Technische

. Institut fiur Automation Universitat
Abt. fur Automatisierungssysteme .

I £S5y Wien

Projektbericht Nr. 183/1-48
August 1994

The Ackermann-Function
Effort in Space and Time

Roland Lieger, Johann Blieberger

Salvador Dali, ”"Die Bestandigkeit der Erinnerung”



THE ACKERMANN-FUNCTION
EFFORT IN SPACE AND TIME

ROLAND LIEGER AND JOHANN BLIEBERGER

DEPARTMENT OF AUTOMATION (183/1)
TECHNICAL UNIVERSITY VIENNA
TREITLSTR. 3/4
A-1040 VIENNA

AUSTRIA
EMAIL: RLIEGER@AUTO.TUWIEN.AC.AT

EMAIL: BLIEB@AUTO.TUWIEN.AC. AT

ABSTRACT. The Ackermann-Function is a well-known function in computer
science. The first section of this paper is devoted to some useful properties.
Next we take a look at the effort needed to compute a value, in terms of
computing time as well as in stack space. In the final section we show how the
results obtained in [BL.94] can be applied to facilitate or even automate the
analysis.

1. The Ackermann-Function A(z, y)

The Ackermann-Function is quite a weird thing. At first sight it looks simple
and it definitely is easy to implement, but it is quite difficult to understand, what
this function really does. Let’s look at its definition:

Al0,y) = y+1
A(z+1,0) = Az,1)
A(z+ Ly+1) = Az, Az +1,y))
z,y €Ng

Using this simple, recursive formula, it is easy to produce a small table of Az, y)
for a few, small values of z and y.

y
Alz,y)| 0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 T 8 9 10
x 2 3 5 7 9 11 13 15 17 19
3 5 1329 61 125 253 5090 1021 2045
4 | 13 65533
5 | 65533

Supported by the Austrian Science Foundation (FWF) under grant P10188-MAT.



2 R. LIEGER AND J. BLIEBERGER

Obviously this table is not complete, but the values that have been omitted are
all a good deal bigger than can be expressed by a 32-bit integer.

2. Solving A(z,y) for Special Values of z

Looking at the first lines of the table for A(z,y), a law is quite obvious. With a
Little more effort, it is even possible to find laws for the harder case £ = 3. There
exists no closed form for z > 4.

Al0,y) = wy+1

Aly) = y+2

A(2,y) = 2y+3

ABBy) = 2v¥3 -3

A4, y) = 224D _3forally > 1

Proof.
A(0,y): A(0,y) = y+ 1 by definition of A(z, y).

ALy y=0 AL 0)=A0,1)=2=y+2
y>1: A(Ly)= A0, A(l,y—- 1)) = A0, (y - 1)+ 2)
= A0, y+ 1) =(y+H+1=y+2

A2,y): y=0: A2,0)=A(1,1)=3=2y+3
y> 1 A2,y)= A1, A2,y —1)) = A(1,2(y — 1) + 3)
=A(1,2y+ 1) =Qy+1)+2=2y+3

ABy): y=0: A(3,0)= A(2,1)=5=2v+3 -3
y> 1. A(3,y)= A2, A3,y — 1)) = A(2, 2y-1)+3 _ 3)
= A(2, 2y+2 _ 3) = 2(2y+2 -3)+3= 9y+3 _ 3

Al4,y): y=10: A4,0)= A(3,1)=13
y>1 A4,y)= A3, A4, y—-1) = 9A(4y=1)+3 _ 3
3. Some Properties of A(z,y)
Property 1. A(z,y) > (z+y)

Proof.

z=0 AQ,y)=y+1>0+y=z+y
z>1l y=0 Alz,0)=Alz-1,)>(z-1D+1=z+0=z+y
y> 1 Alz,y) = Az - 1, A(z,y— 1)) > (e - 1) + A(z,y — 1) >
2(e-—D+z+y-D+l=@E-H+z+y>z+y O

Remark 3.1. A(z,y) > (z + y) implies A(z,y) > (¢ +y) + 1
Collorary 1. A(z,y) > z and A{z,y) > y.

WOOP TU Vienna



ACKERMANN-FUNCTION 3

Property 2. A{z,y) < Alz,y+ 1)

Proof.

=0 A0, y)=y+1<(y+1)+1=A0,y+1)
> 1 Alz,y) <{z - 1)+ Alz,y) < Alz - 1, A(z,y)) = A(z,y+ 1) O

Collorary 2. A(z,y) < A{z,y+n)foralln>1.
Property 3. A(r,y+1) < A(z+1,y)

Proof.
c=0 A, y+1)=(y+)+1=y+2=A(,y)
z2>1: y=0: A(z,0+1) = A(z + 1,0) (by definition of the Ackermann-Function)
y2 LAz, y+1) <Az, (z+ 1) +(y-1) <
<Az, Az +1l,y-1)=Alz+ 1,y) O

Property 4. A(z,y) < A(z + 1,y)

Proof. Using A(z,y) < A(z,y+1) and A(z,y+ 1) < A(z + 1,y) it is obvious that
Alz,y) < Az +1,y). O

Collorary 3. A(z,y) < A(z +m,y) for all m > 1.

Collorary 4. A(z,y) < A(z+m,y+n)forallmn>0, m+n> 1.

4. Execution Time of A(z,y)

In this section we want to determine the execution time of A(z,y) for various
values of z and y. To get rid of all language, compiler and machine dependencies we
will measure the execution time in terms of (recursive) calls to .A(z, y), rather than
in seconds. Further we will assume a straight-forward implementation of A(z,y).
Thus we forbid the caching of previously computed values, or the use of closed
forms for A(z,y) for some z > 0, even so we are aware that either measure would
significantly speed up computation. Practical experiments quickly produce a small
* table:

Y
T(z,y)| O 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18

1
x 2 5 14 27 44 65 90 119 152 189
3 15 106 541 2432 10307 42438
4 1107
Of course it is also possible to find these values by pure thinking. Let’s start
with the following set of recursive equations for 7 (z, y):

TO0,y) = 1
Tx+1,0) = 1+7(2,1)
Te+ly+l) = 1+T(z+1,y)+T(z, Alz+1,9))

Starting there, we compute special equations for specific values of z:

TU Vienna WOOP



4 R. LIEGER AND J. BLIEBERGER

T7(0,y) = 1

T(l.yy = 2(y+1)

T(2,y) = 2 +Ty+5=(y+1)(2y+5)
; 128

T(3,y) = —22y—40».23/+3y+—33Z

32 .,
= ?(2—(3’“) ~ 1) =202 - 1)+ 3w+ 1)

Proof.
T(0,y): T(0,y) =1 by definition of the recursion for 7

T(Ly: y=0 T(LO)=14+7(0,1)=141=2=2(0+1)=2(y+1)
y>1 T(l,y)=1+7(L,y—1)+7(0,A(1,y~ 1))
=1+42(y—1)+ 1) +T(0,(y— 1) +2)
=1+2y+1=2y+1)

T(2,y): y=0: T7(2,0)=1+7T(L,1)=1+4+2(14+1)=5=2y*+Ty+5
y> 1l TR,y=1+7T2,y—1)+T(L,A2,y—-1)
=1+2(y=1)2?+7(y—-1)+5+7(,,2(y - 1)+ 3)
=142y —dy+24+Ty—T+5+7(1,2y+ 1)
=27 +3y+1+2(2u+ 1)+ 1)
=2 +3y+ 1 +4y+4=2"+Ty+5

1472, 1)=1+(2-1247-1+5)=15
2840+ 04+ 3 =1289% _40.2v + 3y + &
y>1 T@B,y=14+7T@,y—1)+7(2, A3, y- 1))
T(3,y—1)=128220-D _40.29"1 4+ 3(y - 1) + &
= 189-2.9% _40.2-1-2v"1 43y -3+ &
:%5229-20~2!/+3y+2—38
T(2,A3,y~1)) = T(2,20-D+3 _3) = 7(2,2v+2 _ 3)
=2(29F2 ~ 32 4+ T(V2 - 3) + 5
= 2(22(W+2) _9.3.9¥%2 L 9y 4+ 7(2¥t2 —3) 4+ 5
=32-2% _48-2Y +184+28-2Y —21+5
=32.2% —20.2Y 42
=1+32% 2029V +3y+ L +32.2% -20-2Y +2
=32(4.2%) - 40-2¢ +3y+ L +3
=189 402 + 3y+ ¥ O

T(3,y): y=0: T(3,0)

Hon

5. Maximal Stack Depth S(z,y) of A(z,y)

Further it is important to see, how much space on the stack is necessary, to
compute 4(z,y). Again we use a straight-forward implementation and get rid of
all external dependencies by measuring stack space in terms of number of unfinished
recursions rather than in bytes. Experiments yield the following data:

WOOP TU Vienna



ACKERMANN-FUNCTION 5

y
S(z,y) 1 0 1 2 3 4 5 6 7 8
0] 1 1 I 1 1 1 1 1 1
112 3 4 5 6 7 8 9 10
x 214 6 8 10 12 14 16 18 20
307 15 31 63 127 255 511 1023 2047
4 |16 216

Again we could have obtained them easily by thinking a little bit:

S0,y) = 1
S(z+1,0) = 1+8(z,1)
S(z+1ly+1) = l+max(S(z+1,y),8(z, Az + 1,y)))

Solving these equations for various z yields:

S(0,y) = 1

S(Ly) = y+2 = A(l,y)
S(2,y) = 2(y + 2) =A2,y)+1
S(3,y) = 2.2v+2 1 = A(3,y) + 2

S(x,y) = A(z,y)+{(z—1) forallz>1

Proof.

z =10: 5(0,y) = 1 by definition of the recursion for
z=1: y=0: §(1,0) =14+80,1)=1+1=2=y+2
y=>1: S(1l,y) =1 +max(S(1,y—1),8(0, A(1,y — 1)))
=1+max((y — 1)+ 2,800, (y— 1)+ 2))
=1l+max(y+1,1)=1+(y+1)
=y+2=Alz,y)+(z—-1)
r>2 y=0 82,00 =1+8@z -1, ) =1+Az~1,1)+((z-1)~ 1)
=Alz,0)+(z-D+(1-1)=A(z,y) +(z - 1)
y>1: S(z,y) = 1+ max(S(z,y —1),S(x - 1, A(z,y — 1)))
=1+ max(A(z,y— 1)+ (2 - 1),
A(.’E—l,A(l‘,y—l))—f-((l‘—1)—1))
=max(A(z,y - 1)+ 1, A(z,y)) +(z - 1)

6. Automated Analysis of Space and Time Complexity

In this section we will show how the methods developed in [BL94] can be used
to obtain an estimate of the complexity of the Ackermann-Function. To provide for
maximal reading comfort we will use the notation of [BL94] and frequently mention
corresponding definition numbers.

The parameter space [Def. 2.1] F of A(x,y) is Ny x Ny and the set F, of
terminating values [Def. 2.1] is {(0, y)|y € No}.

A(z.y) is well defined. [Def. 2.2}, as z is monotonically decreasing during the
recursion. Where z remains constant, y decreases, which in due time leads to a
decrement in . For r = 0 the recursion terminates.

TU Vienna WOOP



6 R. LIEGER AND J. BLIEBERGER

Depending on the value (z,y) the set of direct successors R(z,y) [Def. 2.3] has
quite a different form:

0 ifz=0
R(z,y):{ {{z—-1,1)} ifz>0,y=0
{(z,y— 1), (-1, A(z,y— 1))} ifz>0,y>0

Similary the set of necessary parameter values R*(z,y) [Def.2.4] is defined de-
pending on (z,y).

@ fz=20
Rz, y) = /oy (8 <zor(z==zand ¥y <y))and .
{ &Iw”(ﬂwﬁ¢Wﬂﬁm¢MfwﬂsA@w)} ifz>0

Looking at the definition of the recursion depth recdep[Def. 2.6] in [BL94] and
comparing it to the stack depth S used above it is obvious that:

recdep(z,y) = S(z,y) — 1

and thus
recdep(0,y) =0 for y € Ng
recdep(z,y) = Alz,y) +z -2 forz >0,y € Ng
Therefore the parameter space is divided into equivalence classes Fy, [Def. 2.5
such that
Fo = {(0,y)ly € No}
Fe={(z, )| A(z,y) +z—2=k; z,ycNyg} fork>0

The easiest way to define (21, 1) < (22, y2) [Def. 2.7] would be using the simple
condition
(x1,11) < (22,y2) < recdep(z1, y1) < recdep(za, y2)
This is equivalent to

True ifz, =0,z =0
(z1,11) < (z2,y2) < { False ifz; =0,2,>0
Az, ) + 21 < A(x2,42) + 22 if 2y > 0,20 >0

This does make A(z, y) a monotonical recursive procedure [Def. 2.7]. Unfortunately
it does not make it tirne monotonical [Def. 5.1].

Obviously the space effort for the declaration part [Def. 4.1] for each step in the
recursion does not depend on the actual parameter value. Therefore D(z,y) = oy,
const.

The mazimum successor N'(z,y) [Def. 4.3] encountered in the computation of

Az, y) is

undefined fe=0
py=d @=L ifz>0,y=0
N(z,y) = (1,y—1) fr=1y>0

(-1, A(z,y-1)) ifz>1,y>0

WOOP TU Vienna



e

RSB A Fonnitennite, s e

ACKERMANN-FUNCTION

Proof.
Trivial for £ = 0 or y = 0.
r=1y>0: R(r7y): {(l‘,y— 1)!(1_ 1,.A<1’,y" 1))} =
- {(lyy_' 1):(01A(17y_ 1)}
recdep(ly — 1) = (y— 1)+ 1 =y > 0 = recdep(0, A(1,y — 1))
z>1Ly>0:Rz,y)={(z,y~ 1), (z = 1, A(z,y - 1))}
recdep(z,y— 1)= A(z,y— 1)+ (z — 2)
SAzy—1)+(z-2)+ (z —2)
=(z-D+Ac,y- D+ (z-1)-2
<A(z -1, A(z,y— 1)) +(z —1) -2
=recdep(z — 1, A(z,y - 1)) O

As D(z,y) [Def. 4.3] is constant (for any reasonable implementation) A(z, y) is
trivially space-monotonical [Def. 4.4].

As mentioned before A(z,y) is not time monotonical [Def. 5.2] if the above
definition of ” < ” is used. This can best be seen using a simple example.
Let (z1,31) = (1,13) and (z2,y2) = (3,1). Asrecdep(1,13) = 14 = recdep(3,1) and
(for all reasonable implementations) 7(1,13) = (3, 1) we find that (1,13) ~ (3,1)
and (1,13) C (3,1) as well as (for reasons of symmetry) (1,13) 3 (3,1) [Def. 5.1].
Now R(1,13) = {(1,12), (0, 14)} and R(3,1) = {(3,0), (2,5)}.
As expected recdep(l,12) = recdep(2,5) = 13 = 14 — 1, 7(1,12) = 7(2,5) and
therefore (1,12) E (2,5) and (1,12) 3 (2,5). Unfortunately recdep(0,14) = 1 #
6 = recdep(3,0) and thus (0,14) 2 (3,0). This is in violation of the requirement
for time monotonicity (z1,y1) E (22,y2) = (21 1 Y1) E (24 4, v5 ) for all k.

References

[BL94] Johann Blieberger and Roland Lieger. Worst-case space and time complexity of recursive
procedures. (to appear), 1994.

TU Vienna WOOP



