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ULRICH SCHMID

ABSTRACT. We investigate deadline meeting properties of the well-known (preemptive) static
priority scheduling (SPS) algorithm, which is widespreadly used in commercial real-time
operating system kernels. A discrete-time single server queueing system employing SPS for
scheduling probabilistically arriving tasks at L priority levels is considered for this purpose.
Model parameters are arrival and execution-time distribution A¢(2), Le(z) and a (constant)
deadline T; € T per level £. By means of a combinatorial technique (which does not require
stable-state assumptions), we determine the probability distribution of the (random-)time the
system operates without violating any task’s deadline. This distribution is asymptotically
exponential with parameter Az, , which decreases exponentially with the deadlines 77 ; simple
asymptotic expressions for Az, and all associated quantities (probabilities, moments, ... )
for large Tr are provided. Our numerical examples suggest that real-time systems based on
SPS operate reasonably well only if computing performance is (more than) adequate.

1. INTRODUCTION

Real-time computer systems as found in spacecrafts, power plants, or automated factories
are playing a more and more vital role in our daily life. Despite of the increasing critical-
ness of operation, however, they are somewhat neglected by traditional computer science, in
particular, by classical performance evaluation research.

Generally speaking, tasks of a real-time system have to be performed not only in a correct,
but also in a timely fashion; usually, they must finish within a predefined deadline. Otherwise,
there might be more (hard real-time) or less (soft real-time) severe consequences. One of the
most important problems in the design of real-time systems concerns methods for a suitable
task scheduling, see [TK91], [CSR88] for a survey. Scheduling goals for real-time systems, how-
ever, are different from those fitting the needs of ordinary computer systems, since timeliness
1s not a simple consequence of high throughput or similar performance characteristics.

Our research in that area aims at investigating deadline meeting properties of scheduling
algorithms for probabilistically arriving ( “aperiodic”) tasks in soft real-time systems, see [S95]
for a comprehensive overview. In our earlier work, we identified a characteristic quantity
(we called it successful run duration) that allows comparison of the real-time performance of
different scheduling algorithms. In this paper, we investigate the successful run duration of the
important preemptive static priority scheduling algorithm (SPS), a scheme that is widely used
in practical applications due to its inherent simplicity. Actually, almost all existing real-time
operating system kernels like VRTX (Ready Systems) or pSOS* (Integrated Systems/SCG),
for example, are built upon SPS. Our research is —to the best of our knowledge— the first
attempt to quantify how well they are actually performing.

Key words and phrases. Real-time behaviour, static priority scheduling, deadlines, aperiodic tasks, combi-
natorial probabilities, trees, bivariate singularity analysis, asymptotics.
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The rest of this paper is organized as follows: Section 2 briefly introduces the underlying
queueing system model and the parameters of interst. Section 3 is devoted to the combina.
torial aspects of our investigations, Section 4 contains the asymptotic analysis. A discussion
of our results, including a numerical example and some directions of further research, in
Section 5 eventually complete the paper.

2. SYSTEM MODEL

Our system model is based on a queueing system consisting of a task scheduler, a task
list of (potential) infinite capacity, and a single server. Newly arriving tasks are inserted
into the task list by the static priority scheduling algorithm, which works as follows: The
task list of our system is sorted according to descending priorities. We assume that there
are L > 1 different priority levels numbered from 1,..., L, where 1 is the highest priority
one. A newly arriving task of a certain priority level is inserted into the task list behind the
already queued tasks of the same level. If the task list becomes empty, a (short) dummy task
is generated by the scheduler. The server always executes the task at the head of the task
list, in a preemptible fashion. If the server processes a dummy task, the system is called idle,
otherwise busy.

Rearranging of the task list (preemption/scheduling) occurs at discrete points in time only,
without any overhead. The length of the interval between two such points is an integral
multiple of some unit time called a (machine) cyele. Due to this assumption, we are able to
model tasks formed by non-preemptible actions with duration of 1 cycle. The task ezecution
time of a task is the number of cycles necessary for processing the task to completion if the
server is exclusively available. A duminy task consists of a single no-operation action (1 cycle),
an ordinary task may have an arbitrary task execution time. More specifically, the probability
generating function (PGF) of level-¢ task execution times (measured in cycles) is denoted by

Li(z) = Y lxe2", where I, = P{task execution time of level-¢ task is & cycles}, (2.1)
k>1

with the additional assumption L,(0) = 0, i.e., all task execution times must be greater than
or equal to one cycle. Note that the above definition implies that task execution times are
independent of each other and independent of task arrivals.

The PGF of the number of level-¢ task arrivals during a cycle is denoted by

Ai(z) = D arez", where ap, = P{k tasks of level £ arrive during a cycle}, (2.2)
k>0
and it should meet the constraint ag, = A4,(0) > 0, i.e., the probability of no arrivals during

a cycle should be greater than zero. This in fact ensures the existence of idle cycles. The
above definition implies the independence of arrivals in two arbitrary different cycles and at

different priority levels.

Since it turns out that the overall execution time, i.e., the number of cycles necessary
for processing all actions induced by task-¢ arrivals within a cycle, plays a central role, we
introduce

Pg(z) = Zpk'gzk = Ag(Le(Z)), (23)

k>0

with the following additional assumptions:
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(1) The average number of actions induced by task-¢ arrivals within a cycle should be
smaller than one, i.e,, 0 < Pj(1) < 1. Note that this implies py, = Py(0) > 0 since
1> Pj(1) 2 P(1) ~ pos = 1 — poe.

(2) F/(z) #0, i.e., we explicitly exclude the trivial case Py(z) = pos + (1 — po)=.

(3) The radius of convergence Rp, of P;(z) should be larger than 1, which implies that all
moments are finite. Moreover, we require that Py(z) gets sufficiently large for z large
enough; a sufficient condition providing this is limr_mpl- Pi(z) = +oo.

In addition to the conditions above, we also need a “global” constraint: The load of the
system must be less than 100% on the average, that is, we assume that our system has to
deal with task arrivals keeping it not totally busy on the average. This may be expressed by

iP;(l) <1, (2.4)

since (1) equals the average number of actions caused by level-¢ task arrivals within a cycle.

We should mention here that the number of globally valid probability distributions meeting
our constraints is of course considerably limited due to the required independency. Globally
valid distributions consistent with our assumptions must be based on an interarrival distri-
bution with the memoryless property, i.e., an exponential or geometric distribution, leading
to (well-thumbed) Poisson- or Bernoulli-type arrivals, respectively.

The overall operation of our system may be viewed as a sequence of busy periods, consisting
of a single initial idle cycle and zero or more busy cycles each. We call a busy period feasible,
if all tasks processed during the busy period meet their service time deadline. Herein, the
service time of a task is the time (measured in cycles) from the beginning of the cycle in which
the task arrives at the system to the end of the cycle which completes the execution of the
task. For each priority level £, we assume a constant service time deadline T} > 2. Finally, a
sequence of feasible busy periods followed by a non-feasible busy period (containing at least
one deadline violation) is called a run, the sequence without the last (violating) busy period
is refered to by a successful run.

The random variable successful run duration, which is the time interval from the beginning
of an initial idle cycle to the beginning of the (idle) cycle starting the busy period contain-
ing the very first violation of a task’s deadline, was found to be a suitable —in particular,
mathematically tractable— measure for assessing the real-time performance of a scheduling
algorithm, see [S95], [DS93], [BS92], [SB92], [BS91], [SB94]. Note that, unlike conventional
queueing theory, this approach does not need stable-state assumptions. In [DS93] we showed!
that, under a few conditions (which follow easily from the ones mentioned above), the success-
ful run duration is approximately (asymptotically) exponentially distributed with a parameter
equal to the reciprocal of the average length of a single feasible busy period. Therefore, the
analysis of the distribution of the successtul run duration for an arbitrary scheduling algorithm
boils down to a relatively straightforward average case analysis.

Introducing the abbreviations 7p = {T,..., T} and T;_; = {Tp-1,..., 71}, the problem

1By using a very similar approach, we also solved the old problem of analyzing the duration of the successful
operation of the well-known slotted ALOHA collision resolution algorithm, which we found exponentially
distributed too; see [DS93b] and [Drm91] for details.
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of investigating SPS reduces to the derivation of

B (1)

(L] 7L .

BT, = g, (2.5)
© 1 BY0)

where B%](z) is the improper? PGF of the length of a single 77 -feasible busy period. The

derivation of B%](z) relies on combinatorial techniques applied to certain random trees rep-

resenting feasible busy periods. Convenient asymptotic expressions for ,LL[fLLl are eventually

obtained by singularity analysis of the PGFs involved.

3. COMBINATORICS

Our starting point for the combinatorial analysis is the one-to-one correspondence between
(feasible) busy periods and a family of width-constrained trees introduced in the investigation
of first come first served (FCFS) scheduling without priorities, cf. [SB92], which we briefly
review below. Note that static priority scheduling implies that tasks of the same priority level
are queued in FCFS order, whereas higher priority ones are queued in (preemptive) last come
first served (LCFS) order, which allows us to use some of the ideas of the analysis of FCFS
scheduling.

Dealing with FCFS allows us to consider an ezpanded tasks list, which contains all the
actions the tasks in the original task list consist of. After all, for the purpose of analysis, we
can be clairvoyant w.r.t. task execution times and even further arrivals. Anyway, it is easy
to see that if the length of the expanded task list is always bounded by 7" — 1 during a busy
period, then it is guaranteed that the busy period is T-feasible (and vice versa). Note that
shifting by 1 is a consequence of our definition of service time, which starts at the beginning
of the initial cycle.

Consider the example arrival sequence 3,2,0,0,0,1,2,0,0, ..., which gives the number d,
of actions to be executed due to task arrivals during the initial, first, second ... cycle of a
busy period; e.g., in the initial (idle-)cycle, there are task arrivals with a total task execution
time of do = 3 cycles. The construction of the corresponding tree works as follows: Each node
represents a cycle n of the busy period; the root corresponds to the initial cycle 0. A node n
has d, successors, according to the number of actions (i.e., cycles) caused by arrivals during
the corresponding cycle n, and is weighted by the appropriate probability Pd., cf. (2.3). For
some reason which will become clear soon, we use the following “aligned” representation of
the tree corresponding to the arrival sequence above:

>That is, Bg—LL}(l) < 1 since we restrict ourselves to feasible busy periods.
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Each node is also labeled by the number of the corresponding cycle within the busy period.
This labeling is obtained by a preorder traversal (left to right) of the tree. Consider now e.g.
the node with label 1: At the beginning of the corresponding cycle 1 in the busy period, the
initial (idle) action has just left the task list and the first action of the task(s) that arrived
during the initial cycle is to be executed. One encounters that, due to our special alignment,
the horizontal distance of that node from the right margin is equal to the length of the task
list at the time the corresponding cycle of the busy period is executed. A short reflection
should make it clear that this statement is true for all nodes in the tree. Therefore, limiting
the service times by a deadline T corresponds to limiting the width of the aligned tree to
T — 1 vertices.

We omit restating the symbolic equation describing this family of trees and its translation to
the ordinary generating function (OGF) from [SB92], since FCFS is a special case (L =1) of
SPS. However, to introduce the general technique (see [VF90] for a nice overview), we establish
some results on general busy periods required in §5. More specifically, we consider the (of
course well-known, see e.g. [Fel68, p. 298], [BS92]) situation where no deadline restrictions
are present. In this case, the duration of a busy period does not depend on the scheduling
discipline but only on the task arrivals. We have the following symbolic equation for the
family B! of corresponding trees:

B[L]:ng]O + ng] et pECL] d (3.1)

BIL Bll. .. gl
k

Note that those trees do not preserve the scheduled execution order.

The probability weights pch] denote the probability that the total number of actions arising
from tasks arriving during the initial cycle (denoted by () equals k. Since arrivals and task
execution times are independent, we obviously have

p = [2¥1PH(z)  for k >0,

where
PE(zy = T] Pu(2). (3.2)

We are interested in the probability bIE) that a random tree in B[LL] has size n, with the size
being the number of nodes in the tree. More specifically, we are looking for the PGF

BH(z) = S plHm, (3.3)

n>0

Since probability weights have the same compositional properties as counting weights (the
probability of the union and intersection of two disjoint and independent events equals the
sum and the product, respectively, as it is the case for cardinalities of sets), the whole theory of
translating admissible combinatorial constructions to the corresponding ordinary generating
functions (which are obviously PGFs in this case) apply. Accordingly, we have to mark each
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node with the counting variable z and to apply straightforward product and sum translations
to obtain the well-known functional equation (cf. [Fel68, p. 298], [MM78], [BS92])

BH(z) = = S pECLl (B[LI(Z)>k = pld (B[L](z)). (3.4)

k>0
We will summarize these (and other) results in Theorem 3.2 at the end of this section.

Now we will start with the extensions of the FCFS tree model required for multiple priority
levels. The basic idea is simple: Since tasks of the same priority level are queued in FCFS
order, whereas higher priority ones are handled according to the (preemptive) LCFS strat-
egy, we just have to “blow” up nodes in such a way that each of the resulting multi-nodes
corresponds to a single higher priority busy period. For example, assuming that the earlier
FCFS-tree represents arrivals at priority level 2, we let each node of that tree correspond to
the whole busy period initiated by those level-1 tasks that arrive during the original level-2
cycle (which is thus the initial cycle of this level-1 busy period). The following tree should
illustrate this procedure:

mn 0
@P}OP? OPO @Zh
mn 1 mn 2 mn §

C.Po QPO Opo QIH @pz C.Po Opo 21

mn, mn mn 6
ro (@ ro O)Po [ ¥ 1

mn 7 mn §

Q.Po O}Po Po

Each multi-node consists of the (black) initial node that belongs to a level-2 task, and zero
or more ordinary nodes making up the busy period of higher priority tasks arriving during
(and after) the initial cycle. As far as level-2 deadlines are concerned, it is solely the overall
number of nodes in a multi-node that counts. We thus arranged all nodes in a multi-node in
the sequence of their execution from left to right (with the initial node being the left-most
one). It is understood, however, that each multi-node actually corresponds to an aligned tree
involving level 1 tasks (and, in case of even higher priority levels, higher level ones “hidden”
in their multi-nodes).

Global execution order is constructed from the tree by a (left to right) preorder traversal
of all circular nodes, as in FCFS. This means, for example, that the task arrival in the 4th
(rightmost) node in the root multi-node mn0 does not take place during the 4th cycle of the
root busy period, but rather during the last cycle of the busy period represented by mn2.
Therefore, our tree does not reflect the global execution order, but rather something like a local
arrival order w.r.t. each individual cycle. Actually, multi-node boundaries are meaningful for
the immediate successors of a single cycle only. All the actions corresponding to their nodes
are appended at the end of the task list present at the time when the predecessor cycle is
executed. From then on, they are just anonymous actions that will be executed before newly
arriving ones. Note, however, that this makes sense only when task arrivals in different cycles
are independent of each other, recall (2.2).
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The fact that our tree does not reflect the global execution order causes another intricacy
connected with initial (black) nodes of a multi-node. To correctly model the fact that level-
2 arrivals during the initial cycle must wait until a possibly simultaneously initiated higher
priority busy period has terminated, we had to arrange initial nodes as leftmost ones. However,
they belong to a level-2 task and are obviously executed before their higher-priority neighbors.
Hence, all outer leftmost multi-nodes in our tree require special attention: They may exceed
the level-2 width-constraint provided that there are no level-2 arrivals in those nodes of the
multi-node that lie beyond the limit.

Our aligned trees thus guarantee that the distance of a node from the right margin repre-
sents the length of the task list at the time the corresponding cycle is executed. Consequently,
limiting e.g. level-2 service times by a deadline T, corresponds to limiting the width of the
aligned tree to T — 1 vertices. For technical reasons, however, it is more convenient to deal
with the family of aligned trees that are width-constrained by 7} instead of T, — 1, shifting
back everything by 1 at the end. Recalling the abbreviation 77 = {Ty,..., T}, we consider

the family CﬁfL] of Tp-width trees with the OGF (which is an improper PGF)

L

L L n
C) =3 - (3.5)
n>0
where
cEf]TL = P{total number of nodes of a random 7;-width tree is n}.
Note that c([f]TL = 0 since there is always a root node in any tree. For notational convenience,

we use abbreviations like the above ones where possible.
Our aim is to provide an equation for C’%](z) that involves C’%:ll](z), l.e., a recursive

formula. However, we first derive a symbolic equation of similar width-constrained trees @{7{;]
with L priority levels, which are solely generated by level-L arrivals during the initial cycle;
the connection to the actually desired family C% ! will be established subsequently. For further

notational convenience, we introduce the additional abbreviation C,EL} = C’,[f}L_IMTI; note that

L L
i =l

=L}
CTL_
_ L |
ﬁéL]O * ngi[L] A Z_)Eci{L] (L]  =lL) ot p[TLL] L] =Ll L]
CTL CTL—k-i-l U CTL—ICTL Cl e TL—lcTL
L] O L} O
+ Uroary teot U imy T (36
._»—[L}@ib] ---E{L} < gg{L]g[L] C{L} :
“r1 2 T, SEgiAg Bh e B 41

In the equation above, & denotes a single cycle with no level-L arrivals; its OGF is clearly
E(z)=porz.

It is easy to provide the required probability weights p{.[’], which denote the probability that
exactly k new actions arise as a consequence of (1) m > 0 level-L arrivals (but no higher
priority ones) during the initial cycle and (2) all higher-priority arrivals during the m arising



8 ULRICH SCHMID

(level- L-)successors. With quz’ (z) denoting the OGF of width-constrained trees for higher
priority levels L — 1,...,1, it 1s clear that

;T)Ec - (%] P (07{;:11](:)) for £ > 0; (3.7)
note that ﬁ{,“ = Dor.

However, it is more complicated to provide the probability weights vk]T ,k>Tp, > 1, which
reflect the situation of outer leftmost multi-nodes exceeding a width of Ty, as mentloned
earlier. For our argument, we use two counting variables y,w to take care of all cycles (y)
and those that are meaningful for level-L deadlines only (w). Now, while all inner multi-
nodes that arrived during the 1n1t1al cycle contribute to both y and w, we have to replace the
outer leftmost multi-node C (yw) by a special multi-node, say, C(w,y), that contributes
differently to w and y. More spemﬁcally, we require

C w
Zw chTL Y —ZCkTL Y Zw = ( TLl(l)_sTLl(y )>

n>1 k>n k>1

so that [y*][w")C(w,y) = CELTL” if k > n > 1 (and zero otherwise). But now it is clear that
fork>n>1

U&L = P{k actions arise with n being the last level-L “relevant” one}

(@lm w) =por  w

— I,k {L-1 —-1]
@nm w)=pr  w gy

= [y*][w"] e T=w Cry(v)

= [H][w"la(yw) =05 ), (3.8)

a(yw) is used as an abbreviation. Note that we can indeed discard the term C%:j](yw) in
the last but one step since, for any analytic function f(.), we have [y*] [w"] 2= f(yw) = 0 for
k>n.

The translation of the symbolic equation for C’T into a functional equation of the OGF's
involved yields

TL T,
—[L] {1} —[L L]
= ZZ L] II CE. ](z)-}-zHﬁ{ Z vTL+m 7, (2p0,L)™. (3.9)
=T —k+1 =1 m>1
Defining
L] 1
@, (2) = =¢ 03 forn>1
Cl)- )
L
%) =1

and the corresponding bivariate generating function

@[L](S,Z) =3 @L}(Z)S”, (3.10)

n>0
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multiplying (3.9) by QT ( ) yields

“zz

This primarily involves a simple Cauchy product; multiplying both sides by s7% and summing
up for 77, > 1, we find by using (3.7)

QTL 1 TL k Z)+ Z UTL+m Ty “pO L) .

m>1

S@‘[L}(S’ 5= z(@m(s, 2P (C%:Il](sn - po,L) + 2G(s, z)

and hence
zZporL — zG(s, z)

ZPL<CTL (s )) —s

(s, 2) =

By virtue of (3.8), we have

Gloz)= 3 3 i, (ema)s™
= 20 LIl alye) = CR ) o)™
= b [Tz;[ TL]Q(")T%STL} Cr 2 W)(epo)™
- Z o) =L O ) o)
o(s)HU(s, ),
where
s/y

(¥)(zpo,L)™

HE(s, 2) = y™—L ol
( ) 7nZZl[ ]1 _ S/y TL—I

i
,vm

- cLL,;;L(zpo,mz;( —)

TL-I )Z() ZPDL

k>1

Z[y"‘*’k]C%_ll](y)s (zpo,L)™
k>

k=1 <Po,L

(zpo,.L) [i.l:_(L”;éng_lJ

ZPo,L

i

ZPo.L

1 S (AlE-1] [L-1]
3 LPO,L (CTL_I (zpoz) — CI,TL_IZPO,L) -

(3.11)
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ORI epo ) = zpo nCEY(s)

L—1

po,L - 8

Remembering the abbreviation a(s) introduced in (3.8), we eventually obtain

Q—{L](s, = ZIzO,L B z[PL (C%:IU(S)) —por+s/z— S/z}H[L](s, z)
2P (CEs) - s Cr o) P (CE1N6)
_ 2po,z _ H(s, 2) (zpo — ) HH(s, 2)
P(CRTNe) s CETNe) T ) A (R ) -]
_ 505, (=po1) HIW(s, 2)

Cr @) [P (ChNs)) =] By

= , (3.12)
i) (s)
where
C[L—I](z )
(s 2) = (L, §F = Sny \FPol . 3.13
Qo) = Dol = e (3.13)

In order to obtain the desired width-constrained trees C:[,{;], we must take into account the
possibility of higher-priority arrivals in the initial cycle (cf. our example tree at the beginning

).
This is accomplished by
L
el =
[L 1] [L l] vv...v [L 1] v...v
a1, L] +ot Ck, T L] (] L] +e+ Ty, Ty (] |
el = L
CTL CTL—k+ICTL-k+2 o ‘CTL C1 . 'E{TL
vvv...v v...vvv...v
[L-1] (L-1]
+ Te41,71 4 +e CTp4m, Ty o (3.14)
epitiail | Al £...gomHpid | Bl
1 2 Ty L 1 2 T

Note that the triangular nodes above must not be counted in the OFG
(i.e., replicate) the initial cycle of the associated successor trees only.
The translation into a functional equation of the OGFs involved yields

, since they represent

() T R S
Ci(z)=>car: I T )

/C‘—‘O t:TL*k-*-l
L (L1)
+]I1C7 (=) 3 erfomm (spo)™. (3.15)
1=l m2>1

Note that extending the range of summation to & = 0 is justified by cg%il_}l = 0.
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Multiplying (3.15) by @{;](z) involves another Cauchy product

Q CTL z) = ZCLTL . Z CTL+mTL 1 (zpo.L)™.

m>1

Again multiplying this equation by s7t and summing up for T > 1, the second term above
yields

Is,z)= 3> 3 ) (spog)™TesTs

TL>1 m>TL +1

m-1

= Z cm TL . 7p0,L)m Z( ° )TL

m>2 Tp=1 <Po,.L
= H[L](s, z),

remember the derivation of (3.11), and we ﬁnally obtain the desired result

Qr()CH (=) = (™) (@ (s, 2) L V(s) + B, 2)) = [sT)QM(s,2)  (3.16)

according to (3.12).
Now we shift back our result in order to arrive at feasible busy periods, recall our comment
prior to (3.5). Denoting the improper PGF of 7p-feasible busy periods by

TL (Z) = BTL,...,Tl Z bn TL n’ (317)

n>0

where

b&L]TL = P {number of cycles of random 7-feasible busy period is n},

we obviously have BT
easily:

Theorem 3.1. For T, > 2,1 <{¢< L, the improper PGF of Tp,-feasible busy periods satisfies
the recursion

r,(2) = C’ -1, .T;-1(2) and the major result of this section follows

.....

L T
B[TL](Z) = £t [L P =1 for L >1,
11 s ) (o7 LT o B o)
[S ]BU‘ l](s) zPL(B%,-_lll(s))—s TS ] $~2po,L
BO(z) = 2.
Proof. Replacing C[L 1( } by B L~ 1]( ) in (3.16), (3.12), and (3.13) yields
[sT 1 QH(s, )
B%}(z) = = pra— for L > 1,
[s7e Qs 2)/ BT (s) — [sTe=1 HIE (s, 2)/ BT (5
BUY(z) = 2
with
(L-1] (1), . (L-1]
Qm(s, )= $Br,_, (2por) and H[L](s,z) = 587, (epor) Po.r By, (s)

2Py (B% s )) - *PoL =S (’3.18)
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from where the recursion given in our theorem follows easily. [
Note that this result covers the single priority level case (L =1) of [SB92] as well.

The following theorem lists a number of rather straightforward combinatorial properties:
Theorem 3.2. The PGFs BW(z) = k>0 b&L]zk and B{TLL}(z) = 2kso b%]vkzk of arbitrary and
T1-feastble busy periods, respectively, have the following properties:

(0) BY(z) solves the functional equation

BY(z) = =P (B (2)), (3.19)

and bé” =0, b[lL] = PIEN0) = [T, por > 0. Moreover, if PE(2) = 5 o0 plElen gs such
that B
ged(PE = ged{n p > 0,0 > 1) = a@

for some integer dL > 1, then BlH(z) = zY(zdm) for some Y(z) = ko Ykz® with

ged(Y) = 1.
(1) forn > 2, an'}L < b (with the inequality being strict if some T, is finite), b([f%-L =
b =0, 88 = 6", and limg, 7, oo BEL = B for all .

(2) B%](z) for Ty, =+ Ty all being finite is a rational function.

Proof. The functional equation for BF)(z) is just a restatement of (3.4). Since a busy period

obviously contains at least the initial cycle, we have bE)L] = 0, and the value of bSL] > 0 1s the
probability that there are no arrivals in the initial cycle.
To show the gcd-result, we first assume d = 1 and employ bootstrapping on Y (z) =

P (B[L](z)): Plugging in B (z) = blH, 4 O(z?%) for z — 0 resulting from above, it is
immediately apparent that y, > pch](bgL])k, since all functions involved have non-negative

Taylor coefficients. Hence, y > 0 when p,[cL] > 0, which establishes gcd(Y) = 1 for this case.
For d > 1, we have PU(z) = plH(z4) with ged(p™)) = 1, and it is easy to check that we

can write
BU(z) = = {fy(29), (3.20)

where bX(w) = wy(w) solves the functional equation |
d
b (w) = wptl (b (1)) ", (3.21)
Using the same reasoning as in the bootstrapping argument above, plugging in blf(w) =
b[lL]w + O(w?) into pl¥l(z) establishes that Y(w) = plt (b[L](w)) satisfies ged(Y) = 1. Since
BE(z) = zpl] (bm(zd)> = zY(z%) by (3.20) and (3.21), the statement in item (0) follows for
d > 1 as well.
Turning our attention to item (1), the upper bound holds since each feasible busy period is
obviously an arbitrary one. The results for n = 0 resp. n = 1 are implied by the fact that each
feasible busy period consists at least of the initial idle cycle, and that deadline restrictions

apply for n > 2 only since 7, > 2. Finally, for some T, being finite, there are of course
arbitrary busy periods of length n > 2 (occuring with probability > 0) that are not feasible,

S0 bEf,}TL < bl in this case.
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To prove item (2), it suffices to show that the coefficients [s™Q%(s, 2) and [s
—as defined in (3.18)— are rational functions (in z) for finite m, since [s7]f(
ST _ols™1f(s, z)[wl=™]g(w). For the first one, we have

[s™) ” S [s™

k
z Py (B%:?(s)) -8 B k>1 <ZPL (B%::](S)))

- 2 1<s>))k

=P (BE!

S

k=1

nfM( 1 )m—[ ~(m=0) (3.22)
= ——— z ; 3.

= \P(BETN(s))

the restriction of the range of summation is justified by Pp (B[TI;IH(S)) = po,L > 0, since

s/Pp (B[Ti:ll](s)) = wis + wys® + -+ and w; = 1/pyy. Note that (3.22) is a polynomial of

degree m in 1/z; all coefficients are explicitly expressible in terms of p; 1 and bch}L 11 -

Second, starting from (3.11), we find

_ n—1 S & _
H(s,2) = 37 bzl (zpo)” S (=) = 3 #21 (zpor)rst,
n>2 k=1 <Po,.L k>1n>htl
which shows that
B[L‘ll —5m [L-1] n
[Sm]H[L](s, z) = Ty-1 (ZPO,L) n=1 n,TL_l(Zp(J,L) . (3.23)
(zpo.L)™

Thus it follows that both (3.22) and (3.23) and hence B%](z) are rational functions provided
that B%:lll(z) is rational. Our induction argument is completed by stating the initial condition
BO) =2 [

4. GENERAL ASYMPTOTICS

Our Theorem 3.2 reveals that B%](z) 1s a rational function if all T},..., 7T}, are finite. For

relatively small T}’s, it is hence possible to compute B%](z) explicitly (a powerful computer
algebra system could do this), in the sense that the coefficients of the numerator and de-
nominator polynomials are expressible in terms of P, recall (2.3). In practically relevant
settings, however, this procedure is not feasible since service time deadlines are expressed in
multiples of a cycle and therefore quite large (say, 10°...10%). Therefore, it is mandatory to

provide simple asymptotic formulas for /z[f-;} —and hence Bf[]-LLI(l) and B%V(l), recall (2.5)—
for (sufficiently) large® 77.

*We employ this phrase or, equivalently, 7, — oo, to stress the fact that the asymptotic expression
in question —i.e., the implied constant in the O-term involved— is valid provided that all 7; € 7}, satisfy
Ty > Ty o for some fixed Ty o; note that Tt 0 1s usually not made explicit. Recall that one writes flz) = O(g(x))
for x — z¢ if there is some real constant M > 0 independent of z which guarantees | f(z)| < M|g(z)] for all z
In a suitable neighborhood of 2* (for * = co, a suitable neighborhood means r > 24 for some z,). Besides,
we use the notation f(z) = o(g(z)) for £ — x4 if limz .z, f(z)/9(z) = 0, and f(z) ~ g(z) for ¢ — z if
lim,—z, f(2)/9(x) = 1.
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The result for B%}(z) given in Theorem 3.1 is hence attacked by asymptotic methods
relying on (bivariate) singularity analysis. Actually, it is not difficult to see that the dominant
singularities are determined by the solutions of the well-known functional equation zU(s)—s =
0. Employing techniques from complex analysis, an asymptotic expansion for B%](z) as Tp

get large is eventually provided, which is uniformly valid for z € D(1,¢)", ¢ sufficiently small.

Since differentiation of such an expansion is permitted, B%}/(l) resp. B%](l) and hence ;L%]

are readily obtained. Finally, Theorems 3.5 and 3.7 of [DS93] are applied to derive uniform
asymptotic formulas for deadline meeting probabilities and all moments summarized in our
major Theorem 5.9.

Hence, a key role in our derivations is played by the solutions of the functional equation
F(s,z)=2U(s) —s5 =0, (4.1)

where U(s) denotes an analytic function with the properties

(1) U(s) has non-negative Taylor coefficients and U(0) >0, U(1) <1,

(2) U'(1) <1 and U"(s) # 0,

(3) the radius of convergence of U(s) is Ry > 1 and limg_p,- U(z) = +00.°

This type of functional equation has been studied extensively (and controversially) in the
literature, cf. [MMT78], [Can84], [MMS89] for some references. In general, it has several solu-
tions, but one is usually only interested in a particular one (with non-negative Taylor coeffi-
cients). We, however, require some results on other solutions as well. Therefore, alternative
approaches based on complex analysis must be provided — traditional ones (e.g., [MM39])
rely heavily on the a priori assumption of non-negative Taylor coefficients.

We start our detailed treatment with some well-known properties first, namely, that our
conditions on U(s) ensure that the equation

U'(z) = U(z) = Y (n — Dupz™ —ug =0 (4.2)
n>1
has a minimal positive solution ¢ = 7 with 0 < 7 < Ry; note that = > 1 if U(1) = 1. This
follows from the fact that the left-hand side of (4.2) is negative for z = 0 but monotonically
increasing to +oo for * — Ry, as can be seen e.g. from the Taylor expansion above in
conjunction with property (3). Defining

(4.3)

we first observe that p > 1 since, in case of 7 < 1, we have p— 1 > TU(r)/U(t)—1 =0
by property (2); if 7 > 1, the function f(z) = z/U(z) is strictly monotonically increasing for
v < 7 and f(1) > 1. Note also that p < 7 in case of 7 > 1.

Furthermore, it is easily checked that F(r, p) =0, Fy(r,p) = 0, and Fiy,(7,p) > 0, where
Fy(s, z) and Fi,(s, z) denotes the first and second partial derivative w.r.t. s, respectively. This
in fact gives rise to the following well-known '

*We use D(zo, R) to denote the open disk {z 1]z = z0] < R} with radius R around zo; Dz, R) stands for
the closed disk {z : |z — 20| < R}.

®Note that our following lemmas, except Lemma 4.2, remain valid even in case of an algebraic singularity
providing U(Ry) < oo but limy_ g, U'(z) = +oo0.
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Lemma 4.1. With the properties and notations (4.1)~(4.3) as stated above, the functional
equation F'(s,z) = zU(s)—s = 0 has a double-valued solution s = x(z) for z in a neighborhood
of z = p (which is not necessarily the only one) and

x(z)=r=B8-(1=z/p)"P+7y-(L=2/p) + O((1 = 2/p)**)  forz—p

with
g = ?_U_(./f% (4.4)
o 3U'<T)U"§;>”(~T§/;<r>U’"(r) 2 45)
5 = LOU(r) ét}[{)” (4.6)

Proof. Since zU(s) — s = 0 may be written as z = s/U(s) (provided that U(s) # 0, which is
true at least for real s > 0), the problem of finding a solution of F(s,z) = 0 is equivalent to
the problem of finding a functional inverse of f(s) = s/U(s). It is easy to verify that

f(7) = p,
oy Ulr)y=7U'(7) _
f (T) - U(T)2 - 07
wy . _TUr) _ pU"(7)
f (T) - U(T)2 - U(T) # 07
oy _ U+ 7UM(r) _ 3pU'(r)U"(r) = pU(r)U"(7)
() = - ,
U(r)? U(r)?
revealing that f(s) has a double p-point at s = 7. Thus we may apply Lagrange’s inversion
formula for multi-valued functions (cf. [Mar65, p. 92]) to establish that the particular (and of
course uniquely determined) functional inverse s = x(z) = fI~!(2) mapping a neighborhood
of z = p to a neighborhood of s = 7 is double-valued near z = p, an algebraic branch point
of first order. We immediately obtain

1 dn—-l
—_ _ n _ \n/2
X(Z) - rgl nldsn=1 1'[)(3) 3=T(Z p)
with ¥(s) = s—/%'(:—))jp. In the latter formula, any (fixed) branch of the square-root may

be chosen (we use the principal one), and it does not matter when we replace (z — p)*/? by

(=v/=p)"(1—2/p)™?%. Evaluating the first two terms of the sum above by means of the Taylor
expansion

Al =T 20 207(T)
sfU(s)—p  ["(r) "~ 3f"(r)?

some algebraic manipulations eventually establish the result of Lemma 4.1. [J

(5—7)—{—0((3—7)2) for s — 7,

Since x(z) is double-valued near p, it is possible to define two branches ((z), #(z), which are
single-valued and analytic in a suitable small neighborhood of any zy # p. Thus, F(s,z) =0
has two single-valued, analytic solutions in such a neighborhood. However, it is important to
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note that this result does not imply that there are no other solutions of F(s,z) =0, mapping
the neighborhood of z = zy to a different neighborhood s = 89, cf. [Can84] for an example.
Nevertheless, the following lemma establishes that there are no further solutions, even in the
case of arbitrary 2o = a, 0 < a < p, if we restrict ourselves to a certain domain of s

Lemma 4.2. Let U(z) be in accordance with (4.1)~(4.3). Then for any «, 0 < a < p arbitrary
but fixed there is some r,, T < ro < Ry, such that F(s,z) = zU(s) — s = 0 restricted to the
closed disk s € D(0,r,) has exactly two single-valued, analytic solutions s = ((z) and s = &(z),
with values lying entirely in the interior of D(0,7,) for every z € D(a,e), € > 0 sufficiently
small. Moreover, ((z) and k(x) are positive real-valued for real positive 0 < z < p, satisfying
((z) <7 and K(z) > T.

Proof. Setting z = «, we first look for real zeroes of al/(z) — z = 0 (which is straightforward
when viewed geometrically). Since a < p, it is clear that aU(r) =7 < pU(r) =7 = 0 but
al(0) > 0, so there must be a zero ¢, < 7; clearly, ¢, decreases (towards 0) as a decreases.
The Taylor expansion of al/(z) — z at (, reads

al(z) —z=(z ~ (a)<aU’(Ca) - 1) + Ra(z, ).

Now, because of aU'((x) < pU’'() = 1, remember (4.2) and (4.3), we see that (o 1s a simple
zero, and that al/(z) —z < 0 for z € ((4, (s + €) since Ry(z, ) = O((:c - (a)z). In addition,
U"(z) # 0 guarantees that Ry(z,q) increases faster than the linear term, causing another
zero® of al/(z) — = denoted by kg; clearly, ko > 7 and &, increases as a decreases. Anyway,
by the first mean value theorem of differential calculus, there exists some v, T < v <k, such

that

al(ky) — alU(T) S Ba— T

al'(v) = = 1.

Ky — T Roe — T

Thus,
al'(kqe) > aU'(v) > 1, (4.7)

which reveals that &, is a simple zero of al/(z) — 2. Note that there is no further non-negative
zero for non-negative values of a.

Considering complex arguments, we will first show that no other zeroes exist within the
open disk D(0, ;) by means of a Rouché-type argument. Let f(z) + 9(z) = aU(z) and
f(2) = 2, hence g(z) = aU(z) — z. According to our investigations concerning real arguments
above, we obtain for any z with {, < |z| = r < &,

1/(2) + 9(z) = aU(2)] < aU(l2]) = aU(r) < = |2] = | f(2)],

which establishes that the number of zeroes of f(z) and g(z) are the same, te., 1. Note, that
this inequality also ensures that no zeroes of al/(z) — z on |z| = r exist; the analyticity of
both f(z) and g(z) excludes poles on |z| = r.

This statement is possibly not true if U(s) has an algebraic (and not a polar) singularity on its circle
of convergence and « is (considerably) smaller than p, remember our remark on condition (3) of {4.1). The
following Rouché-argument, however, remains valid for any r < Ry, and so does the proof that there is no
additional fixed point on {z| = Ry,
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On |z] = k4, we obtain a second zero of al/(z) — z at z = k, and no others: Let ug, k>1
be the first non-zero coefficient of U(z) apart from ug > 0, and ¥ = k,e" for 0 < t < 27 but
t#2r/k,...,27(k — 1)/k, we obviously have

cU(Y)] < alug + uph*] + o Dk < al(kg) = alU(|y]) = k4. (4.8)

n>k

If9) = kae?™ Mk [ =1, k—1,it might be tha case that al/(v)) = k,; but then alU(y)— =0
1s only possible for ¥ = k.. Thus, we have showed that z — Kq 1s the only fixed point.

Since our simple zero &, is clearly an isolated one, the modulus of the next zero v, (if
there is one within D(0, Ry)) must fulfill |v,| > &,. Hence, choosing ro = (ks + R,)/2 with
Ry = min(Ry, |v,|) guarantees that no additional zero lies within the closed disk D(0,r,);
clearly, Ry > rq > ko > 7.

Next, we apply the implicit function theorem to prove that (, and k, indeed imply two
solutions (4(2) and x4(z) of F(s,z) = zU(s) — s = 0, which are single valued in the disk
z € D(a,€q4) for some g, = ¢(ry) > 0: the latter must be chosen sufficiently small in order
to guarantee that (,(z) and k4(z) remain in D(0,r,) for z € D(e,e4). Now, since F(s, z) is
analytic for s € D(0,7,) and z € D(a, ¢,), we only have to check whether

OF (s, z

._és_) o, = ol (30) = 1 £0
for s = (4 and so = kg, respectively. This, however, is an obvious consequence of (,, kg
being simple zeroes, as previously established.

Furthermore, if we restrict o to the closed interval I = [q, o] C (0, p), it is not hard to show
by topological means that there is some ¢ > 0 independent of a such that D(a,e) C D(a,e,)
for any o € I. For, assuming the contrary, i.e. that for every 6 > 0 there is some a5 € I such
that €4, < 6, we can define an infinite sequence {a"}u>1 with o™ = as,/n for some §; > 0.
Compactness of I ensures that there is an infinite convergent subsequence {a™ };>1, having a
limit o € [I; this limit o must fulfill e, = 0, establishing the required contradiction.

As a final step, we will remove the dependence on o and show that Ca(2) = ((z) and
Ka(z) = £(z) is independent of a. This is easily done by a straightforward analytic contin-
uation argument: We start with some «, < p (but close to p), so that (4,(2), Ka,(2) must
coincide with the two analytic branches ((z),&(z) of x(z) from Lemma 4.1. Our previous
considerations on the regions of validity ensure that it is possible to choose a finite sequence
Qy > 0 > @z > an, = oy with the property

o, € D(a1,€),a1 = D(ag,ﬁ),' L, Qn1 € D(O{n,é‘).

Thus, the regions of validity of z as established by a repeated application of our previous
results form a finite open covering of a set containing the interval oy, o], which establishes
that the functions (,(z) and ,,(z) must conincide for all ;. This completes the proof of
Lemma 4.2. [

The next lemma is analogous to Lemma 4.2 for o > p.

Lemma 4.3. Let U(s) be in accordance with (4.1)~(4.3). Then there exists some v > 0
and some r, T < r < Ry such that, for any a with p < a < p+ v arbitrary but fized,
F(s,z) = 2U(s) — s = 0 has ezactly two single-valued, analytic solutions s = ((z) and
s = k(z) (which are of course the same for all o), which lie entirely in the interior of the
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closed disk s € D(0,r) for every z € D(a,e), € > 0 sufficiently small. Moreover, ((z) and
k(z) are complez-valued and conjugated for real positive z.

Proof. Let = = p and s = 7/ # 7 but |7'| = 7, then we cannot have F(r',p) = 0 by the
same argument as used in the proof of Lemma 4.2, see (4.8). Thus, on |s| = 7 there is only a
(double) zero s = 7 of F(s,p) = 0. Consequently, since zeroes are isolated, we can find some
r > 7 such that F(s,p) # 0 for |s| = r. Moreover, by continuity w.r.t. z, there is some v > (
such that F(s,z) # 0 for [s| = r and p < 2 < p+ v as well. The function

1 Fy(s,z)
N(z)=— ———ds=#7Z — #P
( ) 2me lsl=r F(S,Z) s # #
counts, since F(s,z) does not have poles, the number of zeroes within |s| = r and is a

continuous function in 2. Since Lemma 4.2 shows that N(z) = 2 for z < p, this continuity
implies that N(z) = 2 for z < p + v too.

Thus, we (again!) only have to consider the two branches ((z) and «(z) of the double-
valued function x(z), which are single-valued and analytic for z > p. First of all, since ((z)
decreases as  decreases according to the proof of Lemma 4.2, it is clear that ((z) must be the
solution involving the principal branch of w'/? = (1 ~ z/p)'/? in the expansion of Lemma 4.1.
Therefore,

(=) == BT=2/p+ 71 (1—/p) + O((1 - 2/p)*").
8(2) =7+ BYL—z/p+7- (1= 2/p) + O((1  2/p)*?) (4.9)

for —m/2 < arg(l — 2/p) < 37/2, where the principal branch of the square-root for —7/2 <
w < 37/2 is to be used. Note that “slicing” along the negative imaginary axis argw = —mu /2
provides a domain of validity for z excluding the positive imaginary “axis” above z = p only,
thus covering both real z < p and z > p. For the latter case, we substitute 1 — z[p =
(z/p — 1)e'™ to obtain

((z)=7—=iByz/p=1=5-(z/p= 1)+ O((1 = 2/p)**),
A=) =7 4Bzl =1 =7 (z/p = 1)+ O((1 - 2/p)*?). (4.10)

The latter expansions reveal that both solutions are indeed complex valued for real z > p.
That they are conjugated follows easily from the fact that, given a solution s = f(z) of
zU(s) — s = 0, another one is obtained by g(z) = f(Z). Since f(2) # g(z) due to f(2)
being complex-valued for positive z, they must coincide with ((z) and &(z) and our assertion
follows. O

Summarizing the results of Lemma 4.2, Lemma 4.3, and Lemma 4.1, we can conclude that
for 0 < @ < p+4 v, v > 0 sufficiently small, there is some r, with r < o < Ry such that
F(s,z) = 0 has exactly two solutions ((z), x(z) (formed by the two analytic branches of a
single double valued solution, hence “joining” at o = p), which lie entirely in D(0,r,) for
z € D(a,e) for £ sufficiently small.

[t is not hard to see that ((z) is the well-known “natural” solution (positive Taylor co-
efficients, cf. [MM89]) of zU(s) — s = 0, which is in fact analytic in a much larger domain
and fulfills lim, .o ((2) = 0; our Lemma 4.2 did not provide the whole domain of analyticity.
However, whereas including a; = 0 in the statement of Lemma 4.2 would be possible for ((z),
this is not true for x(z), which is nonzero (= Ry) at z = 0 and could even tend to infinity as
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z — 0+. Anyway, the following lemma provides the required (well-known, cf. [MMS9]) facts
about {(z):

Lemma 4.4. Let U(s) be in accordance with (4.1)~(4.3). Then, the solution ((2) of F(s,2) =
zU(s) — s = 0 as established by Lemma 4.2, Lemma 4.3 is analytic in the indented disk
B, = Byl pyd) = {z: |2 < pt o, |arg(z ~ pr) — arg(p)]| > ¢,z # py = pe™/4 1 < | < q)
for somen >0,0< ¢ <7/2, and d = ged(U) = ged{n : u, > 0,n > 1}. It has exactly d
algebraic singularity of square-root type at z = p;, 1 <1< d, on its circle of convergence and
satisfies

(=) =2 =80 = 2/p)" 49 (1= =/p) + O((1 - Sp)*)]  Jorz s i A,
P (4.11)

The Taylor expansion {(z) = ¥ ,51 (22" has non-negative coefficients, (| = U(0) > 0, and
Cm > 0 for some m > 2. Finally, ((0) =0 but ((2) # 0 for all z 0.

Proof. From Lemma 4.2 it follows that ((z) is analytic in D(a,¢) for any 0 < o < p. Re-
membering the appropriate proof, we know that ¢(z) — 0 for real positive z — O+ and that
Fy(0,0) = —~1 # 0; hence, ((z) may in fact be continued analytically to D(a,e) for 0 < a < p
according to the implicit function theorem. This guarantees that the Taylor expansion of ((z)
around z = 0 exists. That all coefficients are positive follows easily from Lagrange’s inversion
formula (cf. [Mar65, p. 86]), yielding

1 4!

(o= = Una)] (4.12)

z=0’

since all coeflicients of U(z) and hence in U(z)" are non-negative. We also assumed that
U(0) > 0 and U"(z) # 0, which shows that (; = U(0) > 0 and also ¢, > 0 for some
m 2> 2. Finally, since ged(U) = d, it follows that we can write U(z) = u(z?). Plugging
this into (4.12), it is apparent that {, # 0, n > 2, is only possible for n — 1 = k - d since
f;’%—__lTU"(w) = dnd‘i"n_jz uHz)u'(z?)z?! evaluated at ¢ = 0 can only be non-zero when d
divides n — 1. Hence, ((z) may be written as ((z) = 2Y(z%) with ged(T) = 1. Note that all
those properties have already been derived by purely combinatorial arguments in item (0) of
Theorem 3.2.

Since all coefficients are non-negative, it is a trivial consequence of Pringsheim’s theorem
and the result of our Lemma 4.2 that z = p is the singularity determining the radius of
convergence. By (4.9) it is clear that it is an algebraic singularity of square-root type. Setting
w = ze?™!/4 50 that w — p; when z — p, we observe

M — T(wd) — T(Zd) = C(Z) —
= % - -i-(l =2/ 4y (L=2/p) + O((1 = 2/p)"?)  for z = p = po
=2 Bl by (L i)+ O((1 = w/p)) tor 0=

from where the expansion given in our lemma follows immediately. Hence, we have algebraic
singularities at p;, 1 <[ < d, on the circle of convergence, but no others: Using the argument
underlying (4.8) in the proof of Lemma 4.2, we find that for |z] = p but z, # p;

1C(z0)] < ((|z0]) = C(p) =7
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and hence |z’ (C(zd))' < pU'(7) = 1, which shows that z; is a regular point according to the
implicit function theorem. This permits us to extend the region of analyticity to the indented
disk A, defined in Lemma 4.4.

What remains to be done is to show that ((z) # 0 for = 3 0; assuming the contrary, i.e. |
((20) = 0 for zp # 0, the defining equation implies 0 = C(20) = ZOU(C(ZQ)) = zU(0) # 0,
providing the required contradiction. This completes the proof of Lemma 4.4. [

The next three lemmas provide a uniform asymptotic expansion for gn(z) = [s"]G(s, 2) for
n — oo, z € D(a,¢), where G(s, z) denotes a function analytic in a neighborhood of s = 0 and
z = a. Note that —by virtue of well-known theorems from the theory of analytic functions
of two complex variables, cf. [Mar65, p. 101ff]— ¢,(z) is analylic in a neighborhood of z = «;
we will use this important fact frequently and without explicit notice.

The following lemma deals with the most important case where both solutions of our
functional equation exist. For its proof, we use some well-known asymptotic techniques relying
on singularity analysis (extended to bivariate functions, as in [SB94], for example). Such
techniques exploit the fact that the Taylor coeficients of analytic functions are primarily
determined by the singularities on the circle of convergence. An overview of asymptotic
methods, in particular of translation lemmas and the method of Darboux, may be found in
[FO90] and [BenT74]. However, we will only need elementary techniques, namely subtracted
singularities and Cauchy’s estimates.

Lemma 4.5. Let 0 < a < oo be arbitrary but fived. Suppose that U(s) and W(s) are analytic
within the open disk D(0, Ry) and that there exists some 14, 0 < ry < Ry such that
W(s)

Gls,2) = zU(s) — s

has at most two simple pbles s = ((2) and s = k(z), lying entirely in the interior of the closed
disk s € D(0,74) for every z € D(a, ), € > 0 sufficiently small. Then, gn(z) = [s"]|G(s, 2) is
analytic and fulfills
R0
1—zU"(¢(2)

n

Wik(z
) ((2)~ D) 4 - z[(]’((fc)(>z)) k()" L O(ro™)

for n — oo, where the remainder term denotes an analytic function and is untform for
z € D(a,e).

Proof. Since G(s, z) is clearly analytic in a neighborhood of s = 0 and z = o > 0, it follows
from standard devices (cf. [Mar65, Thm. 3.8]) that g,(z) is analytic in a neighborhood of
z = o. Expanding zU(s) — s in powers of s — ((z) by using its bivariate Taylor expansion, we
find

2Us) = s = [20(¢(2) = 1] (s =€) + O (3(s - ¢())
[zU’(C(z)) — 1} (s - Cf,(z)) (1 + O<s - C(z)))

for s — ((z), cf. the proof of Lemma 4.2. Note that the remainder is uniform in = and denotes
an analytic function for s in a neighborhood of ((z) and z € D(a, ¢), with a zero at s = ((z).
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Using W (s) = W'(((z)) + O(s - C(z)) for s — ((z), we find

Voo W(s)
(5,2) U(s) —s
W(¢(=)) +0(s - ¢(2))
= 14+0(s—{(z
(U(¢2) - 1) (s~<<z>)( )
_ W)
_—ZU'<(;(Z))~—1 s —((2)

+ O(1) for s — ((z). (4.13)

The remainder O(1) is uniform in z and denotes an analytic function

W)
zU’(C(z)) -1 s—=((z)

Ri(s,z) = G(s,z) —

which has no singularity at s = ((z). However, since the subtracted singularity term has
no further singularities, it is clear that Ry(s, z) must still have the remaining singularities of
G(s, z). ‘

Repeating the derivations above with x(z) instead of ((z), we thus obtain

Bi(s,z) = G(s,2) + O(1)

B W(/c(z)) . 1
- zU’(n(z)) —-1 s—«(z)

+ 0(1) for s — k(z). (4.14)

The uniform remainder O(1) above denotes a function Ra(s, z), which is obviously analytic

for s € D(0,74), z € D(a, ). )
The remaining thing to do is to determine the desired coefficient, which is easy due to the

geometric series involved in the major terms in (4.13) and (4.14). We finally obtain

W(C(z)) ) I/V(fc(z))
zU’(C(z)) ~1 zU’(fc(z)) -1
for n — oo, uniformly for z & D(a,¢). The remainder term follows easily from Cauchy’s

estimates, which imply that [s"]Ry(s, z) = O(rz™). This eventually completes the proof of
Lemma 4.5. [J

w(2)70* 1 0@z
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o
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Remembering the fact that zU(s) — s has two simple zeroes for = # p but a double one for
z = p, Lemma 4.5 is not directly applicable in the latter case. However, since the double pole
results from the simple poles ((z) and %(z) joining at z = p (cf. the proof of Lemma 4.2),
the appropriate asymptotic behavior may be obtained via expressing the major terms of the
expansion provided by Lemma 4.5 in fractional powers by means of (4.10); note that g,(z)
and the function represented by the remainder term (and hence the sum of the major terms!)
must be analytic even at z = p.
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Lemma 4.6. With the notations and conditions of Lemma 4.5 and Lemma 4. L, i a neigh-
borhood of z = p we have the expansion

. Bi{n+1)v
Q’n(z) - r“("“)ﬂW(r)e“s("*”“/f Sln( T )

[ (= o) o enos)|

Jorn — co, which is uniformly valid for allv = \/z/p— 1 = O(L/n), ie., |z = p| = O(1/n?).

Proof. In a neighborhood of z = p with —17/2 < arg(z/p — 1) < 37/2, we may of course
substitute expansion (4.10) for {(z) and &(z) into the result of Lemma 4. 5; the fact that g,(2)
must be analytic even at z = p reveals that “slicing” the domain of validity is in fact not

necessary here.
We consider the first term (with k replacing n + 1), i.e.,

W (¢(2))
1- zU’( (= ))

first. Abbreviating v = Vz/p—1=0(1/n) = O(1/k) and remembering expansion (4.10) for
((z), we have

() = (7 =i -y + O(v?) "

T__ke——k log (l—iﬁv/f—'va/T-_l-O(ua'))

<

gi(z) = ¢(z)7*

k(i i 2 100
= T“keiﬁkv/Te"‘gkUQ/T(l + O(kv3)> uniformly for v = O(1/k) and k — oo,

where we used the relation between vy and § from (4.5). Differentiating expansion (4.10)
w.r.t. z, we find

C'(Z)=*——'—-Z+O(v) for v — 0;

differentiating the defining equation zU( ((= )) —{(z) = 0 w.r.t. z, we obtain U(C(2)> -
('(= )[1 —-ZU'( ((z ))] and hence

! o) _ =) (4.15)

(1+2%)(=iB/(20) — 7 + O(v))
T — zﬂv + O(v?)

<32 Brom)(1+ 2 o)
__g

(- __+—+O<>) 2 (2 v o)

L
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for v — 0. Finally, using the Taylor expansion of W(s) at s = 7, we easily find
W(¢(z)) = W(r) = ipW'(r)o+ 0(v?)  for v — 0.
Putting everything together, we eventually obtain

92(3) - T—keiﬁkv/re—éku2/7<l + O(kv3)>

S+ B o) w1 i‘”};(}) +0(%))

iBkv/T : / .
k1At sk r € 3 BW'(7) 3 206\ ‘
=7 AW (r)e i (1 <—_W(T) 5 )v + O(v?)

for all v = O(1/k) and k — oo; note that O(kv*) = O(v?) since kv® < Mv? due tov = O(1/k).
In order to determine the second term gf(z) in the result of Lemma 4.5, we just have to replace
B by —8, cf. expansions (4.10). We therefore obtain

KLY — k-1 —5ku2/76—iﬁku/r BW'(r) 246 '
gx(2) = =77 W (7)e 5 (1 + ( OREN )v +0(v?)

for all v = O(1/k) and k — oo; hence it follows that

gn(2) = 97CL+1(Z) + gn41(2) £ O(rJ")
— T_(n+2),3W(T)€_5(n+1)v2/T

«(B(nt+1)v
sin{ =22 W'(r) 26 n+1)y ~n
. [ ( . ) —< (7('))—73_> cos(ﬂ-j—-)—)-i-()(v)}-f-O(ra )

Noting that the remainder O(r;™) vanishes in the remainder already present since 7, > 7
according to Lemma 4.5, some straightforward algebraic manipulations finally establish the
result of Lemma 4.6. [

The last lemma dealing with the coefficients of a bivariate analytic function is devoted to
the case where only one solution of our functional equation exists. It is thus very similar to
Lemma 4.5. However, we spend some effort on further evaluating the remainder term.

Lemma 4.7. Let 0 < « < oo be arbitrary but fized. With the notations of Lemma 4.4,
suppose that U(s) and W(s) are analytic within the indented disk A, = A, (n, ¢,d) (for the
same d) and fulfill

Wi(s) = wlo) = 2(a)(1 = s/a)"* + yw (o) (1 ~ s/o1) + O((1 = /01

(4.16)
U(s) = ular) = v(e)(1 = s/0)' + w(e)(1 = s/ar) + O((1 = 5/0)*?)
(4.17)
for s — o in A, If
G(s,z) = Uvg;()si -
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15 such that it has at most one simple pole s = ((z) lying entirely in the interior of the closed
disk s € D(0, ) for every z € D(a,e), £ > 0 sufficiently small, then g,(z) = [s"1G(s, 2) is
analytic and fulfills

_ W(c=)et) b
gn(2) = 1—3U’(C(2))

+ 0 (Ru(2)) [01 (Bal))n~2/20™ + O(n_w?g_")} (4.18)

for n — oo, where

e el Ao —L(zle)  _=v(o)
=g e R 2ﬁ<w(@)+@—zu(@)>' (4.19)

O1(.) denotes a O-term with implied constant M < 1 + ¢, for some small e > 0; it could
entirely be omitted for both Ri(z) and Ry(z) in case of d = 1. All remainder terms represent
analytic functions and are uniform for z € D(a,¢).

Proof. The major term is derived exactly as in Lemma 4.5. To establish the remainder term,
we first note that G(s,z) is obviously analytic for s € A, for any z € D(a, ). Abbreviating
w = w(g) and similarily for z, u, v, we have

w—a(l = /o) + O((1 = s/ar))
zu — 2v(1 — s/ 0))V/2 + O((l - s/g;)) + (1 =3/~ 1)o
w 1=l —s/a)?+0((1-s/a))
o - 2(U= /o) + O((1 - s/a)

)1 = s/2)+ 0((1 = 5/21))]

G(s,z) =

w w [(3} zv

zu—po  zu—p LM zu— g

(4.20)

for s — g, 1 <1 < d Note that 2u — gy # 0 for z € D(a,¢) since we excluded poles
other than ((z) in our conditions. Now, applying a simple (multivariate) transfer lemma (cf.
[FO90], [SB94]), we immediately obtain the contribution of the singularity at s = g; to [s"],
namely,

w(or) [<$(91)+ zv(01) 1

o= zu(er) Nw(a) o — zu(g,)) r(_1/2)”"3/297n + O(n—5/2QfH)J- (4.21)

Note that translating O((l - 3/91)) literally would provide only a remainder involving n=2.
However, since 1 — s/g; is analytic, we may safely “jump” to the next term O((l - 5/@1)3/2).

Adding up the d contributions involves adding up 7™ and related sums. First, with ¢*
Ch=emld | <1 < d, denoting the d-th roots of unity, we readily obtain

d
—im __ —
LT T

0 otherwise,

] — (dm {d ifm =0 mod d,
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by applying de I'Hospital’s rule in the first case. Moreover, for any analytic function flz) =
22k>0 frz*, we have

d

DET) = S = S Rt = 04(d f(2)),

=1 k>0 =1 k>0
k+n=0" mod d
in case of d = 1, the O1(.) is of course not required. Since or = 0e*™ % = ¢! this means
that we can simply replace any instance of g, in (4.21) by p when adding up if the result is
multiplied by d and put in a O;-term. Noting that ['(-1/2) = =2\/7 eventually yields the

coefficients O (Rl(z)) and Oy (Rg(z)> given in our lemma. ([J

Corollary 4.8. The result of Lemma 4.7 is valid if U(s) and W(s) are not singular on |z| =
Q1.

Proof. Dealing with the major asymptotic contribution is not altered. For the remainder
term, we denote by G(s,z) the singular function dealt with in Lemma 4.7 (which may be
considered as a “worst case bound”). Since G(s,z) = G(g;,z) + O(1 — z/or) for z — p; here,
it follows by recalling (4.20) that

_ Gls2) = Gla, 2)
G(s,z) —wla)/(zuor) — a1)

Since the constant terms G(g1, 2), w(o;)/(zu(e;) — ;) do not matter, a simple o-type trans-
fer lemma from [FO90] reveals that the contribution from z = g satisfies [s"]G(s,z) =

0([3"]@(3,2’)) =0 ([Sn]ﬁ(s, z)) for n — oo sufficiently large. [
[t should be noted, however, that the remainder provided by Corollary 4.8 is a coarse estimate,
which can usually be improved considerably when the singularities of W (s), U(s) are available.

= O((l - 2/91)1/2) = o(1) for z — p.

Observe carefully that the remainders established in Lemma 4.7 resp Corollary 4.8 are also
valid for Lemma 4.5 if the conditions on W(s) and U(s) are satisfied. However, we cannot
guarantee that there are no more significant terms arising from additional zeroes of 2U(s) —s

for s € D(0, ¢) N D(0,7,) in this case.

For our last general lemma, we adopt standard techniques from complex analysis ([Mar65,
p- 861]) to provide some results on the functional inverse of an convergent sequence of analytic
functions:

Lemma 4.9. Let f(z) and va(2), n > 1, be analytic for z € D(zy,2), ¢ > 0, with f(z)
having a simple so-point at z = 25 and |v,(2)| < v, = o(1) uniformly as n — oo, Then, the
Junctional inverse fU(s) of fu(z) = f(2) = va(z) exists and is analytic in D(sg,8) for some
6 > 0 independently of n. Moreover, we have

| | v (f1(5))
(g = fl=t(s R(S)  with g,(s) = ‘-<————— @ 'Ufzz

untformly for n — oo (further terms are available).
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Proof. If an analytic function f(z) has a simple (obviously isolated) so-point at z = zg, then
there exists a circle v : |2 — 2| = p > 0 such that f(z) has no so-points in D(zg, p) except at
zg itself. If I' = f(¥), let § > 0 be the minimal distance between sp and I,

If [s — so| < 6, we obviously have | f(z) —so| > 6 > |s —so| for z € v and hence, by Rouché’s
Theorem, it follows that f(z) —sg and f(z) — s = f(2) = so+ (so — s) have the same number
of zeroes inside v, i.e., exactly one. Thus, for any function g(z) analytic on D(z, p), we may
write

1 "(z
g(f[‘”(s)) = iw—z.[,g(:)f(fzfjs dz for s € D(so,8).

Note that obviously |f(z) — s| > “f(z) — So| — |s — Soll > 1> 0for z €y and s € D(sg, §).

For n sufficiently large, it is not hard to establish that similar results hold for fu(z) =
f(2) = va(z) as well: Considering the function fa(2) = fa(zo), it follows by our standard
continuity argument (cf. Lemma 4.3) that it has the same number of zeroes as f(z) = f(zo)
for z € Dz, p), i.e., exactly one, provided that n is sufficiently large. Thus, p may be
chosen independently of n. Moreover, for n > ng sufficiently large with |v,,(2)| < 6/2 for

z € D(zo, p), we find |f,(2) — so| > “f(z) = 3ol = |va(2)|| > 6/2 > |s — 50| for z € v and hence

g(fs) = L g(z)—f-’/i@— dz  for s € D(sq,6/2).

" 271 Jy fal(z) = s

Again, for n > ng, |fa(z) —s| >n/2 >0 for z € v and s € D(s0,6/2).
Choosing ¢(z) = z, some algebra shows

LR 1 AP -ue)
270y fo(z) — s dz = 27ri[, f(z) = s —v,(2) d
L (('(2) = h(2) @ wafe)?

218 Sy flz)—s k>0 (f(z)~s>k

dz

R RPN By (O T O L e O I
T 27i Jy flz)—s d +,§ 27ri-[y (f(z) __S)k“ d ,;272'[, (f(z) —s)kH d

and, by partial integration,

/ zf'(2)va(2)F J [ v = zv,(2)¥; dv = va(2)F + zkv, (2)* 10! (2) dz}
T dr= |, ) . -1
k (f(z) - s) " du = g dz; = e

It thus follows that
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Evaluating

1 w(z) L _lp v, (2)F I dt (2 ()
o LT R = s Resy e = v, (2)
QWZ‘[Yk(f(Z)-—-S)k k (f(z)—s)k /C' de <f(z)—s)k

k

z:(:f{—”(s)

(in particular for k£ = 1) and using the (Cauchy) estimate

RO L Y NE L B
27ri/;k(f(z)~—s>k dz < k(T]/Q)k "‘O( n)

for finite £ (in particular for k = 2), the expansion given in Lemma 4.9 follows. O

5. SPECIFIC ASYMPTOTICS

In this section, we will apply the general tools developed in §4 to the result of Theorem 3.1.
Our general approach is to “reduce” the PGF of 7-feasible busy periods B%:](z) to the

solutions B¥(z), K(z) of the functional equation zPH(s) — 5 = 0 for arbitrary busy
periods, cf. Theorem 3.2. This is accomplished by expressing the (solutions of the) “sequence”
of functional equations

zP[L](S) —s=0 = zPL(B{L‘”(s)) -s=0 = =zP (B%:ll](s)> —s=0

in terms of their respective “predecessor”. More specifically, the solutions B, K (L)(z) of
zP(s)~s = 0 derived in Lemma 5.1 provide solutions (B (2), kl(z) of 2P, (B[L"U(s)) -5 =
0 established in Lemma 5.3. They are eventually used in Lemma 5.4 for developing the
solutions C%]_l(z), fc%]_l(z) of 2P, (B[Ti:lll(s)) — s = 0. Since it will be shown in Lemma 5.5

that B%](z) is expressible in terms of B%::](z) and C%]-x (z), K%]_l (2), it is only necessary to

plug in the results of Lemma 5.4 to obtain a recursive formula for B%](z) (Lemma 5.6 and
Lemma 5.7). This recursion is solved in Lemma 5.8, which almost immediately leads to our
major Theorem 5.9.

We start our detailled derivations with the following results on the PGF of arbitrary busy
periods, recall Theorem 3.2:

Lemma 5.1. The functional equation
F(s,2) = 2zPE(s) — s =0

with P (s) =TT, Pu(s) and Py(s) defined by (2.3) conforms to (4.1)~(4.3) for some vl > 1,
T < 71 gpd pl > ) pP <t and Lemma 4.1-Lemma 4.4 are applicable. Denoting
the solutions ((z) and k(z) predicted by Lemma 4.2 by BY(z) and KW(z), respectively,
BY(z) is the PGF of arbitrary busy periods and is analytic within the indented disk Ay =

A u(n, o, dE) with dH = ged( P, [t satisfies

BU(z) = S| = (=2 o= /)] porz s g ()
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with B (and further coefficients) given by (4.4), and

BH(1) =1
, 1
BEY(1) = — = > 0, 5.2
W=1—%a (1) 1-%, B o
KH(1) = xp > 1
K1) = —ZE "L <0,

L= P (k) ~ 1= 5k, Pilrg)
where &1, is easily computed numerically as the minimal solution of z = PH(z) forz > 1.

Proof. Given the conditions on P,(z) in Section 2, establishing properties (1)-(3) of (4.1) is
trivial. Thus, there is some 7 > 1 satisfying

P P (L)) PH(FEy = o (5.3)
and some pl) > 1 with
wo _ T < 7O
7= P ’

which are readily computed by solving (5.3) numerically. Evaluating the characteristic equa-
tion (4.2) for Level L, i.e.,

2P (z) — PH(z) = 2P} (2) PE~Y(2) + 2 Py(2) P (o) — Pr(z) P ()

at = 7IE71 which solves the characteristic equation for Level L — 1, we obtain a value of
=P (rlL-1) pIE-1(£L-11) 5 0. Hence it follows that £} < 7E=11 ¢f. the Taylor expansion
in (4.2).

Applying Lemma 4.2 establishes that there are indeed two solutions ((z) = BW(z) and
k(z) = K¥(z), and Lemma 4.4 confirms that BW(z2) is the “right” (analytic) solution of
(3.19); the appropriate Taylor coeficients are uniquely defined by their recurrence relation.
Note also that F'(1,1) = 0 implies that either BFI(1) = 1 or KI)(1) = 1; the latter, however,
is impossible since K(1) > 78} > 1 by Lemma 4.2. The expansion (5.1) is exactly the one
of (4.11). Finally, remembering (4.15), we obtain

B ()
B (z) = — 1__ZP[L}’<B[L](z)) B 1—zP[L1’(B[”(Z)) o4
ity = K) ] _ P(kI) (53)
- 1 zP[L]’(K[L](z)) 1 — ZP[L]/(K[L](Z)) .

and the values given in Lemma 5.1 follow. Note that K[Lll(l) < 0 is confirmed by plugging
in (4.7) for @ = 1 in (5.5), and BI'(1) > 0 follows from (2.4). O

The next Lemma states some straightforward relations of the PGF’s of feasible busy periods
and the PGF of arbitrary ones:

Lemma 5.2. The improper PGF of Ty, -feasible busy periods B%](z) has the following analytic
properties:
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(1) imr, o B»Epli}(z) = BULl(z) uniformly for |z] <r < P that is,

V() = 1B8() = BRI < VI = vy = o) as Ty — o,
uniformly for |z] < r; Vj{-f](z) has non-negative Taylor coefficients.

(2) B%](l) <1 and B,%],(l) < BIEY(1) (with the inequality being strict if some T} is finite).

Proof. Remembering Theorem 3.2, an application of the simple continuity lemma provided
as Lemma 2.1 in [DS93] establishes the uniform limiting property in item (1); it will turn out
that VT[LL] is in fact exponentially small. Note that BIZI(z) is convergent even for z = pl& since
it has an algebraic singularity of square-root type according to Lemma 5.1. [V}LL](:)} < Vf}LLJ(r)
for |z| = r follows easily from the non-negative coefficients of V}f](z). Finally, the values given
in item (2) are obvious since 1 < pl!l lies in the region of analyticity. [

We should mention that Lemma 5.2 is convenient but not really necessary. Instead of relying
on the combinatorial Theorem 3.2, it would be possible to derive this result by analytically
studying the solutions of our functional equations. In fact, we could state Lemma 5.2 as an
(induction) hypothesis and employ an all encompassing induction proof of our major lemmas
as well.

The next lemma establishes the solutions (£)(z), xlH(z) of the important functional equa-
tion z Py, (B[L‘”(s)) — s = 0 in terms of the solutions BIF)(z), KH(z) of PE(s) — 5 =0

provided in Lemma 5.1.

Lemma 5.3. The functional equation

2UH(s) = s = 2P, (BEY(s)) —s =0 (5.6)
for L > 2 conforms to (4.1)-(4.3) for
T = plB P (7 1H) 1 < 701 < plL-1] (5.7)
Pl = ol 5 1,

where 7 and plX are defined in Lemma 5.1 and

BI-(rlEl) = L

p[L—ll(T[L])
- p[LIPL(T[Ll)p[b‘l]’(T[L})'

B[L—ll’(T[L])

o0

Lemma 4.1, Lemma 4.3, and Lemma 4.4 are applicable, and even Lemma 4.2 applies with
a limited range of validity. More specifically, depending on the value

F(TTT[TI%LH——IH if the radius of convergence of Pp(z) fulfills Rpy > i, (5.8)
ap = -
L 0 otherwise,

where always of, < plEl, we distinguish 2 cases:



30 ULRICH SCHMID

(1) Ifap < @ < pE + v for some v > 0, there zs some rop with T < v < plE=1
ensuring that there are two analytic solutions (! (z) and n£ I(z) (formmj two branches
of a double-valued solution with branch point z = plll) which lie entirely in the interior
of the closed disk D(0, TO,L) for z € D(a,¢), = sufficiently small. For positive z with
ap <z < pHl, we have (H(z )<T”andn[ Lz ) > riH,

(2) If 0 < a < ar, only (E(2) remains within the closed disk s € D(0, ple=1y for = ¢

D(a, z), ¢ sufficiently small.
Moreover, z‘he solutions (IL(2) and &lB)(z2) are explicitly expressible in terms of the functions
B(2) and KW(z), namely

(B(z) = 2P, (BY(2)) = P[Lﬁ[L;(;)](z)) for z € A, (5.9)
wll(z) = 2Py (KWH(2)) = P[L_[l] [(L;(;)](z)) for z € D(a,e), a > ay, 510
(valid for z = pl! as well), with the properties
BE-(cll(2)) = BlH(2) (5.11)
BEU(klH(2)) = K1H(2). (5.12)

Proof. We first have to verify that properties (1)~(3) of (4.1) apply for U(s). The first one
follows trivially from the conditions on P;(z) according to (2.3) and the results of Lemma 5.1.
Moreover, we also find

1-PA) - =P ,(1) - PL(1)
L=P1) = =P 4(1)

!

1 - U (1) =1 - Py1)BE-T(1) = > 0,
by using (5.2) and (2.4). Condition (2) of (2.3) in conjunction with the fact that BUE-1(z)
has non-negative Taylor coefficients establishes that UX"(z) = 0. Finally, we have a radius

of convergence

< plt=1 with lim,_. - U if Rp, < 7b~1]
Ry = {r <p with lime—p (z) = +oo if Rp, < 71, (5.13)

plE=1 with hmI_,RU[L - U Ly (z) = 400 otherwise.

The former case follows from condition (3) on (2.3), the latter from the fact that BIE-1(s)
has an algebraic branch point of first order at s = plf=1 5o that

gl-1

ppial .
2p

BE (5) ~ L—s/plEm)= 2 for s — plb=in A oy,

cf. expansion (4.9), and hence

5[L—11p£(T[L—1})
QP[L”I]

U (5) ~ (1—s/p" =12 o Lo for s — ple=V ip Az, (5.14)

if only PJ(ri£=1) + 0; this, however, is trivial since the PGF Pr(z) has non-negative Taylor
coefficients.
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Hence it follows that Lemma 4.1, Lemma 4.3, and Lemma 4.4 are applicable, and we are
assured that there is some 7] > 1 satisfying (4.2), that is,

P (B ) BE (1) — py (B8 = (5.15)
clearly, 78 < Ry < plE=1. Setting 7 = BIE-1(7H) and hence 7l = 7/ PL=1(7) according
to the defining equation, cf. Lemma 5.1, it follows from (5.4) that

B[L‘”/(Tif]) 3 P[L—II(T)

T 1 - A pe-y
Inserting this in (5.15) yields, after some algebraic manipulations,
0=rPi(r) — (1 — BPEN (1)) Py(r)
= 7P} (1) PE(r) — PEI(r) 4 7 P (r) PE-1T (1)
= 7P (r) = pl(7),

which is the characteristic equation (5.3). Hence, 7l = 7 and BE-U(rL]) = 7L 5o that

w_ ™ o Pr (712
Tool = Py T AL
(L] i ) (]

oo = Py (BE-1(-E) T P(rimy T °

From the considerations at the beginning, it is clear that Lemma 4.2 also applies, without
restrictions if Rp, < 727, and with the restriction that the second solution £(z) may not
exist otherwise. More specifically, if the “key equation”

aPy (BE(pE)) — plE=t] < o Py (7lE1) — ple-1) (5.16)

evaluates to a value larger than zero, it is guaranteed that the second solution exists for
z € D(a,¢). For a negative value, only the single analytic solution ((z) remains since the
first term does not become large enough to cause the second zero k,, cf. the footnote in the
proof of Lemma 4.2 The value

plE~1] rlL-1]
ayp = PL(T[L_I]) = P[L](T[L—ll) (517)
providing
ap Pr(rEy — ple-1 = g (5.18)

of course determines the limit concerning the unrestricted applicability of Lemma 4.2; note
that

Peo ™ a8y 7 UG T
since o/U")(x) is monotonically decreasing for = > 7 and 7 < pll-1],
However, our tools are no longer applicable for &« = a7 since we leave the domain of

analyticity of F'(s, z). However, Lemma 4.2 establishes that the 2nd solution x(z) exists for
real z > o but not for smaller positive arguments. Limiting considerations based on (4.15)
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—for &(z) instead of ((z)— reveal that lim,_.,, 4 £'(z) = 0 due to (5.14). Anyway, we do not
bother ourselves with the analysis of this special case.

What remains to be done is to justify the explicit expressions for ¢(£l(z) and xll(z) and
the properties stated in Lemma 5.3. Plugging

ZPl BlL] z N
) = <P (BH:)) = oo 1(( 7 )l) - A

for z € A into the defining functional equation (5.6) shows

(L1 5
“Pu(BE ) - e =< (B ) — R (5910)

(5.19)
= 2P, (B(2)) - 2P, (BH(2)) = 0, (5.20)

confirming (5.9) and (5.11), However, in order not to be only formally va.lld it must be
ensured that |BE(z)| < 7(E=1 but this follows trivially from the fact that |¢IL ( W< rar <
Ry < ptt=1 by Lemma 4.2 and (5.13).
An analogous derivation confirms (5.10) and (5.12) for x!Zl(z). However, the restrlctlon
a > aL is required here to ensure that |KF(2)| < rt£=1; note that (5.17) 1mplles K (ap) =
. This eventually completes the proof of Lemma 5. 3 O

Note that Lemma 5.3 “degenerates” to Lemma 5.1 for L = 1 since BU(z) = z according to
Theorem 3.1. Actually, Lemma 5.3 is valid even for L =1 if we use the (natural) convention

PPz} =1 (and 7% = o0); clearly, (M(z) = BW(z) and x{)(z) = KO)(z).

The following major lemma provides the solutions (}[[il_l (2), n[q{;l (z) of the functional equa-

tion z Pr, (B%::l(s)) —s = 0 in terms of the solutions ([£)(z), xlZl(2) of z P, (BlL“ll(s)) —s=10
supplied by Lemma 5.3.

Lemma 5.4. ]fB [£- 1]( ) denotes the improper PGF of Ty_1-feasible busy periods (for higher
priority tasks), the functional equation

Fi (s,2) = 2US) (s) ~ s = 2P (BE(s)) —s =0 (5.21)
for L > 2 conforms to (4.1)—(4.3) for

AL 2 A8 1, 8 OV for Ty o,

L e L-1
P, 2P > Lo = B =0(VETY) for Ty — oo,
where i = plEIp (7 I plll = HI - gnd Vf}f:lll have been defined in Lemma 5.3 and

Lemma 5.2. Lemma 4.1, Lemma 4.3, and Lemma 4.4 are applicable, and Lemma 4.2 ap-
plies in the same sense as in Lemma 5.3 (however, with no restriction on the range of validity
iof all Ty € Tr—y are finite): Depending on

Hﬁ%;—l_m if the radius of convergence of Py(z) fulfills Rp, > +{L=1
ar =
k 0 otherwise,

where always ap < pl < p[TLLl_], we distinguish 3 cases:
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(1) If Tp—y is sufficiently large and af, < o < P{TL} T v for some v > 0, there is some )

{] (L]

with pE=1 > ¢ 1 > 78 - T ensuring that Fr (s,2) = 0 has ezactly two single-

valued, analytic aolutzons Cf{[L} (z) and /{[7":”] (2) (forming two branches of a double-

valued solution with branch point z = P{T,} ,) which lie entirely in the interior of the

closed disk D(0,r,) for every z € D(a,e), ¢ > 0 sufficiently small. Note that v,
roL and & may be chosen independently of Tr_,. With ¢z = ZPL<B£LI(Z)> and

sl(z) = 2P, (]{[Ll(z)>, we have the asymptotic expressions

2201, ; 2
¢ (2) = lH(z) - ~<%(ET)P£ (BEI(¢@)) ) VRS (=) + o (Vg ?

W (2) = () - —%Pﬁ (B (e20) + 00272 ),
Hi (5.23)

uniformly for z € D(a,&) as Tp_y — oo, where VC[L - VL-1 (Coo](a) + e) for
<

some € = €(¢) > 0 (and analogous for V. TL 1) N[oreover (7 (=) T%]_l and

&%] () > 7‘7[—?] for positive x with ap < z < pm

(2) If all Tr,—y are ﬁnzte we have the same basic result as in item (1) even for 0 < a <
ar. However, ro 1 and € are no longer independent of Tr-1. That is, there is some
T LTy > T%]_l ensuring that F%]_I(s,z) = 0 has ezactly two single-valued, analytic
solutions C%}_l(z) and /c[ ) _ (2) which lie entirely in the interior of the closed disk

D(0,7a,r,1,_,) for every z E D(a, 6%] D 5%1 , > 0 sufficiently small.

(3) For arbitrary Tp_y sufficiently large (including some T; being znﬁmte) and0 < o < ay,
FTL] (s,2) = 0 has ezactly one single-valued, analytic solution CTL (z) with the asymp-
totic expansion (5.22), which lies entirely in the interior of the closed disk D(0,74.)
for every z € D(a,e), € > 0 sufficiently small; ro 1 and ¢ are independent of Tr_y.
Moreover, U%]_l(s) has a radius of convergence of at least plt=1 with an algebraic
singularity of square-root type at s = pll=Y if all T, € T;_; are infinite.

Proof. We have to verify first that Uf[[L] (s) satisfies properties (1)~(3) of (4.1). Ttem (1) of

Theorem 3.2 in conjunction with Lemma 5.2 shows that UT (1) < U™(1) and U%]“II(I) <
uLy (1), which means that the appropriate part of the proof of Lemma 5.3 carries over literally.
As far as property (3) is concerned, we know by Theorem 3.2 that B[ }(z) 1s a rational

function if all Ty € 7;,_; are finite. Hence, UT ( s) has a polar smgulamty in this case. On
the other hand, if all 7, are infinite, we have exactly the situation of Lemma 5.3. The latter
also implies satisfaction of property (3) when only some T} are infinite (provided that all 77_,
are sufficiently large), since (3)’s only purpose is to ensure that U(s) gets sufficiently large to
provide a solution 7 of (4.2), cf. our remark on condition (3) of (2.3).

Therefore, 7'7[—";] and /"[TL exist, and since

0< “&L,l.r[,_l = [z”]UTL_l(z) <ulB = 2MUE(2) forn > 1 and ué%—m = ul,

(5.24)
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which is a simple consequence of Theorem 3.2, it is immediately apparent from the Taylor

expansion in (4.2) that T. L_I > 7Ll From the Taylor expansion of U C (z)at T%]_l it follows

by convexity (we have non-negative uiL,]TL‘l) that

L L L AL} 7, (L
UL, () 2 UL (o) + (= ol ),

and from the characteristic equation (4.2) we have U (rlL]) = TgflU[Ly(Tg]), so that eventu-
ally

0 < UHEE) —vRl ) <
/ L 7
(U 2 - ) ) + (AL o )~ UEL L)) 62s)

oo L-1 L1 L-1 L-1

Since the second term is the characteristic equation (4.2) for 7'7[—1;‘]_1, it evaluates to zero, so

U%]_ll(Tf([L] ) < Ut ( L1} and hence

(L] TfE*L : Tf[rL] 1 1
. L1 L-1 _ — il
Py = T 0 T T T T s 2 T o T P (5:26)
UTL—I (TTL~—1 ) TL 1 UTL 1 (TKE—L]_I ) U'g- ] ( é-L] 1 ) U[L] (TO[O])

Moreover, putting togéther the simple convexity results
U (B gt 1Ly > (r ] — L L]y

Tr 0
the inequality
/
U L) - U ) < UM EEL ) — ol D)),
resulting from (5.25) above, and

(2) = PL(BE(2)) BE Y (2) — Py (BEN(2)) B () (5.27)
= B ()P (Ba)) - P(BE(w) - V()

v () — v

-1

+ P (BE @) Vi (@)
< BU @) Py (B (@))VAZ N e) + P (B @) VA ()

= O(VTf 11](7')) for 7p_y — oo, (5.29)
for any > 0, where we used Cauchy’s estimate for the derivative of V}f;l](z), we obtain
A <o(VET) as Ti - o0

for some r with T%]_l < r < pt=1: by virtue of (5.7), the latter inequality is satisfyable at
least for 77,y sufficiently large. This result immediately carries over to p%]ﬁl since, by (5.26),

/

4 Ly L
U D) - UR) () U — o i)

L~

v’ (Ehol Gy T i

L
P - ol =

= 0(V4r=l(r))

for 7y, — oo, where we used (5.29) for z = 7L,



STATIC PRIORITY SCHEDULING 35

Therefore, Lemma 4.1, Lemma 4.3, and Lemma 4.4 establishing the properties of the so-

lutions of FT (8,2) = 0 apply; Lemma 4.2 applies as well, without restrictions in case (1)

and (2), and Wlth the restriction that K%‘]_l (z) does not exist in case (3). Note that o, < p%]_l

since a < pd by Lemma 5.3.
In case (1), we can remove the restriction that v, r4 ; and ¢ depend on 7;_;. By Lemma 5.2

we know that B ( ) = BUE=U(z) as Tp_; — oo, uniformly for z € D(0, plt=1] 1), Hence it

is clear that the “llmlts limy, |~ y@rj o hmTL \—co Ta LTy, » and limy, o Q{TL]
L]

provided

by Lemma 4.2 and Lemma 4.3 applied to ZUTL () —s=0as Tp_y — oo are vi& r,
and ¢l for z2UM(s) — s = 0, cf. Lemma 5.3. It follows that choosmg v =vlEl/2 s a,drmsmble
prov1ded that 77y is large enough to guarantee II/ T, VB < IE /2. Independence of elE

resp. 7,1, can be shown by an analogous reasoning (that also justifies r, | < p{L‘l]).

To show that the second solution #] (2) does not exist in case (3) of Lemma 5.4, we argue
as follows: We know by Lemma 5.3 that this is true for the limiting case where all Tg € Tr1
are infinite, i.e., that xll(z) lies outside the closed disk D(0, plL=1) for z € D(a, ) provided

(Z)

that o < . However since k. _ (o) > klE(a) for positive a, which is a straightforward

consequence of UTL—I( )y <U L](a:), see (5.26), it follows that /ﬁ%}_l (z) must also lie outside of

D(0, plt=1). Finally, the asserted radius of convergence of at least plZ=1 of U,E-fl_l(s) follows

immediately from (5.24), and the algebraic singularity of U*)(s) has already been established
in the proot of Lemma 5.3.

What remains to be done is the derivation of the expressions for g‘%]_l (z) and K[TLL]_I(Z)
stated in item (1) of Lemma 5.4. Now, solving the defining functional equation (5.21) is
equivalent to determining the functional inverse(s) of

s = > AN
PL(B[L‘”( ) - Vﬂ['LL 11]( )) PL(B[L-ll(s)) 11

z:

for s near sg, where

e PHBEE) 2
v (o) = s (00 Vi (s)+0(Vn)))

by virtue of the Taylor expansion at BE=1(s) of the (denominator) above; O( - TL 1) 1s a
uniform bound on V}f:lll(s) and hence on v%j](s), cf. Lemma 5.2
Hence, Lemma 4.9 applies (with z and s exchanged) for f(s) = s/ Py (B[L“”(s)). The latter
is equivalent to the functional equation z Py, (B[L"”(s)) —s = 0 of Lemma 5.3, which is solved
by ¢!H(z) and slEl(z). Using
() = =, (5.30)
FfE1(s))
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Lemma 4.9 provides

P (B 1)) L]
L 27Ty

P (BE-1(¢E(2)))

from where (5.22) follows easily. The derivation of the analogous expression (5.23) for fsg—‘] (2)
is literally the same. Note, however, that the latter is only valid in case (1). This eventually
completes the proof of Lemma 5.4. O

(=) +o(vViEDY),

¢ () = (B(z) = W' (z)¢tz)

Note that Lemma 5.4 “degenerates” to Lemma 5.3 (and hence to Lemma 5.1) for L = 1,
remember our comments following Lemma 5.3. Actually, the results of Lemma 5.4 remain
valid also for L =1 if we use the (natural) convention VI(z) = 0.

Having determined the properties of the solutions CT (2), m%} (z) of the functional equa-
tion z Py, (B[TLL 11 (3)) — s = 0, which primarily determine the asymptotics of BT]( z), our next

step is to express BT (z) in terms of these solutions:

Lemma 5.5. The z'mproper PGF of T1-feasible busy periods B (z) for L > 1 is analytic in
D(O,fg{;) for E’IL > ,oTL . {' pg—L , = O(1/T}) for Ty, — oo, with a polar singularity at

z = 5%] on 1ts circle of convergence if Ty, is finite.

For z € D(a, 8%] D)0 <a< pg—L] . 5[7-L] > 0 chosen sufficiently small, and oy, being

defined as in Lemma 5.4, we have the followzng eTPANSIONS:

(1) [faL<a<p%]_1,

B3)(=) = B (G (2)
BEN(H @) (1- =08 ()
+
BE (L () (1 - =0 ()

<B¥Z :( ANE )) B (CTL (= ))) (Cg_:((:))) (Tp-1)

+ o((Eﬁ-L(—))—(TH)) (5.31)

for Ty — oo; the remainder term denotes an analytic function and is uniform for
z € D(a,e). Moreover, ¢ > 0 sufficiently small and o, < plt=1 are independent of
71, if Tr—y is sufficiently large.
(2) If0 < @ < op and all Ty_y are finite, we have the same expansion as in case (1) above,
however, with the exception that v,y = r, LT, and € = b%] may depend on Tr_;.
(3) If0 < a < ar and Ty_y sufficiently large is arbitrary (zncludzng some Ty being infinite),

we have the expansion

o ] I p{L—U -{T-1)
B3 (=) = BE (¢, (2) + O (N(Z (@_—(7) (1 OU/TL)Q.:}‘Z)
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for T — oo, where
N(z) = B% 3(€TL 1(~))[ _ ~U 1’<Cg;’;]_](z)>}d[L—l\}/B—{LT—l}:,)[L-l]
) < B%. }(QTL 1(7)> + TL 1 (QTLJI )
FlL-1] (p[ -1] zPL(T{L—l])) rlL-1] (pL U= zpg L)
Py (rlt)le-n 2 BET () () Py ()
(Pt = 2Py(rit-))* (gl — Py (o)) )'(5.33)

The remainder term denotes an analytic function and has an implied constant M <
1 +€o for some small epsilong > 0 that is uniform for z € D(a, £).

For a = ,OL.,-L}_1 and finite Tr,, we have the expansion

L L-1], _[L
B2y = BEI ) (5.34)
[L] (L] T 1) ,B[L] T, —1)v
11 'fL ‘vcot<—a—‘[£]—L—)) +O<v2cot<T—L%L—i)>
TL 1 TTp 4 T 1

gl

: ﬁ[u glL- 11([L1 ) 2lLl Bl (1 -1yw TL-1)v
o T S (B o o ()

TL 1 Tr-1 TL-1 Tr-1 T

untformly valid for all v = \/z/p%}_l -1 =001/TL) as Ty — oo; ﬁTL , and 5%]_1 are the

coefficients in the expansion of C[Ll (2) according to Lemma 4.1. The polar singularity on the

circle of convergence at z = flTL > pg—L] results from the vanishing denominator.

Proof. For case (1) and (2) of our lemma, Lemma 4.5 is applied to the numerator resp. the first
term of the denominator of BT]( ) in Theorem 3.1. For the numerator, we have n = T}, — 2,
W(s) = 1, and CTL (2), /c[L] ,(2) established by Lemma 5.4, so that Lemma 4.5 may be
applied Wlthout problems. The first term of the denominator differs in n = T — 1 and
Wis) = s/Bfg-LL-II]( ) only. Here we must assure that there are no zeroes of BTL (s) except at
s = 0for s € D(0,74), but this is guaranteed by Lemma 4.4. Thus, we may apply Lemma 4.5

without problems again.
The second term of the denominator in Theorem 3.1 provides a smaller order term, since it is

analytic where BT (3) is; note that there is no pole from s — zpy 1, due to the simultaneously
vanishing numerator. Recalling (5.1), we find

s -4 00 = s/t
T=1(g) ~ JE-1 -
BIL-1i(s) oy | 1) — B (1 =z plE 2 O((l ol 1])>]
ple L+0(1 - s/p" ™)

R B T e e Y (P ]

-1 r-1g-1)
P P [3 [L-1]\1/2 o L=-1]
T AL + (T[L—l])Q (1—=2/p ) 1?4 O((l —z/p )) (5.35)




ULRICH SCHMID

V)
2]

for z — /)EL_”. If B[{:}W\s) is analytic at the singular points = = /)gL_U of BE=1(s), the same
argument as used in the proof of Corollary 4.8 shows that

L=1] s ple=1] 1] .
T O<B{L‘”(s) B ,—£L—1}> for s = o in A aey

S /l

L= . -1, (L=
B'TL—1 13) BL‘T . (/71

In any case. we obtain

’ : s /_([[L—lj {L—1]3[L—1] o ‘ ’
[T — S o 01< P , 7 ‘),/z(plL-ll)—(TL-lw\l + O(l/Tm)), (5.36)

- B[i 1”( ) ‘2\///7(\7-[[4‘1])2 L

where dlF=U = ged(PE-U), of. Lemma 5.1. Since |xlE(z)] < rar < pl=1% by Lemma 5 3. it
thus follows that the contribution (5.36) of the second term of the denominator of B! ]( z)
in Theorem 3.1 vanishes in the remainder term provided by the former apphcatlons of
Lemma 4.5.

Putting everything together, the expansion of B%](z) for 7}, — oo in case (1) and (2) of
Lemma 5.5 reads

B2y = BETI (G ()

(L} —T; +1 (L] —-T; +1
CTL (7T ()T _
_+_ L—1 + O r ,L— L+2)
e I T
—T+1 ple-u.41 [L} —-Ty +1 :
CTL 1 ;) . [TL E(CFL]—I(')) R )77 + O(r L—TL—H)
T-1], L «,
1= TU’[/'I;] 1 (CTL G By [ G- 7U”ITI;,] 1 (R[TLL] ()

In case of @ < p[TL] this may be further evaluated since we know that C[L (z) < /{%}_] (z)

for real positive z. We thus obtain
L-1]{ .
BTL](Z) = B'[TL__I] (("/g—L]—l (Z))
St 0] ()

(A (Z)—TL+1< Um /(L] )>

TL-1 7L1

TL-1

BENE @l (T (10 (8 () {21
L— 1 L-1 L-1 L-1 L—-1 Ta,L
R ))) +0 ((cm (z)) )

(=11 (L) () olL] _r +1( . [L] i
BTL (7 1(~))CTL—1() Fr=EUT, ( "V

= BEI(H ()

B%:?(g,%]_l(:))n%] 1(3>—<TL-1) <1 _ 55’%]_1/(@%}_,(3)))
)

~ L, JL . 4
BV%—II]<N/[TL]—1(:) é‘[TL]—l(:)_(TLcl) <1 - :(g_[;,]_l <HH[Z%L]—1 (:>>>

L N To=1)
<lGEs™)
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some algebraic manipulations eventually establish the expansion (5.31).

In case (3) of our lemma, only C«%]_l (z) exists for s € D(0, plt~1) by Lemma 5.4. In order
to apply Corollary 4.8 (resp. Lemma 4.7), we have to provide expansions of the functlons
involved in the numerator resp. denominator of BT (z) in Theorem 3.1 for s — Pz . For

the numerator, we haven = Ty -2, W(s) = 1, and U(s) = (BTLL 3]( )) However, according
to Corollary 4.8, we may rely upon U(s) = P (B{ (3)) instead. Hence, w.r.t. (4.16), we
find w(pl" ™) =1, 2(p* ) = 0, and

(L-1] [L 1 [L-1] p(L-1]
L- pi - L- el B
ulpi™) = . L<p[ i) and () = PL(p[ i U)l—pm‘u—
by virtue of
[£-1] i1l 1 glL-1]
- p _ gl L~
P (BE7s)) = Pu (g ™) = P (S ”)—,,[TT}—U — s/l
+0((1=s/pf"™™)  for s — plt7Y, (5.38)

- [2~1]
where we used (5.1) and the Taylor expansion of Pr(z) at iL_l rib-1]

(4.19) yields the contribution Ry(z) = O, (.MN(z)TES/Q(p[L"”)‘(TL‘1)(1 + O(I/TL))) with

. Plugging this into

—dB 2 py () glE-1) -
2w <p[L—l] _ ZPL(T[L—I]))2

My(z) = (5.39)

for T}, — oo.

The first term of the denominator in Theorem 3.1 differs from the numerator considered
before solely in n = 17, — 1 and W(s) = S/B (L~ l]( ). Expansion (5.35) immediately provides
w(pEL_I]) = plL=1 /71 and :r(pEL"ll) = —plL=UBIL=1/(+[L=11)2 This yields the contribution
Rp(z) = O (MD(z)Tg3/2(p(L—ll)—<TL—1>(1 + O(1/T1))) with

Vv %ﬂ -1 ﬂ[L 1] ZP’( {L— l)ﬁ[L 1}
Mp(z) = ple=1 — z pp (7L~ 1]) 2w plL=tl — z P (7lL-11)

— -1~ 1] = N ZP['I(T[L_I])
2\/—7—L 1( {L-1] —ZPL( [L—l])) T[L"I] p[L—ll —ZPL(T[L"I])

for T;, — oo.
Finally, the contribution arising from the second term of the denominator has almost been

established in (5.36): Since a < p[ﬁ_l allows us to assume |z] < plll < plb=1 for 77,

sufficiently large, see Lemma 5.4 resp. Lemma 5.1, we have zpop < plé=U. Hence,

(- -
/BTL 3]( ) — ZPO,L/B%__}](ZPO,L) B 1 s o)
s~z RISV BE-1 + O(
Po,L P ZPo,L T, (s)




40 ULRICH SCHMID

for s — ng—”, so that expansion (5.36) provided earlier reveals its contribution as Ry(z) =

O (My(=)T7*/*(plE=1)~(Te=1) (14 0(1/T0))) with

_d[L—l L-1]giL-1]

M=) = 2y/m (T2 (plh=t) — 2y 1)

for T}, — oo.
Putting everything together, Lemma 4.7 (resp. Corollary 4.8) yields

o

+ Bn(z)
B[L](7) - l’”U[TL 1 (CTL 1(’))
e 1 H@Tn R R
BTLL II](CTL ) " ’U[T];] 1 (C[rLLJ KB )+ p(z) + H(Z)
(L-1] N ~(Tp-1)
- p
= B () + (N(z)T 1+ 00/1)) (m> )
Tr-1
with
N(=) = BE(E, () [1 = 208 (¢ ()]
.(MN(z) B (=) (MD(Z)JFMH(Z)))
Noting

— -1 8lL=1] 5[L-1] . -1
2y/mrlL-1] FlL-1] <p[L—1] _ ZPL(T[L—I])>
1 4 2Py (rIL-1l)
rl=11(plL-1] — zpo,z) (o1 — 2 PL(T[L—I]))2

Mp(z) + My(z) =

and recalling (5.39), our result (5.32) follows by some straightforward algebraic manipulations.

Finally, for @ in a neighborhood of pTL] Lemma 4.6 provides the required framework.
However, Ty, must be finite to guarantee a non-zero region of valldlty' For convenience, we
think of applying Lemma 4.5 to the result of Theorem 3.1 again, this time looking at the
coefficient of [s72~?] in the nominator and denominator, respectively, but therefore omitting

the single s in the denominator’s W(s): For the numerator, we have W (s) = 1 and hence
W"(s)/W'( ) = 0, for the denominator, we have W (s) = 1/B - 1]( ) and hence W'(s)/W(s) =

BTL 1 ( )/B (s) Applying Lemma 4.6, the expansion stated in Lemma 5.5 follows
immediately; note that the contribution of the second term in the denominator of Theorem 3.1

is absorbed since ptt=1 >y > 7-%} .

What remains to be done is to show that B} ](z) is analytic in D(0, 67— ). First of all,

we know that BT (z) is analytic in D(a,¢) for any 0 < o < ,o[TL] (and of course also for

a = 0) and has non-negative Taylor coefficients, so it must have a singularity at = > pg.] by
Pringsheim’s theorem. From expansion (5.34) it is immediately apparent that there is mdeed
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a (simple) pole from the denominator vanishing at some f’r > PTL , for finite” Ty: If we

increase v from p[T] onwards, the argument of the cotangens approaches 7 approximately

at v = O(1/Ty), yleldmg a cancellation of the terms in the denominator; note that it is not
possible for the numerator to vanish SImultaneously
This eventually completes the proof of Lemma 5.5. [

Note that Lemma 5.5 covers the case [ = ] as well cf. our remarks following Lemma 5.4 and
Lemma 5.3. Again, we need the convention BOl(z) = according to Theorem 3.1 for this
purpose, ‘

We now combme the results of Lemma 5.5 and Lemma 5.4 for case (1), where both solutions
CTL (z) and KTL (z) exist:

Lemma 5.6. Let af, be defined as in Lemma 5.4 and z € D(a,¢), af, < o < plbl, Abbreviating

C(s) = gl S
Ke(s) = K (P[Ll(s))’

such that Kp, (B[L](z))' = KW(2), we have for L >1

B, [-1)( plL
Vi) = L Py P () (2
- []z -1 -
: L= pogiy PE (BE()) 7 \ Pl (Bi(z))

1 - PLB([B]LZ(Z)P (B[ (z))

- Lz
1 le? BL( P[L 1 (B[L](z))

|~ el (540)) P s 1)
L~ B PO, (5.

.(B[L](z)_ BH(z)? )(PL(KL([ = ))))))_(TL"”(I +O(TLV[L 1]))

Ky (BU(2)) Pu(B
[L-1]2 Ta,L e
ro(vigy )+o((m) )

for T, — oo in a uay that ensures TLV[LTLIl = o(1), where V[TL . VC[LTL”1 have been defined
in Lemma 5.4, VIO(z) = 0, qnd PO I(z) = 1.

TActually, (the derivation of) e\(pansmn (5.34) answers two mathematical problems that puzzled us quite
a long time: (1) How is it possible for Bl ]( z) to have a radius of convergence f {7—3 ,» although the
solutlons CT ,(z) and ng—] (z) involved in the expression have a radius of convergence of p[ } , and (2) how

does B ( ), which is rational for finite 77 and hence takes arbitrary large values, actually approach its limit

L}(z) whlch has an algebraic singularity at z = plf] and is hence incapable of taking values larger than
L) — (L1 plLly?
T )
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Proof. Recalling the expression (5.22 ) for CTL ,(2) and the defining functional equation (5.21),
we obtain by using (5.30) and (5.6)

uniformly for 77_; — oo. Remembering (4.15), we also have

1 ZC[L] /( ) L]I(z) -
—_ L 1 _ 2 +olv
1_2[.]% 1 (C’TL 1( )) TL l(z) Cg’](z) ( CYTL—])

for 71y — oco. Clearly, analogous expressions hold for /cql—;] (z).

Since O( nTL 1) dominates O(VC T, 1), cf. item (1) of Lemma 5.4, we find
[Z] -n L] -7 -n
o) - (= <) +o(v. 7 1)) (ng@(z)) -
= | = 1+ 0(nV!
<<TL (2) ¢Kz) + o(vET z) ( + O[] ))

for (reasonable) values of n such that nVL 1]1 = o(1)

Plugging these results into expression (5 31) yields

as 7r,_1 — 00 and n — oo,

B(z) = B[L-u(dg](z)) _ ZC[&]/(Z) VE () + O(Vi 2)

coﬁl( ) Ty
(C[L]( )) ~L,1(z) [L-1]( (L] (L-1]{ ~L)
Bl (w2 2)) ‘fi’( 2 (BL (xl(=)) - BUE-1 (g (Z))> (5.40)

klE(z)) ~(T-D) Ta —({1-1
(i%%) <1+O(T i ,)) +O(<*—“———2PL(BEE}(Z))) i )).

Using the properties (5.9)~(5.12) and, according to (5.5),

B[L_I}I(C[L]<z)> _ plL- 1]( ( z))) plL-1] (B[L](:))

O

1 — C(gg (z)PlL~ 1y (B[L 1]((&]( ))) - 1 — C(%](Z)P[L"‘U/ B{L](,))
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we find by (4.15)

I
s
8%
—_

[

) 1
T1- 00 (Bl ) (5.41)

1

y r
8=

[

)
IS

N

1-zP; (Bm(z))PIL-II’(BILJ(Z))
1~ zPW'(Bl(z)) ‘

An analogous derivation provides

2:H'(2) 1 1-zP, (K[L](z))P[L‘”'(K[L](z))
= 771 = ; (5.42)
weo(z) 1= 200 (sl (2)) 1— 2Py Kltl(z))
Plugging the above results into (5.40) and using the simple fact
BIL]
z= *-ﬂ—, (5.43)
PUI(BIL(z))

cf. Lemma 5.1, some algebraic manipulations yield the expression given in Lemma 5.6. [J
Note that we introduced the function K (B[L](z)) = K(2) to achieve that z appears only
in conjunction with B(z), a property that greatly simplifies our subsequent derivations.

The following lemma is analogous to Lemma 5.6 for case (3) of Lemma 5.5, where only
C% ]_ ,(2) exists. Recall that we are alming at a reasonably accurate remainder term here.

Lemma 5.7. Let ay, be defined as in Lemma 5.4. For = € D(a,¢) and 0 < & < oz, we have
for L >1

BlLl(, -1}/
1 - ﬂﬁrﬁrﬁm}ﬂ ! (B[L](Z)) V[L—11< BU(z) ) (5.44)
Pl |

BlLl(; / T _
L= pangy P (B (2)) (B 2)

) B[L](Z) ars p[L—l] ~(Tr~1)
+o(VETY 4o (M (s ) () )
(Viml )+ 0n PRI(BE(:)) /7" \ip (BU(z))

Vie) =
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for T, — oo, where VI(z) =0, PO =1, and

L)1 — 2 pltV{ glL

Mp(z) = )l =P (5 )] b !
1-zP; (B{L}(z))P{L—IJ'(B[L](z)) 2r PU1 (7 (L] plE-1)"(71L-1))
~ BH(z) BfL](z)
rlL-1] (p[L—l) _ ZPL(T[L—I])) FlL-1] <p[L—1} _ ZPO’L)
2P (7=t (7l2-1] _ BU(z)
_ Tt ( 5 )) for L > 2, (5.45)
(p[L—l] — ZPL(T[L—I]))

.ZV[](Z) = 0.

Proof. According to Lemma 5.5, the major term in the expansion of B%](z) in case (3) is the
same as in (5.31) for case (1), except that the term involving /c[TLL]_l(z) 1s missing and that
there is a different remainder. Hence, the derivations in the proof of Lemma 5.6 translate
literally.
: : L] (AL
The expression for My (z) follows from (5.33) by replacing 1 — ,z(/'7[—L]_1 (GE—L]_I (z)) resp.
B%:ll] (Cf[flzl_l (z)) by 1 — zU[L]'(Cc[i’](z)) resp. B[L‘ll(g’gf](z)) = BlH(z), which has an neglible

(exponentially small) effect O(Vgg-ill) on the implied constant in O;. Using (5.41) and

d[L—llﬁ[L—llp[L-ll _ -1 1
2y/7ril-1] 2r P (r(L=1]) PIL-1)" (7 [L-1]

resulting from (4.4) for U(s) = PIL-1(5), (5.45) follows immediately..

In case (2) of Lemma 5.5, where all Ty, ..., Ty are finite, it is possible to give a slightly
better characterization of the remainder involved. In this case, we know that fc[TLL]_l (z) exists,
of course determining the actual remainder. From the proof of case (3) of Lemma 5.4, we know

that n%]_l (2) lies outside of the disk D(0, P for z € D(e,€), @ < ar. On the other hand,
we know that /c%]_l () must lie within the disk D(0, f%::]), since f%:}] = p&LL::) +O(T72) =
pll=1 4 O(V,}f_'f)) +O0(T2) for Ty, ..., Ty sufficiently large is the radius of convergence

of B%:j](z), by expansion (5.34) applied for Level L — 1. Hence it follows immediately that
R (2) = o (1 4 O(Viy27) + o(12)).

A more refined treatment of (5.34) would of course provide more accurate information. Any-
way, the conservative remainder term established by Corollary 4.8 is sufficient for our pur-

poses. []

Lemmas 4.15 and 4.16 provide recursive formulas for sz{—f](.?f) and hence B%](z), which are
solved in the following lemma:

Lemma 5.8. Let T be the set defined byl €T andtl € T for2 < ¢ < [ if either the
radius of convergence Rp, of Fy(z) is less or equal to YU > 1 or the corresponding oy =
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T[Z‘l}/p(z](T[t’—l]) < 1. For T, — oo so that Ty = O(T) for T — oo, we have the asymptotic

erpansions
Ly =1 - .__1___ de Py —~(Ty~1) ___1___ e -T
By (1) = P eezfezm I—P[}()%OI(AJZT c)
+ZO( Tl—l)) (5.46)
el
! 1
B%] (1) - -T_{L_]___ + ZO(TZPZ KZ) Tz) + ZO< 1/2 —Tz)
1 — PUEI(T) =
with

' 2 P
(L= PoW)" 1 pye) PEW(ny) 1y -1 o 4
1= () Pl () — 1 Py (5.47)

re = Po(ke) + € for some € >0, if ¢ € T (with re < P for g >2),

=

(5.48)

where PP (2) = 1, k; > 1 denote the minimal solution of z =Pl(z), 2> 1, and

1 — Pl'(1))”
( (,)) ~ged(PH-1) . 1
1 — Ple=1(1) 2 PUe=1](7le-11) ple=17(7[e-1])

1 1 Py(rle=) (rle-11 _ )
. (T[Z_ﬂ( fe-1) _ Py(rle- ])) B rle-1) (p[l—l] '—po,l) + (p[g—l -—Pg(T[""ll))2)'

M, =

Proof. The recursive formulas provided by Lemma 5.6 and Lemma 5.7 express V«]['f ]( .) in terms
of Vf]['f_:l](.) for z € D(a,¢). Since

(L] (L] B[L](z)
Vi (2) = Vg (W)

y (5.43), it turns out that we have to deal with a simple linear recurrence only: Abbreviating
B (z) 2
Vi(z) = V4 (——————) o(v4 5.49
4 = Vi o)t (Veck, ) (5.49)

it is not difficult to show that for 1 < ¢ < [,

Vi(2) = Co(2) Vi (2) + Dy(z), (5.50)
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with
L gty P ( =)
1 - PZ(BL L5 PW (B I(z))
| — ety P (BY(2))
- pety PO (BU(2))
W%Pe(hg( (=) ) PV (K (B2 )
L~ paitay P (K (BE(2)))
.(Bm(z) BU(z)? )(Pe( ', (B! (z))))—m—n
K (BU(z)) P(BU(2))
Tal, =(Te-1)
+ &EI(Q)O«W) ) (5.51)

BI() 3 ol N
GO (M g I ()
+ Seg1(a) 1( ‘\PE(BU(z))) "¢ ng(B[L](Z))

where 6ser(o) = 1 if £ is such that o > @, and zero otherwise. For, considering (5.50) for
¢ = L yields the expansions provided by Lemmas 4.15 and 4.16, respectively. Note that, in
the expression of Lemma 5.6,

PL(K(BH(2)))\ ~(Tz-1) I ra, -7,
O(( LEJLEBEIL](Z)) ))> T V[LTL 1) = O<(2PL(B[§](2)>) ' ) (5.52)

since it can be shown by induction that V is exponentially small; recall that all T, = O(T)
for T' — 0o according to our assumptlons on TL Moreover, the remainder in (5. 51) also hides

Ce(z) =

D[(Z) = _‘5861—(0!) .

the “artificial” O(VC[f]T ) introduced in (5.49). Now, considering the expansmns provided by

Lemma 5.6 and Lemma 5.7 for L — 1 and replacing z by ({Ll(z) = BIH(2 )/ PE- 1]( (z))
1s easy to see that this corresponds to a simple shift L — L —1 of all instances of I except in
BU(z), since BL-1] (C[L]( )) BW(z) and = appears in conjunction with B¥)(z) only. Note

that a simple induction on (5.9) reveals

" . BILl( -
(LM clE ](Cg(z))'”>=P[L_k_1}((3[)m(z))'

Hence, we may repeat this process of shifting and substitution for ¢ < [, — 1, establishing the
vahdlty of the expressions Cy(z) and D(z).
Since V; = 0 according to Lemma 5.6, the solution of the recurrence (5.50) is of course

L L

Vi(z) =3 T Cilz)Du(z); (5.53)

=1 j=f+1
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note that
Bl ;) ' I
5o L iy P (BU(2))
- BIL(, :
= L= prosgguitsy P (B19(2))

Remembering the values (5.2) given in Lemma 9.1, substituting z = 1 in the expressions
for [1; C5(2) and Dy(z) above easily provides the values

/

L 4
1 — PHY(1
11,60 = =ik
j=t+1 - (1)
L= PA() 1~ Pk P (k) fr— 1
D) =§ ) . - ( )P —(Ty—1)
3( ) ZEII _ ple-1) (1) Pl (/i() -1 Ke Z(NZ)

+ 6{61’0(7‘;(7‘:—1)) + 512&101 (Mng_aﬂ(p(Z-I])_(T‘—l))

where T = I(1) and M, = —(1 — PY'(1)) My(1), cf. (5.45). Plugging this into (5.53) while
recalling B%](z) = BlH(z) - Vq[-f](z), (5.46) and (5.47) follow. To confirm that de > 0, we

note that PI-11'(1) < Py <1 by (2.4) and x; > 1 by (5.2), so that the first and third
factor of (5.47) are positive. To show that this is also true for the second one, we exploit

1 — Py(ke) P (k) 1

PA(r) =1 1 g ()

by virtue of (5.42). Since xld(z) is the 2nd solution of (5.6), which exists since ¢ e 7,
expression (4.7) for o = 1 reveals that the right hand side of the equation above is indeed

> 0.
Finally, since the remainder terms in our expansion represent analytic functions and are
uniformly valid in a complex neighborhood of o = 1, differentiation of (5.53) is permitted

and the value for B%]I(l) = Bl ]/(1) - 7[{”],(1) follows easily by using the values given in (5.2).
Note that we employed coarse bounds on the terms involved only. This eventually completes
the proof of Lemma 5.8. [ :

Now we are ready for our final theorem:

Theorem 5.9. With the conditions from §2, there is some ¢ > 0 such that the successful
run duration St, for static priority scheduling with L > 1 priority levels is approzimately

exponentially distributed with parameter l/u%l satisfying

[ _ 1 ( T
A A1+ 0((1+¢
t 7L ZZEI d(PK(KE)—(Tl-l) + ZZQI Ol <A/[£TZ—3/2(‘0[5—1])"(Tt‘l)) (( ) )?

5.54)

for T, — oo in a way that ensures T) = O(T) for T — oo.
Herein, T is the set defined by 1 € T and ¢ € 7 for 2 < ¢ < L if either the radius of
convergence Rp, of Pi(z) is less or equal to 71 > 1 o TV"I]/PM(T{Z“”) < 1, where 714
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denotes the minimal positive solution of :Z:PW(J:) - PM(J:) =0 for PU(z) = 5:1 Pi(z). In
addition,
Fi(ke) > 1 with k; > 1 being the minimal solution of r = PM(:I:) forz > 1,
1 2
b L= PIW) 1 P PE () =1
tT 1 pi) Pl (ry) ~ 1 ke

with PPN(z) = 1. Finally, O, denotes a O-term with implied constant M < 1 + eg, for some
small e > 0,

>0

2

(1-PH(1)
J\/fg = 7
I~ PE-T(1)
1
. [e-1]y
ng(P ) \, 27rP[£-1](T[l"ll)P[Z_l]”(T[g—ll)
( 1 1 | REET(r ) .
rle-1] (p[f—l] _ Pz(T[l””)) rle-1] (p[z-l] - PO,Z) (p[z_l] _ PZ(T[g_l]))Z >0,

and pld = 710/ plA(HAY 5 1.

With the additional assumption that the greatest common divisor of the non-zero-coefficient
indices (n > 1) in the Taylor expansion of P (z) satisfies ged(PIEY) = 1, there is some 6 > 0
such that

vn,1, = P{successful run duration 81, has length < n}
may be expressed as
-t

_ 1)), -
Vo, =1 — (1 + O(l/,u%l))e T, (1+O(1/uTL)) + O(p%] 1(1 + 5)—n) (5.55)

Jor Tr, — co sufficiently large, uniformly valid for arbitrary n > 1. The m-th moment E[SE]
of St, fulfills

E[SE] = m![uf] (1 + 0(1/uEh)]" + 0 (p%’"lz—;%gg—’)%) (5.56)

for Tp, — oo sufficiently large, which is again uniformly valid for arbitrary m > 1. Note that
the sign of the first O-term is positive.

Proof. We first have to evaluate (2.5). Abbreviating the major (first) factor in (5.54) by ‘;I[TLL],
applying 1/(1 + O(.:r)) =1+ 0(z) for = — 0 to the major expressions of Lemma 5.8 plugged
in (2.5) provides

~(Te-1)

#[L] _ ZI[L] (1 n 2oteT O(re ¢ ) )

7, = HT, S .
) ) Lter dePo(ke)~Te=t) + 52,07 O, (ML’Tg oy e U)

Recalling (5.48), it is immediately apparent that the fraction above is exponentially small in
T’; note that at least 1 € 7.

All preconditions required for applying the results of [DS93] follow immediately from our
conditions in §2, except that we have to add the additional restriction gcd( P = 1 here. The
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limiting distribution is thus approximately exponential with rate 1/,&%1, and Theorems 3.5
and 3.7 of [DS93] immediately provide the uniform asymptotic expansions for probabilities
and moments. The positive sign of the first O-term in the expansion of the moments follows
from the remark on p. 16 of [DS93]. O

Note that it is possible to remove some of the multiple O-terms in the expansions for
probabilities and moments in Theorem 5.9. For example, if m is fixed, we clearly have
E[&}I‘L] = m!(,u[f—i])m (1 + O(l/,u%})). However, this would necessarily impair the general uni-
formity of our formulas w.r.t. n resp. m. Therefore, we prefered to provide all information
required for evaluating the expansions for a particular ratio of n resp. m versus 7.

We conclude this section with a few remarks on the asymptotic formulas in Theorem 5.9.
First of all, it should be clear that ,u%] grows exponentially with the deadlines. To Jjustify
why we included the O;-term in the major contributions of (5.54), we should mention that
dealing with the contributions of a priority level {-¢ T was not considered very important
initially. However, when conducting our numerical examples, we recognized that the fraction
of conceivable operating conditions that were covered by our original formulas was less than
expected (see our remarks in §6). Looking at a way to extend the range of applicability, i.e.,
improving the remainder terms, we realized that a full treatment would require additional
tools (dealing with the solutions of a bivariate functional equation at singular points), thus
making a very long paper even much longer. Hence we decided to get additional information
out of our analysis without too much effort. The Oq-term was found to be a convenient way
of doing this: It disappears in our original setting and provides a (usually tight) upper bound
for other operating conditions. ”

6. CONCLUSIONS

In this paper, we quantified deadline meeting properties of the widespreadly used static
priority scheduling algorithm (SPS) employed for scheduling probabilistically arriving tasks
in real-time systems. More specifically, we determined the distribution of the duration St, a
discrete-time single server system using SPS operates without violating any tasks deadline.
This distribution is known to be asymptotically exponential with some parameter Ay, =

1/ ,u%] for any scheduling algorithm. Hence, we had to provide an asymptotic formula for

p%] = E[S1,] to arrive at the probabilities and moments given in Theorem 5.9.

Apart from the fact that deadline meeting capabilities of different scheduling algorithms

may be compared via the distribution of S1,, i.e., via the value of p%], our results provide

an answer to the following practical question: Given the input probability distributions for
a certain (high-)load situation, and a (tolerable) probability p for deadline missing (say,

p = 107°), what is the maximum duration such a situation may last in order to guarantee
()

p? It is immediately apparent from plugging in n = pp, into the expression for Up7, In
Theorem 5.9 that the probability of no deadline violation during the next pp%} cycles is

I —v, 1, = p+ O(p*). Since ,u%] increases exponentially with the deadline(s), such systems

could be expected to operate properly a long time.
In order to answer the question whether and when this expectation is justified (and to get

a feeling what can be done with our results), we computed several numerical examples. More
specifically, we considered tasks at [ = 3 priority levels, described by

e Poisson arrival PGF’s A,(z) = e*(=1) with average arrival rate Ay(1) = A\, 1 < ¢ < 3,
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o task execution time PGF’s Ly,(z) = zhell=-1/R itp average task execution time
¢(1) = (1 + R)/R, for some (fixed) “randomness parameter” R < co,
e deadlines Ty = K, - ;.

Several different scenarios were evaluated by a number of MAPLE-programs that compute
the major factor log fiy of (5.54)—with 7 = {Ty, Ty, T3} denoting the set of relative deadlines
here— as a function of the parameters involved. More specifically, we considered

with & = {E1, E,, E3} denoting the set of relative task ezecution times for a number of different
settings of the other parameters. Note, however, that all scenarios above are “compatible”:
scenario 2 can be considered as a less preemptible version of 1 with cycles being 100 times
larger, and scenario 3 is a less random version of 1 w.r.t. task execution times, providing
ged(F;) = 100 as well. All scenarios were made further comparable by varying the average
overall execution time Pj(1) = Aj(1)L;(1) of level-¢ tasks, which is always in the interval
0,...,1, instead of the arrival rate.

Fixing Py(1) = O.l5[m’—’§] and £, = 2 for all settings, we computed 3D-plots of log iy =

cycle

logfir(x,y) as a function of z = P{(1), y = Pi(1) for

(a) E1 :1,E3=4,
(b) El = 4, E3 - ].,
(C) E1 = 2, E3 =2

with K; = K, = K3 = K € {2,5,10,20}. We provided the plots for all scenarios in the ap-
pendix and include the ones for scenario 1.a below for the ease of reference. Moreover, compar-
ative plots providing 77" /(100%%7) and iy /iy for relative deadlines T3 ={K1,K2, K3} =
{5,5,5} are also appended. They show that changing randomness of task execution times
(R) and preemption granularity both have minor effect upon our results, at least in all cases
where our results fully apply (Z = {1, ..., L}).

From plots 1.a-1.c provided below it is apparent that the most regular behavior is obtained
in L.a. In this case, the solution &; exists such that 3 € T (3 < 1). The more irregular
behavior in 1.b and 1.c arises from the fact that a (very) low-load task does (almost) not
contribute to Zzy, if put on level 3, irrespectively of its deadline. This results in3¢7 (az>1)
for small P4(1), i.e., the case where the Oy-term in (5.54) comes into play. The ditch clearly
visible in our plots marks the border oy = 1, where our analysis is not applicable. Note that
it appears at a higher load in plot 1.c and 1.b due to the longer task execution times of the
level-3 task. However, it is clear that the ditch is an artefact of our analysis that fails to
approximate the real (smooth) contour in this case. The O,-term responsible for handling
az > 1 does a very good job in approximating the low-load behavior for scenario 1 and 2,
where ged(P@) = 1. However, as can be seen from the plots 3.a-3.c (noD) in the appendix,
1t is about 100 times too large for scenario 3 where ged(PRY = 100 (which is not at all
surprising).
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Plot scenario 1.a
rel. task exec times £ = {1, 2, 4}
rel. deadlines 7 = {K, K, K}

Plot scenario 1.c
rel. task exec times £ = {2,2,2}
rel. deadlines 7 = {K, K, K}
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0.7 p:

Plot short vs. long deadline (1.c.41)
rel. task exec times £ = {2, 2, 2}

rel. deadlines 7 = {5,10,15}, T = {15,10,5}

b log 7

o0

Plot scenario 1.b
rel. task exec times & = {4,2,1}
rel. deadlines 7 = {K, K, K}

pr}zz}t:fr ratl yat3

Plot high load vs. low load (1.c.i)
rel. task exec times £ = {2,2, 2}
rel. deadlines T = {5,5,5}

—1.a =167
8 log“']‘ - logl‘T

prefer short at I, long at 3

Plot short vs. long task ezec time (1.a/b.iit)
rel. task exec times £ = {1,2,4}, & = {4,2,1}
rel. deadlines 7 = {5,10,15}, T = {15,10,5}
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Finally, a number of plots of differences of log iy for certain parameter settings were
computed. They answer the question whether a task should be put at level 1 or level 3 w.r.t.
better deadline meeting properties. We considered 3 different questions here:

(i) High load vs. low load for tasks with same task execution time (€ ={2,2,2}) and
same deadline (73 = {5,5,5}): Plot A(z,y) = logy*(z,y) — log x(y, ), which of
course satisfies A(z,y) = —A(y,z). If A(z,y) > 0, then the task with load z should
be put at level 1 and the one with load y at level 3, and vice versa otherwise.

(ii) Short deadline vs. long deadline for tasks with same task execution time (€=1{2,2,2}):
Plot A(z,y) = log iy*(z, y) —log i%"(y, z), where 7 = {5, 10, 15} resp. T = {15,10,5}.
Hence, x resp. y is the arrival load for the task with the short resp. long deadline. If
A(x,y) > 0, then the task with the short deadline should be put at level 1.

(iii) Short task (€ = {1,2,4}) vs. long task (€ = {4,2,1}) with short task has narrowest
relative deadline (7 = {2,5,10}: Plot A(z,y) = log 75*(z,y) — log ZLP(y, z), so that
z resp. y is the arrival load for the short resp. the long task. If A(z,y) > 0, then the
short task should be put at level 1.

We provide three different settings of deadlines here: shortest task has narrowest
relative deadline (7 = {5,10,15} and 7 = {15,10,5}), all tasks have same relative
deadline (7 = T = {5,5,5}), and shortest task has widest deadline (T = {15,10,5}
and 7 = {5,10;15}).

(L]

In summary, our examples show that large p7, —and hence reasonable deadline meeting
properties— can be expected for low load and, in particular, relatively large deadlines only.
Most real-time system designers are used to be quite generous when dimensioning computing
resources, which may be the reason that most contemporary systems work reasonably well in
practice. However, our results show that one has to be very careful when relaxing apparently
overly conservative assumptions.

There are several directions of further research linked up with this paper. Most importantly,
we are considering the question how to generalize our input model to allow for time-varying
and not independent input distributions, a situation quite common in real-time systems.
Moreover, there are of course other scheduling algorithms for real-time systems that should
analyzed by means of our approach. In particular, there are the earliest deadline first algo-
rithm —a really tough problem— and a whole family of scheduling algorithms designed for
working in conjunction with deterministic (hard real-time) schedulers. A minor —but rele-
vant and not at all trivial— extension of SPS would be to consider several tasks with different
deadlines at the same priority level.

We think that our general approach has proven its appropriateness in providing results that
have not been known before with manageable effort. Actually, we do not know of any other
research that provides results that are compareable to ours. The conceptual issues underlying
our derivations are reasonably simple and supported by powerful general results. The analysis
in this paper, which is admittedly long, touches surprisingly mathematical problems that are
mteresting in their own right, so we thought it appropriate to provide all the technical details.

ACKNOWLEDGEMENTS

We are grateful to an anonymous reviewer for numerous suggestions for improvement on
an earlier version of this paper. Working on the revision led us to new insights and improved
results — and to a violation of the deadline for the final manuscript.



STATIC PRIORITY SCHEDULING 53

REFERENCES

[Ben74] E. A. Bender. Asymptotic methods in enumeration, SIAM Review 16, 1974, p. 485-515.

[BS92] J. Blieberger, U. Schmid. Preemptive LCFS Scheduling in Hard Real Time Applications, Performance
Evaluation 15, 1992, p. 203-215.

(BS91] J. Blieberger, U. Schmid. FCFS Scheduling in a Hard Real Time Environment under Rush-Hour
Conditions, BIT 32, 1991, p. 370-383.

[Can84] E. R. Canfield. Remarks on an Asympiotic Method in Combinatorics, Journal of Combinatorial
Theory, Series A, 37, 1984, p. 348-352.

[CSR88] S. Cheng, J. Stankovic, K. Ramamritham. Scheduling Algorithms for Hard Real-Time Systems—A
Brief Survey, in Tutorial: Hard Real-Time Systems, IEEE Computer Society Press, Washington,
1988.

[Drm91] M. Drmota. The Instability Time Distribution Behaviour of Slotted ALOHA, Random Structures
and Algorithms 5 (Proceedings Random Graphs ’01), 1994, p. 33-44.

(DS93] M. Drmota, U. Schmid. Ezponential Limiting Distributions in Queueing Systems with Deadlines,
SIAM Journal on Applied Mathematics 53(1), 1993, p. 301-318.

[DS93b] M. Drmota, U. Schmid. The Analysis of the Ezpected Successful Operation Time of Slotted ALOHA,
IEEE Transactions on Information Theory 39(5), 1993, p. 1567-1577.

[Fel68] W. Feller. An Introduction to Probability Theory and Its Applications (3rd ed.), vol. I, John Wiley
& Sons, 1968.

[FO90] Ph. Flajolet, A. Odlyzko. Singularity Analysis of Generating Functions, SIAM J. Discr. Math. 3,
1990, p. 216-240.

[Mar65] M. Markushevic. ‘Theory of Functions of a Complez Variable, vol. 11, Prentice Hall, 1965.

[MMT78] A. Meir, J. W. Moon. On the Altitude of Nodes in Random Trees, Canad. Math. J. 30, 1978, p.
997-1015.

[MMB89] A. Meir, J. W. Moon. On an Asymptotic Method in Enumeration, Journal of Combinatorial Theory,
Series A, 51, 1989, p. 77-89.

[595] U. Schmid. Random Trees in Queueing Systems with Deadlines, Theoretical Computer Science,
144(1-2), 1995, p. 277-314.

[SB92] U. Schmid, J. Blieberger. Some Investigations on FCFS Scheduling in Hard Real Time Applications,
Journal of Computers and System Sciences 45, 1992, p. 493-512.

[SB94] U. Schmid, J. Blieberger. On Nonpreemptive [CFS Scheduling with Deadlines, J. Algorithms 18,
1995, p. 124-158.

[TK91] A. M. van Tilborg, G. M. Koob (eds.) Foundations of Real-Time Computing: Scheduling and Re-
source Management, Kluwer Academic Publishers, 1991.

[VF90] J. S. Vitter, Ph. Flajolet. Average Case Analysis of Algorithms and Data Structures, in J. van
Leeuwen (ed.), Handbook of Theoretical Computer Science, vol. A, Elsevier Science Publishers, 1990.

GLOSSARY

Name Meaning Def. Pg.

' Ae(2) = Ty arez” PGF task arrivals level ¢ (2.2) 2

: a critical value for 2nd solution Lemma 5.3 29
BH(2) = ¥ o bHz"  PGF unrestricted busy periods (3.3) 5
Bg“](z) =3 .50 bgjl[L z"  PGF Tp-feasible busy periods Theorem 3.1 11
B,g—L:l”(z) PGF 7;_,-feasible busy periods Theorem 3.1 11
I} coeflicient in solution’s expansion (4.4) 15
Bl coeflicient in expansion B(z) Lemma 5.1 27
d ged indices non-zero coefficients in U(s) Lemma4.4 19
dtE] ged indices in PIE(z) Lemma 5.1 27
D(zo, R) open disk with radius R around z, 84 13
D(z0. R) closed disk with radius R around z, 84 13
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indented disk sparing out pe?ril/d
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general functional equation
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value 2nd solution of zPH(s) — s = @
general 2nd solution
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lowest priority (— no. of priority levels)
PGF task execution time level ¢
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implied “constant” final O,-term
O-term with implied constant a 1
PGF overall execution time level ¢
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