Technische
Institut fiir Automation Uni it
Abt. fiir Automatisierungssysteme niversita

Wien

Projektbericht Nr. 183/1-46
Mai 1994

SSCMP: The Sequenced Synchronized
Clock Message Protocol
U. Schmid, A. Pusterhofer

Ausschnitt aus: Salvador Dali, "Die Bestandigkeit der Erinnerung”

SSCMP: The Sequenced Synchronized Clock Message Protocol

U. ScHMID, A. PUSTERHOFER
Technical University of Vienna
Department of Automation
TreitlstraBe 3, A-1040 Vienna.

Email: s@auto.tuwien.ac.at

September 13, 1994

Abstract

We present a novel timer-based connection management protocol SSCMP (Sequenced
Synchronized Clock Message Protocol) providing reliable ordered at-most-once delivery
of messages. Apart from being strikingly simple, it also surpasses existing protocols like
Delta-t, VMTP, XTP, and CMSC with respect to correctness in case of clock synchro-
nization failures. By means of a rigorous mathematical analysis, we show that our SS-

CMP implements a certain abstract specification on top of a fairly realistic system model,
putting on a firm ground the very positive experiences we gathered from experiments with
our actual implementation.

Keywords: timer-based connection management protocol, sequenced at-most-once mes-

sage delivery, synchronized clocks.

1 Introduction

Connection-oriented protocols are important for several subtasks in distributed computing,
ranging from reliable data transfer to remote procedure calls. Classical connection management
protocols as used in TCP (see [Pos81]) employ initial handshaking for setting up connections:
To ensure that a setup message is not a duplicate, sender and receiver must ezchange setup
messages before actual data transmission can take place.

Initial handshaking is perfectly reasonable for the infrequently setup but heavily used con-
nections found in former generation computer networks, since the setup-overhead is effectively
spread over all the messages sent via a connection. This, however, is no longer true for the
communication patterns found in today’s (client-server) distributed systems, where frequent
connections to numerous servers with only a few (often two) messages exchanged per connec-
tion are common, cf. [CW89]. For example, the overhead of the initial handshake in TCP is one
round-trip time, which is primarily determined by the signal propagation delay. It is therefore
not decreased by the dramatically increasing transmission speeds and becomes in fact more

and more unbearable as high-speed network technology evolves.

Ttmer-based connection management protocols like the pioneering Delta-t ([Wat81]) avoid
that connection setup overhead completely, providing a promising alternative. The basic idea

underlying such protocols is to remember “recently” received messages in order to detect du-
plicated setups. This is made working by somehow enforcing a mazimum packet! life /validity
time, and the few existing timer-based protocols differ in how this is actually accomplished.

Any timer-based protocol relies on a common “idea” of time among all the nodes of the
distributed system, and it has been realized early that such protocols may be both considerably
enhanced and simplified by assuming that nodes are equipped with synchronized clocks; see
[CheB9, LSW91, BF93]. Much effort has been devoted to the development of (inexpensive)
techniques for clock synchronization (see [SWL90, RSB90] for an overview), and high-accurate,
inexpensive sources of universal time coordinated (UTC) are worldwide available now via the
NAVSTAR global position system GPS (see [Wel87]). Actually, the development of the network
time protocol NTP (see [Mil91]) has pushed synchronized clocks even into Internet-reality. In
view of the trend towards integrating (large) distributed systems into our daily life (which is
governed by time, i.e., UTC) in conjunction with the fact that the availability of a common
notion of time greatly simplifies the design of distributed services (see [Lis93]), we think that it
is not unreasonable to predict that future generation computer systems will be equipped with
accurately synchronized clocks, see [Sch94] for related issues.

Our research into that area originates in the problem of providing a high-performance, re-
liable, low-level communication subsystem for a certain distributed real-time system?®. In the
course of that work, we eventually developed and implemented a novel timer-based connection
management protocol SSCMP, which is a non-trivial extension of the (unsequenced) Synchro-
nized Clock Message Protocol SCMP of [LSW91]. Our protocol has a number of advantages
over existing ones, most notably the guarantee of ordered at-most-once delivery even in the
case of clock synchronization failures.

The presentation of that Sequenced Synchronized Clock Message Protocol SSCMP contained
in this paper is organized as follows: In Section 2, we discuss the system model underlying our
investigations and the general features of the protocol. Section 3 is devoted to the detailled
description of the SSCMP, Section 4 contains the analysis of its properties. A comparison to
other existing protocols may be found in Section 9, and some conclusions and directions of

further research are appended in Section 6.

2 Protocol Features and System Model

Connection management is of course needed for connection-oriented protocols at any layer of
-the protocol hierachy. Most existing work ([Wat81, Che86, SDW92, BF93]) on timer-based pro-
tocols, however, solely addresses the transport layer, adhering to the common style of transport
protocol usage (involving an interface supporting connection open, transfer, and close phases
explicitely) and treating issues like adressing, rate control, ... in full detajl.

We, however, prefer a both simplified and more abstract point of view, which hides away
even the concept of connections from the usage (i.e., the service specification, according to
the terminology of [Sha91]) of the (basic) protocol: As advocated in [Wat81] and in partic-
ular in [Che86], we view our protocol as being responsible for providing reliable, sequenced,
packet-oriented but otherwise unstructured data transmission on top of a necessarily imperfect

'We will use the terms packet and message synonymously.
2Our monitoring system Versatile Timing Analyzer VTA, a research project supported by the Austrian

Science Foundation, grant no. P8390-TEC.

b

communication system. It is understood, however, that there are connections involved in the
protocol (entity) specification of SSCMP, but they are internally managed and hence invisible
from the outside.

This approach has several advantages: First of all, dealing with timer-based protocols in-
vented to avoid connection setup overhead, we feel that adhering to a connection-based interface
would ~—in some sense— give away some of that advantages. Moreover, relying on a low-level
interface makes our basic protocol applicable for data link layer and transport layer protocols
as well; constructing a proper transport layer interface dealing with all the important details
like adressing, rate control, ... should be relatively straightforward. Last but not least, both
presentation and analysis are considerably simplified by confining ourselves to the problem of

reliable, sequenced communication.

We view our basic protocol as a (conceptual) black-box connecting a particular pair of
sender and receiver for unidirectional data communications purposes as follows:

put(msg) | get(msg)

Sender SSCMP | Receiver
getack(ack)

The interface to and from the protocol comprises only three functions (actions):

® put(msg) is used by the sender to submit a message msg to the protocol for transmission.

o getack(ack) is used by the protocol to deliver acknowledgments regarding the transmission
of previously put messages; ack € {OK, ?}.

® gei(msg) is used by the protocol to deliver messages to the receiver.

Any protocol that provides reliable, sequenced transmission in presence of exceptional®
conditions should conform to the following specification:

(DR) Delivery rule: Under normal conditions, each put message is eventually delivered exactly
once to the receiver via a get. Under exceptional conditions*, each put message is delivered

at most once.
(SR) Sequencing rule: Under any conditions, the order of messages delivered to the receiver
by get is in accordance with the order they have been put by the sender. In conjunction

with (DR) above, this implies that the sequence of received messages corresponds to
the sequence of sent® ones, with arbitrarily many messages missing under exceptional

conditions.

*Distinguishing between normal conditions and ezceptional condilions is necessary since it is well-known
that implementing reliable transmission in presence of exceptional circumstances like crashes is impossible (at
least without stable storage), cf. [Bel76].

*Under exceptional conditions means during and (some finite time) after exceptional situations.

SThere are of course applications where this assumption may be somewhat relaxed. However, a model

without (SR) would not be applicable for fully sequenced traffic.

(AR) Acknowledgement rule: Under any conditions, getack(ack) is called at most once for each
put message, acknowledging the messages exactly in the order as they have been pur.
If ack=O0OK., it is guaranteed that the corresponding message has been delivered to the
receiver via get. Under normal® conditions, getack is eventually called and ack must be

OK.

Note that this specification involves both safety (i.e., nothing bad ever happes) and live-
ness (i.e.. something good eventually happens) properties. We will show that our SSCMP

implements that specification on top of the following system model:

e We consider a distributed system consisting of multiple nodes connected by an unreli-
able network. In normal situations, there may be transient packet losses, duplication,

reordering, and late messages.

In exceptional situations, we also allow network performance errors to occur. A network
performance error has occurred when a message (repeatedly) transmitted via a certain
retransmission scheme during an interval D of real-time duration & does not cause at
least one acknowledgment to be delivered within D. Note that this is an end-to-end argu-
ment, covering both sender and receiver node performance faults and non-transient packet
losses as arising in long-lasting network partitions. This is a fairly general assumption
on message delivery times, since we do not assume bounds on the delivery of a single
message (as usually employed), but only on the whole bulk of retransmitted ones; in fact,
an acknowledgment message received within § may be caused by the first transmission
eventually arriving at the receiver and being acknowledged, however, with all the sender’s
retransmissions lost.

We finally assume that corrupted packets are always detected (e.g., by checksumming
methods) and that the network provides reliable service with low delay and high through-

put most of the time.

e Allnodes are equipped with mutually synchronized clocks of sufficiently fine granularity ~,
that do not wrap-around during the lifetime of the whole system.” For example, NTP
provides 64-bit timestamps with v = 236 ps granularity that wrap around once every

136 years.

In normal situations, we assume that the clock S.time of a node S progresses monotoni-
cally at (approximately) the rate of real-time. More specifically, for any interval duration
A measured on S’s clock, the corresponding real-time duration & fulfills A(l—a) <6<
A(l +) for some 0 < a << 1. In addition, the clock readings S.time(t), R.time(t) on
any two nodes R, S at real-time ¢ are within some maximum skew € of each other, i.e.,

|S.time(t) — R.time(t)| < e.

In exceptional situations, any kind of failure may occur: a clock’s monotonicity may be
violated, its rate (i.e., @) may deviate from approximate real-time, and the skew ¢ may be
exceeded arbitrarily. Note however that a clock must eventually make progress; otherwise,

we assume that its node has crashed.

®Actually, it is of course not difficult to ensure that getack is always called in exceptional situations not

caused by sender faults.
"This is not an unreasonable and uncommon assumption. cf. [BF93] (but see also the concluding section of

this paper).

¢ In exceptional situations, nodes may suffer from crash faults (omission and performance

faults are already covered by the unreliable network above), but not from arbitrary (byzan-

tine) ones®.

e Fach node is equipped with (limited) memory that survives node crashes, e.g., non-volatile

memory or a stable storage service.

e Without loss of generality, we assume that there is only one (client-)process per node that
communicates in a request /reply-fashion, i.e., basically unidirectionally®, with a possibly
large number of (server-)processes on other nodes during its lifetime. Each process has a
process identifier that may be used for uniquely adressing a particular sender or receiver.
Note that multiple data streams per process are easily provided by means of (statically)
assigned port numbers, extending process identifiers as usual.

In addition, the implementation of the protocol should provide maximum performance even
in presence of limited (memory) resources. In particular, we require:

® Pipelining, i.e., multiple outstanding (unacknowledged) messages. Using stop-and-wait
techniques would intolerably limit network performance in case of networks with large
bandwidth-delay products, and would also prohibit any speedup by means of network

COProcessors.

® No connection setup overhead by the reasons introduced in Section 1.

® Reuse of connection records, i.e., no static allocation of dedicated memory holding the
connection record for each server the client might ever connect to.

Note that the latter is particularily interesting when (usually limited) non-volatile memory
is available, as in our particular real-time system application.

3 The Sequenced Synchronized Clock Message Proto-
col SSCMP

In [LSW91], a strikingly elegant and simple protocol providing (unsequenced) at-most-once mes-
sage delivery has been presented. That Synchronized Clock Message Protocol SCMP surpasses
existing timer-based protocols like Delta-t ([Wat81]), VMTP ([Che89]), XTP ([SDW92]), and
CMSC ([BF93]) with respect to at-most-once delivery properties. Most notably, it relies on
synchonized clocks only for performance but not for correctness and is end-to-end in that it does
not require support from intermediate (gateway-)nodes. However, unlike the other protocols
mentioned, SCMP does not provide for message sequencing.

One might of course think of extending SCMP by adding sequence numbers. However, it
turns out that some clever way of integrating SCMP and sequence numbers is required. To
describe how we accomplish this in our SSCMP, we have to introduce the original SCMP first.

8In particular, our (basic) protocol may of course be defeated by (deliberate) intrusions forging messages.

9Whereas bidirectional communication may always be formed by two independent unidirectional channels,
our protocol may be adapted to support piggybacked acknowledgment techniques as well, since our acknowl-
edgement messages require no special treatment and carry only few information.

3.1 The original SCMP

SCMP deals with messages m containing a connection identifier m.conn and the time of cre-
ation of the message m.ts; we use the pair of process identifiers of sender S and receiver R,

and the sender’s time S.time(t) of put-ing the message. respectively. All possible (retransmit-

ted, duplicated. ...} instances of a message m will have the same connection identifier and

timestamp.
Each server process (i.e., receiver R) maintains a connection table R.CT contalning con-

nection information for all the different clients (i.e., sender). For SCMP, the only connection
information of interest is the timestamp of the last message accepted from a particular client S,
(symbolically) written as R.CT[S].ts. 1If a new message m from § arrives, it is accepted only
when m.ts > R.CT/[S].ts, clearly rejecting any duplicates.

However, with SCMP, there is no statically preallocated connection table entry for each
possible sender. Such entries are dynamically allocated and only retained for a reasonably
large period of p seconds (as measured on R’s clock) after the last message has been recejved
over that connection. That is, R is free to remove (and reuse) the entry for a sender S from
R.CT at some real-time ¢ provided that R.CT[S].ts < R.time(t) — p.

However, to retain the ability to detect duplicates, some of the lost information is preserved
by maintaining an upper bound R.upper on all the timestamps (that is, from all the different
connections) that have been removed from the table. Thus, if a new message m from a sender
having no entry in R.CT arrives, it may be safely accepted and a connection record created if
m.ts > R.upper. Otherwise, it is not clear whether that-message is actually a duplicate or not
since the connection information required for deciding that question has been discarded; hence
the message must be rejected. However, if p is reasonably large, the probability of incorrectly
rejecting an acceptable message is quite small since m.ts < R.upper < R.time(t) ~ p shows
that m must be very late.

Maintaining R.upper is of course trivial for normal receiver operation. However, when at-
most-once delivery is to be preserved even across receiver crashes, a way of safely reinitializing
the connection table after a crash is needed. There are at least two possibilities, with decreasing

quality:

1. Sufficient non-volatile memory is available for keeping the conncetion table and R.upper
in it. Nothing will be lost here since all the required information survives a crash of R.
Note however that one should delay any connection record release —advancing R.upper—
after recovery for some reasonable period of time to allow any old message to be accepted.

Only few non-volatile memory or a (slow) stable storage service is available for maintaining
a stable upper bound R.latest enforced on the (timestamps of) all the messages accepted
up to real-time t (over any connection). That is, the algorithm ensures that up to time
{ no message m has been accepted with timestamp m.ts > R.latest, where R.latest is
periodically updated (at real-time t.) to R.time(t,) + B for some fixed 3; monotonicity
of R.latest must of course be maintained. 3 should be chosen small enough to prevent
actual upper-bound enforcement (i.e., delaying too early messages) from occurring too

Lo

frequently.

After a crash, R.latest is used to initialize R.upper; the connection table is (re)initialized
to being empty. This initialization is feasible since it is guaranteed that no message m
with m.ts > R.latest has been accepted before the crash. Note that only messages with

timestamps older than or equal to R.latest are possibly (unnecessarily) rejected after that
recovery; messages generated during long crash periods are usually not concerned since

R.time(terash) € [R.latest — 3, R.latest].

For further details on SCMP, in particular a proof of its correctness and a discussion of
suitable parameter values (p and 3), the interested reader is referred to [LSW91].

It 1s clear that the original SCMP is not concerned about sequencing even under normal
conditions: If two messages are transmitted and the first one gets lost due to a transient error,
the (usually) successful reception of the second message will cause the retransmitted first one
to be rejected (since its timestamp is obviously older). Simply adding sequence numbers does
not help, and SCMP’s discarding and reestablishing of connection information makes such
approaches even more hopeless.

However, if we could find a clever way of encoding both message timestamps and sequence

numbers in a sequenced timestamp ST ensuring that
¢ a ST may be interpreted uniquely as a timestamp,

¢ a ST may be interpreted uniquely as a sequence number,

then it should be possible to define a protocol that switches between SCMP and a suitable
sliding window protocol without sacrificing the at-most-once delivery property of the former
and the sequencing property of the latter. Note that this is of course not the same as using
timestamps and sequence numbers orthogonally.

More specifically, for a new connection, the SCMP scheme may be used to decide whether
a message may safely be accepted and a (properly initialized) connection record created; this
is done by intepreting the message’s ST as a timestamp. For subsequent messages, the state
information in the connection record is available for providing sequenced communication via
the sequence number interpretation of STs. Finally, the last accepted sequence number (i.e.,
ST) interpreted as a timestamp may be used to update R.upper when the connection record is
released after a (silent) period of duration p.

Our Sequenced Synchronized Clock Message Protocol SSCMP is based on that idea. The
encoding of sequenced timestamps used is strikingly simple (once it is discovered): We use
the last few bits of the timestamp to encode the sequence number. For example, in case of
n-bit timestamps and k-bit sequence numbers, an n-bit sequenced timestamp is constructed as

follows:
n k41 k 0 ; k1 .. 1 0
f timestamp] L seq no 1
1 1 [I L1
" K1k k1 I 10
l [L] [|

f sequenced timestamp }

Note that clock granularities are usually fine enough to guarantee unique timestamps for
successively generated messages even with a few low-order bits lacking; for example, we men-
tioned already that the 64-bit timestamps of NTP have 236 picoseconds resolution!

-3

With that encoding, the first conversion (ST — timestamp) mentioned above is (almost) a
null-operation since we are dealing with sequencing in time. Actually, sequenced timestamps
are automatically monotonic except at the instant where the sequence number part wraps
around.'® There are at least two possibilities how to cope with that problem:

o We enforce total monotonicity of sequenced timestamps at the sender, by slightly delaying
the assignment of the ST of a message that would be less or equal to the ST of its
predecessor due to wrap-around. With that method, the whole ST may be used as a
timestamp (conversion is a null-operation), which reduces the number of unneccessarily
rejected messages after certain exceptional situations like a network partition, cf. the
next item. This approach is even (and in particular) useful when the granularities v
are relatively large. Finally note that the modified SSCMP introduced in Section 4
(Theorem 1) implicitely provides total monotonicity of sequenced timestamps by means

of this method.

e We use only the timestamp portion for SCMP-related purposes, filling up the sequence
number portion with all zeroes (or all ones when assigning to R.upper). This is feasible
since the SCMP-related scheme takes over only after a silent period of duration p under
normal conditions, of course amply fulfilling any monotonicity requirement. However,
after an exceptional situation like a network partition, messages with a sequence number
higher than the last accepted one (but with the same timestamp portion) are unnecces-
sarily rejected. This deficit becomes of course less important when the granularities -y arc

small.

The second conversion (ST — sequence number) has to extract the sequence number portion
only. Note however that the timestamp portion is also required for detecting late messages;
obviously, if the second of the previously mentioned conversion functions is used, 1t must be
ensured that the sequence number space is large enough to prevent wrapping around within

the granularity ~.

This idea in fact provides a suitable basis for a whole family of protocols: Any sliding
window or credit based protocol (without and with NACK’s, go-back-n or selective repeat,
cf. [Tan81, SDW92]) may be adopted'! to fit into our SSCMP-framework. Fortunately, we may
safely hide almost all the details of the underlying sliding window algorithm in our subsequent

presentation, thus showing the essentials more clearly.

3.2 The SSCMP

SSCMP relies on messages m consisting of a message header and an arbitrary message body.

The header contains
® a connection dentifier m.conn uniquely specifying sender S and receiver R,

® a sequenced timestamp m.st consisting of a timestamp and a sequence number portion as
q

specified above,

""We are grateful to an anonymous referee for drawing our attention to that point.
'"We should mention that it has been observed in [Sha91] that connection management and data transfer

pProtocols are orthogonal. so our approach (re)confirms this observation in this special case.

* an additional initialization field m.init capable of holding a sequence number (without

timestamp).

All (retansmitted, duplicated, . ..) instances of a message have the same header. An acknowl-
edgement message a does not require any special treatment; it contains m.conn and m.st of
the message m it acknowledges.

Our SSCMP is built upon (1) any of the two variants of the original SCMP mentioned in
the previous subsection and (2) an arbitrary (but correct) sliding window protocol adapted to
our encoding scheme. SCMP views m.st as a timestamp (formerly m.ts) and incorporates the
usual R.upper, possibly R.latest, a receiver connection table R.RC'T (formerly R.CT), and an
additional sender connection table S.SCT.

Naturally, organizing the connection tables as arrays (indexed by R and S, respectively)
would amount to (pre)allocation of memory, something we wanted to avoid in our implementa-
tion (remember the end of Section 2). Hence, some dynamic memory management in conjunc-
tion with a suitable mapping —hashing— function must be utilized. Note that the mapping
function must be evaluated every time a message (or an acknowledgement message, respec-
tively) is received, cf. Section 6. Memory is requested dynamically when a new connection is
established and released after an interval of duration p without transmission activities. In the
following section, we will establish a lower bound for p (Theorems 3 and 4). There is no explicit

upper bound for p, but choosing it too large wastes memory for idle connections, cf. [LSW9I1]

for a more thorough discussion.
The sender S’s connection record in the recejver node’s RCT contains:

o R.RCT/S].expire (or expire for short, if the context is clear), the time when the receiver’s
state record for sender S is to be released.

o R.RCT[S]Ist (or Ist for short), the sequenced timestamp of the last message accepted
(i.e., delivered) from sender S.

Note that ezpire is not required in the original SCMP since Ist + p determines the expiration
time; it need not be utilized in SSCMP either, but it helps improving the protocols performance
in (rare) exceptional situations and is also necessary for some protocol extensions, cf. Section 6.

The receiver R’s connection record in the sender node’s SCT contains:

o S.SCT[R].expire (or expire for short, if the context is clear), the time when the sender’s
connection record for receiver R may be released.

The sliding window protocol utilized should provide the following functions at the sender-
side (acting upon a private sender state record included in S.SCT[R]:

e nil.sho.s() appropriately initializes the sender’s state record for receiver R; in particular,

the initial sequence number is set (to 0).

put.slw.s(m) forwards a message m to the sliding window protocol for transmission; the
timestamp portion of m.st must have been appropriately set, with the sequence number
portion initialized to zero (by a logical and with an appropriate bit-mask SEQM). Note
that we assume that put.slw.s is blocked (disabled) when the protocol cannot handle
further messages. Before actually transmitting a message m over the channel, the field
m.init 1s set by put.slw.s to the sequence number of the first outstanding message (that

15, the lower edge of the transmit window).

9

o golack.slw.sfack.st) handles an acknowledgement ack for message m with m.st = st re-
ceived over the channel. It is responsible for stopping retransmission activities, calling
gelacki{ack). and advancing the transmit window iff

(GC) st equals mest of the oldest (i.e., latest pul) outstanding message m.

Note that acknowledgments for messages puf later than the first outstanding one may
of course be buffered internally (causing retransmissions to stop). so that the arrival of
the acknowledgment for the first outstanding message might trigger multiple gelack’s and

transmit window advances.

Similarily, we assume the following functions at the receiver-side of the sliding window
protocol (acting upon a private receiver state record contained in the sender S7s entry R.RC'T[S]

in the receiver’s R.RCT):

® nit.slw.r(m) appropriately initializes the receiver R’s state record for sender S. Note that
this requires some additional information, in particular, the (next) expected sequence
number, which is obtained from the additional initialization field m.nit in the (initial)
message m; we will elaborate on that topic later on.

* pul.slw.r(m) is used to submit a message received over the channel to the shding window
protocol. It is responsible for eventually calling get(m) and sending back acknowledgments
over the channel. More specifically, a message m from sender S is accepted iff

(AC1) m.st is larger than R.RCT/S].Ist, which must be maintained by put.slw.r to hold the
timestamp [.st of the last accepted message I,

(AC2) the sequence number portion of m.st equals the next expected sequence number.

However, messages arriving out of sequence at the receiver may of course be buffered
internally for performance purposes.

We finally assume that the implementation of the sliding window protocol is built upon the
basic communication functions send.msg(m) and rcv.msg(m) for (unreliably) sending/receiving
a message m over the channel. Similarily, send.ack(ack, m) and rcv.ack(ack,m) are provided for
(unreliably) sending/receiving an acknowledgment ack for a message m.

Now we are ready to provide the following (reasonably high-level) state-machine represen-
tation of the sender’s and receiver’s part of SSCMP'?. Actions in our protocol are executed in
response of certain triggering events like calling put(m); this is modelled by state transitions
labelled with constructs of the form event = actions; multiple actions are executed atomically,

as usual.

2 Actually, we present only a slightly simplified version of cur actual implementation of SSCMP here, and
discuss some extensions later on. In particular, we assume that sufficient non-volatile memory 1is available for
keeping the connection tables and R.upper in it, assume totally monotonic sequenced timestamps, and omit
some add-ons for improving the protocol’s performance under exceptional conditions.

10

rcv.msg(m} and
m.st < R.upper =
send.ack(? m)

rev.ack(ack,m) =
discard

!

Conn. record
R.RCT/[S]

non-existent

Conn. record
S.SCT[R]

non-existent

S.time(t) > expire = put(m) f R.time(t) = expire = rcv.msg(m) and
V outstanding m: m'fl'f‘ if R upper<list m.st > R.upper =
getack(?) b’,izme(t)&SEQM R.upper:=lst expire:=m.st+p-c
| . expire:=m.st-+p RC Ist:=R.upper
release 5.5CT[R] release R.RCT[S] init st

it slw. s()

put.slw.s(m) pul.shw.r(m)

Conn. record
R.RCT[S]

exists

Conn. record
S.SCT[R]

exists

rev.ack(ack,m) =
gotack.slw.s(ack,m.st)

rcv.msg{m) =
m.st:=S.time(t}&SEQM if expire<m.st+p-¢
expire:=m.st+p €IpiTe:=m.st+p-¢
put.slw.s(m) put.slw.r(m)

put{m} =

Sender S Receiver R

As depicted above, both sender S and receiver R engaged in a particular connection may
or may not have an existing connection record. More specifically, the connection record in the
sender connection table S.SCT[R] is created when the first put(m) of a message to R occurs —
either the very first one or the first one after a long period (> p) of no transmission activities.

Subsequently, the sender uses its sliding window protocol for sequenced data transmis-
sion of put messages, generating getack’s as (valid) acknowledgment messages are received via
rev.ack(ack.m). Note that the original message m acknowledged by ack is uniquely identi-
fied by its sequenced timestamp m.st: even late messages —defeating ordinary sliding window
protocols— do not cause any problems. With each newly put message m, the expiration time
of the sender’s connection record S.5CTIR] is set forward to m.st + p.

When no messages have been put for a period larger than p (as measured on S’s clock),
then the connection record S.SCT/R] may be released. If there are still outstanding messages
(due to a long lasting network partition. for example), they are acknowledged with ? and
all (re)transmission activities are cancelled. The sender finally reverts to the state where no
connection record for R exists: subsequently arriving acknowledgment messages are of course

discarded. |

11

For the receiver. the situation is quite similar. If there is no connection record R.RCT/S]
for a sender S in R’s receiver connection table. incoming messages are checked against R.upper
according to the original SCMP protocol. If an acceptable message m (with m.st > R.upper)
arrives. a connection record R.RCT[S] is created and appropriately initialized. In particular, its
expiration time f{.RC'T[S].erpire is set to the sender’s one (i.e., m.st + p) minus the maximum
clock skew ¢. and the timestamp of the last accepted message Ist is (safely) initialized to
R.upper.

Morcover. the (next) expected sequence number internally required by the sliding window
protocol is initialized to m.init by init.shw.r; remember that this field contajns the sequence
number of the sender’s first outstanding message. We will show in the next section that this
initialization is indeed feasible provided p1s chosen large enough. Note that it is also necessary!?;
for example. naively mnitializing the expected sequence number to the sequence number portion
of m.st would cause the sequencing problem encountered with the original SCMP again!

Subsequently received messages are forwarded to the sliding window protocol via put.slw.r;
the expiration time ezpire is also set forward when necessary. If no (valid) message is received
up to the expiration time R.RCT/S].cxpire (as measured on R’s clock), the receiver must in-
stantaneously release its connection record. We will show in the next section that our particular
setting of R.RCT[S].expire = m.st + p — ¢ guarantees that —under normal conditions— the
receiver’'s connection record is always released earlier or simultaneously as the sender’s, cf.
Theorem 3. Item (3.b.ii) in the following section.

Strictly speaking, what is actually needed for that instantaneous release js enforcing that
the receiver reinitializes its sliding window protocol via init.slw.r before processing a message
m at real-time t with R.time(t) > R.RCT[S].expire. Updating R.upper and releasing the
connection record may of course take place at any time ¢, with R.time(t,) > R.RCT[S].expire,
as in the sender. This behaviour is easily provided by introducing an intermediate state in the
receiver’s state machine above, representing an expired but not yet released connection record;
we decided not to incorporate this detail into the figure above for the sake of simplicity.

4 Analysis of the SSCMP

The primary purpose of this section is to show that (a slightly modified version of) SSCMP
implements the specification contained in Section 2. Our proofs usually involve two seperate
parts: conformance under exceptional conditions and conformance under normal ones. In the

former case. we have to deal with safety properties only, whereas in the latter we have to

consider liveness properties as well. We start with the exceptional conditions for the delivery

rule (DR).

Lemma 1 (‘nder an conditions, SSCMP guarantees that messages ut by the sender are
Yy g ges p Y

recetved cia get at the receiver at most once.

Proof: Following the line of reasoning in [LSW91]. we consider a particular receiver R and

its connections to multiple senders maintained via the receiver connection table R.RC7T. From

the description of the SSCMP algorithm in the previous section, we know that the variable
R.RCT[S] st is assigned Lst of the last accepted (i.e.. delivered via get) message [, cf. (AC1) of
Section 2. Using the abbreviation /st = R.RCT/S].Ist (or just Ist when the sender is obvious

13However, there are other possible initialization methods as well: in particular. it is possible to employ a

syn/fin flag and (only occasional) handshaking as in TCP (see [Pos81]) for that purpose.

12

from the context), let {Zstis}»l denote the sequence of those'* assignment values and {9},
the assignment (real-)jtimes, taken for all the (subsequent) connections between S and R.
It is not hard to establish the following most useful property of the sequence introduced

above:

Lemma 2 For any sender S, the sequence {[stf}»l is strictly monotonically increasing.

Proof: Let ¢ be any real-time within the interval t7, <t <t hence, i — 1 is the index
of the last assignment st7 | that took place before or at f. At time t?, there are two
possibilites regarding the previously used connection record R.RCT[S]: (1) it still exists.
or (2) it has already expired. In the former case (1), we know from (AC1) in Section 2
that a new message m is only accepted if m.st > Ist? . Hence, Ist? = m.st > Ist? | and

we are done.

In case (2), we know that a new state record is to be created or may have been already
(“improperly”) created; the latter situation arises in case of two (new) messages m, m’
successively transmitted by the sender, the first of which got lost. When m’ arrives,
R.RCT/S] is created and Ist is initialized to R.upper so that this value is available when
(the retransmitted) m eventually arrives. Anyway, if the connection record is created at

time ¢ <7 it is clear from the protocol’s execution that
Ist? > R.upper (1)
at time {. So what we need to complete the proof of Lemma 2 is the following lemma:

Lemma 3 Let t be any real-time where the connection record R.RCT[S] for a sender
S does not exist. Let j—1 be the index of the last assignment lstf_1 to Ist® determined
by tf_l <t< tf. Then, R.upper is monotonically increasing and fulfills R.upper >

l.stf_l at time t.

Proof: First, the statement above follows trivially when there was no crash of the
receiver between t}‘q—1 and t: According to the original SCMP, R.upper is always
set to the maximum of its former value and the maximum of the values Ist® of all
connection records for senders s € § which are to be released. Since S is among the
set of all released ones, we are finished here.

When there was a crash of R, we have to distinguish the two different SCMP-
variants; cf. the description of SCMP in Subsection 3.1. If the receiver connection
table R.RCT and R.upper are kept in non-volatile memory, a crash does not cause
any difficulties here. If the method employing a stable R.latest is used, we must
show that the reinitialization of R.upper after a crash does not violate the statement
of our lemma. This, however. is trivial since it is enforced that no message m with
m.st > R.latest has been accepted prior to the crash. Hence, we have

R.upper, qcrash = R.latest > R.upperprecrash > lstf_l,

completing the proof of Lemma 3.0

“There are also (initial) assignments R.RCT[S] st == R.upper when initializing a connection record. which

we do not take into account.

13

Applying Lemma 3 to equation (1) also finishes the proof of Lemma 2.0

By virtue of Lemma 2, however, the statement of Lemma 1 follows immediately: Since the
sequenced timestamps m,.st = Ist? of the messages {m,},, delivered to the receiver via get
are strictly monotonically increasing, no duplicate message 1s ever delivered. Thijs eventually

completes the proof of Lemma 1.0

The latter observation also provides the key to the exceptional conditions part of the se-
quencing rule (SR): It is immediately apparent that sequencing is guaranteed by SSCMP given
that the sequenced timestamps of the messages put are strictly monotonically increasing. How-
ever, in case of a clock synchronization fault, that precondition might be violated. Therefore,
we must enforce monotonicity of the sequenced timestamps by a slight modification of the
sender’s procedure for assigning m.st.

This may be accomplished by a clock-reading procedure that enforces strong clock mono-
tonicity by internally keeping the last value read, delaying the current read access if it is
made (seemingly) too early. Note that this provision may be adopted to provide total mono.
tonic sequenced timestamps, cf. the end of Section 3.1, and even allows to detect certain clock
anomalies. However, to preserve timestamp monotonicity across crashes, additional measures
must be provided: Either, the last value read is kept in non-volatile memory or, alternatively,
a stable upper bound S.usedlatest is enforced on the timestamps used for m.st of any message
put at the sender node S. The latter method relies on the same technique as used for R.latest
in the original SCMP (cf. Subsection 3.1); it is particularily Interesting since it allows to detect
(faulty) clocks that jumped forward unreasonably.

We will refer to the SSCMP enforcing monotonic sequenced timestamps as the modified

SSCMP. Thus, we immediately obtain the following theorem:

Theorem 1 Under any conditions, the modified SSCMP guarantees sequenced at-most-once

delivery.O

The exceptional conditions part of the acknowledgment rule (AR) is covered by the following

theorem:

Theorem 2 Under any conditions, SSCMP guarantees that put messages are acknowledged by
getack(ack) at most once and in exactly the same sequence as they have been put. If ack = OK,
the corresponding message has been delivered to the receiver via get.

Proof: First, since the sender executes both put and getack locally, sequenced at-most-once
acknowledgments are guaranteed by virtue of condition (GC) on gotack.slw.s, cf. Subsection 3.2.
The second statement of the theorem is trivial since a getack with ack = OK for some message m
does only occur when an acknowledgment message with ack = OK has been received for message
m. Such an acknowledgment message. however, is only produced by the receiver when get has
been called. cf. put.slw.r. Hence, the proof of Theorem 2 is completed.d

Note that the at-most-once acknowledgment guaranteed by Theorem 2 means that put
messages are getack’ed in exactly the same order as they have been put. However, it may
happen that the sequence of acknowledgments is finite (when the protocol gets stuck under
exceptional conditions), that is. liveness is not guaranteed.

Now we turn our attention to SSCMP's operation under normal conditions, which involves
liveness properties as well. We start with the most important delivery rule (DR):

14

Theorem 3 Under normal conditions, the modified SSCMP with p large enough to satisfy the
inequality (p — 2¢)(1 — o) > 26 (cf. Section 2), each message put is eventually delivered to the
receiver exactly once and in the same sequence as they have been put.

Proof: Since Theorem 2 holds under any conditions, it suffices to show that each message
1s eventually delivered to the receiver. More specifically, we will prove that each message is

delivered (in fact, even acknowledged) within 6 (real-time) seconds.
Let us assume the contrary, i.e., that there is some (first) message m from sender S that s

not delivered to the receiver via get within 6. Using case analysis, we show that this yields a

contradiction in any case.
Let 7 — 1 be the index of Zssz_1 containing st of the last accepted message [, cf. the proof

of Lemma 1. There are only three exhaustive possibilities why m might not be delivered:

1. m does not arrive at the receiver within §.

However, since the clocksynchronization condition must hold, m is retransmitted by the
sender during an interval of (real-time) duration at least p(l —a) with 0 < o << 1,
cf. Section 2. Since p(1 — a) > (p — 2e)(1—a) > 26 > 6 according to our precondition
on p, this is only possible when a network performance error has occurred. This violates

the normal conditions assumption.

2. m successfully arrives within § at the receiver which has no connection record for sender S,

but is rejected.
This is only possible if m.st < R.upper. However, we have the following simple lemmas:

Lemma 4 Under normal conditions, at any real-time t, we always have
R.upper < S.time(t) — p + 2e.

Proof: Clearly, if t, < t denotes the time of the most recent connection record
release at the receiver node before or at t, we have

R.upper < R.time(t,)—p+¢ (by the protocol)
< Rtime(t)—p+e (by clock monotonicity)
< Stime(t) — p+ 2 (by clock skew)

and the lemma follows.O

Hence we find that m.st < S.time(t) — p+ 2¢ at the time ¢ of reception of m. This implies
that .S must have retransmitted m during an interval of duration at least) — p—2eonits
clock. Since this corresponds to a real-time interval of duration d 2 (p=2¢)(1—-a) > 26 >
¢ according to our precondition on p, a network partition error must have occurred. This
violates our assumption of normal conditions and provides the required contradiction.

3. m successfully arrives within § at the receiver which has a connection record for sender S,
but is rejected. Here we have to distinguish two more cases:

(a) An “improperly” initialized connection record R.RCT/[S] exists at the time of recep-

tion of m.

15

As already mentioned in the proof of Lemma 2, this may happen in case of an out-
of-sequence message m’ (put later than m but arriving earlier). At the time # of
reception of /) Ist has been initialized to R.upper (to keep this value available for
the time the retransmitted message m eventually arrives), and the expected sequence
number in R.RCT[S] has been set to m’init. Note however, that no message has
been accepted along that connection yet.

Now, rejection of m may only occur in the following two exhausive cases:

(i) m.st < Ist; however, due to the initialization of Ist to R.upper, case 2 above
applies here.

(1) m.st > Ist but does not have the right (i.e., the expected) sequence number.
To rule out that possibility, we must show that the initialization of the next
expected sequence number to m’init is feasible, i.e., that m’init equals the
sequence number portion of m.st and not that of an earlier one; note that we
even allow m = m’ here. Anyway, m’ must of course have passed the SCMP-

check successfully.

Let t5 denote the real-time when the last accepted (i.e., acknowledged) message
[has been put at the sender S; of course, S.time(ts) = I.st. Consequently,
the connection record at the receiver R.RCT[S] must have expired when R’s
clock read st 4+ p — e. Denoting the real-time when m’ arrived at the (already
expired) receiver by ¢, it follows that R.time(t') > l.st+p—e due to monotonicity.

Because of the clock skew, we thus obtain S.time(t') > st + p — 2¢ and hence
=t > (p—2€)(1 — a) > 26,

But now, since [has been successfully delivered, an acknowledment must have
arrived at the sender at ¢4 < th + 6. Similarily, m’ must have been sent at
ts > t'—§, because otherwise a network performance error would have occurred
for m’ (and hence for m). We therefore find

{ l
ts—t, >t —6—tk -6 >0,

finally establishing that m’.init must contain the sequence number of m.
This fact provides the required contradiction for this case. '

(b) a “properly” initialized connection record for sender § exists but m is rejected.

Here, at least one message has been accepted over that connection; let ! be the last
one; clearly, Lst = lstf_l. Again, we have only two exhaustive possibilities why

rejection might occur:

(i) m.st < lstf_l; however, this is impossible since m is neither a duplicated nor a
late message: According to the modified SSCMP, m.st must be larger than [.st

of the last acceped message, providing the necessary contradiction.
(ii) m.st > ZsszS_l but the sequence number of m is not the expected one.

It is obvious that rejection in this case is impossible if the sender still uses the
same instance of its connection record S.SCT[R] as used for transmitting [, since
the ordinary sliding window protocol is employed in this case (remember that
the corresponding R.RCT/S] exists).

Thus, we only have to consider the case where S has established a new instance
of a connection record but R uses its old one. Hence, the sender’s expiration

16

must have taken place earlier than the receiver’s. However, it is easy to show
that (under normal conditions) the receiver’s connection record R.RCT[S] for
a particular instance of a connection between B and S expires earlier or at the

same time as the sender’s S.SCT/R]: Since
RRCT[S].expire := m.st — ¢ = S.SCT[R].expire — e,

the actual expiration real-times must fulfill tg > ¢5: note however, that enforcing
the receiver’s expiration (cf. the description of SSCMP in Subsection 3.2) is
vital here — otherwise, the protocol might block or even accept messages out

of sequence.
Thus, we have provided the required contradiction for this (last) case too.

This eventually completes the proof of Theorem 3.0

What remains to be done is to prove the normal conditions part of the acknowledgment rule

(AR):

Theorem 4 Under normal conditions, the modified SSCMP with p large enough to satisfy the
inequality (p — 2¢)(1 — o) > 26 guarantees that each message is acknowledged by getack with

ack = OK exactly once and in the same sequence as the messages have been put.

Proof: Since all messages put are delivered according to Theorem 3, acknowledment messages
for all of them are generated. Since there must not be a network performance error, that
acknowledgments must arrive at the sender within 6 (real-time) seconds from the time the
messages have been put. In order to prove that getack’s are eventually generated by gotack.slw.s
according to (GC), we only have to show that the connection record S.SCT[R] still exists at
that time. This, however, is amply fulfilled since the sender maintains its state for at least
p(l — a) > 26 > 6 (real-time) seconds. Theorem 2 eventually establishes that those getack’s

occur in the right sequence. O

This finishes our analysis of the properties of SSCMP: Theorems 1-4 show that it indeed
implements the specification of Section 2 on top of our system model. Those results comn-
firm theoretically the encouraging experiences we gathered from our actual implementations.
More specifically, it has been the major responsibility of the second author to provide a (-
implementation of SSCMP —including a suitable simulation environment— for experimental
evaluation and improvement of our protocol. We have been playing around with certain varieties
e.g. of the underlying sliding window protocol for some time; the current version employs an

elaborate selective repeat scheme with negative acknowlegments. However, we are still working

on some extensions (see Section 6).

5 Comparison to Other Protocols

[n this section. we relate our protocol to the existing timer-based ones we are aware of: Delta-(.
VUTP. XTP. and CMSC. The first thing to mention is that our SSCMP —unlike most of the
other ones— is not a fully engineered connection Mmanagement protocol in the sense that it does

not deal with addressing, rate control and dozens of other “practical” issues. However, since we

are only interested in the “core” of the protocols, we think that this comparison is nevertheless

17

appropriate. Although we tried to find a common level of description in order to make the
comparison meaningful, it is not possible to give more than a rather informal quantification of
characteristics like connection record size and protocol complexity (i.e., performance).

For each protocol. we give a short description of the features meaningful for our purposes,
and summarize some characteristics in the table below. Finally, we briefly discuss how SSCMP

relates to those protocols.

The pioneering Delta-t ([Wat81]). the first timer-based connection management protocol
available. is a fully engineered transport protocol designed for system architectures without
special hardware like synchronized clocks and stable storage. Connection records are created
“on demand”™ and become automatically (i.e., timer-based) released when it is guaranteed that
no old packet is alive. This is made working by incorporating a time-to-live field into each
message sent, which is appropriately decremented as the message travels through the network
and intermediate nodes. To that end, some (reliable) link-transit-time protocol is required;
the one presented in [Slo83] assumes that all node’s clocks are running at approximately the
same rate (although Delta-t does not need synchronized clocks). The receiver node retains a
connection record just long enough to guarantee that any duplicate of a message originated
during the lifetime of a connection has its time-to-live expired, exploiting the fact that any
node that encounters a message with zero time-to-live must discard it.

As far as the characteristics given in the table below are concerned, we first note that in case
of clock rate faults or underestimated link-transit-times, Delta-t may fail since a retransmitted
message may arrive after the previous connection record has been discarded. For each active
connection. there are three!® timers required: two for the sender’s part (connection record
release and retransmissions) and one for the receiver’s connection record release. The connection
record size of Delta-t is reasonably small since there are only the usual connection identifiers
and some sequencing information to be stored (letting aside engineering add-ons, of course).
Relating the connection release times provided in [Wat81] to our framework, we find that the
release time Ty of the receiver’s connection record fulfills T ~ 26: The sender’s connection
record is established for a period of approximately ¢ following the first transmission of a new
message, and Delta-t demands (cf. condition C1 in [Wat81]) that all messages originated during
that interval must find the receiver stateful. Since there might be a new message sent at the
end of the sender’s interval, which may take as long as § to reach the receiver, our assertion
follows. Moreover, connection setup must be delayed for some similar time after rebooting a
previously crashed node. Finally, we argue that the protocol is not really simple due to the

somewhat complicated link transit time protocols needed.

Another fully engineered transport protocol relating to our SSCMP is VM TP described in
[Che86], which employs a timer-based connection management scheme very similar to the one
used in Delta-t. However, it exploits properties following from introducing T-stable addressing
for duplication detection purposes also. In its original version, VMTP relied on a time-to-live
field incorporated in each message: in its revised version (cf. [CheB9]), however, it employs
end-to-end timestamps in order to enforce maximum packet lifetimes. Hence, it requires syn-
chronized clocks and also some sort of stable storage in order to generate T-stable identifiers
valid even across node crashes.

Similar to Delta-t, VMPT may fail if the clock synchronization condition is violated since
packet lifetime enforcement solely depends on that condition. For each active connection, there

B Actually, it is possible to replace some of the per-connection-timers by a single one for all connections, e.g.,

the sender and receiver connection record release timers.

13

are again two timers for the sender (connection record release and retransmissions/probes)
and one for the receiver. Restricting VMTP to the bare essentials, the connection record size
should be quite small since there are only the usual entity identifiers and a single transaction
identifier (corresponding to a sequence number) to be stored. Adopting the analysis of VMTPs
connection release times given in [CheS6] to our framework, we find that, for the receiver’s Th,
Tretiable = 0 and also Treprans + Toacker = 6 so that T > 26 + Torobe, Where Torobe > 0 denotes the
time used for (periodic) verification of the validity of the T-stable entity identifiers of the parties
involved in the connection. Note also that the sender’s connection record should reasonably
be released not earlier than Ty + 2T packer after the last (initial) transmission. Moreover, if no
stable storage is used (in case of stable identifiers, cf. [Che86]), connection establishment must
be delayed for some time following the reboot of a previously crashed node. Finally, we think
that VMTP is not really simple since there is some overhead involved in establishing T-stable

identifiers.

A particularily carefully engineered and versatile “next generation” transport protocol is
ATP described in [SDW92]. However, as far as timer-based connection management is con-
cerned. it does not provide novel ideas but relies on the mechanisms of Delta-t. Nevertheless,
we should note that XTP actually uses a certain mixture of timer-based and handshake-based
mechanisms, supporting a quick graceful close and hence speeding up connection release time.
Note that the usual disadvantage of timer-based protocols with respect to handshake-based
ones is the fact that a connection record is usually released later; nevertheless, even completely
handshake-based protocols like TCP require some non-zero connection release time, cf. [Wat81].
Anyway, we do not want to characterize such techniques in this paper.

The CMSC protocol described in [BF93] follows the approach underlying the revised VMTP
([Che89]) to remove the dependence of the protocol from the underlying network. More specif-
ically, an expiration time (instead of a time-to-live field) is added to each message, making
the maximum packet lifetime enforcement purely end-to-end by means of synchronized clocks.
Actual message transmission is governed by an ordinary sliding window protocol. Although
CMSC is not a fully engineered protocol in the sense of Delta-t, VMTP, or XTP, it deals with
a connection oriented interface in some detail.

Reviewing the properties of CMSC, the first thing to note is that it may fail in case of clock
synchronization violations for the same reasons as Delta-t and VMTP. Moreover, since CMSC
employs expiration time and sequence numbers in an “orthogonal” manner (and not in an
integrated way as we do in SSCMP), a rather complicated timer-management —involving five
“logical™ timers per connection (which may, however, be implemented by three physical ones)—
is necessary to make sequence number reuse safe. The connection record is also slighly larger as
the one of other protocols since explicit lifetimes are to be maintained. As far as the connection
record release times are concerned, adopting the analysis of [BF93] to our framework shows
that LT = 6 so that the receiver’s connection record must be retained for as much as 26: The
controlling timer T, is set approximately to the most recently received message’s expiration
time (= time of transmission + LT = the sender’s connection record release time) plus LT,
that is. to 2LT in the worst case. Using stable storage, CMSC allows immediate resumption
following an (fail-stop) endsystem failure. Finally, we argue that CMSC is not at all simple; at
least. it takes several pages of pseudo-code for its algorithmic description.

The following table provides a summary:

19

Protocol | Clock fault | Timer | CR.size | CR.reloase Resumption | Complexity
Delta-t | not tolerated 3 small 26 not immediate medium
VMTP | not tolerated 3 small > 26 immediate medium

XTP not tolerated 3 small (<)26 not immediate medium
CMSC | not tolerated | 3(5) | > small 26 immediate high
SSCMP tolerated 3 small 26 immediate low

Our SSCMP requires synchronized clocks and some non-volatile memory, which does not
seem to be too severe a restriction. As far as correctness is concerned, it surpasses (the “core”
of) any of the other protocols since it guarantees at-most-once delivery even in the case of clock
synchronization failures. Note that the violation of the clock synchronization condition is a
rather likely event, in particular in systems employing probabilistic algorithms (like N TP), but
also in deterministic ones, where at least the possibility of faulty clocks exists. Unlike protocols
like Delta-t, for example, SSCMP also tolerates any (very) late message (arriving when the
connection record has long been released), and its correctness does not depend on bounds on
the transmission rate since there are no implicit timing constraints involved (as in sequence
number wrapping/reuse or T-stability in other protocols). :

Moreover, SSCMP is purely end-to-end in that it does not require support from the underly-
ing network, allows immediate resumption after reboot, and accepts messages generated during
a long lasting receiver crash. Last but not least, its striking simplicity should be Judged in view
of the fact that packet losses in modern networks are mainly caused by receiver overruns, i.e.,
performance problems caused by complicated protocols, and not by transmission errors.

6 Conclusions and Further Research

In the previous sections, we introduced and rigorously analyzed a novel timer-based connection
management protocol providing reliable ordered at-most-once delivery of messages. Extending
the (unsequenced) SCMP algorithm of [LSW91], our SSCMP (Sequenced Synchronized Clock
Message Protocol) surpasses (the “core” of) existing protocols like Delta-t, VMTP, XTP, and
CMSC as far as correctness and also simplicity is concerned. More specifically, SSCMP provides
sequenced at-most-once delivery even in the case of clocks being (totally) out of synch, which
1s no unlikely event in practice. ,

SSCMP requires synchronized clocks and some non-volatile memory, but does not need stat-
ically preallocated memory for storing connection records, allows multiple outstanding messages
for optimal performance, needs no support from the underlying network, and requires only a
very simple management of (retransmission) timers. Qur actual implementation(s) of SSCMP
show that it is simple, efficient, and easily extensible. Some “engineering-extensions” we are

currently working on are:
* Providing some suitable rate control scheme as in XTP or VMTP, for example.

 Dealing with the problem of mapping sender/receiver identifiers to connection records in

real-time.

¢ Incorporating connection duration agreement into SSCMP, allowing for both connection-
specific (which is rather trivial, cf. CMSC and XTP) and, most importantly, time-variant
values of p. This also includes measures for a quick graceful close based on handshaking.

20

e Bidirectional communication via piggybacked acknowledment techniques.

e Providing a cancel function for cancelling previously put but not yet getack’ed messages.

* Dealing with timestamps that may wrap around.

The final version of SSCMP will eventually be used for the basic communication subsystem
underlying a high-performance remote system call facility of the distributed real-time oper-
ating system mentioned in Section 1. It is designed to run on an Ethernet-coupled system of
VMEbus-based 68030 CPUs, with a (limited) amount of non-volatile memory and high-precision

synchronized clocks available.

In addition to the engineering issues mentioned above, we are currently working on the
following theoretical research topics:

e The proof techniques applied in Section 4 are of course adequate for the simple SSCMP
variant discussed in this paper. However, adding the abovementioned features, the proofs
get more and more involved. Thus, we are trying to adopt the formal proof technique of

[Lam93] for our purposes.

e It is important to explore systematically the performance (not correctness!) penalties
associated with the various exceptional situations provided for in our system model, and
to conceive measures for improvement — a problem that has been somewhat neglected in
our and the previous work mentioned. A question of particular importance is how long an
exceptional situation may affect the execution of the protocol after it has ceased to exist;
remember the distinction between the time an exceptional condition and an exceptional
situation are actually lasting, cf. Footnote 4 in Section 2.

For example, consider the case of a sender’s clock $.time Jumping forward considerably
(without being detected) and a message m being sent subsequently, which is not an
unlikely exceptional situation in practice. Even after clock synchronization (normal op-
eration) is achieved again, the exceptional condition is still lasting: The sender is blocked
by our clock monotonicity enforcement until time ¢ with S.time(t) > m.st. The only
thing we can guarantee at first sight is that SSCMP recovers within finite time (after all,
expiration must eventually occur), but that is of course too weak a statement for practical

purposes.

A forthcoming paper will be devoted to those issues.

Acknowledgments

We are grateful to Wolfgang Kastner for reading an earlier version of the manuscript and some
stimulating discussions on the subject. A long list of comments and suggestions of several
anonymous referees have been of great help in improving the overall appearance of the final

paper.

References

[Bel76] D. Belsnes. Single-Message Communication, IEEE Transactions on Communica-
tions, COM-24(2). February 1976, p. 190-194.

21

[BF93]

[Che86]

[Che89]

[Lam93]
[Lis93]

[LSWO1]

[Mil91]

[Pos81]

[RSB90]

[Sch94]

[Sha91]

[Slo83]

[SDW92]

[SWL90]

[Tan81]

E.W. Biersack, D. C. Feldmeier. A timer-based connection management protocol with
synchronized clocks and its verification, Computer Networks and ISDN Systems, 25,

1993, p. 1303-1319.

D. R. Cheriton. VMTP: A Transport Protocol for the Next Generation of Commu-
nication Systems, Proc. SIGCOMM 86, 1986, p. 406-415.

D. R. Cheriton. SIRPENT™. 4 High-Performance Internetworking Approach,
Proc. SIGCOMM ’89, Austin, Texas, September 1989, p. 158-169.

D. R. Cheriton, C. L. Williamson. VMTP as the Transport Layer for High-
Performance Distributed Systems, IEEE Communications Magazine, June 1989, p.

37-44.

B. W. Lampson. Reliable Messages and Connection Establishment, in: S. Mullender.
Distributed Systems, 2nd ed., Addison-Wesley, 1993, p. 251-281.

B. Liskov. Practical uses of synchronized clocks in distributed systems, Distributed
Computing, 6, 1993, p. 211-219.

B. Liskov, L. Shrira, J. Wroclawski. Efficient At-Most-Once Message Based on Syn-
chronized Clocks, ACM Transactions on Computer Systems, 9(2), May 1991, p.
125-142.

D. L. Mills. Internet Time Synchronization: The Network Time Protocol, IEEE
Transactions on Communications, 39(10), October 1991, p. 1482-1493.

J. Postel. DoD Standard Transmission Control Protocol, DARPA-Internet RFC 793,
1981.

P. Ramanathan, K. G. Shin, R. W. Butler. Fault- Tolerant Clock Synchronization in
Distributed Systems, IEEE Computer, 23(10), October 1990, p. 33-42.

U. Schmid. Synchronized UTC for Distributed Real-Time Systems, to appear in
Proceedings IFAC Workshop on Real-Time Programming WRTP ‘94, Lake Re-

ichenau/Germany, 1994.

A. U. Shankar. Modular Design Principles for Protocols with an Application to the
Transport Layer, Proceedings of the IEEE, 79(12), December 1991, p. 1687-1707.

L. Sloan. Mechanisms that Enforce Bounds on Packet Lifetimes, ACM Transactions
on Computer Systems, 1(4), November 1983, p. 311-330.

W.T. Strayer, B. J. Dempsey, A. C. Weaver. XTP — The Xpress Transfer Protocol,
Addison Wesley, 1992.

B. Simons, L. Lundelius-Welch, N. Lynch. An Overview of Clock Synchronization, B.
Simons, A. Spector, editors: Fault-Tolerant Distributed Computing, Lecture Notes
on Computer Science 448, 1990, p. 84-96.

A. S. Tanenbaum. Computer Networks, Prentice Hall, 1981.

[SV]
(]

