Technische

— Institut fiir Automation Universitat
Abt. fir Automatisierungssysteme Wien

Projektbericht Nr. 183/1-61
August 1995

Synchronized Universal Time
Coordinated for Distributed
Real-Time Systems

Ulrich Schmid

TR

Salvador Dali, "Die Bestindigkeit der Erinnerung”

SYNCHRONIZED UNIVERSAL TIME COORDINATED
FOR DISTRIBUTED REAL-TIME SYSTEMS

U. Schmid*

*Technical University of Vienna, Department of Automation, Treitlstrafle 8, A-1040 Vienna, Au-
stria. Email: s@auto.tuwien.ac.at

Abstract. This paper presents a novel technique for establishing a highly accurate global time
in fault-tolerant, large-scale distributed real-time systems. Unlike the usual clock synchronization
approaches, the proposed clock validation technigue provides a precise system time that also relates
to an external time standard like UTC with high accuracy. The underlying idea is to validate time
information of external time sources like GPS-receivers against a global time maintained by the local
clocks in the system. As an example, a promising interval-based clock velidation algorithm ICV
that exhibits excellent fault-tolerance properties is outlined and analyzed. It requires only a few
highly-accurate external time sources and provides each node with the actual accuracy of its clock.

Key Words. Clock validation; universal time coordinated (UTC); clock synchronization; fault-

tolerant distributed real-time systems

1. INTRODUCTION

During the past few years, much research has
been conducted towards a common view of time
in fault-tolerant distributed systems. There are
more than 60 papers listed in a 1993 bibliography
(Yang and Marsland, 1993) on clock synchroni-
zation in distributed systems. As a result, the
problem of internal synchronization, i.e., keeping
local clocks within well-defined bounds of each
other, is relatively well understood.

The nature of the problem, however, radically
changes when the requirement of a mutually con-
sistent global time is extended to a global time
that relates to some external time standard like
universal time coordinated (UTC). The reason is
that there always exists a certain tradeoff between
precision (the maximum deviation of two different
clocks in the system) and accuracy (the maximum
deviation of any clock from real time), since inter-
nal synchronization is achieved by (slightly) mo-
difying the progress of global time. Thus, as ob-
served in (Christian, 1989), p. 151, the problem
of fault-tolerant external synchronization consti-
tutes a research topic in its own right.

Taking into account that real-time systems are
becoming more and more prevalent in daily life,
where UTC is the only common (and official!) no-
tion of time, it is obvious that systems employ-
ing their own idea of time might be of questiona-
ble use for future applications. Promising sour-
ces of UTC are readily available now, most nota-
bly the NAVSTAR global position system (GPS).

Consequently, it is high time to focus on the pro-
blem of how to provide a global time synchronized
to UTC for large-scale, fault-tolerant, distributed
real-time systems.

Intended for the new ideas/promising approaches
section of WRTP’94, this paper presents the di-
rections and some results of related research per-
formed in the project SynUTC! at TU Vienna.
It is organized as follows: Section 2 presents the
system model underlying the investigations. Sec-
tion 3 is devoted to the discussion of a novel clock
validation technique, including its relation to pre-
vious work. The description and (partial) analysis
of a particular interval-based clock validation algo-
rithm ICV is given in Section 4, along with some
practical considerations in Section 5. Finally, the
directions of current and further research are pre-
sented in the concluding Section 6.

2. SYSTEM MODEL

Large-scale distributed real-time systems are
usually built upon a more or less hierarchical in-
ternetwork comprising several heterogeneous sub-
networks. In today’s automation systems, for ex-
ample, there might be an Ethernet-based inter-
connection of top-level nodes, some of which act
as gateways to cell-level networks relying on field-
buses like Profibus, and possibly further machine-
level subnetworks connecting programmable logic

! SynUTC is supported by the Austrian Science Founda-
tion (FWF) under grant no. P10244-OPH.

controllers (PLCs) and sensor/actor devices via a
contoller area network (CAN) bus.

Commonly, there is a large number of nodes,
in particular at low levels in the hierarchy, of-
ten with considerable geographical distances be-
tween them. The number of suitable communica-
tion architectures is limited by often extremely
poor environmental conditions (i.e., noise) and
lack of space for “voluminous” (e.g., multiple) in-
terconnections.

A systern model suitable for that type of frame-
work is made up of

¢ an arbitrary topology of synchronization sub-
nets (SSNs), which are interconnected by one
or more gateways, i.e., nodes participating in
two or more SSNs,

e an improper, external synchronization subnet
virtually “connecting” external time sources
like GPS-receivers.

The most common topology is of course tree-like,
as exemplified in the automation system above.

Let SSN; denote the i-th SSN according to some
suitable enumeration, with SSNy representing the
external one. A single (proper) SSN may be mo-
delled as follows:

e An “ordinary” broadcast data network
connecting all n nodes of the SSN. Let ¢; be
the number of nodes which act as a gateway
to the i-th interconnected SSN;. Note that
a single node may be a gateway to multiple
SSNs.

e Synchronous network behaviour, with (broad-
cast) transmission delay é;; from node i to j
satisfying (Sij e [d,‘j — €4, dij +Egj]; dij repres-
ents the deterministic part and ¢;; a (usually
reasonably small) bound on the random part
of 6;;. Data integrity may be reliably checked
via certain checksumming methods.

e Nodes (and network) may suffer from crash,
(send and receive) omission and performance
(timing) faults, but not from arbitrary ma-
lictous —byzanline, but see below— ones.
(Generally, however, there is a low probabi-
lity of failure.)

¢ Each node i is endowed with a (continuously)

adjustable clock Ci(t) with rate deviation
bounded by p;, ensuring that (¢~¢5)(1—p;) <
[Ci(t) — Ci(to)] < (t —to)(1 + p;) for all real-
timest > tg, providing there is no adjustment
in {to,t] and the clock is not faulty.
A faulty clock (counted as a node fault) may
exhibit an arbitrary behaviour, including a
two-faced one, thus accounting for (restric-
ted) byzaniine node faults.

¢ A node i may be connected to an external
time source disciplining its clock Ci(t). If

there is no fault, it provides UTC with some
accuracy ag, i.e., |Ci(t) — t| < aq for all real-
times t. A faulty clock (counted as a node
fault) may behave arbitrarily as well.

The appropriateness of that system model for
large-scale distributed real-time systems, as men-
tioned at the beginning of this section, needs some
additional remarks.

First, it may reasonably be assumed that all
networks employed in today’s real-time systems
(802.3DCR, token ring, Profibus, CAN, ...) sup-
port some kind of broadcast and provide reaso-
nably synchronous behaviour (even CSMA/CD
provides enough synchrony, at least with some
hardware support); see (Verfssimo and Rodrigues,
1992) for a similar reasoning. Note that dedica-
ted time channels (e.g., clock signals) of any kind
are not considered (except for the external time
sources like GPS, of course). Apart from being of
questionable success in noisy environments, such
an approach would need additional interconnec-
tions when applied in conjunction with existing
network technology.

Another point of discussion concerns the fault
model stated above: Ruling out arbitrary node
faults may seem to be too unrealistic an assump-
tion in the fault-tolerant real-time systems’ con-
text. However, it turns out that the underlying
broadcast network restricts the number of classes
of overall system behaviour considerably. In the
most general case of totally arbitrary behaviour
of a faulty (“adversary”) node, nothing may be
done about possible total blocking of overall sy-
stem operation — just consider a node jamming
the channel completely or maliciously impersona-
ting several/all other nodes in the system. Thus,
there is no other way but to exclude such arbi-
trary malicious faults (or the broadcast network
assumption, of course) from the system model.

Note that although it is difficult to protect the
system against a faulty node that impersonates
other nodes in the general case, it is nevertheless
possible to defect such malicious behaviour more
or less “transparently” at the network level. More
specifically, one just has to ensure that any node
broadcasts its time messages at most once. This
1s trivial to achieve in the absence of crashes, but
requires some additional measures if such faults
are to be considered; see (Schmid and Pusterho-
fer, 1995) for similar issues. If a node receives an
impersonating message (carrying its own ID), it
immediately transmits its original message as well,
causing other nodes to discard both. Of course,
the question arises whether such detection-only
measures are actually worth while.

On the other hand, for a more restrictive fault

model, where any node has to adhere at least to
the (low-level) network protocol (the faulty ones
behaving arbitrarily only on top of it, ruling out
malicious impersonation a priori), there are pro-
tocols like Deterministic Ethernet (DOD/CSMA-
CD), see (Le Lann and Rivierre, 1993) that gua-
rantee bounded message delivery times. In that
case, byzantine behaviour of a faulty node is re-
stricted to broadcasting duplicated or replicated
messages (produced by nodes not conforming to
the protocol or caused by faults) to (all) the other
nodes.

This is exactly the (byzantine) faulty behaviour
covered by the two-faced clock assumption in the
system model above. It is important to realize,
however, that this type of node faults produces
a byzantine fault in the overall system only if it
leads to an inconsistent view among the nodes of
the distributed system, that is, if there is a receive
omission of the first message at a node m and
another one of a duplicate at a node [# m.

Assuming that receive omissions of the same
broadcast message as experienced by different
receivers are independent and have probability
p << 1, the probability b, ; m that two successive
broadcasts of two (different) messages M; and M,
(by the same sender) partition the total number
n of nodes in three subsets £, M and O of cardi-
nalities [, m and n — [— m, respectively, (where
all nodes in £ receive M, only, all in M M2 only,
and the remaining ones in O either both or none of
them) is required. This is of course a multinomial
probability, namely

n
b m = 1 — i1
nl, <l,m,n—l——m>(p)p

PP =p)(1=2p(1—-p))"

Hence, the probability 8, that there is at least one
node in £ and at least another one in M reads

n i-1

P{{>land m>1} = Zzbn,l,i——l

=2 =1

= S -pr(1-2p(1-p)"

i=2

t—1

'i<1,i-7,n—i>‘

l=1

I}

Bn

An elementary manipulation involving the defini-
tion of the binomials shows that

> (i) =2 ()= ()

so 1t follows that

Bn = i[(r:)? - 2(?)} (e(1 - p))’

(1-2p(1-p))""
= 1-(1-2p(1-p))"
~2np(1 —p)(1 - 2p(1 = p))" ™"
~2(1-p(1-p))"
+2(1—2p(1 - p)"
+2np(1 — p)(1 - 2p(1 - p))" ™’
= 1-2(1-p(1-p)" +(1-2p(1-p))"

Employing a® = e?'8% 3nd the well-known se-
ries expansions log(l —) = — 3 45, z¢/k and
e® = 450 z%/(k!) for z — 0, an asymptotic® ex-
pression for p — 0 and large n < 1/p is obtained,
namely

8, = 1— 2e~np(l-p)+O(np?)
+e~2p(1-p)+0(np?)
1—2(1 = np(1 = p)) + O(n’p)

+1—2np(l—-p)+ O(n?p?)
= O(n®p?)

for p — 0.

This simple analysis can be easily extended to the
case of k transmissions of two messages M) and
M, (giving a total of 2k transmissions); essenti-
ally, one has to replace 1 — p by k(1 —p) and p
by p**~!. In any case, the worst situation (lar-
gest value of 3,) occurs for £ = 1, ie, in the
case above. Given a probability of omission in
the range of p ~ 1073...107*, meaning that one
message in 1000...10000 messages is lost on the
average, and a total of n = 100 nodes, it follows
that Bioo ~ 1072...10~%, which is reasonably
small. Note that p~ 1073...107* is a pessimistic
assumption for real networks, since system-wide
omissions (experienced by all nodes due to elec-
tromagnetic noise on the transmission media, for
example) do not contribute to p.

Clearly, B, is the probability of only one by-
zantine fault, arising from two different messages
transmitted by a single sender node. The proba-
bility of f > 2 byzantine faults (involving f sen-
ders) is obviously less than 8} = O(n*p*/); in
the example above, one obtains a probability in
the range 1072/ ...10~*. Hence it follows that
a large number f of (restricted) byzantine faults

2 As usual, f(z) = O(g(z)) for — O if there is a positive
constant M such that |f(z)] < Mlg(z)| for z — 0. Note
that the truncation of a convergent power series flz) =
Zk>o fiz® satisfies f(z) = f‘\:_ol frz® + Oz for all

r— 0.

—although covered by the system model above—
is very unlikely in practice.

3. CLOCK VALIDATION TECHNIQUES

Unlike in the context of (internal) clock synchro-
nization, where much work has been done (see
(Yang and Marsland, 1993) for a comprehensive
bibliography and (Simons et al., 1990; Ramana-
than et al, 1990) for overviews), there are only
a few papers devoted to the problem of external
synchronization. The latter research may be ca-
tegorized as follows:

In (Kopetz and Ochsenreiter, 1987) some helpful
general considerations concerning external syn-
chronization and an outline of a rather straight-
forward solution based on a periodic modification
of the rate of all clocks of the distributed system
are given. The rate adjustment is based upon the
comparison of a single node’s clock against an ex-
ternal time standard. Hence, this algorithm is not
fault-tolerant and provides only modest accuracy.

Another non-fault-tolerant algorithm for provi-
ding (slave) nodes of a distributed system with
time information from a time server (a master
node that has access to an external time stan-
dard) is based upon the probabilistic clock rea-
ding technique introduced in (Christian, 1989). A
similar probabilistic approach underlies the care-
fully engineered network time protocol NTP, de-
signed for providing a reliable time service in the
Internet, see (Mills, 1991). Such probabilistic al-
gorithms, however, are used for a very different
application domain, usually involving asynchro-
nous system models. The statistical methods re-
quired for that type of systems are not suitable
for the system model in Section 2.

A promising approach to external synchronization
is the interval based paradigm underlying the non-
probabilistic, fault-tolerant time service developed
in (Marzullo, 1984; Marzullo and Owicki, 1983).
Interval-based algorithms represent (local) time
information relating to an external standard like
UTC by intervals that are known (i.e., supposed)
to contain UTC. Given a set of such intervals from
different time servers, a (small) interval that ac-
tually contains UTC may be determined — even
if some of the intervals are faulty.

A different synchronization technique is used in
the fault-tolerant, interval-based time service de-
scribed in (Lamport, 1987). It employs a tech-
nique similar to (byzantine) agreement for disse-
minating time information provided by dedicated
nodes with access to an external time standard.
Clock synchronization techniques are used to syn-
chronize the other node’s local clocks to a global

time derived from the disseminated time intervals.

The major deficiency of all the existing approa-
ches lies in the fact that their idea of accurate
time depends only on the reliability of some —or
even a single— dedicated time server(s). In other
words, they do not exploit all the timing informa-
tion available in the distributed system. Hence, in
order to tolerate a reasonable number of faults, a
relatively large number of time servers is required.

This paper proposes an alternative approach that
explicitly takes into account the various nodes kee-
ping track of the time by means of their (low-
accuracy but reliable) local clocks as well. More
specifically, instead of relying on time information
of some high-accuracy time servers only, one may
compute a validity interval from all local clocks
in the system to judge whether the information
provided by high-accuracy time servers is valid.
This clock validation technique allows the design
of a fault-tolerant time service that relates to an
external time standard — with only a few nodes
actually having access to it.

Clock validation combines time information from
external time sources like GPS-receivers and a glo-
bal time maintained by techniques related to clock
synchronization. The appropriateness of this “hy-
brid” approach results from the following facts:

e An external time source like a GPS-receiver
may be characterized by
+ very good accurracy (100 ns range),
+ no overhead,
— low (and not sufficiently understood!) re-
liability,
— high cost.
e Clock synchronization techniques provide
— moderately good precision (us range with
hardware-support),
— some overhead,
high (fully understood!) reliability,
cheapness.

+ +

4. THE CLOCK VALIDATION ALGORITHM
ICV

Although the basic principle of clock validation
is rather simple, there are obviously several ways
to design a particular clock validation algorithm.
This section provides a brief description and
analysis® of a promising interval-based clock va-
lidation algorithm ICV . It is based on ideas intro-
duced in (Marzullo, 1984), which are strikingly

3 The purpose of this exposition is to make clear the
principles of ICV. To that end, abstracting away from se-
veral details is necessary in order to make the analysis ea-
sier to follow. A forthcoming Technical Report will contain
all the omitted details.

well-suited for clock validation purposes.

In the course of the description, the following no-
tation will be used: Real times (i.e., UTC) are
represented by lower-case variables, local times
as displayed by a node’s clock are usually upper-
case; for example, the current local time T; at
i’s clock is T; = Ci(t). Intervals I are written
in either of the two forms I = [z,y], ¢ < y, or
I =[cxw]=[c~w,c+w],w> 0 as appropriate;
a single variable z may be used to denote the in-
terval [z, z]. For an interval I = (2,9}, [Il=y—~=
denotes its length, and center(l) = (z + y)/2 its
midpoint. The sum of two intervals is defined
as {z,y] + {u,v] = [z + u,y + v], the intersec-
tion of two intervals is equal to [z,y] N [u,v] =
[max(z,u), min(y,v)] if v < y and v > z, or @
otherwise.

Now, given a set Z of intervals (of time) 7 =
{I, ..., Inm > 1} with the property that at least
m— f, 0 < f < m/2 of the intervals are (mu-
tually) consistent, meaning that they all contain
a single point (of time) ¢ (i.e., UTC), the smallest
interval that is assured to contain t is provided
by Marzullo’s function: M™™/(I) is defined to
be the largest interval whose endpoints belong to
at least m — f of the I;’s. It can be computed
in @(mlogm) time on the average by sorting the
intervals’ endpoints.

M has a number of interesting properties; in this
paper, however, only the following one is needed:
If ¢ > m — f of the intervals in 7 are consistent
and d; denotes the length of the (g — f)-largest of
them, then

o 2d if f<m/2,
M HT)] < { mifn(dgf,gdf) if f<m/3. M

The proof is inspired by the line of reasoning in
(Marzullo, 1984): The two endpoints of M™~/(T)
must intersect with at least m — f of the I;’s and
hence with at least m— f —(m—yg) = g — f of the
consistent intervals (but not necessarily the same
ones); note that g — f > m—2f > 0 for f < m/2.
Hence, the endpoints are not further apart than
twice the length of the (g — f)-largest consistent
interval. For f < m/3, the two endpoints even
intersect with at least g —2f > m ~3f > 0 single
intervals: Assuming the contrary would imply at
least 2(g — f) different consistent intervals; there
are, however, only g ones available so that 2(g —
f)—g=y9—2f >0 must be the same. O

Now assume an SSN; with n nodes, A of which act
as gateways to a high-accurate SSNy,, and { = n—h
ordinary ones. In this paper, only the determini-
stzc fault model which underlies almost all rese-
arch on clock synchronization is considered: At
most f < [/2 of the | low-accuracy nodes and

e < h/2 of the A high-accuracy ones may exhi-
bit a failure (caused by a node/clock fault or a
transmission fault) at the same time. It should be
pointed out, however, that it is the more realistic,
that is, probabilistic, fault model that ultimately
needs to be considered.

Supplied with those prerequisites, the principles of
the clock validation algorithm ICV may be sket-
ched as follows: First, each node i in the SSN
maintains a state variable accuracy «;(t) holding
the current accuracy of i’s clock with respect to
UTC, i.e., t € [Ci(t) £ a;(t)]. Without resynchro-
nizations, o;(t) deteriorates according to the rate
deviation p;.

Every node i performs the following functions:

o Transmission: Periodically at times C;(t!) =
T! = kT, k > 1 where T denotes the re-
synchronization period, node 7 initiates the
broadcast of a {ime message M; that is ac-
tually performed at time t7; the broadcast
latency is assumed to be bounded by ¢ -t <
A. The time message M; contains (1) the lo-
cal time T} = C;(t7) and (2) the current ac-
curacy o = oi(t?).

e Message Reception: When a time message
M; from node j arrives at node i at time ¢,
a tuple consisting of the message and ¢’s local
time TJ-R = Cj (tJR) of reception is stored in a
set S.

e Synchronization: At some time Ci(t}) =
TA = TF + A, where T} denotes the time
of reception of the first valid time message
(from node £) and A is chosen appropriately
to cover the maximum broadcast latency A,
the information stored in S is used to com-
pute the intervals
L) = (I £ (2)
+[dji £ ¢ji]
+{(TA = TR) £ (T - TF)pi]

for all nodes j that provided time messages;
S := 0 afterwards. The resulting intervals are
then partitioned (according to their lengths)
into a set £ of low- and a set H of high-
accuracy ones. From the [— f < |£] £
! low-accuracy intervals, a wvalidily interval
I = M'I(L) is computed. Similarly, an
interval Iz = MP~¢(H) is derived from the
h — e < |H| < h high-accuracy intervals. Fi-
nally, #’s clock is set to center([3NIc) and its
accuracy to |Iy N Iz|/2, providing that this
resynchronization would constitute an impro-
vement.

Lack of space prohibits a full analysis of that
algorithm, even under the simple deterministic
fault model. However, the following considera-

tions should be convincing that this algorithm
works and should also give some insight to the
general line of reasoning.

Assume that at least h — e of the high-accuracy
nodes have been consistent during the (current)
resynchronization period, satisfying an accuracy
bound «;(t) < as, and the same for at least [— f
low-accuracy nodes with the accuracy bound «.
Note that «p is determined by the high-accuracy
SSNj to which the h gateway nodes are connec-
ted; it is (usually) not affected by the algorithm
for SSN;. If SSN}, is the external SSNg, 1.e., if the
h gateway nodes are equipped with external time
sources, then ap = ag according to the system
model in Section 2. Furthermore, let ¢;; < € and
pi < p denote bounds on the maximum transmis-
sion delay uncertainities and the rate deviations,

respectively, and « be either « or o; depending
on the context.

Then it follows from the construction of the in-
tervals in Eq. (2) that the I;(¢t}) as perceived
at a non-faulty node i are also consistent: The
first term of I;(t}) is the “original” interval at
node j, the second one a¢counts for the uncer-
tainity arising from the transmission of the time
message, and the third term covers the deterio-
ration between reception and synchronization due
to the rate deviation of i’s clock; note that terms
of order O(p?), O(ap), ... are ignored, so that
(L+ pi)~! = 1 — p;, for example. Moreover, it
is obvious that the intervals constructed at any
two different (correct) nodes are also consistent,
although consistency is not a transitive relation
in general.

Taking into account that all consistent nodes are
initiating their broadcasts almost simultaneously
since [tJI — t!| < 2a for any two such nodes I, j,
all messages from consistent nodes must be trans-
mitted and hence be received within A + 2a < A.
Ignoring small terms, it turns out that (77 —
TMpi < (T} - T)pi = Api so that

(M) < 2(a+ ¢+ Ap:)

Hence it follows by Eq. (1) that M applied to the
lower-accuracy intervals provides an interval with
length at most ‘2c1(a1+6+Ap,~) {er=110f f<1/3
or 2 otherwise) that contains UTC. Similarily, M
of the higher-accuracy ones provides such an inter-
val with length at most 2c, (an +c+Api) (cn =1
if e < /3 and 2 otherwise). Obviously, the lat-
ter one dominates the intersection of both (which
must be non-empty due to consistency), so that
all low-accuracy clocks are set to a value that
differs by no more than 2c4 (oz;, + e+ Api); all
accuracies are initialized to a value of at most
ch(ozh + ¢+ Ap;). Since within a resynchroniza-

tion period the accuracy of a correct clock Cy(t)
detoriates at most by +(7 — A)p;, one eventually
finds

2 ife< h/2,

a; = cp(ap + € + Tp) with ¢, 2{ 1 ife<h/3.

Therefore, the algorithm keeps the clocks closely
synchronized with both each other and UTC. Note
carefully that assuming high accuracy (which au-
tomatically implies high precision) is assumed
here; hence, there is no need to consider the pro-
blem of achieving high precision in cases of low
accuracy, cf. (Lamport, 1987).

ICV has the following desireable properties:

o The accuracy of each node is available locally
at the node for failure recognition/recovery
and system diagnosis purposes.

o If a node’s clock has been in error, it usually
recovers after the next synchronization.

o Gateway nodes are handled automatically in
that a node’s clock and accuracy are only al-
tered if this constitutes an improvement.

e Since o is kept relatively small by ICV, h
may be small (even h = 1 is not comple-
tely unreasonable) since validation intervals
are usually reasonably discriminating.

The actual ICV currently under development will
provide several additional features:

e Measurement of parameters like the determi-
nistic part of transmission delays d;; or ma-
ximum clock rate deviations p;, since usually
nobody is willing to carry out the necessary
measurements beforehand. Note carefully
that the correctness of ICV depends on a cor-
rect estimation of the rate deviation bounds
pi and the transmission uncertainities ¢;;. On
the other hand, too coarse an estimation has
an adverse effect on the achieveable perfor-
mance (in particular, on accuracy).

o Flywheeling in the case of total (external)
UTC loss and quick (initial) resynchroniza-
tion.

e Providing improved average case accuracy
and reliability, including graceful degrada-
tion.

5. PRACTICAL CONSIDERATIONS

For the successful application of a clock validation
algorithm like ICV in practice, it has to provide
several “engineering” features as well. Some of
the most important ones are:

o Achieving a system-wide accuracy in the
range of us by taking every reasonable mea-
sure —including some hardware support—
applicable to existing system architectures.

Steadily increasing processor and transmis-
sion speeds provide a rather tempting basis
for increasing the “resolution” (granularity)
of a distributed real-time system with respect
to the environmental events of interest. In
view of the 100 ns accuracy of GPS, it is not
too unreasonable to aim at real-time applica-
tions with granularities about 1 us.
Clearly, hardware is the only means to attain
such high accuracies. Any hardware support,
however, should be designed to be applica-
ble to a reasonably broad class of existing
system (in particular, network) architectures
— users are seldom willing to sacrifice well-
established standard technology for an “exo-
tic” one, even if the latter promises increased
functionality!
Providing both full time (UTC) and easy-to-
handle timestamps.
UTC is the only official notion of time, and
hence important for real-time systems inter-
acting with the “official” world. Still, full
UTC time is a memory-consuming entity and
not very suitable for computations. More-
over, it has already been observed in (Ko-
petz and Ochsenreiter, 1987) that UTC is
not chronoscopic in the sense that it does
not (always) allow one to measure small inter-
vals of time. In fact, UTC is generated from
the atomic time TAI by occasionally inser-
ting leap seconds in order to cope with the
small disagreements between TAI and astro-
nomic time.
Therefore, it does not make much sense to
choose UTC as the actual notion of system
time. One should rather use a system time
that is
- chronoscopic,
— easily convertible to UTC, TAI and related
time notions,
— compatible with (short) timestamps.
A promising candidate is the 64-bit NTP
time format (Mills, 1991) that consists of a
32-bit high-order part counting the number
of real (TAI) seconds since January 1, 1900
(wrapping around every 136 years) and a 32-
bit low-order part containing the fractional
part of the current second (236 ps resolu-
tion). Short timestamps are easily obtained
by using only a portion of the whole 64-bit
NTP time information.
Connection of various external time sources,
in particular GPS-receivers.
There are a couple of different external time
sources available, most notably GPS and
some less accurate ones like the German
DCF-77. Most of them provide a certain “on-
time signal” like a 1 pps (pulse-per-second)
signal accurately synchronized to UTC; the
higher-order part of UTC, however, is often

available only some time after the on-time
signal.

Those above-listed features of course require pro-
visions in the clock validation algorithm itself.
However, most of them will be supported by
means of a dedicated ASIC (UTCSU). Inspired
by the pioneering clock synchronization unit CSU
of (Kopetz and Ochsenreiter, 1987), the univer-
sal time coordinated synchrontzation unit UTCSU
will provide the following major functions:

e Rate and state adjustable clock (in NTP-
format) with continuous amortization, exten-
ded by current clock accuracy and reliability
information.

+ Highly accurate (1 ps-range or less) message-
timestamp-based clock offset estimation bet-
ween different nodes of a SSN, even in con-
Jjunction with existing network technologies.

¢ Connection of external time sources provi-
ding standard signals like a 1 pps (pulse-per-
second) signal synchronized to UTC, and sup-
port of gateway nodes, i.e., multiple network
controllers.

Various timing features as well as interrupt ca-
pabilities and provisions for BST (boundary scan
test) complete the intended functionality of the
UTCSU.

6. DIRECTIONS OF CURRENT RESEARCH

As already mentioned Section 1, the major goal of
this paper was to introduce basic issues of clock
validation. The mainstreams of current research

—performed in the context of the project Syn-
UTC*— are:

e Development of an implementation of the
ICV algorithm outlined in Section 4, that
provides the engineering features mentioned
in Section 5.

¢ Providing a full (average case) analysis of the
algorithm’s behaviour, relying on a probabi-
listic rather than a deterministic fault model.

¢ Development of the UTCSU ASIC.

e Design of an evaluation testbed consisting
of several M68030 VME-CPUs equipped
with a (deterministic) Ethernet-Coprocessor
(802.3DCR) and the UTCSU.

e Systematic experimental evaluation, inclu-
ding dependability of GPS-receivers with re-
spect to our fault model.

Apart from those issues dealing with the parti-
cular clock validation algorithm ICV of Section 4
(and possibly alternative ones), it is also necessary

* SynUTC is a joint project of the Department of Auto-
mation (U. Schmid, K. M. Schossmaier) and the Depart-
ment of Computer Technology (D. Loy, M. Horauer), TU
Vienna.

to investigate the relations to the external syn-
chronization problem in general, see (Patt-Shamir
and Rajsbaum, 1994) for related issues. In fact,
much work remains to be done.

7. ACKNOWLEDGEMENTS

Several comments of W. A. Halang and an anony-
mous referee on a project proposal submitted to
the Austrian Science Foundation, which all poin-
ted out GPS as a promising UTC source are gra-
tefully acknowledged. K. M. Schossmaier (UMass,
now TU Vienna) suggested several improvements
of an earlier version of the manuscript.

8. REFERENCES

Christian, F. (1989). Probabilistic Clock Synchro-
nization. Distributed Computing 3, 146-158.
Kopetz, H., and Ochsenreiter, W. (1987). Clock
Synchronization in Distributed Real-Time Sy-
stems. [EEE Trans. Comput. C-36(8), 933-

939. 4

Lamport, L. (1987). Synchronizing Time Servers.
Technical Report Digital System Research Cen-
ter 18, 1-33.

Le Lann, G., and Rivierre, N. (1993). Real-Time
Communications over Broadcast Networks: the
CSMA-DCR and the DOD-CSMA-CD Proto-
cols. INRIA Rapport de recherche 1863.

Marzullo, K. (1984). Maintaining the Time in
a Distributed System: An Erample of a Loo-
sely-Coupled Distributed Service. Ph.D. thesis,
Dept. of Electrical Engineering, Stanford Uni-
versity.

Marzullo, K., and Owicki, S. (1983). Maintaining
the Time in a Distributed System. ACM Ope-
rating System Review 19(3), 44-54.

Mills, D.L. (1991). Internet Time Synchroniza-
tion: The Network Time Protocol. IEEE Trans.
Commun. 39(1), 1482-1493.

Patt-Shamir, B., and Rajsbaum, S. (1994). A
Theory of Clock Synchronization. To appear in
Proc. 26th Symposium on the Theory of Com-
puting (STOC).

Ramanathan, P, Shin, K.G., Butler, R.W. {1990).
Fault Tolerant Clock Synchronization in Distri-
buted Systems. JEEE Computer 23(10), 33—
42.

Schmid, U., and Pusterhofer, A. (1995). SSCMP:
The Sequenced Synchronized Clock Message
Prototol. To appear in Computer Networks and
ISDN Systems.

Simons, B., Lundelius-Welch, N_, and Lynch, N.
(1990). An Overview of Clock Synchroniza-
tion. Proc. Fault-Tolerant Distributed Compu-
ting, 1990, Simons, B., Spector, A., ed., 84-96,
Springer LNCS 448, Berlin - Heidelberg.

Verissimo, P., and Rodrigues, L. (1992). A poste-
riort Agreement for Fault-tolerant Clock Syn-
chronization on Broadcast Networks, Boston,
July 1992, 527-535, IEEE Computer Society
Press.

Yang, Z., and Marsland, T.A. (1993). Annotated
Bibliography on Global States and Times in
Distributed Systems. ACM Operating System
Review 27(3), 55-72.

