnecessary) performance degradation.

(3) Dedicated buffer areas are also often used as an interface between asynchronously
operating data acquisition and data processing systems.

An example is provided by our monitoring system VTA and the real-time system
under observation: Monitoring data (e.g., contents of some program variables) are
extracted by instrumentation code, which has been inserted into the real-time sys-
tem’s software. It writes that data into a dedicated circular buffer area in shared
memory, where it can eventually be accessed by the monitoring processor.

Experiencing a “memory exhausted” situation here causes a period of continuous
monitoring to fail: Since it is clearly not desireable to block instrumentation code
(and hence the real-time systems’s program!) due to monitor insufficiencies, there
is no other way than to discard some monitoring data and to signal data lost to the
monitor.

(4) Finally, even some IPC mechanisms like sockets and message queues allow for ded-
icated buffer space; client-server processes using that type of IPC are therefore
another application example.

“Buffers exhausted” situations in such applications cause client requests to block
or to terminate with an error (and the need of later retry).

Choosing the “right” buffer area? size means balancing the tradeoff between large buffer
areas (allowing for long periods of operation without encountering “buffers exhausted”)
and small ones (saving a lot of —often scarce— shared memory). In practice, this is
largely done by ad hoc methods, based on feeling and experience (possibly guided by some
queueing theory results). By the way, note that the required buffer area size does not
depend on how the memory region is actually organized, e.g., whether a sophisticated
heap management or a simple circular buffering scheme is used. However, we assume that
arriving requests are serviced in the usual first come first served (FCFS) order.

Of course, the actual (in)appropriateness of a certain design decision becomes evident
in the test phase or —at the latest— during operation. A necessary redesign, however,
may prove expensive, in particular if hardware is involved. When designing our LAN
coprocessor, for example, we eventually decided to provide 128 kbytes of shared memory,
both for transmit and receive buffer areas. This was the result of architectural, space, and

*We will use the more specific term buffer area instead of the general term shared memory area.

2

power considerations and also influenced by the fact that most processors (e.g., M680xx)
provide fast machine instructions supporting segmented adressing within 16 bit boundaries
(such instructions are not useful for buffer areas larger than 64 kbytes). If, however, the
provided 128 kbytes of memory had proved inadequate during the test phase, a total
redesign of the LAN coprocessor (+ software) would have been necessary.

Apart from the buffer area size, there are additional design issues as well. We already
mentioned the notification of the server (e.g., LAN coprocessor) in case of arriving work.
This is usually only necessary if the server is idle, a condition which is sometimes difficult to
check at the clients’ side. Thus, the notification is either performed always or, alternatively,
a server 1s used which performs a periodic lookup if it is idle. Of course, a long lookup
period should decrease the overhead of unsuccessful lookups, but may cause a heavily

loaded buffer.

In any case, it would be advantageous to have a powerful yet easy-to-apply analytic
model which allows to verify a certain design decision prior to the actual implementation.
We provide such a tool in this paper. Note that it does not rely on queueing theory, but
on combinatorial and asymptotic methods from the analysis of algorithms.

The remainder of the paper is organized as follows: In Section 2 we introduce the
underlying model and provide our major results. The subsequent Section 3 is devoted to
the combinatorial investigations, Section 4 contains the asymptotic analysis. Finally, some
conclusions and directions of further research are appended in Section 5.

2. MODEL AND MAJOR RESULTS

Given the applications from Section 1, it is rather straightforward to model our problem
as a standard (finite capacity) FCFS queueing system; the queue corresponds to the buffer
area viewed from the server’s perspective. With the usual assumptions of Poisson arrival
and general service time distributions, this leads to an (imbedded) homogeneous Markov
chain, and it seems straighforward to determine the buffer area size by means of the
well-known (steady-state) distribution of the queue size (see [KL], [TA1], for example).
However, it is absolutely not clear how to draw a useful design descision from there:

(1) What does it actually mean for the operation of our system, when the (steady-state)
probability pr that the buffer area size is larger than T is, say, pr = 0.017

(2) What is gained, for example, by doubling T'?

Moreover, the results of [TA1] on the time-dependent queue size distribution are not eas-
ily applied, and relying on the steady-state distribution involves equilibrium assumptions
which we do not consider as particularily meaningful for our purposes.

From the practical point of view, one would rather appreciate information on the time
the system operates without experiencing a “buffers exhausted” situation; this is especially
true with applications where the costs associated with such a situation are high (as in the
examples of the monitoring buffer (3) and the receive area of the LAN coprocessor (1),
cf. Section 1). More specifically, given a certain buffer area size T, we would like to
know the probability distribution of the time our system operates without encountering a
“buffers exhausted” situation when starting from an idle state.

It is not hard to see that this relates to a first passage time in the abovementioned
Markov chain. The usual queueing theory device to attack such problems involves the

3

solution of a large dimensional system of equations — that approach is of course not easily
applicable.

In our analysis, we employ a framework originally developed in our research on real-time
scheduling (see [DS1], [S], [BS1], [SB1], [BS2], [SB2]), which relies on the combinatorial
and asymptotic analysis of certain random trees. A similar approach has been successfully
employed in the analysis of the period of stable operation of slotted ALOHA networks
(cf. [DS2]) as well, so it is not too surprising to find it applicable here. However, it was
striking how easily it adapted to the pecularities of our model.

The particular model underlying our analysis relies on customers which arrive proba-
bilistically at a system consisting of a FCFS queue and a single server. Service is provided
in multiples of some basic time unit which we call a cycle. There are both fine-granularity
examples, e.g., 0.1---1 us cycles modelling a single clock cycle in a machine instruction,
and coarse-granularity ones, e.g., 10---100ms cycles modelling the transmission of a sin-
gle data packet over a certain network. Even larger cycle times may be found in certain
synchronous systems (e.g., TDMA networks or time-triggered computation models).

The number of (new) customers arriving during a single cycle is assumed to be indepen-
dent of the arrivals in the previous cycles; the appropriate probability generating function

(PGF) is denoted by
Alz) = Zakzk

k>0

and should meet the constraint ay = 4(0) > 0.
The time the server needs to process a customer is assumed to be independent of the

other services and of the abovementioned arrivals. The PGF of that service #ime (measured

in cycles) is denoted by
L(z) = Z I zF.

k>0
Note that the service time of a customer may be zero.

The operation of the server consists —as usual— of a sequence of alternating idle and
busy periods. However, we model “forced” idle periods, that 1s, we assume that the server
remains idle for a certain interval following a busy period (whether there are arrivals or
not). The length of such an idle period has the PGF

I(z) = Zikzk,

k>1

with the additional constraint 7o = 0.

To match our applications, that model must be interpreted as follows: Each application
job may consist of multiple buffers (= customers). The first arriving buffer initiates a job,

and a buffer arriving subsequently is either associated to the previous initiating one or
initiates a new job itself. The number of associated buffers is assumed to be geometrically

distributed with parameter p. With

C(z) = chzk, and D(z) = dezk

k>1 k>0

denoting the PGFs of the service time of an initiating and an associated buffer, respectively,
this 1s of course obtained by setting

L(z) = pD(z) + (1 - p)C(z).

Note that D(z) = 1 allows for associated buffers which do not contribute to the overall
service time. This particular situation arises in applications like our monitoring buffer (3),
cf. Section 1, where the service time of a job is (almost) independent of the number of
associated buffers.

However, some care must be taken regarding the ordering of initiating and associated
buffers. In fact, initiating and associated buffers need not arrive together (i.e., at once),
cf. the buffer chaining technique mentioned in the LAN coprocessor examples, but must
arrive at the latest during service. Consequently, the first buffer processed during a busy
period must be an initiating one. Such restrictions obviously violate the usual independence
assumptions, but may nevertheless be handeled by our approach.

Our forced idle periods allow for modelling several queue lookup strategies when the
server is idle. I(z) = z covers the (usual) case where the server resumes processing imme-
diately (in case of some arrivals, of course), whereas I(z) = 2%, d > 2 models a periodic
lookup after d cycles. Arbitrary random lookup intervals are covered by an arbitrary I(z).

We now proceed with a short outline of our analysis, starting with a few definitions: A
busy period of our system is defined to be an initial idle period of the server followed by
a (possibly empty) busy period of the server. Such a busy period is called T-feasible if
the maximum queue size during that busy period is at most T. A sequence of T-feasible
busy periods followed by a non-feasible one is called a T-run, the sequence without the
terminating non-feasible busy period is a successful T-run.

The random variable successful T-run duration St (all durations are of course measured
in cycles), that is, the length of a sequence of busy periods not exhausting a buffer area
size of T' buffers, is the key issue in our derivations. St is of course only a lower bound
to the whole duration of successful operation, but a very good one®, and it admits to a
rigorous mathematical analysis.

Noting that the T-feasible busy periods {Bg:); t = 1,2,...} of a successful T-run are
mutually independent since the beginning of idle periods form renewal points(!), it is easy
to evaluate the PGF of St: Let ’

Br(z) = Z bk,Tzk with by 7 = P{Duration of a T-feasible busy period is k cycles}
k>0

denote the (improper, i.e., Bp(1) < 1 for finite T) PGF of the duration of a T-feasible
busy period. Then, the PGF of the successful T-run duration St is given by

o ko 1-Br(l)
St(z) = ZSva” =1 Bi) Br(s)’ (2.1)

k>0

%In fact, it is easy to show that all important quantities are asymptotically equivalent up to some lower-

order terms.

This follows easily from the fact that the PGF of the duration of an arbitrary number of
T-feasible busy periods is) ., Br(z)", and that the probability of the occurrence of the
terminating non-feasible busy period equals 1 — Bp(1).

In [DS2] we have shown by singularity analysis on (2.1) that —under some (mild) con-
ditions on Br(z)— St is always asymptotically exponentially distributed with parameter

Ar = 1/uT, where

Br(1)
=E[S7] = §'(1) = — 2L
Moreover, we provided uniform asymptotic expressions for the distribution function
VT = Y reg Sk7 and all moments E[ST] as T — oo. Since T is usually reasonable large
in practice, asymptotic expressions are appropriate and, in fact, desireable. For example,
in our particular LAN coprocessor design (cf. Section 1), we have a total of T=2000 of (64

byte) buffers available.
Hence, the analysis of our problem reduces to the investigation of Br(1) and B (1) for

large T. For that purpose, we employ a framework developed in [SB 1], which comprises
two steps:

(1) We first establish a one-to-one correspondence between T-feasible busy periods and

a certain family of random trees. From here, the PGF Br(z) is easily determined

by combinatorial counting techniques.
(2) The required asymptotic expressions are then derived by applying certain asymp-

totic methods to Br(z).
We conclude this section with our major result:

THEOREM 2.1. Let A(z) with ag = A(0) > 0, L(z) = pD(z) + (1 — p)C(2) for 0 < p < 1,
C(0) = 0, and I(z) with I(0) = 0 be the PGFs introduced in our model above, and
suppose that either ged{n > 1: [z"]L(z) > 0} = 1 or ged{n > 1 : [2"]I(z) > 0} = 1. If
P(z) = L(A(z)) is such that P'(1) < 1 and P"(z) £ 0, then it is possible to find some
R > 1 such that z — P(z) has exactly two zeros z = 1 and z = k > 1 within the closed disk
z € D(0, R), provided that the radius of convergence Rp of P(z) is large enough (clearly,
& < R < Rp). If the radius of convergence of I(A(z)) is also greater than R, there exists
some ¢ > 0 such that

(1) the distribution function ve 1 = Y ,_, sk.7 of the successful T-run duration St,
where a buffer area size of T buffers is not exhausted, has a uniform asymptotic

expansion
VT = 1 — (1 + 0(1/#7;))e—ﬂq—-l(l+0(l/;tT))n + O(ﬂ%l(l + 5)—71)

forn — co and T — oo,
(2) the moments E[ST'] of St have the uniform asymptotic expansion

m!
BISF] = 3 n"snr = mifur(1+ 00 /ur)] " + 0 (7! m—\o@)

n>1

for T — oo and m > 1,

where

(7 = (1= Iao)) (') ~ /(1)) w(P'(w) - 1)

2/<T+O (nz/R)T
(1(40) ~ Hao)Clatan 15 tta)a—piy” O R)

,UT:<

for T'— oco; k > 1 is easily computed by solving P(z) —z =0 forz > 1 numerically. §

This result is of course easily applied in practice and answers the questions we asked at
the beginning of this section. For example, given a particular buffer area size T, we know
that, with a given probability 1 — q, our system will survive a period of n = n(T,q) cycles
without experiencing “buffers exhausted”: clearly, n(T, q) is the solution of Un, T = ¢, cf. (1)
in the theorem above. Neglecting all lower order terms, some easy calculations show that
n(T,q) ~ qur. Since pup = E[S7] grows exponentially in T, this means that doubling T,
for example, yields exponentially increasing durations n(T, g) of non-exhausting operation
(with the same probability).

Regarding the effect of our forced idle periods, we see that only the factor of xT depends
on I(z), so that even relatively large expectations I'(1) should not severly degrade the

period of successful operation.

COMBINATORICS OF A RANDOM TREE

The combinatorial analysis contained in this section exploits a bijection between (fea-
sible) busy periods and a certain family of random trees. This approach enables us to
use powerful combinatorial methods to find the required PGF By(z) quite easily. Note
however that other combinatorial approaches are also possible, see [TA2] for an interesting

example.

The random trees By corresponding to our T-feasible busy periods are similar to those we
found in the analysis of FCFS scheduling of real-time tasks in [SB1]. They are constructed
as follows: Each vertez (node) represents a, single customer to be processed during the busy
period; the root corresponds to a “virtual” customer “causing” the initial idle period of the
server. A vertex v has k, successors if exactly k, new customers arrive during v’s service.
Additionally, we attach a weight Pu, .k, to each vertex v, which is the joint probability that
the service time of the corresponding customer is [, cycles and that k, new customers

arrive during that service time /,.

The construction of the tree carries on according to a left-to-right preorder traversal.
Cousider the following example:

In the example tree above, we labeled each vertex v by a string of characters ‘X’, re-
flecting the queue (size) immediately prior to the beginning of v’s service; the customer
corresponding to v, which is obviously at the head of the queue (at the leftmost position) is
represented by its service time /, instead of the anonymous placeholder ‘X’. Let us, for ex-
ample, consider the (shaded) node s with label 5XX: Immediately prior to the beginning
of the corresponding customer’s service, the queue contains three entries which arrived
during “service” of the “virtual” customer the root corresponds to. At the beginning of
s’s service, its customer (at the head of the queue) is removed from the queue and serviced
during the next 5 cycles.

Of course, the whole duration of the busy period represented by such a tree is obtained
by summing up all service times /, of all nodes v of the tree. In addition, a short reflection
of the construction process —guided by the strange node-alignment used in our example—
shows that the queue size of all vertically aligned nodes is indeed the same! So we eventually
arrive at the important conclusion that limiting the queue size by T corresponds to limiting
the “width” of our aligned tree to T vertices. :

We find it convenient to proceed with a combinatorial description method using symbolic
equations, see [VF] for an introduction. Let us define Ver, £ > 0 to be the family of our
random trees above which have a root with (a priori fixed) service time ¢, and V. r to
be the family of trees having a root with service time distributed according to our L(z),
cf. Section 2. Then, for T > 1, we obtain the following symbolic equations:

Vir=bWVor+WVir+-+1Ver+---,
where {; = [z8L(z) for ¢ > 0 denotes the coefficient of =¢ in L(z), and
Vf,:f’zm,o@-%pe,xia +t Pe,kﬂ +oot P[,T/%
V*,T V*,T~k+1 "'V*,T—IV*,T V*,l ”'V*,T

8

for all £ > 0, where
pex = [2F]A(2)*

cf. the definition of the arrival PGF A(z) in Section 2.

Now, since probability weights have the same compositional properties as counting
weights (the probability of the union and intersection of two disjoint and independent
events equals the sum and the product, respectively, as it is the case for cardinalities
of sets), the whole theory of translating admissible combinatorial constructions like the
symbolic equation above to the corresponding ordinary generating functions (which are
obviously PGFs in this case!) apply. Accordingly, we have to mark each node with service
time ¢ by z¢ and to apply straightforward product and sum translations to obtain

Vir(z) = Z [eVe 1(2)

£>0

and

T T
Ver(z) = 2° Zpe,k H Vii(z)

k=0 j:T—k+1

for T' > 1, where the empty product must be interpreted as 1.
Multiplying the latter equation by I, and summing up for ¢ > 0, we find

T T
Var = 12" > [sF]A(s)* II V2

£20 k=0 J=T—k+1
T T (3.1)
=D [“1L(zAG)] Vaul@):
k=0 Jj=T—k+1
Introducing
1

Wa(z) = ,

S P P AN e (3.2)
WO(Z) = 1’

and the corresponding bivariate generating function

W(s,z) =Y Wi(z)st,

k>0

we have
Wr_y(z)

Wr(z)
Multiplying the recurrence relation (3.1) by Wr(z) yields the simple Cauchy-product

Vir(z) =

T
Wr_y(z) = Z{sk]L(z‘A(ys))WT_k(z) = [ST]L(ZA(S))W(S, z);
k=0

9

multiplying it by s7 and summing up for 7 > 1 shows sWis, z) = L(zA(s))W'(s,z) —

L(zag) and hence
i L{zay)

Wi(s, z)=———r——. 3.3
(5:2) s — L{zA(s)) (3:3)

Now we are ready to deal with the additional features of our model, namely forced idle
periods and the restriction that the first customer serviced during a busy period must
not be an associated one, cf. Section 2. Noting that the first (“non-virtual”) customer
within a busy period is represented by the outer leftmost successor of the root, we have

the following symbolic equations:
BT“—’B*,T:i181,T+"'+i£B£,T+“') (34)

where i, = [2°]I(z), remember the PGF of forced idle periods from Section 2, and

@
Be, = peo © + pz,lT Pk \ +ot+ per

U.r Utk 1 Ve T—kg2 - Var Uep - Ver

for all £ > 1, where again pey = [2¥]A(2)¢. The family U, 7 of trees is similar to V, r,
except that the service time of the root node is governed by the PGF C(z) instead of

L(z) = pD(2) + (1 — p)C(z). The symbolic equation reads
U = Z ceVe,;
£>0

note that we assumed ¢y = 0. Repeating the derivation of (3.1), the translation of the
above equation yields
T

T
Uar(z) =) eeVeor(z) = Y [s*]C(2A(s)) I Vi)

€0 k=0 j=T—k+1
Multiplying this relation by Wr(z), a similar argument as before yields
U r(2)Wr(z) = [sT]C(2A(s))W(s, 2). (3.5)

Translating the symbolic equation for By 1 above, we find
T

T
Ber(z) = peoz’ +2°) pealroisi() II v

k=1 Jj=T—k+2

Multiplying the latter by 7¢ and summing up for ¢ > 1, cf. (3.4), we arrive at the following
expression for our desired PGF Bp(z):

T T
BT Z, = B, T() = Zi(g;,r('([w()]A(lU)g + Z[wl‘ A(tu)EU*’T_/H_](Z) H V*’]'(Z))
21 k=1 j=T—k+2
T
Haoz) + > [w (2 A(w)) U, potin (=) [I vz
k=1 j=T—k+2

10

Further multiplying this by Wr(z) and remembering (3.5) shows

T
Br(z)Wr(z) = I{agz)Wr(z) + Z[wk]I(z‘4(w))U*,T~k+l(z)WT—k+1(2)

k=1
T
= I{agz)Wr(z) + Z[wk}f(z/-l(w)) [uT_k+1}C'(zA(u)) Wiu,z)

zA(w))W(u,z) - C(zap)

[

d k T—k C(
=I(aoz)Wr(z) + Y [w*I(zA(w))[uT¥]
k=1

E= I(agz)I/VT(Z) + [ST] <I(ZA(.S)) _ I(aoz)) C(ZA(S))W(S,Z) — C(za0)7

S
and we finally obtain the desired result

[sT+1] (I(ZA(S)) - I(aoz)> (C(ZA(S))W(S, 2) — C(zay))

STW (s, 2) (3.6)

Br(z) = I(agz) +

It should be clear that the combinatorial approach used for our derivations is also appli-
cable to the case where no queue size limitations are present; this easy task is left to the
interested reader. We just state the (quite obvious) results

Vi(2) = Vayoo(2) = L(zA(Vi(2)))
Ui(2) = Us oo(2) = C(2A(V.(2))) (3.7)

zA(V*(z))) — I(zag)
V(o) U.(z2).

: I(
B(z) = Beo(z) = I(zao) +
Note that T(z) = zA(Vi(z)) is the well-known PGF of (weighted) rooted trees, solving
the functional equation T(z) = z-]:_’(T(z)) with P(z) = A(L(2)).

4. ASYMPTOTIC ANALYSIS
This section is primarily devoted to the computation of asymptotic expressions for

[sT+1) (I(A(s)) ~ I{a)) (C‘(A(s))W(s) ~ C(ag))

Bp(1) = I(ag) + i @)
Bin(1) = I'(ag)ay + (571 (1 (A(5)) Als) - I'(ao)as) (C(A(s)) W (s) - Cla))
[sTIW (s)
. [3T+1}<I(A(S)> - [(ao)) (CI(A(S))A(S)W(S) + C(A(s))W'(s) — C"(ao)ao)
[sTIW(s)
[sTIW'(s)

— (Br(1) - I(ay)) [sTIW (s)

11

as 1" gets large, where
Lay)
s = L(A(s))
L'(ag)ay o L{ag)L' (A(s)) A(s)
S=LAG) (s — L(A®s))?

Wi(s)=W(s1)=—
(4.2)

Wils)=W.(s,1) = —

according to (3.3). We will accomplish this task by singularity analysis, which exploits the
fact that the T-th Taylor coefficient [sT]f(s) of a function f(s) is mainly determined by
the behavior of f(s) near its dominant (i-e., smallest modulus) singularity. An overview
to asymptotic methods may be found in [VF], [FO], and [BE1], for exarmple.

Looking at the numerator and denominator of (4.1), we see that the dominant singu-
larities come from W(s) and W" (s), caused by the vanishing denominator. The following

lemma provides our simple major tool:

LEMMA 4.1. Let P(z) be a PGF with P'(1) <1 and P"(1) # 0. Then there js some
R > 1 such that P(z) — z has exactly two real, simple zeros z = 1 and z = x > 1 within
the closed disk 3(0, R) with radius R around 0, provided that the radius of convergence
Rp of P(z) is large enough:; clearly, K < R < Rp.

If f(s) and g(s) are two functions analytic in a domain properly containing D(0, R), we
have

fls) f(1) fls) _
[ST]S—P(S) TP T k(P'(r)=1)" T+ OET)
& gs) _g()(T+1) 41 _ _P'"(1)g(1) +O(TR=T)
(s = P(s))? (1-P()" (1-pP1)? (1-P(1))°
for T — oo.

PROOF: That there are indeed two positive solutionsz = land 2 = k > 1 of Plz)—z =0
is straightforward when viewed geometrically; that there are no other (complex) zeros may
be shown by an application of Rouche’s theorem; a detailled proof is contained in [SB1]
and omitted here for the sake of shortness.

The asymptotic expansions above are easily found by means of subtracted singularities:

Expanding s — P(s) in powers of s — 1 yields

s=P(s)=(1-P(1))(s-1)— Pl;(l)(s -1+ 0((s - 1)%)
R (4.3)
= (1~ P'(1))(s - 1)(1 - 271%(3 -1+ 0((s - 1)2>)

for s — 1. Since f(s) = f(1) + O(s — 1) for s — 1, it follows that

fs) _fy .
m“1~P’(1) .3—1+O(1) for s — 1.

12

That means that the difference

fsf)
s—P(s) 1-P(1) s-1

has no singularity at s = 1 any more. However, there are still singularities of larger
modulus, in particular, s = £ > 1. Note that the subtracted singularity term is regular at

z =K.
Expanding s — P(s) in a neighborhood of « yields
s —P(s) = (1—P'(&))(s—n)+0((s —k)%) for s — k,

and using f(s) = f(x) + O(s — k) for s — &, we easily obtain

) f(x) — or s = K
s—P(s) k(1 — P'(k)) 1—S/KZ+O(1) f '

Reading off the coefficient [s7] in the geometric series constituting the subtracted sin-
gularity terms, we easily obtain the first expansion of our lemma; the remainder O(R™T)
follows from Cauchy’s estimates since there are no further singularities within a disk prop-

erly containing D(0, R).
To prove the second expansion of our lemma, a simple algebraic manipulation starting
from (4.3) shows

1 _ 1 . 1 P"(1) . 1 .
(3 - P(S))z - ‘(1 - P'(l))2 (s —~1)2 + (1 _ P'(l))3 s—1 +0(1) f 1.

Since g(s) = g(1) + ¢'(1)(s — 1) + O((s — 1)?) for s — 1, we eventually arrive at

o) M 1 J) 1 P'e(n) 1
(s — P(S))2 = (1- P'(l))2 (s —1)2 + a ..P'(l))z 7t 0 P'(1))3 p— +0(1).

Reading off the coefficient [s7] is simple; we just have to apply the well-known series
expansion (1 —s)72 = 3" T'sT~! to obtain the major term of the second expansion of
our lemma. To justify the remainder term, we only mention that the next singularity is
another double pole at s = &, yielding a remainder of order O(Tx~T) (as may be seen by
repeating the above analysis). This completes the proof of Lemma 4.1. §

Abbreviating P(z) = L(A(z)) and applying Lemma 4.1 to (4.1), it is easy to determine
the required asymptotics. Note that terms not involving W(s) or W'(s) contribute only a
O(R™T) to the coefficient [sT], which is again a straightforward consequence of Cauchy’s
estimates and our assumptions on the radii of convergence according to Theorem 2.1. We

13

obtain

Q—I(ao))L(ao) (I(A(K))"I(ao))C(A(n))L(ao)
1-P11) a I{(P'(K)—l) &
L{ag) ag _
=P K(zfrix))_l) FTTHO(RTT)
= I(ao) + (1= I(ap) — LA = L) ClA) (1 - P
fc(P’(rs:) - 1)

—(T+1) + O(R‘T)

BT(l) = I(a()) +

(1)) k—(T+1) O(R—T))

.<1+ 1 - P'(1)

E(P'(fc) R 1) K_T + O(R_T))

3 1-P(1) _
VI T((2(A(R)) = Ia0)) € (A(R))x™" = 1+ I(ap)) + O(RT)

and

T4 = (I (A() A(8)=I' (a0)a0) C(A(9)) L(ao) 7
B{'r(l) - I'(ao)ao i] s—~P(s) + O(R)
[s7) 225
s—P(s)
. [ST+1]([(A(S)) _ I(ao)) -C (A(s))A(s)Ls(_f%)(—;f(A(s))L'(ao)ao
[T]_L(ao)
s—P(s)
[T+ (2(A(5)) = I(ag)) EACDLEDL AENAC) | o p-T)
" (3——P(3))
—L{ag)
STy
[ST}—L’(ao)ao _ L(a) L' (A(s)) A(s)
_ (1 . I(CL)+ O(,—T)) TP (S—P(s))2
0 K [ST]-L(ao)
s—~P(s)

14

, 1 (£'(1) = I'(a0)ao) L(ao)
= I'(ag)ag + lfﬁff"()l) + O(x=T) (1-P'(1)
(1= I(a0))C'(1)L(ao) | (1= I(ao))L'(ao)aq
1-P'(1) 1- P'(1)
(1= T(a0)) L(ao) ()T +2) P"(1)(1 = I(ag)) L(ao)L'(1)
(1-P(1)* (1-P ()’
N I'(DA'(1)L(ao)L'(1) + (1 = I(a0))C'(1)A'(1)L(ao)L'(1)
(1-P(1)*
N (1~ I(a0)) L(ag)L"(1)A'(1) + (1 - I(a)) L(ag)L'(1)A'(1)
(1-P(1)’*
(1= I(ao))L'(a0)ao (1 — I(ao))L(ao)L'(1)(T + 1)
1~ P'(1) (1-P(1)°
~ P(1)(1 = I(a0)) E(ao)L'(1)
(1~ P(1)°
L(ao)L"(1)A'(1) + L(ap)L'(1)A'(1) T
- (1= I(an)) s +o(T 0

=T+ T2 + (1= Hew) (00 - 28+ SOPWY | o
I'(1)— (1= I(ap))(L'(1) - C'(1 _
I M) (=0, o,)

From here it is easy to find

Br(1)

1 - Br(1)

~ (M- - re)) () -)) s(Pi(s) - 1) "1 O((.@)—T))
((1(A0) = Ea0)) € (A(k)) w1 = 14 I(an)) (1 = P(1))? g

for T — co, and what remains to do is to justify that the conditions of [DS1] are fulfilled.
That condltlons are

(1) bmy oo by, = b, for all n > 0.

(2) bpp <b, forall n and T.

(3) Br(1l) < B(1) =1 for all finite T.

(4). The radius of convergence R of B(z) must be greater than 1; (3) only implies R > 1.

15

(5) B'(1) > 0, which is equivalent to B(z) # 1, that is, by < 1. This condition has a
probabilistic meaning: the expectation of B should be greater than zero.

(6) dp = ged{n > 1:b, >0} = 1, which means that the length of a busy period (i.e.,
all lengths) should not be a multiple of dg > 1.

Conditions (1)—(3) and (5) are trivially fulfilled. To justify condition (4), we remember

that
I(A(V.(2)) ~ I(za0)

B(z) = I(zaq) + 70 U.(2), (4.4)

cf. (3.7). Vi(z) = L(T(z)) and U,(z) = C(T(z)) involve the PGF T(z) of (weighted)
rooted trees, that solves the functional equation T(z) = z?(T(z)) where P(z) = A(L(z)).
It it is well-known (cf. [MM], [S], [SB2], for example) that T'(z) has radius of conver-
gence p > 1 if —P_’(l) < 1. This implies that both V,(z) and U,(z) have radius of con-
vergence greater than 1 since all functions involved are PGF’s, and the same holds for
I (zA(V*(z))) since Theorem 2.1 assumes that the radius of convergence of I(A(z)) is
also greater than 1. Note that the denominator in the fraction of (4.4) cannot cause any
problems since lim,_,, (I(zA(u)) — I(za0))u~! = I'(zag)a; < oo.

To justify condition (6), we remember that for any positive integer ¢, j with ged{7,j} =1
there are integers a > 0,5 < 0 such that ai + bj = 1. Hence, for any integer m, m + az =
m +(—b); + 1, which shows that ged{m +ai, m + (—=b)7} = 1 and thus ged{m + ki,m +1j :
k> 0,1 >0} =1 too. Now, any busy period consists of an initial idle period, k¢ > 0
services governed by C(z), and k; > 0 services according to L(z). It is clear that there
are two “classes” I and J of busy periods (among others, of course) which start with some
(fixed) idle period and a single C-governed service (with total duration m) and proceed

~with an arbitrary number k > 0 of (fixed) L-governed services with duration k - ¢ and
-k - j, respectively. Thus, byyk.; and bm+k.; are both non-zero. Now, if df, = ged{n > 1 :
[2"]L(2) > 0} =1 according to Theorem 2.1, some t,J may be chosen with ged{s,j} =1
‘and dg = 1 follows.

To show that df = ged{n > 1 : [2"]I(z) > 0} = 1 also implies dg = 1, we have to
.distinguish two cases: If I (z) = z, there are obviously busy periods of duration 1, i.e.,
b1 > 0 and the statement follows trivially; otherwise, there are at least two busy periods
‘consisting of idle periods of length ¢ and j with ged{7,7} =1 only, and we are done too.

- Thus, all conditions required for the application of Theorems 3.5 and 3.7 of [DS1] are
established and our Theorem 2.1 follows. §

We finally mention that the conditions d; = 1 or d 1 =1 are sufficient but not necessary
to guarantee dg = 1. However, it would be easy to provide a slightly extended version of

Theorem 2.1 which covers the case dg > 1 as well, cf. [DS1].

5. CONCLUSIONS

The major result of this paper are some easy-to-apply formulae which allow to quan-
~ tify the effect of limited shared memory to the operation of a client-server system which
_exchanges commands via shared memory. We modelled the problem as a FCFS queueing
" system with limited queue size; the usual queueing theory results, however, have not been

- suitable to answer our questions.

16

Using combinatorial and asymptotic methods well-known from the analysis of algorithms
and data structures, we studied the time St the system operates without exhausting a
memory of size T. This random variable was found to be asymptotically exponentially

distributed with a mean g growing exponentially in 7T
In our model, we considered (two) different classes of customers and dealt with (very

modest) extensions of the usual independence assumptions. More specifically, we assumed
that only a customer of a particular class (“initiators”) may initiate a busy period. This
assumption is important for modelling jobs which comprise several customers (i.e., groups)
which are serviced in batches (but without requiring customers of a group to arrive simul-

taneously).
In a forthcoming paper, we will consider even more delicate independence “violations”,

which arise if (nearly) simultaneous arrivals of customers of a group take place. In that
case, the first customer serviced after a period with no arrivals must be an “initiator”, and
not an arbitrary one as in our present model. Our approach seems to be very suitable to

handle even such situations.
REFERENCES

BE1. E. A. Bender, Asymptotic methods in enumeration, SIAM Review 16 (1974), 485-515.

BS1. J. Blieberger, U. Schmid, Preemptive LCFS Scheduling in Hard Real-Time Applications, Perfor-
mance Evaluation 15 (1992), 203-215.

BS2. J. Blieberger, U. Schmid, FCFS Scheduling in a Hard Real-Time Environment under Rush-Hour
Conditions, BIT 32 (1991), 370-383.

DS1. M. Drmota, U. Schmid, EBxrponential Limiting Distributions in Queueing Systems with Deadlines,
SIAM J. Appl. Math. 53(1) (1993), 301-318.

DS2. M. Drmota, U. Schmid, The Analysis of the Ezpected Successful Operation Time of Slotted ALOHA,
(to appear in IEEE J. Inf. Th.).

KL. L. Kleinrock, “Queueing Systems,” Vol. 1 and Vol. 2, John Wiley, New York, 1975.

MM. A. Meir, J. W. Moon, On an Asymptotic Method in Enumeration, Journal of Combinatorial Theory,
Series A 51 (1989), 77-89.

S. U. Schmid, Static Priority Scheduling of Aperiodic Real-Time Tasks, (prepared for submission).

SB1. U. Schmid, J. Blieberger, Some investigations on FCFS Scheduling in Hard Real-Time Applications,
J. Comput. Syst. Sci. 45 (1992), 493-512.

SB2. U. Schmid, J. Blieberger, On nonpreemptive [LCFS Scheduling with deadlines, (submitted).

SSt. U. Schmid, St. Stéckler, A Versatile Monitoring System for Distributed Real-Time Systems, Proc.
Safecomp ‘92, Ziirich, Switzerland (1992).

TA1. L. Takacs, “Introduction to the Theory of Queues,” Oxford University Press, New York, 1962.

TA2. L. Takacs, “Combinatorial Methods in the Theory of Stochastic Processes,” Robert E. Krieger Pub-
lishing Company, Huntington, New York, 1977.

VF. J. S. Vitter, Ph. Flajolet, Average Case Analysis of Algorithms and Data Structures, Handbook of
Theoretical Computer Science (J. van Leeuwen, ed.) (1990), North Holland.

17

