Technische

[___4 Institut fiir Automation Universitat
I Abt. fiir Automatisierungssysteme Wien

Projektbericht Nr. 183/1-52
December 1994

Worst-Case Space and Time
Complexity of Recursive
Procedures

Johann Blieberger, Roland Lieger

Salvador Dali, "Die Bestindigkeit der Erinnerung”

WORST-CASE SPACE AND TIME COMPLEXITY OF
RECURSIVE PROCEDURES*

JOHANN BLIEBERGER AND ROLAND LIEGER

ABSTRACT. The purpose of this paper is to show that recursive procedures
can be used for implementing real-time applications without harm, if a few
conditions are met. These conditions ensure that upper bounds for space and
time requirements can be derived at compile time. Moreover they are simple
enough such that many important recursive algorithms can be implemented,
for example Mergesort or recursive tree-traversal algorithms.

In addition, our approach allows for concentrating on essential properties
of the parameter space during space and time analysis. This is done by mor-
phisms that transfer important properties from the original parameter space
to simpler ones, which results in simpler formulas of space and time estimates.

1. Introduction

The most significant difference between real-time systems and other computer
systems is that the system behavior must not only be correct but the result of a
computation must be available within a predefined deadline. It has turned out that
a major progress in order to guarantee the timeliness of real-time systems can only
be achieved if the scheduling problem is solved properly. Most scheduling algorithms
assume that the runtime of a task is known a priori (cf. e.g. [LL73, HS91, Mok84]).
Thus the worst-case performance of a task plays a crucial role.

The most difficult tasks in estimating the timing behavior of a program are
to determine the number of iterations of a certain loop and to handle problems
originating from the use of recursion. A solution to the first problem has been
given in [Bli94], the second one will be treated in this paper.

If recursive procedures are to be used in implementing real-time applications,
several problems occur:

(1) It is not clear, whether a recursive procedure completes or not (cf. e.g. Ex-
ample 5 below).

(2) If it completes, it must be guaranteed that its result is delivered within a
predefined deadline.

(3) Since most real-time systems are embedded systems with limited storage
space, the result of a recursive procedure must be computed using a limited
amount of stack space.

*Supported by the Austrian Science Foundation (FWF) under grant P10188-MAT. A preli-

minary version of this paper has been submitted to the 7th Euromicro Workshop on Real-Time

Systems.
Key words and phrases. real-time systems, worst-case performance, recursions, parameter

space morphisms.

2 J. BLIERERGER AND R. LIEGER

In view of these problems most designers of real-time programming languages
decide to forbid recursion in their languages, e.g. RT-Euclid (cf. [KS86, HS91]),
PEARL (cf. [DIN82]), Real-Time Concurrent C (cf. [GRYI1]), and the MARS-
approach (cf. [KDK*89, PK89]).

Other so-called real-time languages allow recursions to be used, but do not pro-
vide any help to the programmer in order to estimate time and space behavior of
the recursive procedures, e.g. Ada (cf. [Ada83]) and PORTAL (cf. [Bus85]). Intere-
stingly, a subset of Ada (cf. [For93]) designed for determining the worst-case timing
behavior forbids recursion. PORTAL uses RECURSION resources and terminates
a recursive computation if the resource is exhausted. Although it is not clear from
the description, one can suspect that a RECURSION resource 1s equivalent to an
area of memory that contains the stack space. Both Ada and PORTAL cannot
handle the time complexity of recursive procedures.

Other approaches do not address recursion at all (cf. e.g. [MACTS9, Sha89,
Par93, ITM90]), others (cf. e.g. [PK89]) propose to replace recursive algorithms by
iterative ones or to transform them into non-recursive schemes by applying program
transformation rules. Certainly, if a stmple iterative version of a recursive algorithm
exists and it is also superior in space and time behavior, it should be used instead
of a recursive implementation. On the other hand there are the following reasons
why recursive algorithms should be implemented by recursive procedures:

e The space and time behavior of transformed programs are by no means
easier to investigate than their recursive counterparts, since the stack has
to be simulated and because they contain while-loops. In general, the
number of iterations of these loops cannot be determined at compile time,
even with the use of discrete loops (cf. [Bi94]).

* A recursive algorithm originates from recursiveness in the problem domain.
From the view of software engineering, a program reflecting the problem
domain is considered better than others not doing so (cf. e.g. [Boo91]).

¢ Often recursive algorithms are easier to understand, to implement, to test,
and to maintain than non-recursive versions.

Our approach is different in that we do not forbid recursion, but instead cons-
train recursive procedures such that their space and time behavior either can be
determined at compiletime or can be checked at runtime. Thus timing errors can
be found either at compile time or are shifted to logical errors detected at runtime.

The constraints mentioned above are more or less simple conditions. If they can
be proved to hold, the space and time behavior of the recursive procedure can be
estimated easily.

Within this paper we will use the following notational conventions:

o When we speak of recursive procedures, we mean both recursive procedures
and recursive functions.

¢ When we speak of space, we mean stack space and not heap space. If dyna-
mic data structures are used for the internal representation of an object, the
space allocated from the heap is under control of the object/class manager.
On the other hand, the space allocated from the stack originating from the
use of recursive procedures can not be explicitly controlled by the applica-
tion. This case requires a delicate treatment, which will be performed in
this paper.

Project WOOP TU Vienna

L T O TR

WORST-CASE COMPLEXITY OF RECURSIVE PROCEDURES 3

Throughout this paper we will use 4 examples to illustrate our theoretical treat-
ment.

Example 1. The Factorial Numbers n! given by the recursion

n - fac(n — 1 ifn >0,
fac(n) = {1 "y ifn=0

Example 2. The Fibonacci Numbers f(n) given by the recursion (n>2)

f0)=f(1) =1,
f(n) = f(n = 1)+ f(n - 2)
Example 3. The Ackermann Function A(z, ¥) given by

A0, y) =y+1
A(z +1,0) = A(z,1)
Az +1Ly+1) = Az, A(z + 1, y))

Example 4. A recursive version of Mergesort, the source code of which is shown
in Figure 1. Note that the Ada source code contains a hidden for-loop, namely at
line 17, and a discrete loop starting at line 18. (The syntax and semantic of discrete
loops can be found in [Bli94].)

Further examples will be given in the text but those listed above will be our
major references.

It is obvious that the first three examples of recursive procedures introduced
above will not be used in practical applications. Rather the first two will be im-
plemented without recursion and we suppose the third one will not occur in any
practical application. Nevertheless we will use these examples throughout this pa-
per because they are simple enough to illustrate our ideas. Of course this does not
mean that our approach can only be applied to simple cases. In fact it is applicable
to very complex and general cases as can be seen in the following sections.
Remark 1.1. In this paper we will use the following notations.

e By log N = log, N we denote the natural logarithm of N.
e By Id N we denote the binary logarithm of V.
¢ The greatest integer n < z is denoted by [z].
¢ The smallest integer n > z is denoted by [z].

2. Definitions and Preliminary Results

Definition 2.1. Essential properties of a recursive procedure p are the parameter
space F, ie., the set of all possible (tuples of) values of parameters of P, a set
Fo C F, the terminating values of F, and its code. If p 1s called with actual
parameters fo € Fy, the code being executed must not contain a recursive call of p
to itself. If p is called with actual parameters f € F \ Fo, the code being executed
must contain at least one recursive call of p to itself.

Definition 2.2. We call a recursive procedure p well-defined if for each element of
F the procedure p completes correctly, e.g. does not loop infinitely and does not
terminate because of a runtime error (other than those predefined in this paper).

TU Vienna Project WOOP

i
i

D P

© 0N

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

J. BLIEBERGER AND R. LIEGER

E: constant integer := ... ; -- number of elements to be sorted
subtype index is integer range 1 .. N;

type gen_sort_array is array (index range <>) of ... ;

subtype sort_array is gen_sort_array (index);

sort_arr: sort_array;

procedure merge_sort(from,to: index) is
m: comrstant integer := (from+to)/2 + 1;
subtype aux_array is gen_sort_array(m..to);
aux: aux_array;
P»q,r: integer;

begin
if from = to then

return;

end if;
merge_sort(from,m-1);
merge_sort(m,to);

aux := sort_arr(m..to);
discrete (p,q,r) := (m-1,aux’last,to)
in reverse (m~1,aux’last,to) .. (from-1,aux’first,from)

new (p,q,r) := (p-1,q,r-1) | (p,q-1,r~1) loop
if p < from or else target(p) < aux(q) then
target(r) := aux(q);

r :=r-1;
q = g-1;

else
target(r) := target(p);
r :=r-1;
p = p-1;

end if;

end loop;

end merge_sort;

FiGUurRE 1. Ada Source Code of Mergesort using a Discrete Loop

Project WOOP

TU Vienna

WOoRST-CaSE COMPLEXITY OF RECURSIVE PROCEDURES 5

From now on, when we use the term recursive procedure, we mean well-defined
recursive procedure.

Definition 2.3. We define aset R(f) C F, (f € F\ Fo) by f € R(f) iff p(F) is
directly called in order to compute p(f). R(f) is called the set of direct successors
of f. If f € Fo, the set R(f) =0, i.e., it is empty.

Remark 2.1. We assume that if fe R(f), it is not essential how often p is called
with parameter f. Note that it can be guaranteed by the runtime system that p(f)
is evaluated only once.

Definition 2.4. We define a sequence of sets R, (f) by

Ro(f) = {1}
Ri+1(f) = Re(f) U{f | f € R(g) where g € Ri(f)}
and we define the set R*(f) by
R*(f) = Jim Re().
We call R*(f) the set of necessary parameter values to compute p(f).
Note that R1(f) = R(f) from Definition 2.3.

Definition 2.5. We define a sequence of sets F, inductively by

(1) Fo is defined as above (cf. Definition 2.1), i.e., Fy contains the terminating

values of F.
(2) Let Fo, ..., Fi be defined. Then we define Fra1 by

k
R(f) C Ufi}-

i=0

k
le:{fef\Ufi
i=0

Lemma 2.1. We have | J,, F = F.

Proof. By definition we clearly have Ukse Fr C F.
On the other hand assume that there exists some J € F for which f ¢ Ur>o Fr
holds. -
Now R(f) contains at least one element, say f, which is not contained in
Ukso Fr. The same argument applies to R(f) and so on. Thus P Is not well-
defined. Hence F C UpsoFe. O

Corollary 2.1. By definition and by Lemma 2.1 we see that the sequence Fj
partitions the set F i.e., for each f € F holds that there exists exactly one k € N
such that f € F; and f € F; for all i # k. Thus the Fy are equivalence classes.

Definition 2.6. Let f € F and let k be such that f € Fi, then k is called the
recurston depth of p(f). We write k = recdep(f). For f,g € F, we write f a g iff

recdep(f) = recdep(g) .

Definition 2.7. A recursive procedure p is called monotonical if for all fr € Fp
and for f; € F;, 0 < i < k, we have f; < fi, where "<” is a suitable binary relation
that satisfies for all f;, fo, fs € F

(1) either f; < fo or fo < fi or f; & f> and
(2) if fl < fg and fg ~ f3, then f1 = f3.

TU Vienna Project WOOP

6 J. BLIEBERGER AND R. LIEGER

We write fi < fy if either f; < faor fi = fo.

Remark 2.2. Note that a trivial ” <”-relation can always be obtained by defining
J1 < f2 & recdep(f1) < recdep(fs). We will return to this topic in Section 7.
Remark 2.3. If p is a monotonical recursive procedure, then f < f for all FeRrR(S).

Example 1. For the Factorial Numbers we have F = N, R(k) = {k — 1}, and
Fo = {0}, Fr = {k}. Furthermore we have recdep(k) = k and the ”<”-relation for
F is the ”<”-relation for integers. [J

Example 2. For the Fibonacci Numbers we obtain F = N, R(k)={k—-1,k-2},
and Fy = {0,1}, Fx = {k + 1}. Furthermore we have recdep(k) =k — 1, if k > 1,
the 7 <”-relation for F is the ” <”-relation for integers. [J

Example 3. The Ackermann Function gives

F=N?
0 if 2 =0,
’R((r,y)): {(;zr—l,.A(:c,y-l)),(x,y——l)} 1fy2 17
{(z—1,1)} ify=0

and (cf. [LBY4], where proofs of the following facts can be found)

Fo={(0,y) |y € N},
Fi :{(:c,y)]A(x,y)+m—2:k,z>0}‘

Furthermore we have

recdep((0,y)) = 0 and for z > 0
recdep((z,y)) = A(z,y) +2 - 2,

the ” <”-relation for F is
(z1,91) < (22,92) & Alz1, 1) + 2, < Aza,y2) + 22

fzy, 20 >0 O
Example 4. For Mergesort we derive

F

e {22 (22)

Fo={(x,z)]z € N},
Fe={(z,9) |27 < (y ~ 2) < 2%}

2
3

and

Furthermore we have

recdep((z,y)) = [ld(y — z + 1)],

Project WOOP TU Vienna

1
i

~¥

WoRrsT-Case COMPLEXITY OF RECURSIVE PROCEDURES

the " <"-relation for F is given by
(21,01) < (22,92) © Y1 — 21 < yo — 2o,
where ”<” denotes the ” <”-relation of integer numbers. [

Example 5. An interesting example is the "wondrous” function (cf. [Hof79]). This
function is not known to be well-defined, but we will study it anyway since it has
interesting properties. It is defined by

d(n) = d(n/2) ‘lf n = 0(2) and
' d(3n+ 1) if n = 1(2).
It has been conjectured that finally the ”wondrous” function finds itself repeating
the three numbers 4, 2, and 1 infinitely, irrespective of the initial value n € N. This,
however, has not been proved.
Now defining a (possibly not well-defined) recursive procedure by
F =N,
Fo={1,2,4}, and

k2 if k= 0(2)
Rlk) = {3k+1 if k= 1(2),

we obtain
.7:1 - {8}, .7:2 = {16}, .;r3 = {5’32}7
Fa={10,64}, Fs = {3,20,21,128},... .

It 1s not obvious how recdep(n) and a suitable ” <”-relation can be expressed by a
simple formula. [J]

3. Computational Model and Space and Time Effort
The time effort 7 of a recursive procedure p is a recursive function
T:F—R
or
T:F—H,

If time is measured in integer multiples of say micro-seconds or CPU clock ticks,
one can use an integer valued function 7 instead of a real valued one.
In a similar way S, the space effort of p, Is a recursive function

S:F —N,

where space is measured in multiples of bits or bytes.

Both functions 7 and & are defined recursively depending on the source code of
p. How the recurrence relations for 7 and S are derived from the source code and
which statements are allowed in the source code of P, 1s described in the following
subsection.

TU Vienna Project WOOP

8 J. BLIEBERGER AND R. LIEGER

3.1. Recurrence Relations for S and 7. The source code of a recursive pro-
cedure is considered to consist of

¢ simple segments of linear code, the performance of which is known a priori,

o if-statements,

e loops with known upper bounds of the number of iterations which can be
derived at compile time, e.g. for-loops or discrete loops (cf. [Bli94]),* and

¢ recursive calls to the procedure itself.

In terms of a context-free grammar this is stated as follows

code(f) = if f € Fy then nonrecursive(f) else recursive(f) end if
recursive(f) = seq(f)
seq(f) = statement(f) {statement(f)}
statement(f) = simple(f) | compound(f) | rproc(f — f)
compound(f) = ifs(f) | bloops(f)
ifs(f) = if cond(f) then seq(f) else seq(f) end if
bloops(f) ::= loop <bound(f)> seq(f)

‘The syntax of nonrecursive(f) is defined exactly the same way but rproc(f — }E) is
not part of statement(f). By f — f we denote that the parameters f are used for
the recursive call.

We use these definitions to derive a recurrence relation for the time effort 7

T(f) = r[f € Fo] + r[nonrecursive(f)] if f € Fo,

where the first r-constant comes from the evaluating the condition whether f be-
longs to the terminating values or not and is known a priori; the second one can be
computed using the method described below, but without giving rise to a recurrence
relation,

T(f) = 7[f € Fo] + r[recursive(f)] if f & Fa,
where

T [recursive(f)] = 7 [seq(f)]
Tlseq(f)] = Z 7 [statement(f)]

T [5G 1rue if the condition eval o ,
Tlifs(f)] = T [cond(f)] + {T%sezi ({g] (I)t:lefwios:. on ereluntes o true
T [bloops(f)] = <bound(f)>T [seq(f)]

T [simple(f)] = r(simple)
Trproc(f —)l = T(})

where 7(simple) is known a priori.
Note that <bound(f)> may depend on f, e.g. a for-loop with iterations depen-
ding on f.

!This means that the number of iterations does not depend on the result of one or more

recursive calls.

Project WOOP TU Vienna

WoRrsT-Case COMPLEXITY OF RECURSIVE PROCEDURES 9

The recurrence relation for the space effort S is given by:
S(f) = S(decl_part(f)) + max(c[f € Fy], o[nonrecursive(f)]) if f € Fg,

where the first o-constant is known a priori and the second one can be computed
in a similar way as shown below, but without giving rise to a recurrence relation,

S(f) = S(decl_part(f)) + max(c(f € Fy], olrecursive(f)]) if f & Fo,
where

Slrecursive(f)] = S[seq(f)]
Slseq(f)] = max (S[statement(f)])

. _ Jmax(S[cond(f)], S[seqrrua(f)]) if the condition evaluates to true,
SU(f)] = {max(S[cond(f)}, S[seqraise(f)]) otherwise.

S[bloops(f)] = max(S[seq(f)])

S[simple(f)] = o(simple)

Slrproc(f — f)] = 8(f)

where o(simple) is known a priori and S(decl_part(f)) denotes the space effort of
the declarative part of the recursive function, e.g. space used by locally declared
variables. Note that the space effort of the declarative part may depend on f, since
one can declare arrays of a size depending on f for example.

3.2. Monotonical Space and Time Effort. Given some actual parameters f &
F, T(f) and 8(f) can easily be determined at compile time. This can even be
done if only upper and lower bounds of foexist, eg. I < f < u, l,u € F, since
max;<;<u 7(f) and max;<s<u S(f) can be computed effectively.

Definition 3.1. If fi < f, implies 8(f1) < S8(f) and T(fi) < T(f2), we call
the underlying recursive procedure globally space-monotonical and globally time-
monotonical, respectively.

Remark 3.1. Note that f; &~ f, implies S(f;) = 8(f2) and T(f1) = T(f2), respec-
tively.
There are two cases:

(1) S and 7 can be shown to be monotonical at compile-time and
(2) S and T can be solved at compile-time and the (non-recursive) solution
can be proved to be monotonical.

In both cases we clearly have:
Theorem 3.1. If p is globally space or time-monotonical, then

&l u) = X, S(f) = max S(g)

and
T(lu) = X 7(f) = max7 (g),

respectively. [

TU Vienna Project WOOP

10 J. BLIEBERGER AND R. LIEGER

The difference between case (1) and (2) is that in case (2) Theorem 3.1 can even
be applied during runtime, e.g., when generic objects are instantiated (cf. e.g. [Ada83,
ES90]), while in case (1) for real-time applications Theorem 3.1 can only be applied
at compile time, because case (1) requires one or more recursive evaluations of 8§
or 7.

If no proofs are available at compile time that p Is globally space or time-
monotonical, runtime tests can be performed. Of course this requires some overhead
in computing the result of a recursive call to P

In the following sections we will define ”local” conditions. If these conditions
hold, the underlying recursive procedure is called locally space or locally time-
monotonical. It will turn out that if a recursive procedure is locally space (time)
monotonical, then it is also globally space (time) monotonical. (It is worth noting
that the converse is not true, i.e., if a certain recursive procedure is globally space
or time monotonical, it need not be locally space or time monotonical.)

Thus it suffices to prove that a certain recursive procedure is locally space or
time-monotonical, before Theorem 3.1 can be applied. This proof often is simpler
than proving the corresponding global property.

If the local properties can be proved at complile time, Theorem 3.1 can be applied
at compile time. If there is a (non-recursive) solution of § or 7 known and verified
at compile time, Theorem 3.1 can also be applied at runtime.

In addition, the local properties can be checked at runtime, such that it is not
necessary to have proofs at compile time. Rather an appropriate exception is raised
at runtime when the runtime system finds that the local property does not hold
in a particular case. Thus timing errors are shifted to runtime errors or in other
words timing errors become testable.

The major advantages of local properties are that

o they can easily be proved at compile time and
o they are well-suited for real-time applications.

In the following sections we give several examples of how easy these proofs can be
derived. We think that in many cases they can be found by a (smart) compiler.
In general, proofs of global properties and solving recurrence relations are more

difficult.

4. The Space Effort of Recursive Procedures

Definition 4.1. Let p be a recursive procedure. We define the function D : F — N
such that D(f) denotes the space being part of the declarative part of pif pis called
with parameter f.

The general form of S(f) simplifies to
S(fy=0y ffEF
S(f) = DUf) + max (omax, S(F1), -, S(Fr)) if f & Fo,

where R(f) = {f,,...,7,.}. Since the oy -term is present in all S(f) provided
that f & Fy, we obtain

S(fy=0o if fEF
(4.1) S =D(f) +max(8(fy),...,.8(F) it f ¢ Fo,

Project WOOP TU Vienna

WoRrsT-Case COMPLEXITY OF RECURSIVE PROCEDURES 11

where 05 = max(0}, omax). Note that this does not change the value of S(f)
if fe F\F.

Remark 4.1. Evaluating S(f) for recursive functions increases the height of the
stack if the recursive call is part of an expression, but this can be avoided by
introducing temporary variables in the declarative part of the recursive function.
(Note that this can be done at compile timel)

Definition 4.2. For each f € F the recursion digraph G(f) is defined by the set
of vertices V = R*(f) and the set of edges £ = {(g,9) | 9,5 € V and 7€ R(9)}
Each vertex g is weighted by D(g).

Remark 4.2. Let M denote the path from f to some fo € Fo, fo € R*(f) with
maximum weight W(f) = Zg D(g), where g runs through all vertices on M. Then
W(f) is equal to S(f).

Remark 4.3. Using G(f), the quantity S(f) can be computed off-line at compile
time in O(|[V{| + || E|]) time (cf. e.g. [Meh84a]).

Definition 4.3. Let p be a monotonical recursive procedure. We define N : F —
F to be a fun_ction such that N(f) = fiax, where foax is such that D(fmax) =
Maxzer D(f) and recdep(frmax) = recdep(f) — 1.

Definition 4.4. We call a monotonical recursive procedure p locally space-mono-
tonical if fi < fy implies D(f1) < D(f2) and, if f; ~ f2 and D(f1) < D(f2) implies
DN (1)) < DN (f2)).

Remark 4.4. If D(f) is constant, then the underlying recursive procedure is locally
space-monotonical.

Theorem 4.1. Ifp is a locally space-monotonical recursive procedure, then

ShH =0+ > DWH(),

0Lk <recdep(f)
where N'%) is the kth iterate of N and for simplicity NO(f) = f.

Proof. Theorem 4.1 is proved if we can show that in G(f) no path M’ exists such
that W(M') > W(M).

Assume on the contrary that M’ exists. This means we must have a situation
like that depicted in Figure 2. The path along (f,...,v0,v1,..., 00, w, .. S foh

ol

F1GUre 2. Paths in a Recursion Digraph

TU Vienna Project WOOP

12 J. BLIEBERGER AND R. LIEGER

he%mmm@mkfﬂmeMﬂﬂmmwmmgww“j&%Eﬂ
is denoted by A,
By definition we have D(v;) > D(z1). Thus

DN (21)) = D(v2) > DN (21)) > D(z2).

Continuing this procedure, we get D(v3) > D(z3), and so on.
Because of Definition 4.3 we must have » > s since recdep(v;) = recdep(v;41)+1.
Hence we obviously have a contradiction. [J

Corollary 4.1. If D(f) = d, d € N constant for all fEeF,
S(f) = o0 + d - recdep(f).

Remark 4.5. Theorem 4.1 and Corollary 4.1 show the intuitively clear connection
between the recursion depth (the height of the stack) and the space complexity of
recursive procedures.

The following lemma is needed in order to prove our main result on the space
effort of recursive procedures, which is given in Theorem 4.2.

Lemma 4.1. If p is locally space-monotonical and f; < fo, fi.fa €F, then
S(f1) < 8(f2).
Proof. Clearly we have for all 0 < k < recdep(f1)
NE(fr) < NOXfy).

Hence we also have

DINF(f1)) < DND(f2))

for all 0 < k < recdep(f;).
Thus we obtain

S(f1) < 8(f2)

and the lemma is proved. [

Theorem 4.2. If p is locally space-monotonical, then

G(LU)=3§§§§S(f)::$g}SQD'

Proof. By virtue of Lemma 4.1, z
S(f) <S(u) foralll<f <u. ‘f
It remains to take into account all g &~ u. Thus the theorem is proved. []
Remark 4.6. Lemma 4.1 does even hold if
RY(fi) AR (f2) = 0.

The same applies to Theorem 4.2, i.e., it even holds if

1 (=0

12 <u

Project WOOP TU Vienna

WORsT-CASE COMPLEXITY OF RECURSIVE PROCEDURES 13

Example 1. For the Factorial Numbers we get D(n) = o4, constant. Thus they
are locally space-monotonical (¢f. Remark 4.4) and we can even show that

S(O) = 0Oq,
S(n)=o04+8(n-1).

Mentioning recdep(n) = n and A'(n) = n — 1 we derive

n—1
S(n):ao—f-Zad:Ug—}-n-ad.]
k=0

Example 2. For the Fibonacci Numbers we obtain D(n) = o4, constant. Thus
they are locally space-monotonical (cf. Remark 4.4) and we can even show that

S(0) = 8(1) = oy,
S(n) =044 S(n—1).

Mentioning recdep(n) = n — 1 and A'(n) = n — 1 we derive for n >1

n-2

S(n):ao+Zo’d:aO+(n——l)~o’d. O
k=0

Example 3. Since D((z,y)) = 04, constant, the Ackermann Function is locally
space-monotonical (cf. Remark 4.4). In addition, since

N((z,9)) = (z - 1, A(z,y — 1)),
we get for the Ackermann Function (cf. [LB94])

S((0,y)) = o0,
S((z,9)) =00+ 04 (A(z,y) +2—2). O
Example 4. Mergesort is treated a little inexactly. An exact treatment is possible
by use of parameter space morphisms which are introduced in Section 6.
Writing n = y — 2 + 1 we get D(n) = o4 + (n/2]&. Thus Mergesort is locally

space-monotonical.
But we can also determine the exact behavior of Mergesort. We obtain

S((z,z)) = o0,

sm=ees (- [<32]ovs (- |122)

Nz,) = (2, [(z + y)/2]).

becanse

Since S(z,y) does only depend on the length of the array under consideration, we
write again n = y — z + 1 and obtain

TU Vienna Project WOOP

14 J. BLIEBERGER AND R. LIEGER

S(l) = 0g,
S(n) = o4+ [n/2)& + S([n/2]).

This can be solved and we finally get
S(n) =00+ [ldnlos + (n - 1)5. O
5. The Time Effort of Recursive Procedures

Denoting by 7(f), f € F the time used to perform p(f) without taking into
account the recursive calls, we have

TN =1H+ Y T(h).
FeR(f)
Definition 5.1. For all f1, f, € F we write f; C f2 (or equivalently f, 3 f) if
fi X f2 and 7(f1) < 7(f2).

Definition 5.2. Let f,f, € F, R(fi) = {fir,---, fim,}, i = 1,2, such that
fi,l | fi,2 g...d fi,m,—l J fi,m,; 1= 1,2

If for all fi T fo, we have m; < ms, and Jiro © far, 7= 1,... ,my, then the
underlying recursive procedure is called locally time-monotonical.

Remark 5.1. If for all fi, fo € F fi < f, implies T(f1) < 7(f2) and if |R(f)]] < 1
for all f € F, then the underlying recursive procedure is locally time-monotonical.

Lemma 5.1. If a monotonical recursive procedure p is locally time-monotonical,
then fi C fo implies T(fi) < T(f2).

Proof. Let f1 € F; and fy € Fj, 1< j. We prove the theorem by double induction
on the recursion depth.

o At first let 7 = 0. We prove by induction on Jj that our claim is correct.
~ If 7 = 0, we have

T(f) =1(f) < 7(f2) = T(f2).
~ If j > 0, we obtain

T(f)=r(f)<rf) <)+ S TF)=T(f).

TLER(f2)
e Next we consider 7 > 0.
For j > {1 we derive
(5.1) T(fy=rf)+ > T(f) and
FLeR(f1)
(5.2) T(f2)=7(f2) + }: 7(f»).
?geR(fi’)

By induction hypothesis the sum in (5.1) is smaller than or equal to the
sum in (5.2). Since 7(f;) < 7(f2), we get

T(f1) < T(f2).

Project WOOP TU Vienna

i

WoRsT-CASE COMPLEXITY OF RECURSIVE PROCEDURES 15

Hence the lemma is proved. [J

Remark 5.2. If we have fi T f, and fs E fi, we conclude that f; ~ f, and
7(f1) = 7(f2). By Lemma 5.1 this implies T(fH)=T(f2).

Lemma 5.1 enables us to find upper and lower bounds of the timing behavior if
a range of parameter values is given.

Theorem 5.1. If p is locally time-monotonical, then

T u) = pax T(f) =max7(g). O

=

Example 1. Because of Remark 5.1 the Factorial Numbers are locally time-mono-
tonical.
In addition, we get

T(O) = To,
T(n)=r4+T(n~-1).

Mentioning recdep(n) = n we derive

n—1
T(n):r0+27dzro+n~rd. O
k=0

Example 2. It is easy to see that the Fibonacci Numbers are locally time-monotonical.
In addition, we derive

T0)=T1) =,
Tn)=1a+T(n—1)+T(n—-2).

Thus for n > 2

T(n) = f(n)ro + (f(n) = D,
where f(n) denotes the nth Fibonacci Number. [J

Example 3. It turns out that the Ackermann Function is not locally and not glo-
bally time-monotonical (cf. [LB94]). The following gives a simple counter-example:

Let (z1,11) = (1,13) and (22,y2) = (3,1). Because of recdep((1,13)) = 14 =
recdep((3,1)) and (for all reasonable implementations) 7(1,13) = 7(3,1) we find
that (1,13) ~ (3,1) and (1,13) C (3, 1) as well as (for reasons of symmetry)
(1,13) 3 (3,1) (cf. Remark 5.2).

Now R((1,13)) = {(1,12),(0,14)} and R((3,1)) = {(3, 0),(2,5)}.

As expected recdep(1,12) = recdep(2,5) = 13 = 14 — 1, 7(1,12) = 7(2,5) and
therefore (1,12) C (2,5) and (1, 12) 3 (2,5).

Unfortunately recdep((0,14)) = 1 # 6 = recdep((3,0)) and thus (0,14) Z (3,0),
which contradicts Remark 5.2 and Remark 3.1.]

TU Vienna Project WOOP

16 J. BLIEBERGER aAND R. LIEGER

Example 4. Writing n = y — z + 1, we have T(n) = 1 + nry. Clearly, if ny < o,
then 7(n;) < 7(ns). This together with the fact that the length of the subarrays is
[n/2] and [n/2] shows that Mergesort is locally time-monotonical.

In addition, we are able to show that

T(l) = Ty
T(n) <+ nrme+T({n/2]) + T([n/2]).

The ”<” originates from the fact that we can only find an upper bound for the
number of iterations of the discrete loop from line 18 to 30 in Figure 1. The above
recurrence relation can be solved and we finally get

T(n)<nmp+(n— 1) + (n —ofdn +nﬂdn]) . O

6. Parameter Space Morphisms

The theoretical results of the previous sections are Impressive in that they are
valid for recursive procedures with very general parameter space. For many appli-
cations, however, only a small "part” of the parameter space is responsible for the
space and time behavior of the recursive procedure. In this section we are concer-
ned with the problem how to ”abstract” from unnecessary details of the parameter

space.
Commonly, data structures are analyzed by informally introducing some sort of
complezity measure (cf. [VF90]) or size (cf. [Meh84b, AHUT4]) of the data structure.

We prefer a more formal approach.

Definition 6.1. A parameter space morphism is a mapping H : F — F' such that
for all f € F the set
M(f) = max{g : H(f) = H(g)},

where the elements of the max-term are ordered by the ”<”-relation of F, and the
target recursion depth

recdepy(f’) = recdep(g) where g € M(f) and f' = H(f),
are well-defined and recdep(f’) < oo for all f' € F'.

Remark 6.1. Note that [|JM(f)|| > 1, but recdep(g;) = recdep(g2) if g1 € M(f)
and go € M(f).

Remark 6.2. Note that recdeps implies a (trivial) ” <”-relation upon F, namely

(6.1) ff'<y¢ & recdepn(f) < recdepy(¢’)

for f',¢' € F'. We will assume in the following that a ”<”-relation exists which is
consistent with equation (6.1) and denote it by ” <"

Definition 6.2. In the following we will frequently apply M to subsets of F. Let
G C F denote such a subset. Then we write H(G) to denote the multiset §' =

H(G) = {H(g) | g € G}.

In order to estimate space and timing properties of recursive procedures, we
define how space and time will be measured in F'.

Project WOOP TU Vienna

;
£
}
i

WoORsT-CAsE COMPLEXITY OF RECURSIVE PROCEDURES 17

Definition 6.3. The functions Sy and 73 are defined in the following way:

Sn(f) = S d
n(f') ,max S(g) an

&
Tn(f') = flmﬁax(g) T(g)
where f' € F' and g € F.

Definition 6.4. If f| <% f} implies Sx(f]) < Sn(f3) and To(f]) < Tr(f}), we
call the underlying recursive procedure globally H-space-monotonical and globally
H-time-monotonical, respectively.

Definition 6.5. In addition, we need the following definitions:

(6.2) Pu(f) = ffi‘%’éup(g)

(6.3) ™ (f") = ax (g)

(6.4) Ru(f= J {HR@)))
fr=H(yg)

(6.5) Nu(f') = Ffoax

where

I'(f")= {4 | max recdepy f = recdepyg’},
'ﬁlé”sf(f')
max € I'(f), and
Dy (finax) = g,renra};c,)D(y’)
Remark 6.3. Note that H(R(g)) is a multiset and Ry (f') is a set of multisets.

Definition 6.6. A recursive procedure p is called H-monotonical if for all g ER
and for all R" € Ry (f’) it holds that ¢’ < f'.

With these definitions it is easy to prove the following results.

Lemma 6.1. If p is H-monontonical, the following relation holds:

Tr(f) < ! T3 (7
W) S () + | max ,)T;/ #(F)

Proof. By definition
Tn(f') = max (7’(9)+ > T(E))
fr=Hlg) —
gER(g)

which can be estimated by

TU Vienna Project WOOP

18 J. BLIEBERGER AND R. LIEGER

Sr(f)+ max > T(g)

Fr=M{g)_

IA

() + max _max T(k)
f _H(g)E'EH('R(g))g =H(k)

=T71(f’)+f/r§f£{) > Tu(@)
T g enR(g)

" Tr(q').
TH(f)‘?‘R/ET%ES%f/)“;y n(7)
g

f

Thus the lemma is proved. []

Lemma 6.2. If p is H-monontonical, the following relation holds:

Sn(f') < Du(f' Sn(@
n(f) < n(f)+R,Er;12ix(f,) nax Sx(7')

Proof. The proof is suppressed since it is very similar to the proof of Lemma 6.1. [

Definition 6.7. A H-monotonical recursive procedure p is called locally H-space-
monotonical if f <3 f; implies Dy (f]) < Dw(f3), fi <wn fh implies Ny (f]) <
No(f3), and, if f{ = f} and Dy (f]) < Dy (f5) implies Dy (N (£1)) < Dy (Nu(f3))-

Definition 6.8. For all f{, f5 € ' we write fi Ex f5 (or equivalently £ 3n)
if fi <3 fr and 7 (f]) < m(f3).

Definition 6.9. Let p be a H-monotonical recursive procedure and let f], f} € F/,
Rif) € Rouf), Ry(f) = {Fjens- Froim b i = 1,2, such that f,_,, 3
?;,,i,Q J...3 -f‘-_;',,i,m,—l J ?I',,i,m,a 1=1,2.

If for all ?/1 C ?/2, we have m;, 1 < mj, 5 and 7;'1,1,r C 7;-2}2#, r=1,...,mj 4, for
all 71, j» such that R; (/) € Rx(f!), then p is called locally H-time-monotonical.

By slightly modifying the proofs of Theorem 4.1 and Lemmas 4.1 and 5.1, K-
versions of Theorems 4.2 and 5.1 can easily be proved.

It is worth noting that a globally (H-)time-monotonical recursive procedure does
not need to be locally (H-)time-monotonical. A prominent example, Quicksort, is
studied in the following.

Example 6. We start by showing that Quicksort? (without a parameter space
morphism) is not locally and not globally time-monotonical. We assume that the
time spent for arrays of length one and zero is equal to 7y and that the local time
spent for comparing the elements of an array of length n is equal to (n — 1)1y + 7.

In the following we set up two permutations 7, and 79 of integer numbers. The
recursion depth of Quicksort applied to both of them is the same (equal to 6). The
length of my is 14 and the length of 7, is 13, but Quicksort uses more (overall) time
to sort my than it needs to sort .

5An implementation of the well-known Quicksort algorithm can be found in any good book on
algorithms and data structures (cf. e.g. [Knu73, Meh84b, Sed8g]).

Project WOOP TU Vienna

i
‘

WORST-CASE COMPLEXITY OF RECURSIVE PROCEDURES 19

m =1[8,3,1,2,6,5,7,4,9,10, 11,12, 13, 14] is transferred by Quicksort in the fol-
lowing way (underlined elements are placed at their final position)

m —[4,3,1,2,6,5,7,8,9,10,11,12, 13, 14]
—[2,3,1,4,6,5,7,8,9,10,11,12,13, 14]
—[1,2,3,4,5,6,7,8,9,10,11,12, 13, 14]
—[1,2,3,4,5,6,7,8,9,10,11,12, 13, 14]

This results in 7 (1) = 1074 + 387 + 975.
On the other hand 7, = [7,2,3,4,5,6,1,8, 9, 10,11,12, 13] is sorted by Quicksort
in the following way

7y —[1,2,3,4,5,6,7,8,9,10,11,12,13]
—1{1,2,3,4,5,6,7,8,9,10,11,12,13]
—[1,2,3,4,5,6,7,8,9,10,11,12,13]
—1[1,2,3,4,5,6,7,8,9,10, 11,12, 13]
—[1,2,3,4,5,6,7,8,9,10, 11,12, 13]

=4 RN NA "4

Here we get T(m2) = 1270 + 427, + 1179, which proves that Quicksort is not locally
and not globally time-monotonical, because 7 ~ 7z would imply T(71) = 7T (ms)
(cf. Remark 5.2 and Remark 3.1).

Now, mapping input arrays of Quicksort to their length by H(f) = size(f) = n,
we obtain a parameter space morphism. It is easy to see that recdepy(n) =n -1,

Ru(n)= (J {{i-1,n-i}},

1<i<n

and Quicksort is H-monotonical.

Clearly, we have m3¢(n) = (n — 1)71 + 7. In order to see that Quicksort is not
locally H-time-monotonical, consider n; = 5 and ny = 6. Obviously ny <4 ns, but
the direct successors of ny include (2, 2) and those of n, include (4,1). As expected !
2 <y 4, but 2 £y 1.

Nevertheless, strengthening Lemma 6.1, the following recurrence relation is valid:

Tu(n)=(n—-1)m + 1+ Jmax (Tw(i— 1) + T(n — 1)) .

Mentioning T3 (0) = T(1) = 7o, this relation can be solved and we finally obtain i
for all n > 0

-1
Tr(n) = 2—(E~—*)7‘1 +nry 4+ (n+ 1),

2
which shows that Quicksort is globally H-time-monotonical. O

TU Vienna Project WOOP

20 J. BLIEBERGER AND R. LIEGER

Example 6 shows that a recursive procedure p which is not globally time-mono-
tonical, can be globally H-time-monotonical for some suitable morphism M. Inte-
restingly, we loose information on the timing behavior by applying H (consider the
max-terms in various definitions), but we gain monotonicity, i.e., we get coarser,
but more well-behaved estimates.

Finally, we would like to note that in most cases a morphismm H : F — N will be
used. This can be supported by the following arguments:

¢ Parameter space morphisms are useful only if Dy and T (cf. Definition 6.5)
can be found easily. In most cases this can be obtained if already D and 7
do depend on some f’ € F’ and not on some f € F. Thus we are left with
determining how the function D and 7 will look like.

e The function D will usually depend on the size of locally declared ob-
jects. Typical ”sizes” originate in the length of arrays or the size of two-
dimensional arrays, and so on. Hence we can expect D to be a polynomial
function from N to H.

¢ The function 7 will usually depend on the number of iterations of the loops
within the code of the underlying recursive procedure. Again, we expect
7 to be a function from I¥ to N (or R) since the number of iterations can
usually be expressed in terms of n¥ and (Idn)* for for-loops and discrete
loops (cf. [Bli94]), respectively. -

Summing up, usually D and 7 are functions from N to N {or R). Thus one can
suspect that a morphism from F to N will be helpful in determining the space and
time behavior.

7. Programming Language Issues

Before we discuss details of how (real-time) programming languages are influ-
enced by our previous results, we restate Theorems 4.2 and 5.1 in a way more
suitable to programming language issues.

Definition 7.1. If an additional ordering on F by fi < fa exists such that for all
fi, R €F, fiafe (i # f2) implies

(1) fi = fo,

(2) the underlying recursive procedure is locally space-monotonical, and

(3) the underlying recursive procedure is locally time-monotonical,

we call F totally ordered.

The advantage of the "< -relation is that it can be used to compare elements
with the same recursion depth in a useful manner. Note that for Mergesort the
" <"-relation is a valid ”<”-relation too (cf. end of Section 2). We are able to show
the following theorems.

Theorem 7.1. If the parameter space of a recursive procedure is totally ordered,
then

&(lu) = Mrnfez); S(f) = S(u).

Project WOOP TU Vienna

!
|
|
{

WoRsT-CASE COMPLEXITY OF RECURSIVE PROCEDURES 21

Proof. In conjunction with Theorem 4.2 it remains to show that

r;lg;cS(g) = S(u).

Because of Definition 7.1, however, we have D(g) < D(u) for all g qu. A slight
modification of Lemma 4.1 shows that in this case S(g) < S8(u) too. Thus the
theorem is proved. [

Theorem 7.2. If the parameter space of a recursive procedure is totally ordered,
then
T, u) = max T(f) = T(u).
lafau

Proof. In conjunction with Theorem 5.1 it remains to show that

max7 (g) = 7 (u).

g=u
Because of Definition 7.1, however, we have 7(9) < 7(u) for all g au. A slight
modification of Lemma 5.1 shows that in this case 7(g) < T(u) too. Thus the
theorem is proved. [J

Obviously H-versions of these theorems can also be proved. |

If 7 is totally ordered, we assume that there exists a programming language defi- :
ned function pred, which given some f € F computes pred(f) such that pred(f)«f
and there is no g € F such that pred(f)agaf.

7.1. The recursion depth. Let p be a locally time- and space-monotonical re-
cursive procedure with parameter space F. In order to perform a time and space
analysis of p, the programmer has to supply a non-recursive function without while
loops recdep: F — N that for all f € F computes recdep(f).

This implies that we can decide effectively (at runtime) whether

fi<fo, fo<fi, or fizfo

for all f;, fo € F.
If no ” «”-relation exists, the recursion depth must be bounded by a programrner

supplied constant R. If a ”<”-relation exists, a bound of the recursion depth can be
derived from a programmer supplied upper bound of the parameter values, say U.

Since it is extremely difficult to verify the function recdep supplied by the pro-
grammer at compile time¥, the correctness of recdep is checked at runtime. Note i
that it is this check that enforces the well-definedness of the recursive procedure.
To be more specific, the following conditions must be met:

(1) recdep(f) can be computed for each f € F without a runtime error
(2) for all f € R(f), recdep(f) < recdep(f)
(3) if no parameter space morphism is used, at least one f € R(f) has to exist
such that recdep(f) = recdep(f) — 1
(4) for all f € F, recdep(f) <R
All these conditions can be checked at runtime with little effort. If one of them is
violated the exception recursion depth_error is raised.

n fact it is undecidable, whether two given Turing machines accept the same language.

TU Vienna Project WOOP

22 J. BLIEBERGER AND R. LIEGER

7.2. Checking Space Properties. If D(f) is constant or if there is a simple
connection between D(f) and recdep(f), the compiler can derive that the under-
lying recursive procedure is locally space-monotonical. Thus no runtime checks are

necessary.

Checking of global space properties without a "<”-relation. In this case the program-
mer must supply a function maxspacearg: N — F, which given some k = recdep(f)
returns f such that f ~ F and S(f) = maxyz, . S(g).

At runtime for each f € F, it is checked whether S(f) < S(ug) where k =
recdep(f) and u, = maxspacearg(k). If this condition is violated, the exception
spacemonotonic_error is raised.

Checking of local space properties with help of a 7a”-relation. Here we can perform
an exhaustive enumeration of all parameter values with help of the function pred at
compile time. For each pair of these values it can be checked whether Definition 7.1
is valid.

Hence we do not need any runtime checks except testing the recursion depth in
order to guarantee the upper bound of the space behavior (cf. Theorem 7.1).

7.3. Space behavior and morphisms. Everything is still valid if we take into
account parameter space morphisms. The only exception is that we can perform
an exhaustive enumeration of all parameter values with help of a”<”-relation only
if the morphism is a function from F to N. This, however, as already noted at the
end of Section 6, covers most important cases.

It is, however, crucial in this context to perform checks of local properties since
global properties can only be checked for f € F and not for '€ F (e for f € N).

7.4. Checking Time Properties. If there is a simple connection between 7(f)
and recdep(f) and if ||R(f)|| < 1, it can be derived at compile time that the
underlying recursive procedure is locally time-monotonical. Thus no runtime checks

are necessary.

Checking of global time properties without a "a”-relation. In this case the program-
mer must supply a function maxtimearg: N — F, which given some k = recdep(f)
returns f such that f f and T(f) = maxy, 7(g).

At runtime for each f € F, it is checked whether T(f) < T(ux) where k =
recdep(f) and u; = maxtimearg(k). If this condition is violated, the exception
time monotonic_error is raised.

Checking of local time properties with help of @ "a”-relation. Here we can perform
an exhaustive enumeration of all parameter values with help of the function pred at
compile time. For each pair of these values it can be checked whether Definition 7.1
1s valid.

Hence we do not need any runtime checks except testing the recursion depth in
order to guarantee the upper bound of the space behavior (cf. Theorem 7.1).

Project WOOP TU Vienna

i
;
;
;
i

WORST-CASE COMPLEXITY OF RECURSIVE PROCEDURES 23

1 generic

2 size: natural;

3 alpha: float range 0.25 .. 0.2928932;

4 type element is private;

5 with function "<“(1eft,right:element) return boolean is <>;
6 package BB_alpha_tree is

7 type tree is limited private;

8 procedure insert(an: element; into: tree);

9 ~= other operations suppressed

10 private
11 type tree is

12 record

13 current_size: natural; -- the current number of nodes in the tree
14 == other stuff representing the tree structure suppressed

15 end record;

16 end BB_alpha_tree;

F1GURE 3. Ada Code of Specification of BBl[a]-tree (Fragment)

7.5. Time behavior and morphisms. Here the same arguments are valid as in
Section 7.3.

Example 4. In our discussion of Mergesort the reader will discover that mor-
phisms have been used several times. We leave it to the reader to perform an exact
treatment. [J

Example 7. Balanced trees are interesting since operations defined upon them can
easily be implemented by recursion and their recursion depth is usually bounded
above by O(ldn), where n denotes the number of nodes in the tree. We study
BB[a]-trees (cf. [Meh84b, BM80, NR73]) in some detail. In Figure 3 part of the
specification of a BB[a]-tree package is given. Figure 4 shows all additional func-
tions necessary for a recursive implementation of the procedure insert using a
morphism.

In the following let denote & the set of elements stored in the BB[a]-tree and
let denote B, the set of all BB[a]-trees. Then the function insert is a mapping
insert: B, x& — B, and the current_size of the tree can be considered a function

current._size: B, — .
Let B € B, and E € £. Then H(B) = current_size(B) = n implies

, 1 if E¢ B
current_size(insert(B, F)) = {n +4 l:: g z B7 and
n, i .

In the following we will assume that only the first case is encountered.
Obviously the set M exists and the recursion depth is found to be

log(n+1) — IJ
log(1/(1~a))]"

TU Vienna Project WOOP

recdepy(n) = 1+ [

24 J. BLIEBERGER AND R. LIEGER

1 package body BB_alpha_tree is
2 subtype node_number is natural range O .. size;
3 recursive procedure insert(an: element; into: tree)

4 with function morphism(t: tree)
5 return node_number is

6 begin

7 return t.current_size;

8 end morphism;

9 with function recdep(current_size: node_number)

10 return natural is

11 begin

12 return floor(l.O+(1d(current_size+1)-1.0)/1d(1.0/(1.0-alpha)));
13 end recdep;

14 is

15 begin

16 -~ recursive implementation of insert

17 end insert;

18 end BB_alpha_tree;
FIGURE 4. Recursive Implementation of BB[a]-tree (Fragment)

In addition, we have
(1) Dr(n) = oy,
(2) m(n) = 7,
(3) Rye(n) = {{i} | [an] <i < [(1~a)n[}, and
(4) Ny(n) = [(1 - a)n].
Clearly insert is H-monotonical. Thus it is also locally H-space-monotonical
(cf. Remark 4.4) and locally H-time-monotonical (cf. Remark 5.1).

The required function pred is given by the predefined function node_number ’PRED.

Thus compile time checks of local space and time properties can be performed with
help of pred. The function recdep in conjunction with morphism is checked during
runtime. [J

8. Conclusion

Note that Theorems 4.2 and 5.1 are valid although we do not study static bounds
of space and time behavior. This is in strict contrast to [PK89], where the execution
time of code blocks is estimated statically without taking into account that the
execution time may depend on certain parameters (or global data). Anyway, the
MARS approach [PK89] excludes recursions.

In [Par93] such information on data influencing execution time can be incorpo-
rated into the program by means of program path analysis, but [Par93] does not
address recursion at all.

Our results are impressive in that they assume very general parameter spaces,
and are very useful together with parameter space morphisms. These morphisms
allow for concentrating on the essential properties of the recursive procedure while
estimating time and space behavior.

Project WOOP TU Vienna

Qi o

WORST-CASE COMPLEXITY OF RECURSIVE PROCEDURES 25

Nevertheless a lot of work needs to be done in the future. The following lists a
few items.

e Indirect recursive procedures remain to be studied.

e Other models of space behavior can be imagined. In this paper we assume
that D(f) is constant during the execution of p without taking into ac-
count recursion. Some programming languages permit block-statements
which can contain local declarations (cf. e.g. Ada [Ada83]). If a recursive
procedure contains such a block-statement, D(f) may increase and decrease
during the execution of p. (Reimplementing Mergesort using such block-
statements, approximately halfs S(n).)

¢ The compile time proofs mentioned in sections 3 and 7 should be done
automatically. As already mentioned this is one of the goals of Project

WOOP.

The purpose of this paper is to show that recursion can and should be used in
real-time applications. We think that this goal is reached and there are no more
reasons to exclude recursive procedures from real-time programming languages.

References

[Ada83] ANSI/MIL-STD 1815 A, Reference manual for the Ada programming language, 1983.

[AHU74] Alfred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[Blig4] Johann Blieberger. Discrete loops and worst case performance. Computer Languages,
20(3):193-212, 1994.

[BM80] Norbert Blum and Kurt Mehlhorn. On the average number of rebalancing operations
in weight-balanced trees. Theoretical Computer Science, 11:303-320, 1980.

[Boo91] Grady Booch. Object-oriented design with applications. Benjamin/Cummings, Red-
wood City, CA, 1991.

[Bus85] Arnold Businger. PORTAL Language Description, volume 198 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, 1985.

[DIN82] DIN 66 253, Teil 2, Beuth Verlag, Berlin. Programmiersprache PEARL, Full PEARL,
1982.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, MA, 1990.

[For93] Charles Forsyth. Using the worst-case execution analyser. Technical report, York Soft-
ware Engineering Ltd., University of York: Task 8, Volume D Deliverable on ESTEC
contract 9198/90/NL/SF, May 1993.

[GR91] Narain Gehani and Krithi Ramamritham., Real-time Concurrent C: A language for
programming dynamic real-time systems. The Journal of Real-Time Systems, 3:377-
405, 1991.

[Hof79] Douglas R. Hofstadter. Godel, Escher, Bach - an Eternal Golden Breid. Basic Books,
New York, 1979.

[HS91] Wolfgang A. Halang and Alexander D. Stoyenko. Constructing predictable real time
systems. Kluwer Academic Publishers, Boston, 1991.

[TTM90] Yutaka Ishikawa, Hideyuki Tokuda, and Clifford W. Mercer. Object-oriented real-time
language design: Constructs for timing constraints. In ECOOP/OOPSLA 90 Procee-
dings, pages 289-298, October 1990.

[KDK*89] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolfgang
Schwabl, Christoph Senft, and Ralph Zainlinger. Distributed fault-tolerant real-time
systems: The Mars approach. IEEE Micro, pages 25-40, 1989,

[Knu73] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, Mass., 1973.

TU Vienna Project WOOP

26

[KS86]

[LB94]

[LL73)

J. BLIEBERGER AND R. LIEGER

Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: A language for re-
liable real-time systems. JEEE Transactions on Softwere Engineering, 12(9):941-949,
1986.

Roland Lieger and Johann Blieberger. The Ackermann-function effort in space and
time. Technical Report 183/1-48, Department of Automation, Technical University
Vienna, 1994.

C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46-61, 1973.

[MACTS89] Aloysius K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating tight

[Meh8&4a]
[Meh84b)

[Mok84]

[NR73]
[Par93]
[PK89]

[Sedss]
[Shasg9]

[VF90]

execution time bounds of programs by annotations. In Proc. IEEE Workshop on Real-
Time Operating Systems and Software, pages 74-80, 1989.

Kurt Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of Data Structures
and Algorithms. Springer-Verlag, Berlin, 1984.

Kurt Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms.
Springer-Verlag, Berlin, 1984.

Aloysius K. Mok. The design of real-time programming systems based on process mo-
dels. In Proceedings of the IEEE Real Time Systems Symposium, pages 5-16, Austin,
Texas, 1984. IEEE Press.

I. Nievergelt and E.M. Reingold. Binary search trees of bounded balance. ST4 M Journal
of Computing, 2(1):33-43, 1973.

Chang Yun Park. Predicting program execution times by analyzing static and dynamic
program paths. The Journal of Real-Time Systems, 5:31-62, 1993.

Peter Puschner and Christian Koza. Calculating the maximum execution time of real-
time programs. The Journal of Real-Time Systems, 1:159~176, 1989,

Robert Sedgewick. Algorithms. Addison-Wesley, Reading, MA, second edition, 1988.
Alan C. Shaw. Reasoning about time in higher-level language software. IEEE Tran-
sactions on Software Engineering, 15(7):875-889, 1989.

Jeffrey S. Vitter and Phillipe Flajolet. Average-case analysis of algorithms and data
structures. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume A: Algorithms and Complexity, pages 431-524. North-Holland, 1990.

DEPARTMENT OF AUTOMATION (183/1), TECHNICAL UNIVERSITY OF VienNa, TREITLSTR. 3/4,
A-1040 VIENNA

E-mail: blieb@auto.tuwien.ac.at

E-mail: rlieger@auto.tuwien.ac.at

Project WOOP TU Vienna

i
i
P
i
f

