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time deadline T'. Taking a non-queueing theory approach (i.e., without stable-state assump-
tions), we found that the probability distribution of the random time St where such 2 system
operates without violating any task’s deadline 1s approximately exponential with parameter
AT = 1/uT, with the expectation E[St] = up growing exponentially in T. The value pr de-
pends on the particular scheduling algorithm, and its derivation is based on the combinatorial
and asymptotic analysis of certain random trees. This Paper demonstrates that random trees
provide an efficient common framework to deal with different scheduling disciplines and gives
an overview of the various combinatorial and asymptotic methods used in the appropriate
analysis.

1. INTRODUCTION

Scheduling has always been one of the key issues in computer science. In almost any com-
puting system there are concurrent activities competing for mutually exclusive resources,
and if there are not sufficiently many resources available or if a single shared resource is
to be used, a schedule assigning activities to resources over time js needed. Research on
scheduling —which owes much to the research on machine scheduling and related prob- :
lems in operations research conducted several decades ago, see [DLR82], for example—
is traditionally performed in the context of processor scheduling, see e.g. [Kle75]. Note, !
however, that shared resources like communication channels are becoming more and more
lmportant given the trend towards parallel and distributed systems.

Real-time systems, on the other hand, are a relatively young but increasingly important
branch of computer industries. Spacecrafts, power plants, automated factories, but also
various multimedia applications are examples of such systems. Generally speaking, tasks
of a real-time system have to be performed not only in a correct, but also in a timely
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fashion. Usually they must finish within a predefined deadline?, otherwise there might be
more (hard real-time) or less (soft real-time) severe consequences.

Scheduling goals for real-time systems are obviously different from those fitting the
needs of ordinary computer systems. In fact, it is not hard to show that timeliness is not a
simple consequence of high throughput or similar performance characteristics, see [TK91],
[CSR88| for an introduction and overview.

The problem is sufficiently well-understood for deterministic tasks, in particular for
periodic ones as introduced by polling techniques in safety-critical hard real-time systems.
Since (future) task arrivals are fully deterministic, schedules may even be determined in
advance, i.e., offline, see [BES93] for a thorough overview. Systems relying on such
assumptions are usually called static, and their most attractive property is the possibility
of (@ priori) guarantees of timeliness.

Static systems, however, are of limited applicability and somewhat unflexible, so that
dynamic systems are common in practice. Task arrivals in dynamic systems may be ape-
riodic, i.e., arbitrary, and are therefore not known in advance (there is no clairvoyancy),
so scheduling must be performed online. This, of course, rules out a number of computa-
tionally expensive (offline) algorithms to be used online, but the most distinctive property
w.r.t. to static systems is the possibility of (transient) overloads. As a consequence, no
(unrestricted) a priori guarantee of timeliness may be given any more®, see e.g. [CSB90],
[2589]. Moreover, the behaviour of online scheduling algorithms under overload is often
totally different from the non-overloaded one. Note also that there is a principal deficiency
w.r.t. deterministic (i.e., clairvoyant) algorithms under overload conditions, see [BKM91],
[KS92].

Of course, uncertainities in aperiodic task arrivals call for probabilistic modelling, and
queueing theory has indeed been applied to related problems in operations research for
decades. However, apart from the question whether existing real-time systems are ad-
equately modelled by usual queueing system assumptions, there is also the problem of
drawing meaningful conclusions on the actual operation of a real-time system from steady-
state results like waiting time distributions or the percentage of task losses/rejections (we
will briefly return to this question in the following Section 2). Therefore, a sound theoret-
ical framework for scheduling in dynamic (soft) real-time systems is lacking.

Some of our research is devoted to this problem domain. More specifically, our aim
aim is to quantify deadline meeting properties of scheduling algorithms for probabilistic
aperiodic tasks in real-time systems. Based on a simple discrete-time queueing system
model, we found a suitable —and mathematically tractable— quality measure which has
been successfully applied to compare a number of different scheduling algorithms. The
complete derivation of our major results is contained in a number of papers published
elsewhere, cf. [BS92], [SB92], [BS91], [SB94], [S94], [DS93]. The goal of this paper is

*Somewhat different real-time requirements are to be met in B-ISDN (broadband integrated service and
data networks) supporting multi-media applications. There is an Increasing interest among the research
community in establishing reasonable qualities of service (QOS), see [Tow93], [Kur93] for details. That
research, however, is not within the scope of our paper.
3Note however that there are ideas like [LR92] how to integrate a dynamic system into a static one,
preserving guarantees for the static part of the system.




to emphasize the power of modelling scheduling disciplines in queueing systems by means
of random trees. Our approach unifies (and simplifies) the investigation of several different
queueing problems by utilizing powerful combinatorial and asymptotic methods from the
analysis of algorithms and data structures, thus providing a promising alternative to the
usual queueing theory devices.

The outline of our paper is as follows: Section 2 contains a description of the underlying
model and a very brief survey of related (queueing theory) approaches, Section 3 provides
the definition of the quantities of interest and some general preliminaries. Sections 4,
5, and 6 are devoted to the investigation of preemptive last come first served (LCFS),
first come first served (FCFS), and nonpreemptive last come first served scheduling for
the simple no-priority case, Section 7 surveys the analysis of the important static priority
scheduling algorithm. Finally, some conclusions and directions of further research are
appended in Section 8.

2. THE MODEL

Our investigations are based on a discrete time queueing system consisting of a task
scheduler, a task list of (potential) infinite capacity, and a single server. Arriving tasks are
inserted into the task list by the scheduler according to the particular scheduling algorithm.
A dummy task is generated by the scheduler if the list becomes empty. The server always
executes the task at the head of the list, so that scheduling is done by rearranging the
entries of the task list. If the server executes a dummy task, the system is called wdle,
otherwise busy.

Rearranging of the task list (= scheduling) occurs only at discrete points in time, without
any overhead. The length of the interval between two such points is an integral multiple
of some unit time called a (machine) cycle. Due to this assumption, we are able to model
tasks formed by non-preemptible actions with duration of 1 cycle. The task ezecution
time of a task is the number of cycles necessary for processing the task to completion if
1t occupies the server exclusively. An ordinary task may have an arbitrary task execution
time, a dummy task as mentioned above consists of a single no-operation action (1 cycle).
The service time of a task is the time (measured in cycles) from the beginning of the
cycle in which the task arrives at the system to the end of the cycle which completes the
execution of the task.

Before we proceed, two applications of our model are given. First, consider a single
processor with an interrupt line, which executes all machine instructions within a fixed
time, a cycle. Usually interrupt arrivals become recognized at the end of an instruction,
causing the CPU to process a certain service routine. An idle cycle corresponds to the
execution of an instruction not part of an interrupt service routine.

Another example may be found in a (single) client of a TDMA (time division multiple
access) channel. If a communication channel is to be shared by multiple (say, n) stations, a
common approach for synchronizing the transmission activities is TDMA. Each client owns
a dedicated subslot of duration ¢ /n, where it may transmit exclusively if there are data to
transmit, otherwise the subslot gets wasted. All subslots together form a transmission slot
(cycle) of duration ¢. Due to the cyclic occurrence of the transmission slot, each client may
transmit every ¢ time units. To apply our model, we let a cycle be equal to the length of
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For our (input-)probability model, we assume arbitrarily distributed task arrivals within
a cycle, independent of the arrivals of the preceding cycles, and independent of the arbi-
trarily distributed task execution times as well. The service time deadline of a task is
assumed to be constant (fixed).

The probability generating function (PGF) of the number of task? arrivals during a cycle
is denoted by

Alz) = Z ayz*, where a; = prob{k tasks arrive during a cycle} (2.1)
k>0

and should meet the constraint ap > 0, assuring the existence of idle cycles. The PGF of
task execution times (measured in cycles) is denoted by

L(z) = Z Ihz*, where I = prob{task execution time is & cycles} (2.2)
k>1

with the additional assumption L(0) = 0. It turns out that the overall execution time, i.e.,
the number of cycles necessary for processing all actions induced by task arrivals during
one cycle, plays a central role. The corresponding PGF evaluates to

P(z) = anz" = A(L(z)). (2.3)

n>0

For the sake of simplicity, we omit the discussion of some necessary “technical” conditions
on A(z), L(z) and P(z). Most of them are analyticity requirements which are usually easy
to establish. Note however, that we are explicitely excluding the trivial case P(z) =

po+ (1 —pg)z.

We should mention that the number of globally valid arrival distributions meeting our
constraints is considerably limited due to the required independency. Globally valid dis-
tributions consistent with our assumptions must be based on an interarrival distribution
with the memoryless property, i.e., an exponential or geometric distribution, leading to
(well-thumbed) Poisson- or Bernoulli-type arrivals within a cycle. In terms of queueing
theory, we are therefore dealing with a M/G/1 system® » which has of course been exten-
sively studied. We will conclude this section by briefly relating our results to that research;
a comprehensive and in-depth treatment of single-server queues may be found in Cohen’s
book [Coh82].

*We introduce the no-priority case here; generalizing to multiple PGFs arising in the case of several priority
levels should be straightforward.

SFor the remainder of this section, we will adhere to the usual queueing theory terminology: Discussing an
M/G/1 system means that we are considering customers arriving at a single server (1), with exponentially
distributed interarrival times (M for Markovian) and arbitrarily distributed service times (G for general).
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Classical queueing systems are based on continuous time and assume service in the order
of arrivals (FCFS). Among the quantities (random variables) of interest are the queue size,
the waiting time (in queue) or sojourn time (in queue + service), and the server utilizq-
tion, for example. Basically, there are two different results: (1) time-dependent solutions
describing, say, queue size at some time # (starting from some initial state at t=0), and
(2) steady-state results obtained by letting ¢t — oc. Steady-state results are particularily
attractive, since they lead to relatively simple expressions, something that is by far not
true for time-dependent solutions. However, one should bear in mind that steady-state
results are reasonably meaningful only because most queueing systems “converge” to a
stable equilibrium, which is independent of the initial state if they are left to themselves
for a sufficiently long time.

Therefore, most work on queueing systems is devoted to steady-state results. In partic-
ular, for M/G/1 queues, waiting time distributions are available for numerous scheduling
disciplines, including random order, inverse order of arrival (LCFS), priority queuelng with
static or dynamic priorities, etc., see [Kle75, Vol. 2, Chap. 3]. The same is obviously true
for most of the results obtained by queueing theory in the real-time context.

For instance, there is a well-studied class of queues with impatient customers, which are
of some interest for dynamic real-time systems. The basic idea is to impose a bound on
the waiting ((BBH&4]) or sojourn time ([GS77]) and force customers to leave the system
if that bound is (or, alternatively, will be) exceeded. Stable-state results for quantities
like waiting time distribution, customer rejection probability, etc. for various scheduling
disciplines are available, cf. the nice overwiew in [ZS89].

Much effort has also been spent on developing scheduling disciplines that are optimal
In various respects. Optimality research goes back to operations research problems as
machine scheduling, aiming at scheduling algorithms that minimize various cost functions
like the expected number of late jobs, see e.g. [P83]. More recent research in the real-time
systems area deals with algorithms minimizing the maximum lateness ([SG92]) or the
fraction of customers exceeding their deadlines ( [PTW88]), for example.

Although steady-state results give some insight in long-term operation of a real-time
scheduling algorithm, they are useless to characterize short-term operation. Steady-state
results are obviously incapable of capturing transient phenomena —like (first) entrance
into some particular state— that ultimately determine the (time-dependent) statistics of
the maximum of a random variable. Such results, however, are the only ones that are really
meaningful for determining short-term deadline meeting capabilities when hard real-time
requirements are present.

Attacking this type of problems requires advanced mathematical methods. For example,
in [Coh82] a first entrance time approach —similar to our one— is applied to an FCFS
queueing system with bounded walting time (impatient customers) to derive results on the
maximum of certain random variables (Chap. II1.4.1, II1.7.4). In particular, an integral
representation of the Laplace transform of the maximum waiting time during the busy
period of a G/G/1 FCFS queueling system is provided (Chap. II1.4.1). This formula might
be used as an immediate starting point to derive a continuous-time analogon to our result
in Section 5.

A similar approach is used in [LKS91] to derive asymptotic results on the maximum
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queue size for a number of queueing disciplines. Note that such results also emanated
from the analysis of hashing with lazy deletion (HwLD), see [KV91], [AHS92]. As an
alternative, large deviation methods can be used to compute first entrance times in Markov-
processes, see [MS93], [M91] for only two applications. We do not know of any particular
work in the real-time systems area, but we are convinced that this powerful technique
might be successfully applied in our context as well.

time distributions and related quantities. Note that some quantities found in our analysis
in Section 5 appear in [Ta7 7] also; in fact, it should be possible to derive our FCFS-result
by means of that approach as well.

Although there are possibly a few alternatives to our analysis of FCFS scheduling, we do
not know of any work that deals with the other scheduling disciplines successfully solved
by our method. Actually, we think that all the abovementioned approaches are at least
difficult to apply, since the walting time process does not have such a simple description
for disciplines other than FCFS. Moreover, we are interested in sojourn times and not in
waiting times, and it is the discrete time model and not the continuous one that is really
suitable for our problem domain.

3. THE SUCCESSFUL RUN DURATION

Our basic idea concerning a pertinent quality criterion for scheduling algorithms in real-
time systems was to consider quantities related to the time that passes until the very
first violation of a deadline, but we had to recognize soon that approaching this quantity
directly was difficult. The following alternative, however, was found to be successful®: The
operation of our system may be viewed as a sequence of successive bulks of busy cycles,
seperated by one or more idle cycles. Consequently, we define a busy period as an initial idle
cycle and all busy cycles induced by task arrivals during this busy period. For instance, an
(initial) idle cycle with no task arrivals forms a trivial busy period with duration of 1 cycle.
By virtue of this definition (and our probability model), the operation of our system may
be modelled as a sequence of mutually independent busy periods {B@; =12 .. }.

We call a busy period T'-feasible, if all tasks serviced during the busy period meet their
service time deadline T. In addition, a sequence of T-feasible busy periods followed by a
non-feasible busy period (containing at least one deadline violation) is called a T-run, the
sequence without the terminating non-feasible busy period is refered as a successful T-run.
The random variable successful T-run duration ST, which denotes the time interval from
the beginning of an (initial) busy period to the beginning of the (idle) cycle Initiating the
busy period containing the first violation of a task’s deadline T, was found to be a suitable’
mathematically tractable quality criterion.

5By using a very similar approach, we also solved the old problem of analyzing the duration of the successful
operation of the well-known slotted ALOHA collision resolution algorithm, which we found exponentially
distributed too; see [DS93b] and [Drm91] for details.

“In fact, in any case investigated so far, it is not hard to prove that the difference between Sz and the
time up to the actual violation is (asymptotically) negligible.
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The probability distribution of St (even its expectation) allows to compare the per-
formance of different scheduling algorithms. Apart from comparison, it also provides an

Since the (feasible) busy periods constituting a successful run are mutually independent,
it is in fact easy to evaluate the PGF of St by means of the PGF of a T-feasible busy
period. Let by 7 = prob{length of a T-feasible busy period is & cycles} and

Br(z) = Z bk’Tzk (3.1)

k>0

be the corresponding (improper, that is Br(1) < 1) PGF. Then, the PGF of the random
variable St is given by

Z) = S Zk = ‘-'-——1 _ BT(l)
St(z) = ; k,T 1= Br(a)’ (3.2)

where of course s; 1 = prob{length of a successful T-run is k cycles}. This follows easily
from the fact that the PGF of the length of an arbitrary number of T-feasible busy periods
15 350 Br(2)", and that the probability of the occurrence of the terminating non-feasible
busy period equals 1 — Br(1).

Thus, we can reduce the Investigation of different scheduling techniques to the analysis
of T-feasible busy periods, lLe., the evaluation of Br(z). For example, the expectation of
St yields

E[St] = pr = S(1) = 1—%——%—) (3.3)

Hence, all what is needed for the expectation are asymptotic expressions for B7(1) and
B7(1) for T — oo, that is, the first few terms of the Taylor expansion of Br(z) at z = 1.

Fortunately, much more can be said about the distribution of St. It turns out that it is
necessary to distinguish three different situations:

(1) Normal Case
This (most important) case is characterized by an average offered load of less than
100%, which may be expressed by P'(1) < 1, since P’ (1) equals the average number
of actions caused by task arrivals within a cycle, cf. equation (2.3). In other words,
our system has to deal with task arrivals keeping it not totally busy on the average.
A careful treatment of equation (3.2) reveals a surprisingly simple general state-
ment concerning the probability distribution of St in this particular case. As we
have shown in (DS93], St is approximately exponentially distributed with param-
eter Ay = 1/urp.

|
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We reformulate two of the most important theorems of [DS93]. First, by means
of singularity analysis techniques on S1(z), we obtained asymptotic expressions for
the distribution function ZZ:O Sk, 7 Wwhen n — oo and T — oo:

THEOREM 3.1. (Asymptotics of > Sk,T, cf. [DS93, Theorem 3.5]) There exists
some é > 0 such that the distribution function v, r = Y koo SkT Of Sp has a
uniform asymptotic expansion

VT = 1~ (1 + O(l/ﬂT))e—#;l(l-{»O(l/#T))n + O(ﬂ;l(l + 6)—-11)

forn — oo and T — oo.

Second, using Mellin transform techniques, we derived uniform asymptotic ex-
pansions for the m-th moment E[SP] of S

THEOREM 3.2. (Asymptotics of the Moments of St, cf. [DS93, Theorem 3.7])
There exists some § > 0 such that the moments E[SP] of St have the uniform
asymptotic expansion

E[SF] = Z n"sy T = m?[,uT(l + O(l/ﬂT))]m 10 (/1_1 mly/m )

= T (2nes)™

for T — oo and m > 1.

(2) Balanced Case
Here our system is kept 100% busy on the average, i.e., P(1) =1.

Unfortunately, our convenient Theorems 3.1 and 3.2 are no longer valid in the
balanced case since the limiting PGF limp_ Br(z) has radius of convergence
R =1, violating condition R > 1 of [DS93]. Hence, we restricted ourselves to the
computation of the first few moments of St in this less important case.

(3) Owverloaded Case
This case may be characterized by an average offered load which is higher than the
maximum load the system is able to cope with, formally, P'(1) > 1.

Our theorems do not apply in this case either. The reason is that lim7_.o Br(z) is
no longer an ordinary PGF, but rather an improper one. Thus, limz_, ., Br(1) <1,
which violates another precondition of [DS93]. Unlike the two cases above there
is a non-zero probability of the occurrence of & busy period that never terminates!
Again, we had to confine ourselves with the computation of the first few moments

of ST.

In any case, the problem of determining the distribution of St boils down to the inves-
tigation of Bp(z); the properties of a particular scheduling algorithm are “contained” in
Br(z) and are carried over to S7(z) by equation (3.2). Obviously, different PGFs Br(z)
are obtained for different scheduling algorithms.

The basic idea underlying our treatment of Br(z) is to establish a one-to-one correspon-
dence between T-feasible busy periods and a certain family of random trees. Since the
probability weights of random trees have the same compositional properties as counting
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weights of ordinary trees (the probability of the union and intersection of two disjoint
and independent events equals the sum and the product, respectively, as it is the case for

(OGF) apply; see [Fla79] or [VF] for details. This usually provides a functional equation
for the OGF.

Since the OGF of the family of random trees corresponding to T-feasible busy periods
is of course exactly the required PGF Br(z) (because of the probability weights), that
combinatorial translations provides us immediately with a functional equation for Br(z).
Easy-to-use expressions for the required values Br(1) and B1(1) for large T are eventually
determined by means of more or less straightforward asymptotic methods applied to (the
functional equation for) Br(z).

4. PREEMPTIVE LCFS SCHEDULING

This section deals with the investigation of T-feasible busy periods for (no-priority)
preemptive LCFS (last come first served) scheduling worked out in [BS92]. The algorithm
1s very simple: If a task arrives during a cycle, its execution is started at the beginning of
the next cycle, preempting the currently executing task. If there are several tasks arriving
during the same cycle, they are executed one after the other, in some arbitrary —preferably
LCFS— sequence. Consider the following example:

T7

T3 T

T?. li Ta T5 h'
T, L W k4

b

sub 2bus3_v period 1 sub busy period 2

busy period

The horizontal axis represents the time-axis with one cycle per division; those cycles
forming the busy period of interest are numbered consecutively. Task arrivals are shown
by small lightnings with task-names above, executing tasks are represented by horizontal
lines. The vertical level of a line represents the number of preempted tasks (plus 1).

In our example above there is a, point where a task (T1) finishes and another task (Ty)
starts its execution immediately thereafter. Such situations are closely related to sub busy
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period have a service time of less or equal T cycles, i.e., meet their deadlines. Conversely,
if a task with a service time greater than T cycles is processed during a sub busy period,
the initiating task experiences a deadline violation as well.

to our busy periods, and the restriction to a sub-family covering exactly T-feasible busy
periods. This is done in the following way: A single cycle is denoted by a circular node
(. Such a node has n successors denoted by square nodes 0, if exactly n tasks arrive
during the corresponding cycle, and is weighted with the appropriate probability a,. A
Square node corresponds to a task and has k (O-successors if the task execution time of the
task is k cycles. It is weighted by I, the probability of a task execution time of k cycles.
Thus, our tree consists of two alternating layers, one containing circular () and the other
square nodes [J only. The following tree corresponds to the figure above (weights have
been suppressed):

10




The original figure is reconstructed by traversing this tree in preorder. Note the dotted
line, which marks the boundary between two consecutive sub busy periods.

Letting aside feasible busy periods for the moment, we first look at arbitrary busy
periods. The appropriate results are of course well-known in queueing theory, but it seems
remarkable how simple they follow from our tree approach. Denoting by B the family of
trees with a circular root, and by 7 the family of (task-)trees with a square root, we obtain
the following symbolic equations:

n times

T=Zlk B/:)\

k>1 W__li

k times

and

(4.1)

According to [VF90], we just have to mark each circular node with the counting variable
z and to apply straightforward product and sum translations to obtain the OGFs

B(z)=2) a,T(z)"

"0 4.2
T(z) =) LB(z)* (42)
k>1
and eventually
B(z) = zP(B(z)), (4.3)

remember equation (2.3). Note that we count circular nodes only, and not square nodes,
since the “size” of a tree is the number of its O-nodes. B(z) is of course exactly the PGF
of (unrestricted) busy periods, that is, if b denotes the probability that a busy period B

has length k, we have
B(z) =) b2t
k>1

remember our remarks at the end of Section 3.
Starting from equation (4.3) it is easy to obtain classical queueing theory results, e.g.,
the expectation of B evaluates to

1

Moreover, by applying standard asymptotic techniques (cf. [Ben74] and [MM?78], for
example) to equation (4.3) it is possible to obtain an asymptotic expansion for B(z) near

11
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its dominant (algebraic) singularity p =7/P(7), 7 denoting the (unique) positive solution
of P(z) = zP'(z):

B(z):T-—b~(1—z/p)1/2+0(1—-z/p) for z — p, (4.4)

where b = \/2P(7)/P"(7). This leads to an asymptotic expression for b,, namely

- b -n,_-3/2
b, = ﬁp n (1+ O(1/n)) for n — oo. (4.5)

Now we will return to the problem of investigating T-feasible busy periods. We have
already mentioned that deadline missing is intimately related to the length of sub busy
periods: a deadline T is violated i the length of a sub busy period is greater than T — 1.
Hence, we have to consider a special sub-family B of our family of trees B first, which
represents sub busy periods. The symbolic equations are easily found:

E=GOO+Zak ’]'A—

s L T T
k-1 times
and
T=%1 ’///,J§§:\\\\ .
5 B - B A
k-1 times

The cycle without successors (a0Q) in the symbolic equation for B is responsible for idle

cycles (trivial sub busy periods). Since we do not count the last cycle of a non-trivial sub

busy period (A), it is possible to paste a number of non-trivial sub busy periods together;

the last cycle of a sub busy period is counted correctly in the following sub busy period.
The corresponding generating functions B(z) and T(z) evaluate to

Bl) = 3o has" = a0z +2 3 auT(:)1T(2) = ans 4 220 (A(T(2)) — ao)

n>1 k>1 T(z)
and
T(z)= ) LB(z)"" = L—%%—‘;-)l.

Inserting the formula for T(z) into the equation for B(z) we eventually obtain

agz

B(z)’

B(z) =1+ agz — (4.6)
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Now, the improper PGF for T-feasible sub busy periods (not exceeding a length of T—1
cycles) is

~

-1
Br(z) = bnz™, (4.7)
1

3
I

and a T-feasible busy period is formed by the concatenation of an arbitrary number of

non-trivial T-feasible sub busy periods terminated by a single idle cycle. The improper

PGF yields
apgz

1+ agz — Br(z)’

Br(z) = Z(?T(z) - agz) kaoz =

k>0

(4.8)

What remains to be done is the computation of asymptotic expansions for Br(1) and
Br(1)as T — oo, cf. equation (3.3). Equation (4.8) shows that this requires expressions for

Br(1) and —Ei_p(l). However, remembering (4.7), the latter are easily obtained by applying
straightforward singularity analysis techniques to the generating function

=(r) 27 —=(r)
Hy(z)= ) Bry,(1):T = T8 () (4.9)
T>1

where we need to consider r = 0 and r = 1 only.
In the normal case, we note a simple pole at z = 1 and an algebraic singularity at
z=p > 1, remember (4.6) and (4.4). It hence follows almost immediately that

Opr+1(T)rbT—l
731~ p)

B =B8"1)+ 2 (1+0(1/T))  for T — oo, (4.10)

with (T), = T(T ~1)--- (T —r + 1). After some straightforward algebra, we obtain our
major result:

THEOREM 4.1. (preemptive LCFS scheduling in the normal case, cf. [BS92, Theorem 2]).

The successful T-run duration St for preemptive LCFS scheduling in the normal case is

approximately exponentially distributed with parameter 1/ y%LCFS, where

pLCFS _ (27 P"(r)\'/? 2p—1) 4
“r ‘( P(r) ) AP 0 AHOUT) T e

7 > 1 is the solution of P(z) = zP'{z), and p=T1/P(r)>1. |

In the balanced case, it turns out that B(z) has radius of convergence p = 1. However,

a refined analysis of Equation (4.9) for H,(z) yields an asymptotic expression for E(Tr )(1)
even in this case. We just have to take into account that the simple pole at z = 1 and the
algebraic singularity at z = p = 1 join for an algebraic singularity of appropriate order.
Following the same line of derivation as above, we obtain
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THEOREM 4.2, (preemptive LCFS scheduling in the balanced case). The expectation of
the successful T-run duration St for preemptive LCFS scheduling in the balanced case is
given by

7 ~T for T — oo. |

In the overloaded case, expansion (4.10) is in fact valid again since p > 1 (though r < 1).

However, since B(1) = 8 < 1 and hence (1) < 1 by (4.6), it suffices to plug the coarser
expression F(T’ )(1) = E(r)( 1) + o(1) into Equation (4.8) (and its derivative) to arrive at
the appropriate

THEOREM 4.3. (preemptive LCFS scheduling in the overloaded case). The expectation of
the successful T-run duration St for preemptive LCFS scheduling in the overloaded case
is given by

pLCFs® B 1
T 1-§ 1-P(F)

where 3 < 1 is the solution of z = P(z),z<1. §

for T — oo,

5. FCFS SCHEDULING

This section is devoted to the Investigation of T-feasible busy periods for (no-priority)
FCFS (first come first served) scheduling contained in [SB92]. Note that, due to our fixed
deadline assumption, FCFS scheduling is in fact equivalent to the earliest deadline first
algorithm here. Tasks are simply executed in the order of arrival, so it makes sense to

T T
Tz 3 T4 Ts 6
A
)
{::01;7:3;: 1 —t— } +—t+—
'I'l T2 T3 T4 T5 T6 T7

This figure has to be interpreted like the one in Section 4. Note that the execution of each
task is represented by a horizontal line (whose length obviously equals the task execution
time) at one and the same level, since there is no preemption in FCFS scheduling. For the
sake of readability, we attached the name of the corresponding task to each such line.

We will again establish a one-to-one mapping between busy periods and certain random
trees, which provides a nice correspondence between feasible busy periods and trees of
limited “width”. Note that this family of trees appears in the analysis of a simple register
function for T-ary operations, too; cf. [KP87], [FRV79] for details.

Our construction is as follows: Each vertex corresponds to a single cycle; the root of
the tree represents the initial idle cycle (number 0). A vertex has n successors if the sum

14




of the task execution times of all tasks arriving during the corresponding cycle is n; it
1s weighted by the appropriate probability p,, cf. equation (2.3). Moreover, each vertex
is also labeled by the number of the corresponding cycle within the busy period. This
labeling is obtained by a preorder traversal (left to right) of the tree (which also allows to
reconstruct the original busy period from the tree).

The following tree corresponds to the busy period above:

DEONC

Let us, for example, consider the node with label 1: At the beginning of the correspond-
ing cycle 1 in the busy period, the initial (idle) action has just left the task list and the first
action of the task that arrived during the initial cycle is to be executed. One encounters
that, due to our special alignment, the “horizontal width”® of that node in our tree equals
(i.e., “marks”) the length of the ezpanded task list at the time the corresponding cycle of
the busy period is ezecuted. A short reflection shows that this is true for any node in the
tree.

Now, since it is obvious from the operation of FCFS scheduling that a busy period is
T-feasible iff the length of the expanded task list is bounded by T~ 1 during the busy
period, if follows that limiting the service times by a deadline T corresponds to limiting
the “width” of the tree to 7 — 1 vertices.

8The quotation stresses the fact that our width is not the usual width of a tree.
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The ordinary generating function of this special family Br of trees is simply the PGF
Br(z) of the length of a feasible busy period. However, for the sake of computational
simplicity it is preferable to deal with Cr = Br4. Similar to Section 4, we start with the
symbolic equation

Cr=p O + pl? +-+ pr +-+ pr
Cr Cr—i41--Cr=1Cr Cy+--Cr—1Cr

for all T > 1; pr = [2*]P(z) have been defined in (2.3). The translation into generating
functions reads

T T
Cr(z) =Y mez II cie). (5.1)
k=0 J=T—k+1
Defining
Qn(z) = L and Qo(z) =1,

Ca(2)--- C1(2)
we obtain Cr(z) = QT_l(z)/QT(z) and hence

_ Qr—2(2)
Br(z) = ————QT—l(z) . (5.2)

According to our preliminary discussions in Section 2, we need asymptotic results for Br(1)
and Bp(1). Thus, we have to deal with the asymptotics of Qr(1) and Q%-(1). Note that
quantities related to Q7(1) also arise in [TA77], remember our overview of related research
in Section 2.

Multiplying our fundamental recurrence relation (5.1) by Qr(z) yields

T
Qr-1(2) =2 ) peQr—s(2);
k=0

introducing the corresponding bivariate generating function, we find

_ __zpo
Qs,2) = 1;0 Qr(z)s* = 2P(s) =5’ (5.3)

The investigation of Q(s, z) reveals that the dominant singularity w.r.t. s is a polar one,
resulting from zeroes of the function P(s) — s, that is, fixed points of P(s).

In the normal case, it is not diffcult to see that there is a trivial fixed point s = 1
and another one at s = x > 1. Using Rouche’s theorem, it may be shown that® there
are no further fixed points within a disk of certain radius R > k around zero. Applying
a straightforward singularity analysis based on subtracted singularities (simple poles at

® Actually, much more can be said, cf. Section 7, equation (T.4)ff.
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s = 1 and s = &) provides asymptotic expressions for Q7(1) and Q4(1) for T — 00,
eventually revealing

BT(I) =1 (’5 - 1)(1 - P'(l)) /c_T + O(R——T)

Pl(k)-1
Br(1) = 1—_;?(17 +0(Tx"7)

by (5.2). Remembering (3.3), some straightforward algebra finally provides

THEOREM 5.1. (FCFS scheduling in the normal case, cf. [SB92, Theorem 1]). The suc-
cesstul T-run duration St for FCFS scheduling in the normal case is approximately expo-
nentially distributed with parameter 1 [uECFS where

FCFS _ Plr) ~1 «T(1+001/T for T — oo.
T Tyt trowm)

# > 1is the solution of z = P(z), z > 1. |

In the balanced case, it turns out that x — 1. However, using a refined subtracted sin-
gularity analysis of Q(s, z) (which now involves a higher-order pole at s = 1), appropriate
asymptotic expressions for Br(1) and B7(1) are readily obtained and we find

THEOREM 5.2. (FCFS scheduling in the balanced case, cf. [BS91, Theorem 3]). The
expectation of the successful T-run duration St for FCFS scheduling in the balanced case
is given by

s 1 2! :

FCFS i

~ . T

Hr ¥ (i—1)(2 - 1)

where i > 2 denotes the order of the zero of P(z) -z at z = 1, ie., the smallest integer

value of ¢ such that

for T — oo,

Plz) —z =9;(z = 1) + O((z - 1)i+1) forz — 1
and ¢; # 0. |

Note that we also determined the variance in the balanced case, see [BS91] for details.

In the overloaded case, the fixed point s = & is less than the other one at s — 1, so that
the dominant singularity is caused byk=8<1. A singularity analysis following the one
for the normal case above eventually provides

THEOREM 5.3. (FCFS scheduling in the overloaded case, cf. [BS91, Theorem 1]). The
expectation of the successful T-run duration St for FCFS scheduling in the overloaded
case is given by

Fcrse P 1

= 1-8 1-P(p)
where 8 < 1 is the solution of z = P(z),z <1. §

for T — oo,
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6. NONPREEMPTIVE LCFS SCHEDULING

This Section is devoted to the investigation of T-feasible busy periods in the case of
nonpreemptive LCFS scheduling contained in [SB94]. The algorithm works as follows: If
a task arrives at the system during the execution of another one, its execution is started
when the latter has finished. If several tasks arrive during the execution of the same task,
they are scheduled for execution one after the other, in an arbitrary —preferably LCFS—
sequence. Hence, nonpreemptive LCFS may be viewed as preemptive LCFS where whole
tasks (instead of single cycles) form the non-preemtible unit.

Consider the following example:

T, T L T,
T 4k T T, % 4T
3.“_‘51._ Y s i {1 J S
T, T. T ! 1. T H 711712
_I;’: 3 4&._.‘5&8;'123 —_— —_—
o b e T; e

——tt—t E.’i;’?-’f';{:';é;"(’r!i "?il':"#':Tﬁi:5155:5-':}t{§’:r'¥'.{i:§1—‘
0123‘s‘u.b busy period 1
yP sub busy period 2

sub busy period 3

busy period

o

Again, the horizontal axis is divided into equidistant cycles. Those cycles forming the
busy period of interest are numbered consecutively; cycle 0 denotes the initial (idle) cycle.
Task arrivals are shown by small lightnings with tasknames above. The execution of a
task is represented by a horizontal line whose length equals the task execution time. The
vertical level of such a line, i.e., its vertical distance to the horizontal axis, represents the
number of tasks not processed to completion at the beginning of the corresponding task,
l.e., the number of preempted tasks plus 1. For readability, we attached the name of the
appropriate task (and, if possible, its task execution time) to each line.

As in the case of preemptive LCFS scheduling, there is an important relation between
deadline constraints and the length of sub busy periods. Here, a sub busy period denotes
the epoch from the arrival of the first (new) task during the execution of a level 1 (or
level 0) task to the end of the last cycle of that new task. (This definition is slightly
different from the definition of a sub busy period in Section 4). For instance, looking at
the cycle 0 in our example, one obtains the arrival of task T1. Due to the nonpremptive
LCFS scheduling discipline, this task is badly off, because all tasks arriving before the
beginning of the execution of T, are prefered! Hence, if the length of a sub busy period
is less or equal to T, all processed tasks are guaranteed to meet a service time deadline of
T cycles. Conversely, if the length of a sub busy period is larger than T, at least the task
having arrived first will miss its deadline.

Again, we will establish a suitable mapping between busy periods and a family of (la-
beled) random trees, which provides a straightforward correspondence between deadline
constraints and limited label sums of some subtrees.

The following tree corresponds to our example above:
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Each task is represented by an elliptical node which is labeled according to its task
execution time, i.e., the label of a node is the number of cycles necessary for processing the
task to completion. Equivalently, this labelling may be done by drawing the corresponding
number of circles ((), denoting a single action, of course) within the node. The number of
successors of a node equals the number of arrivals during the execution of the corresponding
task. Successors are drawn from the left to the right, according to their arrival sequence.
Note that the reconstruction of the busy period from a given tree is done by a right-to-left
preorder traversal of all (elliptical) nodes of the tree.

Due to our construction, the outer leftmost (elliptical) nodes in the tree correspond
to those tasks which both complete a sub busy period and start a new one, too. They
are displayed in the equivalent labeling-style mentioned above. If such a node has no
successors, it indicates the end of the whole busy period; at least one idle cycle follows.

Deadline constraints are reflected by suitable limits on the number of cycles. More
precisely, the sum of the labels of nodes belonging to a sub busy period has to be less than
the deadline T, for all sub busy periods, of course. In our example above, those nodes
belonging to a specific sub busy period are surrounded by a dotted line.

Unfortunately, the fact that consecutive sub busy periods overlap one another, introduces
unpleasant difficulties. Since two consecutive sub busy periods are pasted together at an
outer leftmost node, (some of) its cycles have to be taken into account in both. On the
other hand, to obtain the total number of cycles of a whole busy period, each cycle has to
be counted excatly once. Hence, we are forced to investigate trees representing sub busy
periods first, and paste them together in order to obtain whole busy periods.

We start our treatment concerning Br(u) with the investigation of the family B; ; of
trees which correspond to sub busy periods starting with a label i node and completing
with a label j node i>17> 1). To keep the symbolic equations simple, we defer
attaching the necessary probability weights to the translation into generating functions.
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We have the following decomposition:
Bij =HiVict + EHVica + E¥H; Vg + - + EPHY + E71H;. (6.1)

The combinatorial objects used for building blocks have straightforward meaning. &£ de-
notes a single cycle with no task arrivals, H; denotes a single cycle with at least one arrival,
leading to the leftmost label j node. Vi denotes & sequence of k£ > 1 consecutive cycles
with an arbitrary number of arrivals. To start with the most important one, we have the
following symbolic equation:

Vi=® + C?‘F R + o+ R +
V. V. V. V-V,

with Vi = 37, Vi. Recalling definition (2.2), the ordinary generating function of V, reads

Va(2) = D LVi(z).

k>1
Due to definition (2.1), we have
gnk = prob{n task arrivals during & (consecutive) cycles} = [z A(2)*

for n > 0, k£ > 1. Thus, the OGF of Vi reads

Vi(2) = 25 3" go ik Va(2)™. (6.2)

n>0

Introducing the bivariate generating function

G(z,u) = LVi(2)u*,

k>0

one obtains V,(z) = G(z,1). Multiplying (6.2) by lxu* and summing up for k£ > 1 yields
G(z,u) = L(zud(G(z, 1))). Because of

Vi(z) = [h1u']G(z,u) = zA(G(z, 1)), (6.3)

we find
Z L Vi(2)u® = G(z,u) = L(uVl(Z)) = Z lkvl(z)kuka

k>1 E>1

hence Vi(z) = V;(2)* and Vi(z) = G(z,1) = L(Vi(z2)). Substituting the latter in (6.3)
and introducing the abbreviation B(z) = Vi(2), we obtain a result already known from
Section 4:

B(z) = zP(B(z)).
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At next, we look at Hj, 7 > 1. The symbolic equation reads

we Do A e AL

7} 7} V* 73]}*"‘1)*

with 7; denoting a label j node. Obviously, the corresponding OGF is Ti(z) =127,

Since each combinatorial object in H; corresponds to an object in V;, where the leftmost
successor V, (at the top level) is replaced by 7;, we may omit the detailed translation of
the symbolic equation and write down the result immediately:

Vi(z) — agz.
L(Vi(2))

Note that the term agz corresponds to the ‘smallest’ tree in V1, which consists of the root
only (no arrivals during the corresponding cycle).

The OGF for £ is straightforward; mentioning definition (2.1), we have E(z) = qqz.

Now we are able to translate symbolic equation (6.1) into the appropriate OGF. For
reasons that will become evident when pasting sub busy periods together, we attach two
different sizes to a structure of that class. Roughly speaking, the size represented by z is
responsible for counting the length of the corresponding sub busy period w.r.t. deadline
properties. A different size is represented by the variable u. It counts the contributions of
the corresponding sub busy period to the overall length of the whole busy period; remember
our remarks at the end of Section 2. We find

HJ‘(Z) = ljz

B; j(z,u) = i E(l)i_l“lHj(zu)B(zu)Iu"l"l. (6.4)

=0

Note that we should have no contributions from & , both for deadline counting and the
overall size, thus E(1) is used. The last term u='=' makes the difference in the size
counted by z and u. The I 4+ 1 cycles within the initial label ¢ node, i.e., the ‘roots’ of
H; and V!, must be counted in 2 only (deadlines), not in u. The latter is done in the
preceding sub busy period!

That is, for a sub busy period starting with a label ; and terminating with a label j
node, [z*]{u™]B; ;(z,u) is the probability that all tasks meet a deadline of ¢ cycles (and no
smaller one), contributing n cycles to the length of the whole busy period.

Evaluating expression (6.4) yields

Bij(zu) = (<£(?2)1 B aé) ngg(::)o)zu . B(zu)l— uag li(zu). (8:5)

Now, we will try to paste sub busy periods together. In order to enable deadline counting
in each sub busy period, we are forced to use different counting variables zx instead of z.
Let Bik’ ; denote the family of trees, which are formed by pasting together exactly k > 1
sub busy periods. For example, we have

2
Bi,j = E Bz‘,kBk,ja
k>1
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the corresponding (multivariate) generating function reads
B} (22, z1;u) = ZBi,k(zz,u)Bk,j(zl,u)-
k>1

For simplicity, we introduce the abbreviations Bij(z,u) = Si(2,w)I(z, u)T;(z,u), cf. equa-
tion (6.5), and obtain
B?yj(zg, z1;u) = Si(zz,u) (22, u) [L(22B(z1u)) — L{agz2u)] I(z1,u)Tj(z1, u).

Note that overlapping of sub busy periods is reflected by the ‘connecting function’ within
the brackets. The ‘starting’ and ‘trailing’ functions Si(.,u) and Tj(.,u) appear in the
expression again; thus we may use this technique repeatedly to construct the general term:
Bﬁj(zk, e ziu) = Si(ze, u) (2, u)-
(L(zx B(zk—1u)) — L(aozru))I(zp—1,u)-
(L(zk_lB(zk_gu)) — L{agzr_4 u))I(Zk_g, u)-

(L(z2B(z1u)) — L{agzou))I(z;,u)-
Tj(=1,u).
To construct a whole busy period consisting of exactly k sub busy periods, we have to deal
with the decomposition
Ct=u "Bt .g;
J21
U denotes a single cycle forming the initial cycle of the first sub busy period, its OGF is

U(z) = z. & is a label j node with no arrivals; we have the OGF Ej(z) = E(z)! = (agz).
Translating the symbolic equation above, we find

C'k(zk, cey21U) = uZBf,j(zk,. oz u)E(1).
21

Note that we do not count cycles resulting from the terminating idle period, i.e., E;. We
easily obtain

. B(zpu) B{ziru) — apzpu 1
C¥(z,. .. y 215 U) = - . .
(= aiu) = u( u ) L(B(zxu)) B(zru) — uaq
Zk—1U) — Qg Zk—1U 1

(L(zkB(zx-1u)) — L{agziu)) 5 L(B(zt_1w)) ' B(zx_1u) — uag

B(z1u) — agz;u 1

L(B(z1v))  Blzju) - way.

(L(z2B(zw)) — L(aozpu))

L(a021 u).
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Obviously, a busy period with no sub busy periods, that is, an idle cycle, has the symbolic
equation /{&;. The corresponding OGF is very simple: C%u) = aqu.

Since a whole busy period may consist of an arbitrary number of sub busy periods not
exceeding T cycles (for deadline counting, of course), we are forced to study

1 1 1
l—zr 1-2z;,4 1 -2z

Br(u) = aou+ Y _[z7] -+ []] CH(zxy... 21 u),

k>1

which is the PGF of the length of an arbitrary busy period containing no deadline violation.
Introducing the abbreviations Yr = zru and

1 1 1
D* e, Y1 U) = . c* Uy /U
(Y« yisu) T—w/u T—wi/u  1=gi7a (yx/ y1/u;u)

~ 1 B(y)—aoyk
- 1—yi/u L(B(yk))
1 LCEB(ue)) — L(aoys)  Blyr-1) — aoyi-1
1 —yr-1/u B(yk-1) — uaqg L(B(yk-1))

L LEBW)) - L(aoy2) B(y) — aoys

1=y /u B(y1) — uag L(B(v1))
L(aoy1)
we find
Br(u) = apu + Z uFTT. . [yT1D* (s, ... Y13 U (6.6)
k>1

Looking more closely at the delicate expression for Br(u) (where u is assumed to be a
complex parameter in the closed disk D(1, v) ={z:|z — 1] < v} for some arbitrary small
v > 0), one obtains non-trivial interdependencies among the coefficients [yf],..., [y7],
resulting from the “connecting functions” L(%‘B(y;_l)). Hence, a direct extraction of
the desired coefficients yields complicated expressions, at first (and possibly second) sight
far away from tractability. Thus, we will use a somewhat elaborate singularity analysis
technique which we called asymptotic separation: Although it is impossible to separate the
“connecting functions” directly, i.e., to split up L({—"B(yi_l)) into a product f(y;)g(yi-1),
it is possible to provide a separable asymptotic expansion which serves as well. However,
this needs some explanation: E

Looking more closely at y;-related terms in Br(u), that is

L L(2Bw)) - L(aey2) B(y1) —aoys ]
1 -y /u B(y1) — uao L(B(y)) Laow), (6.7) i

our task is the determination of the T-th Taylor coefficient [y] in this multivariate func-
tion, which is analytic for y1, y; in a neighborhood of 0 and u € D(1,v). Due to general
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theorems (Cauchy’s formula for multivariate analytic functions, cf. [Mar65, p. 1011f)),
w1 fly2, v, u) is an analytic function of y2 and u, too. In addition, it is not hard to prove
that the well-known transfer lemmas (see [FO90]) remain valid for multivariate analytic
functions. For example, if

f(50) = O(g(w)(1 = 2/0)%)  for 2 — p,
uniformly w.r.t. w, it follows that
[2"]f(z,w) = O(g(w)n_l—o’(_n) for n — oo,

uniformly in w, too. Again, keep in mind that the latter O(.) represents a function which
is analytic in w!

Returning to our original function, we obtain three “sources” of singularities,

(1) a (removeable) simple pole at y; = ((u) < 1, resulting from B(((u)) = aou,

(2) asimple pole at y; = u,

(3) an algebraic singularity at y; = p resulting from functions involving B(y;), cf. the

comments on expansion (4.4).

The fact that y; = ¢ (u) is a removeable singularity, i.e., that there is no singularity at all,
is easily established by taking into account the zero of L(£ B(y1)) — L(ao y2) at y1 = ((u).

Remembering p > 1 it follows that Y1 = u is the singularity with the smallest modulus;
in fact we only have to choose v small enough, ie., 1+v < p. The appropriate contribution
to [yf] is easily determined via subtracted singularities:

L(%B(u)) — L(aoys)
L(B(u))

L(aou)-uT.

Investigating the behaviour of (6.7) near the “next” singularity y; = p it turns out that
B(y1) — aoy; and L(B(y1)) obey expansions similar to B(y1). The function L{apy) is
assumed to have a radius of convergence larger than p, i.e., should be well-behaved in a
neighborhood of y; = p. Hence, the only remaining difficulty concerns the term containing
the “connecting function”, ie.,

L(%B(yl)) — L(aoyz)
B(y1) — uaqg

But, using the mentioned extension of a transfer lemma it is possible to attack this multi-
variate analytic function as well. Since Y1 comes up with B(y; ), one feels that L(£B(y))
should have an algebraic singularity at y; = p, independent of y2! Due to the fact that,
at our next ‘stage’, y» will play the role of y1 and y3 the one of y,, it is obvious to ask for
the behaviour in a neighborhood of y2 = p (and also y; = u to account for the subtracted
singularity term for y2). However, since y, appears in conjunction with the well-behaved
function L(.) only, we may expect inferior influences here. To make a long story short, we
assert that it is possible to determine a uniform expansion

L(%B(?Jl)) - L(aoyz)
B(y1) — uay

= b(y2,u) + c(yz, u)(1 — 1 /p)/? + O(l-wyi/p) fory; —p
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where b(y2,u) and ¢(ys, u) denote well-behaved analytic functions of both y2 and u. The
remainder O(1 — y;/p) represents = multivariate analytic function, too, and the implied
constant is independent of y1, y, and .

Putting all terms together, we obtain a uniform expansion for (6.7) at y; = p, similar
to the expansion above:

Bly2,u)Llaop) +¥(y2,u) L{aop)(1 — y1 /p)V/2 + Ol =y1/p) fory1 — p.

Note that the terms L(aq p) represent the contribution resulting from the terminating
function L(agy, ).

The subtracted term resulting from the simple pole y1 = u is meaningless for the analysis
of the singularity y; = p since (1=y1/u)~! is analytic for all Y1 # u. Using transfer lemmas,
the desired coefficient [y¥] finally yields

(v LW = (W Laon) T 5T £ OT2T)  for T 0

with both a(yz,u) and Y(y2,u) analytic at y, = p; the ‘elimination’ of y; is complete.
Now, the same procedure may be used for the extraction of [yf] (hence, for all Wi
since the related terms are almost the same as before. In fact, the only difference springs
from replacing L(aoy:) by a(y,, u) and y(y2,u), respectively! Using this simple iterative
scheme (leading to a recurrence relation) it is possible to compute an asymptotic expansion

Br(u) = B(u) - R(u)uTT—3/2,~T 4 O(uTT=2,=T)

uniformly valid for u € D(1,v). By virtue of a general theorem concerning uniform expan-

sions we may differentiate this expansion in order to derive ngm) (1) for an arbitrary but
fixed m.
We therefore obtain

THEOREM 6.1. (nonpreemptive LCFS scheduling in the normal case, cf. [SB94, Theo-
rem 5.1]). The successful T-run duration St for nonpreemptive LCFS scheduling in the

normal case is approximately exponentially distributed with parameter 1 [ug? LCFS where

uIPLCES _ CT*?pT(1 4 0(1/T)) for T — oo,

o =2Vm(p = 1)(1 = ao)L(7) ((1 = 0) (L(7) = L{ao)) ao(p - 1)
bL(p)(1 — P'(1)) L{ao)( - ao)

(7 = 1)(r — aop)L'{7) B
L(T) T aO Y

T > 1 1s the solution of P(z) = zP'(z), p = 7/P(t)>1, and b = V2P(r)/P"(7). &

Unfortunately, our complicated asymptotic analysis above is not valid for the balanced
case since p = 1. However, using a refined analysis it is possible to show
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THEOREM 6.2. (nonpreemptive LCFS scheduling in the balanced case). The expectation
of the successful T-run duration St for nonpreemptive LCFS scheduling in the balanced
case is given by

b
pgf’LCFS ~T for T — . |

In the overloaded case, the result of the asymptotic analysis concerning the normal case
Is valid again since p > 1 (though 7 < 1). Due to the fact B(1) < 1 we eventually obtain

THEOREM 6.3. (nonpreemptive LCFS scheduling in the overloaded case). The expectation
of the successful T-run duration St for nonpreemptive LCFS scheduling in the overloaded
case is given by

npLCFs® B 1

T 1-8 1-P(p)

for T — oo,

where 3 < 1 is the solution of z = P(z),z<1. ¢

7. STATIC PRIORITY SCHEDULING

This section is devoted to a (very brief) survey of the rather involved analysis of the
widespreadly used static priority scheduling algorithm (SPS) contained in [S94]. Unlike
the no-priority algorithms described so far, we have now L > 1 different classes of tasks
with different priority levels, numbered from 1, . .. » L, where 1 is the highest one. For each
priority level £, there is an associated (constant) deadline T} and two probability generating
functions 44(z) (arrivals) and Ly(z) (task execution times); again, we introduce

Pyz) = prez* = 4, (Le(2)). (7.1)

k>0

Static priority scheduling works as follows: Assuming that the task list of our system is
sorted according to descending priorities, a newly arriving task of a certain priority level
is inserted into the queue behind the already queued tasks of the same level. The server
always executes the task at the head of the task list, in a preemptible fashion. Note however
that any scheduling takes place at cycle boundaries only, i.e., no preemption occurs during
a cycle.

Our combinatorial analysis relies on an extension of the ideas used for FCFS scheduling
(which of course corresponds to SPS with L = 1): Since tasks of the same priority level
are queued in FCFS order, whereas higher priority ones are handeled according to the
(preemptive) LCFS policy, we just have to “blow” up nodes of the trees from Section 5 in
such a way that each of the resulting multi-nodes corresponds to a single higher priority
busy period. This naturally implies that the width of such a multi-node is greater or
equal to 1; moreover, we have to take into account the appropriate probabilities in the
probability weights of the vertices. The following tree shows an example for L = 2;
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The (higher-level) actions corresponding to the vertices within a multi-node are executed
from left to right. Note however that there is exactly one (shaded) node within each multj-
node, which belongs to a level-2 task; it represents the initial cycle of the corresponding
level-1 busy period. Since such cycles are obviously executed before their higher-priority
neighbors, it is evident that al] outer leftmost multi-nodes in our tree require special
attention: They may exceed the (lower-priority) width-constraint provided that there are
no lower-priority arrivals in those nodes of the multi-node which lie beyond the limit.

First we consider the (of course well-known) case where no deadline restrictions are
present. Here, we have the following symbolic equation for the family B(£) of corresponding
trees (note that those trees do not reflect the execution order of actions!):

Ly _ L L L
B(L) B ... gL

N e

k

The probability weights piL) denote the probability that the total number of actions to
be executed due to task arrivals during the initial cycle (denoted by () equals k. Since
arrivals and task execution times (of different priority levels) are independent, we obviously
have

L
PP = 1P = (][] Pe(z)  foranl k>0
£=1

Applying straightforward product and sum translations, cf. [VF90], it is easy to see that
the PGF B(L)( z) of arbitrary busy periods solves the already well-known functiona) equa-
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tion (cf. equation (4.3), [MM78])
B<L)(z) =z Zpg’) (B(L)(z))k = P (B(L)(z)).
k>0

Now we will proceed with the derivation of the OGF's of interest. For technical reasons,
it is more convenient to deal with the family of trees which are width-constrained by T,
instead of T — 1, shifting back everything by 1 at the end. Thus, we consider the family

C(TI;?...,TI of T1,...,Tr-width trees with the OGF (which are improper PGFs in this case)

(L) — (L) FoN (L) _ (L)
CTL (Z) - CTL,...,TIKZ) - Z C‘n,TL zn - Z cn,TL,-~-,T1 zn'

n>0 n>0
Note that obviously cg’r’%L = 0, because there is always a root node in any tree. For
notational convenience, we use abbreviations like the above ones where possible.

Our aim is to provide an equation for C’g’) .7, (#) which involves C’g:ll’) .1 (2),1e, are-

cursive formula. However, we first derive a symbolic equation of similar width-constrained

trees C. TI;_) = E{Ti),...,Tl with L priority levels, which are generated by level-L arrivals during

a single initial cycle; the connection to the actually desired family Cé{“) = Cé{“)’_”,ﬂ will be

established subsequently.

(L)
CTL =
L L (L (L
0O + 175)? +oot B A +oot By /?\
={L) ={(L) =(L) =(L) (L)  =(L) ={L)
CTL CTL—k-i-l e CTL—ICTL Cl o .CTL—ICTL
=(L) —(L)
+ UTL*H,TI%\ Tt UTL+m,T)%\ : T
S(L)=(L) %L} H{L)=(L) (L
£C,C, "'CTL g...gcl Cs "'CTL

In the equation above, £ denotes a single cycle with no level-L arrivals; its OGF is clearly
E(z) = po,rz, cf. (7.1).

It is easy to provide the required probability weights ]’)gf') » which denote the probability
that exactly k£ < Ty new actions arise as a consequence of (1) Ty > m > 0 level-L arrivals
during the initial cycle and (2) all higher-priority arrivals during the m arising (level-L-
Jsuccessors of the initial cycle. With C}fj) (z) = C’;I;:'S)Tl(z) denoting the OGF of
width-constrained trees for higher priority levels L — 1, ... , 1, 1t is clear that

O =EIRCETVE) ko
L
Po = o

However, it is more complicated to provide the probability weights ?5%7)1, k>Tp >
1, which reflect the situation of outer leftmost multi-nodes exceeding a width of Tr, as
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mentioned earlier. For our argument, we use two counting variables Y, w to take care of al]
cycles (y) and those which are meaningful for level-L deadlines only (w). Now, while all
inner multi-nodes that arrived during the initial cycle contribute to both y and w, we have
to replace the outer leftmost multi-node Cg’jll) (yw) by a special multi-node, say, C(w,y),
that contributes different to w and y. More specifically, we require

_ w(CF, " (y) = CE (yw))
C(w,y) — Z w™ CSII:TLI-)!yk - Tr-1 Tr—1

n2>1 k>n

l—-w

so that [y*][w"]C(w,y) = ci{’ﬂl_)l ifk>n>1 (and zero otherwise). For k >n > 1, it is
not difficult to find

EiL,Z = prob{k actions arise with n being the last level-L “admissible” one}
L-1

n PL (Cé'}__l)(yw)) — Po,L w (L-1)

’ 1 —w : CTL_1 (y)'

= [yk][w C(L_;;

Tr_, (yw)

Note that we may discard the term C’}IL’::) (yw) since [y’][w’"]i-_%zcg’:ll) (yw) = 0 for
1>m.

The translation of the symbolic equation for Z’{Ti) into a functional equation of the OGF's
involved yields

TL T T
(L) L (L) (L) —(L m
Cr/@)=:3 8" JI TP+ J[C7= Y Tz, (200,L)™.
k=0 =T ~k+1 =1 m>1

Defining
—(L) 1

Qn (2) =
n =(L) =(L)
Cn'(z)---C17(2)
remember Section 5, and the corresponding bivariate generating function

%2 = 0P st

k>0

and  Q\0(z) =1,

we multiply the above equation by @-(TI;)(Z) to obtain

Ty

—(L) Ly={(L) (L

Ori—1(2) =23 B0 4(2)+2 308, (zpos)™
k=0 le

This primarily involves a simple Cauchy product; after some (rather involved) algebra, we
obtain

_ QW(s,2) — BB, 2)
O

09, 2)
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where

L-1
SC;L-l )(ZpOyL)

QP (s,2) =3 QP (2)s* = - (7.2)
1; zPr (C’%_ll)(s)) -3
(L-1) (L-1)
B (s, z) = Xz (P0.0) = 20,2 Cr, () (7.3)

ZPo,L — S8
In order to obtain the actually desired width-constrained trees Cff,:i) , we must take into
account the possibility of higher-priority arrivals in the initial cycle (cf. our example tree
at the beginning). This is accomplished by

(L
CTL =
(L-1) (L) . 7
CI’TH—{TL) T Ck,TL-l-—(L)/Z(TL) v\-u) RS L) —T(L)
CTL CTL —k+1CTL —k+2 """ CTL Cl e CTL
(L-1) ; (L-1) >7 ‘
+ CTL+11TL-1 77 T +"'+ CTL+m,TL_1 777 T +-..
chEDb | Fh HDAHD) (L)
ECy7°C 7 --Cpy £ ECC Ty

m

Note that the triangular nodes above are not to be counted in the OGF, since they represent
(“double”) the initial cycle of the associated successor trees only.
The translation into a functional equation of the OGF's involved yields

L) I (L-1) 1z —{(L)
-1
@ =% 70 ] TP

k=0 =T —k+1
LN
- L-1
+IIC7@ 3 3 g, (pon)™
=1 m2>1

which may be attacked in the same way as the former one. Some algebra finally yields
cfP(z) = B9 2
[s72]Q7 (s, 2)
and shifting back everything to arrive at the improper PGF of Ty,..., T} -feasible busy
again, i.e., BFEPI;)’__”Tl(z) = C%’)_L“,’Tl_l(z), our major result follows:

THEOREM 7.1. (cf. [S94, Theorem 3.1]) The improper PGF of T,...,Ty-feasible busy
periods may be expressed recursively by

[sT:=1Q (s, 2)
[sT==11QW (s, 2)/ B, 7 (s) = [sTe=1) HW) (5, 2)/ BE - s)
BO(:) =z,

for L > 1,

L
BE(2) =
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with QD (s, z) and HD) (s, 2) defined by (7.2) and (7.3) (however, with ng) replacing
cr, )
This result covers the single priority level case (L = 1), that is, FCFS scheduling from

Section § as well. Note that it is possible to show that B%)(z) for Ty,-+- , Ty all being
finite is a rational function.

The expression established in Theorem 7.1 may be attacked by asymptotic methods rely-
ing on (bivariate) singularity analysis, which eventually provide a (differentiable) uniform
asymptotic expansion for Bg:i)(z) valid for z € D(1,¢), ¢ sufficiently small. However, the
appropriate analysis follows a different line as the one for FCFS scheduling, cf. Section 5,
and we will only give the general line of reasoning due to lacking space. Note however,

It is easy to see, cf. (7.2), that the dominant singularities in the expression of Theorem 7.1
are determined by the solutions the already well-known functional equation (4.3), namely

F(s,2) =2U(s) —s =0, (7.4)

where U(s) denotes an analytic function with certain properties, e.g., that the radius of
convergence Ry of U(z) must fulfill Ry > 1. This type of functional equation has been
studied extensively (and controversially) in the literature, cf. [MM78], [Can84], [MM89]
for some references. In general, it has several analytic solutions, but one is usually only
interested in a particular one (with positive Taylor coefficients). We, however, require
some results on other solutions as well. Therefore, we need novel proof techniques based
on complex analysis, since “traditional” ones (e.g., [MMB89]) rely heavily on the ¢ prior:
assumption of positive coefficients.
From the properties of U (s) it follows that

U (z)~U(z) =0 (7.5)

has a minimal positive solution 0 < r < Ry,ie., tU' (1) -7 =0. Defining

T

=Ty (7.6)

it is easily checked that F(r,p) =0, Fy(r,p) = 0, and Fyo(7,p) > 0, where Fy(s,z) and
Fys(s,z) denotes the first and second partial derivative w.r.t. s, respectively. This in fact
gives raise to the following well-known lemma, remember (4.4) in Section 4

LEMMA 7.2. (cf. [S94, Lemma 4.1]) With the properties and notations (7.4)~(7.6), the
functional equation F(s, z) = zU(s) — s = 0 has a double-valued solution s = x(z) for z in
a neighborhood of z = p (which is not necessarily the only one) and

XD =7 =8 0= 2/pP Pty (1= 2/p) 4 O((1= 2/pPP)  forz =
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B and v are explicitely expressible in terms of derivatives of [/ (s). 1

Since x(z) is double-valued near P, it is possible to define two branches ¢(2), k(z), which
are single-valued and analytic in a suitable small neighborhood of any z, # p. Thus,
F(s,z) = 0 has two single-valued, analytic solutions in such a neighborhood. However,
it is important to note that this result does not imply that there are no other solutions
of F(s,z) = 0, mapping the neighborhood of z = 29 to a different neighborhood s = S5,
cf. [Can84] for an example. Nevertheless, the following lemma establishes that there are
no further solutions, even in the case of arbitrary 2o = o, 0 < @ < p, if we restrict ourselves
to a certain domain of s.

LEMMA 7.3. (cf. [S94, Lemma 4.2]) Let U(z) be in accordance with (7.4)~(7.6). Then
for any a, 0 < a < p arbitrary but fixed there is some Ta; T < To < Ry such that
F(s,z) = 2U(s) — s = 0 restricted to the closed disk s € D(0,r4) has exactly two single-
valued, analytic solutions s = ((z) and s = k(z), with values lying entirely in the interior
of D(0,74) for every z ¢ D(a,e), ¢ > 0 sufficiently small. Moreover, ((z) and «(z) are
positive real-valued for real positive 0 < z < p, satisfying ((z) < 7 and k(z) > 1. |

It is not hard to show that ((z) is actually the well-known “natural” solution (positive
Taylor coefficients, cf. equation (4.3), [MM89)]) of 2U(s)~s = 0. ((2) is therefore analytic
in the indented disk A, = Ap(nyp) ={z:|z| < p+n, larg(z — p)| > v,z # p} for some
n>0,0<¢ < 7/2, and has only a single algebraic singularity of square-root type at
z = p on its circle of convergence.

In summary, Lemmas 4.1-4.4 of [S94] establish that for 0 < o < p+v, v > 0 sufficiently
small there is some 7 < r4 < Ry such that F(s,2) = 0 has exactly two solutions ¢(2), k(2)
(formed by the two analytic branches of a single double valued solution, hence “joining” at
@ = p), which lie entirely in D(0, ra) for z € D(a,¢) for ¢ sufficiently small. This, however,
1s exactly the information required for singularity analysis: The next lemma provides a
uniform asymptotic expansion for gn(z) = [s"]G(s,2) for n — oo, z € D(a,€), where
G(s,z) denotes a function analytic in a neighborhood of s =  and z = q, Note that
—by virtue of well-known theorems from the theory of analytic functions of two complex
variables, cf. [Mar65, p. 101ff], for example— g.(z) is analytic in a neighborhood of z = a.

LEMMA 7.4. (cf. [S94, Lemma 4.5]) Let 0 < a < 00 be arbitrary but fixed. Suppose that
U(s) and W (s) are analytic within the open disk D(0, Ry) and that there exists some Tas
0 < rq < Ry such that ‘
Wi(s)

2U(s) — s

has at most two simple poles s = ((z) and s = x(z), lying entirely in the interior of the
closed disk s € D(0,r4) for every z € D(a,¢), € > 0 sufficiently small. Then, gn(z) =
[s"]G(s,2) is analytic and fulfills

W((2))
1—2zU"(¢(2)

G(s,2) =

W(K)(Z))
1 - zU"(k(2))

gn(2) = )C(z)—(n-}-l) + K(z)-‘(rﬁ-l) +0(rz™)
for n — oo, where the remainder term denotes an analytic function and is uniform for
z € D(a,¢). §




Due to the fact that zU(s) — s has two simple poles for z # p but a double one for z = 2,
Lemma 4.5 is not directly applicable in a neighborhood of p. However, it is possible to
provide the appropriate asymptotics also in this case, cf. [S94, Lemma 4.6].

With the help of Lemma 7.4, it is not too difficult to obtain a recursive uniform asymp-

totic expansion of the desired Bg’) (z)for Th,...,Tr — oo in terms of the associated zeroes,
which may in turn be fully characterized by closely Investigating the functional equation
2Pp (Bg;j) (s)) —s =0 arising in the denominator of (7.2). Solving the recursion, an

asymptotic expression for B»E,,IL') () is obtained, which is uniform for z € D(1,¢) and is

hence differentiable. Substituting z = 1, our major theorem follows:

THEOREM 7.5. (cf. [S94, Theorem 4.18]) With the notations and conditions mentioned
above, the successful run duration St for static priority scheduling with L > 1 priority

levels is approximately exponentially distributed with parameter 1/ #%LL) ..T,» Where

PR 1 (1+ Ty O(7T) )
Tty 2eez AePe(re)=(Ti=1) ZeeIO(Pf(’W)‘T‘)

for sufficiently large T1,...,Tr — oo such that T, = O(T"‘) for arbitrary but fixed k; and
T — oo.

T is the set defined by 1 € T and ¢ €7 for 2 < £ < L if either the radius of convergence
Rp, of Py(z) is less or equal to 7= or T(f_l)/P(l)(T(e_l)) < 1 otherwise; 7(9 denotes the
minimal positive solution of :cP(f)l(x) - PO(2) =0 for PO(z) = Hle Pj(z). Moreover,
with k¢ denoting the minimal solution of 7 — PO(g) for z > 1,

4= B=PO)* 1 Po(re) PU1'(15,) (fce - 1)
TaC PU-1'(1) PO (k) — 1

Ke
where PO)(2) = 1, and

Py(re)+ € for somee> 0,ife e,
re=¢ pll=1) ifa; = r(“l)/P(‘)(T(‘“l)) >lora;=1andallTy,...,Ty finite,
P — ¢ for some €>0,ifa; =1 and arbitrary Ty,..., Ty. §

Finally note that we also showed that, for finite Ty, there is a polar singularity 55‘?

at on the circle of convergence of Bf(l‘i) (2). Actually, an expansion of B%) (z) near 5%) is
provided, which explains the somewhat puzzling limiting behavior as T — oo; cf. [S94,
Lemma 4.14] for details.

8. CONCLUSIONS

We demonstrated the power of methods from the analysis of algorithms and data struc-
tures in the investigation of deadline meeting properties of scheduling algorithms for proba-
bilistic aperiodic tasks in real-time systems. Contrasting the usual queueing theory devices,
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our approach is based on exploiting combinatorial and asymptotic properties of certain
random trees and works without any equilibrium assumption.

The comparison of the results for different scheduling techniques in the no-priority case
confirms the expected superior performance of FCFS scheduling. Due to our fixed deadline
assumption, the latter is equivalent to the eqrljest deadline first algorithm, which is known
to be optimal, cf. [SG91]. Actually, there is a significant difference between deadline
meeting properties of FCFS and LCFS scheduling in the normal case, since & is always
(usually much) larger than p- Preemptive and nonpreemptive LCFS scheduling perform
roughly equivalent. Note that this ranking of our disciplines confirms the one obtained by
steady-state results, ¢f. [Coh82, p. 475]. Our results, however, extend that qualitative
ranking insofar that we guantify how much better some particular scheduling discipline
performs over another one.

Needless to say, there are many important problems left for further research:

(1) Application of our approach to other scheduling algorithms, in particular to earliest
deadline first in case of several different deadlines, and schemes designed for ape-
riodic task scheduling in conjunction with cyclic task schedulers, see [LR92], for
example.

(2) Considering tasks with (additional) resource conflicts. In our approach, it was
assumed that all tasks are competing for the server, but are otherwise independent.
Dealing with tasks which may block each other when accessing additional mutually
exclusive resources should be considered to meet practical needs.

(3) Provisions for time-variant and not independent arrival processes. This problem,
pivotal to all attempts of analytic modelling of real applications, is not sufficiently
solved by our approach. In order to preserve the tractability of involved compu-
tations, we essentially confine ourselves to Poisson arrivals, but it is questionable
whether this is suitable for real-time applications. It should be mentioned that we
are currently working on an elaborate monitoring system for distributed real-time
systems (our Versatile Timing Analyzer VTA, see [S94b]), that will help us to
obtain realistic information required to identify appropriate input models.

There are of course several other —and not at all trivial— improvements conceiveable,
such as taking account of system overhead for scheduling and dispatching or relaxing the
fixed deadline assumption.

Considering all aspects, however, we are convinced that our research develops in a quite
promising direction: Experimental work devoted to measurement is needed to obtain ap-
propriate system models, and refined techniques to deal with the theoretical part involved
in the exploration of adequate models are also required. Evidently, most work remains to
be done.
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