Technische

e Institut fiir Automation Universitit
Abt. fiir Automatisierungssysteme Wien

Projektbericht Nr. 183/1-50
March 1995

Real-Time Recursive Procedures

Johann Blieberger, Roland Lieger

Salvador Dali, "Die Bestandigkeit der Erinnerung”

Real-Time Recursive Procedures

J. Blieberger R. Lieger

Department of Automation Department of Automation
Technical University Vienna Technical University Vienna

Vienna, AUSTRIA, A-1040 Vienna, AUSTRIA, A-1040

'Abstract PEARL (cf. [3]), Real-Time Concurrent C (cf. [4]),
The purpose of this paper is to show that recursive and the MARS-approach (cf. [7, 11]).

procedures can be used for implementing real-time ap- Our approach is different in that we do not forbid
plications without harm, if a few conditions are met. recursion, but instead constrain recursive procedures
These conditions ensure that upper bounds for space such that their space and time behavior either can
and {ime requirements can be derived at compile time. be determined at compile-time and/or can be checked
Moreover they are simple enough suck that many im- at runtime. Thus timing errors can be found either at

portant recursive algorithms can be implemented, for compile time or are shifted to logical errors detected at
ezample Mergesort or recursive iree-traversal algo- runtime. Moreover the conditions are simple enough J
rithms. such that many important recursive algorithms can
. be implemented, for example Mergesort or recursive

1 Introduction tree-traversal algorithms.

The most significant difference between real-time Throughout this paper we will use two examples to
systems and other computer systems is that the sy- illustrate our theoretical treatment.
stem behavior must not only be correct but the result Example 1. The Factorial Numbers n! given by
of (;1 dcorx(H)_uLatIiOI}I1 must be available within a predefi- the recursion
ned deadline. It has turned out that major progress in .
order to guarantee the timeliness of realj—tirge sgyst,ems fac(0) = 1,fac(n) = n-fac(n—1) ifn>0.
can onlly b%achiev};addiflthe scheduling problem is solved
properly. Most scheduling algorithms assume that the : ;
runtime of a task is knowgn agpriori (cf. e.g. [8, 5, 10]). Examgle f2 111& fqurs}xlve ve}-sx%r} of Mlergesort, the
Thus tlhe worst-case performance of a task plays a cru- source code ol which 1s shown in Figure 1.
cial role.

2 Some Definitions

The most difficult tasks in estimating the timing Definition 2.1. Essential properties of a recursive

behavior of a program are to determine the number

- . k procedure p are the parameter space F, i.e., the set
of iterations of a certain loop and to handle problems of all possible (tuples of) values of parameters of p,
originating from the use of recursion. A solution to a set Fy C F, the terminating values of F, and its
the first probl:ierp has been given in [1], the second one code. If p'is cailed with actual parameters fo € Fo,
will be treated in this paper. . the code being executed must not contain a recursive
_ If recursive procedures are to be used in implemen- call of p to itself. If p is called with actual parameters
ting real-time applications, several problems occur: f € F\ Fo, the code being executed must contain at
: . least one recursive call of p to itself.
L Itl;ieréoércfgtr whether a recursive procedure com- Definition 2.2. We call a recursive procedure p
P ' well-defined if for each element of F the procedure p |
2. If it completes. it must be guaranteed that its completes correctly, e.g. does not loop infinitely and f
result is delivered within a predefined deadline. does not terminate because of a runtime error. f
From now on, when we use the term recursive
3. Since most real-time systems are embedded sy- procedure, we mean well-defined recursive procedure. i
stems with limited storage space, the result of a Note that it cannot be decided whether a recursive
recursive procedure must be computed using a li- procedurg i_s well-defined or not.
mited amount of stack space. Definition 2.3. We define a set R(f) C F,
: ‘ (f € F\ Fo) by € R(f) iff p(F) is directly cal-
_In view of these problems most designers of real- led in order to compute p(f). R(f) is called the set
time programming languages decide to forbid recur- of direct successors of f. If f € Fy, the set R(f) = 0.
sion in their languages, e.g. RT-Euclid (cf. [6. 5]), i.e., it is empty.
Supported by the Austrian Science Foundation (FWF) un- Remark 2.1. We assume that if f € R(f)‘ I_E is not

der grant P10188-MAT. essential how often p is called with parameter f. Note

that it can be guaranteed by the runtime system that
p(f) is evaluated only once.

Definition 2.4. We define a sequence of sets R (f)
by

Ro(f) = {f}

Ri+1(f) = Re(f)U{F | T € R(g) where g € Ri(f)}
and we define the set R*(f) by

RY(f) = Jim Ra(f).

We call R*(f) the set of necessary parameter values
to compute p(f).
Note that Ry(f) = R(f) from Definition 2.3.)
Definition 2.5. We define a sequence of sets Fp
inductively by
1. Fo is defined as above (cf. Definition 2.1),1e., Fy
contains the terminating values of F.

2. Let Fy,...,Fi be defined. Then we define Frs1
by

E
}-k+1:{f6f\U.7:;

i=0

k
ngUﬂ}

i=0
Definition 2.6. Let f € F and let k be such that

f € Fi, then k is called the recursion depth of p(f).

We write k = recdep(f). For f,g € F, we write f=g
iff recdep(f) = recdep(y) .

Definition 2.7. A recursive procedure p is called
monotonical if for all fy € F; and for f; € F;, 0 <

i < k, we have f; < fi, where ” <” is a suitable binary
relation that satisfies for all f,, f,, f3 € F

1. either fi < faor fo < f; or fia fo and
2. iff1 ~ fg and fg ~< f3, then f1 =< f3.

We write f; < f; if either fi < f, or fi = fo.

Remark 2.2. If p is a monotonical recursive proce-
dure, then f < f forall f e R(S).

Example 1. For the Factorial Numbers we have
F=N,R(k)={k- 1}, and Fy = {0}, Fr = {k}.
Furthermore we have recdep(k) = k and the "<’-
relation for F is the " <”-relation for integers.

Example 2. Denoting by (z, y) the interval of the
array to be sorted by Mergesort, we derive

F =N?,

mien={(+[52) (173210}

and

Fo={(z.2)| z € N},
Fe={(z.y) | 2" < (y - z) < 2%}
Furthermore we have
recdep((z.y)) = [ld (y - = + 1)],
the " <"-relation for F is given by
(L1n) < (z2,42) S Yy — 21 < y2 — 12,

where " <” denotes the " <”-relation of integer num-
bers.

3 Space and Time Effort

The time effort 7 of a recursive procedure p is a
recursive function T : F — Ror 7T : F — N. If
time is measured in integer multiples of say micro-
seconds or CPU clock ticks, one can use an integer
valued function 7T instead of a real valued one.

In a similar way S, the space effort of p, Is a recur-
sive function § : F — N, where space is measured in
multiples of bits or bytes.

Both functions 7 and S are defined recursively de-
pending on the source code of p. How the recurrence
relations for 7 and S are derived from the source code
and which statements are allowed in the source code
of p, is described in the following subsection.

3.1 Recurrence Relations for S and 7

The source code of a recursive procedure is consi-
dered to consist of

e simple segments of linear code, the performance
of which is known a priori,

¢ if-statements,

¢ loops with known upper bounds of the number of
iterations which can be derived at compile time.
e.g. for-loops or discrete loops (cf. [1]),” and

e recursive calls to the procedure itself.

In terms of a context-free grammar this is stated as
follows

code(f) == iffeF
then nonrecursive(f)
else recursive(f)
end if
recursive(f) = seq(f)
seq(f) = statement(f) {statement(f)}
statement(f) = simple(f) | compound(f) |
rproc(f — f)
compound(f) = ifs(f) | bloops(f)
ifs(f) == if cond(f)
then seq(f)
else seq(f)
end if
bloops(f) = loop <bound(f)> seq(f)

The syntax of nonrecursive(f) is defined exactly
the same way but rproc(f — f) is not part of
statement(f). By f — f we denote that the para-

meters f are used for the recursive call.
We use these definitions to derive a recurrence re-
lation for the time effort 7:

T(f) = r{f € Fo} + r(nonrecursive(f)] if f € Fo,
where the first r-constant comes from the evaluating

the condition whether f belongs to the terminating
values or not and is known a priori; the second one

*This means that the number of iterations does not depend
on the result of one or more recusrsive calls.

can bg computed usgng the method described below,
but without giving rise to a recurrence relation.
For the recursive part we obtain

T(fy=r1{f € Fo] + rlrecursive(f)] if f ¢ Fy,

where

T[recursive(f)] = T [seq(f)],
Tlseq(f)] = Z T[statement(f)],
Tfs(f)] = T[cond(f)] + T{then_or_else]

where
T(then_or_else] = T[seqrrue(f)]
if the condition evaluates to true,

T(then_or_else] = T (seqraisa(f)]

otherwise,

T [bloops(f)] = <bound(f)>T [seq(f)],
T [simple(f)] = T(simple),
Tlrproc(f — f)] = T(F)

where 7(simple) is known a priori.
Note that <bound(f)> may depend on f, e.g. a
for-loop with iterations depending on f.

The recurrence relation for the space effort S is gi-
ven by:

S(f) = S(decl_part(f))+
max(o(f € Fpl, olnonrecursive(f)]) if f € Fo,

where the first o-constant is known a priori and the
second one can be computed in a similar way as shown

below, but without giving rise to a recurrence relation.
For the recursive part we get

S(f) = S(decl_part(f))+
max(o(f € Fo), ofrecursive(f)]) if f & Fo,

where
S(recursive(f)] = Slseq()],
Sseq(f)] = max (Sstatement(f)]),
Slifs(f)] = max (S{cond()], S[seqrrua(f)])

if the condition evaluates to true,

S[ifs(/)] = max (S{cond(f)], S[seqrazse(f)])

otherwise,

S{bloops(f)} = max(S{seq(f)]),
Slsimple(f)] = o(simple),
Slrproc(f —)] = S(F)

where o(simple) is known a priori and S(decl_part(f))
denotes the space effort of the declarative part of the
recursive function, e.g. space used by locally declared
variables. Note that the space effort of the declarative
part may depend on f, since one can declare arrays of
a size depending on f for example.

3.2 Monotonical Space and Time Effort

Given some actual parameters f € F, T (f) and
S(f) can easily be determined at compile time. This
can even be done if only upper and lower bounds of f
exist, eg. | < f < u, [, u € F, since maxj<s<u 7(f)
and maxi<s <y S(f) can be computed at compile time.

Definition 3.1. If f; < f, implies S(fi) < S(f7)
and T(f,) < T(f2), we call the underlying recur-
sive procedure globally space-monotonical and globally
time-monotonical, respectively.

Theorem 3.1. If p is globally space or time-
monotonical, then

Sw) = max S(f) = max S(g)

and
T, u) = Irj!}ags‘ T(f) = rgng&(’]'(g),
respectively.
In the following sections we will replace these glo-
bal properties by local ones, which are well-suited for
being checked at compile time and, if they can be

proved to hold, imply that the global properties hold
too.

4 The Space Effort of Recursive Pro-
cedures
Definition 4.1. Let p be a recursive procedure.
We define the function D : ¥ — N such that D(Jf)
denotes the space being part of the declarative part of
p if p is called with parameter f.
The general form of S(f) simplifies to

S(f) = 0g

S(f) = D(f) + max (O’maxrs(-—f-l)’ .- 1S(Tm))

if f & Fo, where R(f) = {f,,...,F.}. Since the
Omax-term is present in all S(f) provided that f ¢ Fo,

we obtain
S(fl=ay iffeF
S(f) = D(f) + max (8(f,),...,85(f))

if f & Fo, where 09 = max(o?), 6max). Note that this
does not change the value of S(f) if f € F\ F.

Definition 4.2. For each f € F the recursion di-
graph G(f) is defined by the set of vertices V = R*(f)
and the set of edges £ = {(g9,7) | 9,7 € V and g €
R(g)}. Each vertex g is weighted by D(g).

Remark 4.1. Let M denote the path from f to
some fo € Fo, fo € R*(f) with maximum weight
W(f) = 2, D(g), where g runs through all vertices

on M. Then W(f) is equal to S(f).

Remark 4.2. Using G(f), the quantity S(f) can be
computed off-line at compile time in O(||V]] + [|E|])
time (cf. e.g. [9]).

Definition 4.3. Let p be a monotonical recur-
sive procedure. We define N : F — F to be a
function such that N(f) = frnax, where fmax is such

if f € Fo

that D(fmax) = maxyen(”’D(T) and recdep(fmax) =
recdep(f) — 1.

Definition 4.4. We call a monotonical recursive
procedure p locally space-monotonical if f; < fo im-

lies D <D d.if f, 2
i BT L e f2 and DCA) < DUS)

Theorem 4.1. If p is a locally space-monotonical
recursive procedure, then

S(fy=o00+ Z

0<k <reedepd f)

DNF(f)),

where N'\¥) is the kth iterate of N’ and for simplicity
NOf) = f.
Proof. Theorem 4.1 is proved if we can show that in
G(f) no path M’ exists such that W(M') > W(M).
Assume on the contrary that M’ exists. This
means we must have a situation like that de-

picted in Figure 2. The path along
(fi-- vo, 01, v, w0, fo), fo € Fois identica_lto
M. The path along (f,...,v0,21,...,2,,w,..., fg),

Fo € Fo is denoted by M'.
By definition we have D(v,) > D(z,). Thus

D(N(v1)) = D(v2) > D(N (1)) = D(z2).

Continuing this procedure, we get D(v3) > D(z3),
and so on.

Because of Definition 4.3 we must have r > s since

recdep(v;) = recdep(viy;) + 1. Hence we obviously
have a contradiction.

Lemma 4.1. If p is locally space-monotonical and

fi < fa, f1, f2 € F, then
S(f1) £ S(f2).

Proof. Clearly we have for all 0 < k < recdep(f1)

NE(f1) < N fa).

Hence we also have

DINP(f1)) < DINE)(£2))

for all 0 < k < recdep(f;).
Thus we obtain

S(f1) < 8(f2)

and the lemma is proved.

This lemma enables us to find upper and lower

bounds of the space behavior if a range of parame-
ter values is given.

N Theorem 4.2. If p is locally space-monotonical.
then

S(lu) = A S(f) = max5(g).

Proof. By virtue of Lemma 4.1,

S(f) <S(u) foralll < f <u.

It remains to take into account all g = u. Thus the
theorem is proved.

Corollary 1. If D(f) is constant for all f € F, the
underlying recursive procedure clearly is locally space-
monotonical.

Example 1. For the Factorial Numbers we get

D(n) = g4, constant. Thus they are locally space-
monotonical and we can even show that

§(0) =00, S(n)=0c4+S(n-1).

Mentioning recdep(n) = n and A (n) = n—-1 we derive

n—~1

5(n)=00+zod=ao+n-ad.
k=0

Example 2. Writing n = y— r + | we get D(n) =

o4+ Hn/?j&. Thus Mergesort is locally space-mono-
tonical.

But we can also determine the exact behavior of
Mergesort. We obtain

S((z,z)) = oo,

S((z.9)) = 0a + (y‘ [z;y]) ’
o ((=554)

N((z,y) = (z, [(z + v)/2]).

Since S(z,y) does only depend on the length of the
array under consideration, we write again n = y—r+1
and obtain

S(1) = oo,

S(n) = oa+ |n/2]7 + S(In/2).
This can be solved and we finally get

because

S(n) = o0 + [ld nlog + (n - 1)5.

Note that it is very easy to verify that our examples
are locally space-monotonical, but difficult to derive
the exact worst-case space behavior. If a certain re-
cursive procedure p is locally space-monotonical and
an upper bound of the recursion depth is known. an
upper bound of the space to be used by p can be found
by Theorem 4.2 at compile time with little effort.

5 The Time Effort of Recursive Proce-

dures

Denoting by 7(f), f € F the time used to perform
p(f) without taking into account the recursive calls.

we have _
T(H=rH+ Y T
Ter(s)

Definition 5.1. For all fi, f, € F we write [
f (or equivalently fo 3 i} if fi < f2 and (/1)
T(fa).

Definition 5.2. Let f;,fo» € F, R(fi) =
{fi,ly .- -»fi,m.}, 1= 1,2, such that fi,l ; f,‘,g ; PN ;
im,~-1 g imyy i= 1a2'

If for all fi € f2, we have m; < my and f1, C for,

r = L,...,my, then the underlying recursive proce-
dure is called locally time-monotonical.

Lemma 5.1. If a monotonical recursive procedure
p is locally time-monotonical, then f; T f, implies
T(fy) < T(f2).

Proof. Let fi € F; and f, € F;, i < j. We
prove the theorem by double induction on the recur-
sion depth.

e At first let 1 = 0. We prove by induction on.j
that our claim is correct.

— 1f j = 0. we have
T(fi)=7(fi) < r(f2) = T(f2).
~ If j > 0, we obtain

T(H)=7(fi) L (f2) S T(fa)+
S TF)=T(f).

FL€R(f2)

o Next we consider 7 > 0.

For j > ¢ we derive

Ty =rf+ Y., T(F)

71 En(fl)

and
T(R)=r(f+ Y T
T2€R(f2)

By induction hypothesis the sum in the first equa-
tion is smaller than or equal to the sum in the
second one. Since 7(f;) < r(f2), we get

T(fi) £T(f2).

Hence the lemma is proved.

Lemma 5.1 enables us to find upper and lower
bounds of the timing behavior if a range of parameter
values is given.

N Theorem 5.1. If p is locally time-monotonical,
then

T(lu)= pax T(f) = max 7 (g).

gzu

Proof. The proof of Theorem 5.1 is very similar to
that of Theorem 4.2. Thus it is left to the reader.

Corollary 1. If IR(fH| < 1 and 7(f) is constant
for all f € F. the underlying recursive procedure is
locally time-monotonical.

Example 1. It is easy to see that the Factorial
Nunibers are locally time-monotonical.

In addition, we get
TO) =7, T(n)=mg+T(n-1)
and derive

n-1i

T(n)=r0+2rd=ro+n-rd.
k=0

Example 2. Writing n = y—z+1, we have 7(n) =
T +n7e. Clearly, if ny < nq, then 7(ny) < r(n2). This
together with the fact that the length of the subarrays
is [n/2] and [n/2] shows that Mergesort is locally
time-monotonical.

In addition, we are able to show that

T(1) = o,
T(n) < 1 +nm + T([n/2]) + T([n/2]).

The ”<” originates from the fact that we can only
find an upper bound for the number of iterations of
the discrete loop from line 20 to 35 in Figure 1. The
above recurrence relation can be solved and we finally
get

Tn) < narg+(n- 1)+
(n — 2l 4 and n]) .

Again, showing that our examples are locally time-
monotonical is very easy, while deriving exact worst-
case timing estimates is more difficult. In addition.
Theorem 5.1 can be used to find an upper bound of
the time to be used, if the recursion depth of the un-
derlying recursive procedure is bounded.

6 Compile Time vs. Runtime Checking
In the previous sections we have set up conditi-
ons which guarantee real-time behavior of recursive
procedures in the following sense: If a recursive pro-
cedure is locally space-monotonical and locally time-
monotonical and if the recursion depth of the proce-
dure is bounded, then the worst-case space and time
behavior can be determined at compile time.

For the compiler this means that it must not only
be able to prove certain properties of the recursive pro-
cedure, but also that it must determine the recursion
depth of the recursive procedure. Since it is undeci-
dable to derive this knowledge from the code of the
recursive procedure, the programmer has to provide a
function recdep that given a certain parameter of the
recursive procedure computes its recursion depth. Of
course this function must not be recursive.

But now it is undecidable to verify the function
recdep at compile time. Thus recdep is checked at
runtime. Notice also that this is the only way to check
well-definedness of a recursive procedure, which is un-
decidable too.

To be more specific, the following conditions are
checked:

1. recdep(f) can be computed for each f € F wit-
hout a runtime error

2. for all f € R(J), recdep(f) < recdep(f)

3. at least one f € R(f) has to exist such that
recdep(f) = recdep(f) — 1

4. for all f € F, recdep(f) <R

All these conditions can be checked at runtime with
little effort. If one of them is violated the exception
Tecursion.depth_error is raised.

If the compiler cannot prove the properties mentio-
ned above, additional runtime checks become neces-
sary to guarantee that all space and time requirements
are met. Details can be found in [2].

7 Implementing Mergesort

A recursive implementation of Mergesort using our
real-time recursions is given in Figure 3. Function
ceiling(x) is supposed to implement [z] and 1d(x)
denotes the binary logarithm.

Note that the programmer’s task is extremely easy.
All necessary proofs and checks can be performed by
the compiler.

The development of such a compiler is part of Pro-
Ject WOOP which is carried out at the Department of
Automation at the Technical Untversity of Vienna.

8 Conclusion

In this paper we have demonstrated how recursive
procedures can be constrained in order to use them in
real-time applications without harm.

We have set up conditions which easily can be
checked at compile time. Thus our approach is well-
suited for real-time applications.

In our forth-coming paper (2] we will give more ex-
amples of our approach. In addition, we develop a
method how one can abstract from "unnecessary” de-
tails of the algorithm during estimating space and time
properties, and we give prerequisites for real-time pro-
gramming languages which incorporate our approach.

Finally we would like to mention that our ap-
proach can be applied successfully to many import-
ant recursive algorithms, e.g. many sorting algorithms
and recursive tree traversal algorithms such as weight-
balanced trees, AVL trees, and so on (cf. [2).

References

(1] J. Blieberger. Discrete loops and worst case per-

formance. Computer Languages, 20(3):193-212,
1994.

[2] J. Blieberger and R. Lieger. Worst-case space

and time complexity of recursive procedures. (to
appear), 1994.

[3] DIN 66 253, Teil 2, Beuth Verlag, Berlin. Pro-
grammaersprache PEARL, Full PEARL, 1982.

(4] N. Gehani and K. Ramamritham. Real-time Con-

current C: A language for programming dynamic
real-time systems. The Journal of Real- Time Sy-
stems, 3:377-405, 1991.

[5] W. A. Halang and A. D. Stoyenko. Constructing
predictable real time systems. Kluwer Academic
Publishers, Boston, 1991.

[6] E. Kligerman and A. D. Stoyenko. Real-time
Euclid: A language for reliable real-time sy-
stems. /EEE Transactions on Software Enginee-
ring, 12(9):941-949, 1986.

[7] H. Kopetz, A. Damm, C. Koza, M. Mulazzani.
W. Schwabl, C. Senft, and R. Zainlinger. Distri-
buted fault-tolerant real-time systems: The Mars
approach. I[EEE Micro, pages 25-40, 1989.

(8] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environ-
ment. Journal of the ACM, 20(1):46-61, 1973.

(9] K. Mehlhorn. Graph Algorithms and NP-Com-
pleteness, volume 2 of Data Structures and Algo-
rithms. Springer-Verlag, Berlin, 1984.

[10] A. K. Mok. The design of real-time programming
systems based on process models. In Proceedings
of the IEEE Real Time Systems Symposium, pa-
ges 5-16, Austin, Texas, 1984. IEEE Press.

[11] P. Puschner and C. Koza. Calculating the maxi-
mum eXecution time of real-time programs. The
Journal of Real-Time Systems, 1:159-176, 1989.

W~ BN W

26

36
37

N: constant integer := . . ;
-— number of elements tc be sorted
subtype index is integer range 1 .. N;
type gen_sort_array is array
(index range <>) of ... ;
subtype sort_array is gen_sort_array (index);
sort_arr: sort_array;

procedure merge _sort(from,to: index) is
®m: constant integer := (from+to)/2 + 1;
subtype aux_array is gen_sort_array(m..to);
aux: aux_array;
P»4,r: integer;
begin
if from = to then
return;
end if;
merge_sort(from,m-1);
merge_sort(m,to);
aux := sort_arr(m..to);
discrete (p,q,r) := (m-1,aux last,to)
in reverse (m-1,aux last,to)
(from-1,aux first,from)
new (p,q,r) := (p-1,q,r-1) |
(p,q-1,r-1) loop
if p < from or else
target(p) < aux(q) then

target(r) := aux(q);
r = r-1;
q := g-1;

else
target(r) := target(p);
r :=r-i;
p = p-1;

end if;

end loop;

end merge_sort;

Figure 1: Ada Source Code of Mergesort using a Dis-
crete Loop

Figure 2: Paths in a Recursion Digraph

W o0 MU b WK -

N: constant integer := .., ;
== number of elements to be sorted
subtype index is integer range i .. N;
type gen_sort_array is array
(index range <>) of ... ;
subtype zort_array is gen_sort_array (index);
sort_arr: sort_array;

recursive procedure merge_sort(
from,to: index) is

wvith function recdep(from,to: index)
return natural is
begin
return ceiling(ld(to-from+1));
end;

begin

end merge_sort;

Figure 3: Recursive Implementation of Mergsort using
Real-Time Recursion

