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Abstract

Designing clock synchronization algorithms for dis-
tributed real-time systems based on packet networks re-
quires to decide on the amount and functionality of
proper hardware support. Targeting a lpus precision
and similar accuracy measures in case of external
UTC supply from GPS-receivers, this paper describes
pertinent features of a peripheral device called UTCST
manufactured as an ASIC. The most salient one is the
introduction of an adder-based clock, that allows a fine
grained rate adjustment, continuous amortization, and
mawntenance of local accuracy intervals.

Keywords: External clock synchronization, Uni-
versal Time Coordinated (UTC), Application Specific
Integrated Circuit (ASIC), Very high speed integrated
crcuit Hardware Description Language (VHDL), Glo-
bal Positioning System (GPS), Adder-based Clock.

1 Hardware Requirements

A time service of a distributed real-time system
comprises a set of nodes each hosting a physical
clock, and some communication subsystem to ex-
change packets between them. Applications require
a time service that guarantees a bounded deviation
between any pair of (non-faulty) clocks within the sy-
stem (aka. precision), and further a worst case devia-
tion towards UTC (aka. accuracy). The challenge is to
devise a distributed algorithm satisfying the above two
requirements, but coping with clock dnifts, packet de-
livery uncertainties, and various faults. A vast body
of research has been developed in this area (see [8]
for an overview), nevertheless most solutions have a
rather simple choreography in common, 1.e., periodic
broadcast of packets containing synchronization infor-
mation, usage of a suitable convergence function, and
adjustment of the local clock.
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However, in the course of implementing such an al-
gorithm many design decisions have to be made depen-
ding on application needs. We focus on a time service
that should establish a worst case precision and accu-
racy (providing that an external reference is available)
of lus even in case of faulty system components. An
introductionary description of our system model, al-
gorithmic approach taken, and a worst case analysis
can be found in [9).

Crucial for the implementation is to identify which
parts of the algorithm are being executed in hard- or
software. For our purpose, the following features need
to be supported by dedicated hardware

¢ Providing a state and rate adjustable local
clock. Essential is the provision of a physical
clock, which state resp. rate can be controlied in
an absolute resp. relative fashion. Notice that
any additional computation is undesirable when
obtaining local time.

* Maintaining local accuracy. Dealing with the
accuracy requirement is done by maintaining an
accuracy interval relative to the local clock, that
is guaranteed to contain UTC. Hardware support
Is necessary to represent this dynamic quantity.

¢ Timestamping packets. The uncertainty of
packet delivery time has a major impact on the
synchronization quality. Hence exact timestam-
ping of both packet transmission and arrival calls
for adequate hardware support.

¢ Interfacing GPS-receivers. We arrived at the
decision to use GPS technology as UTC supply,
due to its world-wide accessibility, high accuracy,
and meanwhile affordable receivers.

. Supporting application timers and event
timestamping. To serve applications, there
should be means to trigger actions at programm-
able points in time, and capabilities to label
events with timestamps.
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Having unfold hardware requirements of clock syn-
chronization algorithms for distributed real-time sy-
stems, arguments concerning modularity, flexibility,
and performance, influenced us to realize the de-
manded features as an ASIC, running under the
acronym Universal Time Coordinated Synchronization
Unit (UTCSU). Notice that the actual algorithm has
to be executed at some general purpose CPU, which
works in close ties with our ASIC.

2 Functional Units

This section addresses design questions and engine-
ering aspects of the UTCSU, resulting in a description
of our peripheral device. A complete functional spe-
cification can be found in [11] and details about the
chip design in [4]. Figure 1 depicts a simplified block
diagram, which lays out all functional units along with
their interconnections.
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Figure 1: UTCSU Block Diagram

2.1 Bus Interface Unit (BIU)

The ASIC should be applicable to a wide range of
existing architectures, in particular data bus widths of
8, 16, or 32 bits, big/little endian byte ordering, dif-
ferent bus access times and interrupt schemes need to
be considered. The BIU is responsible to interface the
embedding architecture to the internal 32 bit broad
I-Bus that interconnects all other UTCSU units.

2.2 Local Time Unit (LTU)

Local time is going to be maintained by a physical
clock with suffictent small granularity to track UTC.
An ordinary digital clock consists of a counter driven
by an oscillator, whose specified frequency f; determi-

nes the granularity of the clock. For example, enco-
ding UTC with the 64 bit NTP-time format (see [6]),
where the upper 32 bits are interpreted as standard se-
conds relative to UTC and the lower 32 bits give the
corresponding fractional part, enforces a binary nomi-
nal frequency fo = 29. Deliberate compensation of
frequency drifts requires to manipulate ticks from the
oscillator, which turns out to be a hard problem. One
way is to vary the frequency of the oscillator itself, but
only a Voltage Controlled Oscillator (VCO) allows to
do that, cf. [6]. Another way Is to run the oscillator
at a multiple of the nominal frequency, suppressing or
inserting pulses as required, cf. [3]. The drawback of
this technique is not only a higher bandwidth, but also
insufficient correction dynamics.

We propose an alternative digital clock consisting
of an oscillator driving an adder, which adds a par-
ticular amount (clock-step) at each oscillator tick to
a register holding local time. A relative rate change
can be easily achieved by varying this amount, which
goes in effect almost instantly and retains linearity. In
such an arrangement the notion of granularity needs
to be refined in the following way: Clock granularity
G. refers to the smallest time unit representable by
the register for local time, whereas time granuslarity
Gy = 1/ fo indicates the time period between updates
of it. In case of a simple counter-based clock G, = Gy,
and gets lumped into granularity. The key to our ap-
proach is to use a much better clock granularity than
time granularity (G < G:), which allows to accu-
mulate minute time portions in order to account for
frequency drifts.

An architectural outline of the adder-based clock in-
side the LTU can be found in Figure 2. Extending the
NTP-format on the fractional side, the 91 bit register
CLOCK holds local time with G, = 2-59 g. Adhering
to byte-orientation, register CLOCK gets decomposed
in three portions: The 24 bit MACROSTAMP portion
together with the adjacent 32 bit TIMESTAMP portion
constitute the internal NTP-Bus (see Figure 1), which
will be the source for all timestamps. The remaining
35 bit MICROSTAMP portion is solely used for cor-
rection purposes administered by register STEP. Sup-
porting a minimal frequency of 220 »; | MHz requires
to make register STEP 40 bits wide, where the up-
per 32 bits are supposed to be set at each synchro-
nization instant appropriately (see Section 2.4). The
lower 8 bits (STEPLOW) are set to a fixed value, in
order to reduce the influence of truncation errors for
the rate adjustability in case of a non-binary oscillator
frequency fo # 29. Therefore the effective clock gra-
nularity G, becomes 2751 s, which defines the smallest
unit of interference at each tick as R, = GL/G,, cal-
led correction granularity. At a nominal frequency of
2%~ 8.4 MHz, R. = 0.37 - 1078, which is equivalent
to 1pus within 270.4 s.

The expense of this clock design is twofold: More
register space is necessary to accommodate the en-
hanced clock granularity, and a 91 bit addition needs
to take place at each oscillator tick. To achieve the
necessary performance, our UTCSU embodies a span-
ning tree carry look ahead adder, cf. [2].
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Figure 2: Adder-based Clock

Another item to consider is the non-chronoscopic
nature of UTC, because leap seconds need to be inser-
ted or deleted at predefined points in time issued by
the Bureau International de ’'Heure (BIH). An adder-
based clock can easily be modified to deal with leap
seconds by supplementing it with a timer, that indi-
cates a pending leap second duty and affects the ad-
dition accordingly, i.e., adding or subtracting an extra
second. Obviously, in case of a chronoscopic time stan-
dard, such as Temps Atomigque International (TAI) or
GPS-Time, this feature can be omitted.

2.3 Accuracy Unit (ACU)

Meeting the accuracy requirement means that local
time has to follow UTC as close as possible. Unfor-
tunately, UTC is neither directly observable nor per-
manently accessible, therefore only a range can be de-
termined where UTC currently lies. More specifically,
in our setting we use an accuracy interval A(t) captu-
ring UTC in the sense that ¢ € A(t) ¥t > ¢5. It should
be pointed out, that the OSF/DCE time model is also
built upon this notion of time, cf. [7].

Our UTCSU is tailored to the interval-based clock
validation technique proposed by [9], which relies on
accuracy intervals. These are maintained locally at
each node meant relative to the local clock C(t), resul-
ting in an upper accuracy a*(t) and a lower accuracy
o~ (¢) such that A(t) = [C(t) — a™(t),C(t) + a*(1)].
The reason to make accuracies dependable from time
is to enlarge them adequately, in order to account for
a maximum oscillator drift, hence sustaining UTC in-
clusion. This process of deterioration would g0 on per-
petually, however, periodic resynchronization instants
aim to shrink A(f) by virtue of a clock synchroniza-
tion algorithm and optional UTC supply from GPS-
receivers.

The adder-based approach is well suited for
maintaining ot and «~. Each accuracy quantity can
be tracked by an adder-based clock similar to Figure 2,
where ALPHA+ plays the role of the accumulating re-
gister and LAMBDA= holds the update for each tick.
In accordance with the above arranged effective clock
granularity G of 2751 s, registers ALPHA+ span 45
bits including a sign bit, which can hold accuracies up
to 7.8 ms. In analogy to the LTU, the full length of

ALPHA= is not required for accuracystamping purpo-
ses, therefore only the upper 16 bits are in use, for-
ming the internal 32 bit A-Bus (see Figure 1). Regi-
sters LAMBDA are 16 bits long plus a sign bit, which
allows a maximum deterioration of 2-3% s/tick or ap-
proximately 122 ps/s at f, = 223 Hz. The necessity
of a sign bits will be clarified in Section 2.4, and the
influence of a non-binary frequency is neglected here.

There are two more features to introduce. The 16
bit registers BOUND+ guard the values of ALPHA4,
and in case of exceeding them an interrupt will be
raised. Updating ALPHA+ at a resynchronization in-
stant has to be performed in a relative fashion, by af-
fecting them with appropriate values held in the 16 bit
registers STATE+.

2.4 Continuous Amortization

Periodically the clock synchronization algorithm
becomes active and computes adjustments for regi-
sters CLOCK, STEP, ALPHA-+ and LAMBDA+ in
order to meet both precision and accuracy require-
ment. Enforcing these adjustments deserves special
attention, since applications dictate certain proper-
ties. Clock values need to be monotonic and con-
tinuous excluding discrete leaps for- or backwards.
A technique called continuous amortization (see [10])
smears out state adjustments over a specific amount
of time Tymort by altering the clock rate accordingly.
Again, this can be easily done in hardware when an
adder-based clock is employed. On the other hand,
accuracies are allowed to change instantaneously, how-
ever, deteriorations need to be modified during Thmert
as well due to the clock rate set forth by the state
adjustment,.

Having explained the technique of continuous amor-
tization, we proceed describing the necessary machi-
nery in the light of an illustrative example depicted
in Figure 3. The period before ¢; shows the clock
In the non-amortizing state termed pure phase, where
CLOCK advances with STEP/PURE (recall Figure 2)
and ALPHA+ deteriorates with LAMDBA+/PURE.
Before switching to continuous amortization, the pre-
computed values for both amortization phase and suc-
cessive pure phase need to be saved in certain pre-
load registers. Kicking off continuous amortization
can happen by software or by arming a dedicated
timer. In Figure 3 the amortization phase commences
at ¢y, which entails a reduction of registers ALPHA+
according to STATE+, CLOCK advances from now on
with STEP/AMORT and the ALPHA+ registers dete-
riorate with LAMDBA+/AMORT. Once started, an-
other timer is activated to time out Tamort, and on
expiration at t3 it causes the transition to the corre-
sponding new pure values.

Observe carefully that in this example ALPHA+
shrinks during the amortization phase, and ALPHA-
happens to be negative at the beginning, which justi-
fies the sign bits introduced before. To remedy the
passage with the negative accuracy, the outgoing A-
Bus will be fed with zero during this time, which trans-
lates into a valid enlargement of the afflicted accuracy
interval. Furthermore it should become obvious from
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Figure 3, that UTC is permanently enclosed by the
envelopes induced by CLOCK and ALPHA+ as well
as that local time represented by CLOCK progresses
smoothly.
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Figure 3: Continuous Amortization

2.5 Synchronization Subnet Unit (SSU)

The SSU is responsible to assist exact timestam-
ping of Clock Synchronization Packets (CSP) at both
sending and receiving side, which is decisive to achieve
tight synchronizations. The well known result of (5],
saying that even n ideal clocks cannot be synchronized
closer than € (1 —~ 1/n) in case of packet delivery time
uncertainty ¢, justifies this requirement, Extending
the pioneering work of [3], packets need to be time.
stamped just the moment they are actually leaving
or arriving at a node. This necessitates coordinated
support from our UTCSU and from the surrounding
hardware, in particular the communication coproces-

1
sor 1.
The mechanism to timestamp outgoing CSPs is
straightforward. When a DMA-type communication
coprocessor reads at a specific address in the transmit
buffer containing an outgoing packet, the UTCSU lat-
ches the current values of the NTP- and A-bus into
registers, which get transparently mapped into the
transmit buffer. Figure 4 tries to illustrate such a
scenario.

Similarly, timestamping ingoing CSPs happens
when the communication coprocessor writes at a spe-
cific address in the receive buffer, which causes the
UTCSU to sample the current state of the NTP-Bus

 In our project we are reasonably independent of the actual
network; low throughput networks like field-busses (e-g. CAN),
medium throughput ones such as Ethernet, or high speed net-
works (e.g. ATM) are all suitable.

into registers. Note that no accuracy information
needs to be sampled on the receiving side. Further-
more, it is important to point out that any incoming
packet may entail such actions, since the communi-
catlon coprocessor might have no means to recognize
packets relevant to clock synchronization immediately
on arrival.

Processing the receive timestamp leaves several op-
tions: One possibility is to invoke an interrupt service
routine, however, a short FIFO would be required,
since new packets may arrive before the routine has
treated the timestamps of older ones. A more elegant
way suggests to map the timestamp transparently into
a dedicated region within the receive buffer. No FIFO
is needed, still it requires tc insert don’t care bytes
in the packet and additional data path transceivers to
funnel the timestamp. Finally, reception times could
be collected in a dedicated timestamp memory, which
asks for an additional DMA-controller to transfer the
sampled reception times from the UTCSU to this me-
mory when packets arrive.

(
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Figure 4: Packet Stamping

In addition, the SSU hosts two 48 bit duty-timers,
each monitoring the NTP-Bus. A dedicated interrupt
will be raised, whenever the NTP-Bus equals or exceeds
the timer value. Such programmable timers are useful
for clock synchronization algorithms to initiate a CSP
transmission or to terminate a CSP reception period.

In a large-scale, hierarchical real-time systems it
makes sense to partition the time service into several
Synchronization Subnets (SSN), hence the name of
this unit. FEach such SSN consists of a set of no-
des connected via a packet network. Endowing the
UTCSU with multiple SSUs facilitates gateway func-
tionalities, and allows to handle replicated packet net-
works (e.g. triple redundant).

2.6 GPS Unit (GPU)

We decided to use GPS technology (consult [1] for
an up to date overview) to inject UTC due to high ac-
curacy and availability requirements. GPS is an earth
orbiting satellite-based navigation system operated by
the US AIR FORCE under the direction of the De-
PARTMENT OF DEFENSE. It includes a Standard Po-
sitioning Service (SPS) available for civil users on a
continuous, worldwide basis. When Selective Availa-
bility (SA) is enabled, the horizontal position can be
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obtained within 100 m (95 percent) and GPS-Time
with a maximum error of 340 ns (95 percent). Very
briefly, GPS-Time is derived from atomic clocks both
at ground stations and inside satellites, which is stee-
red to be within 1 us of UTC (excluding leap seconds).

There is a great variety of GPS-receivers available,
however, most of them output an on-time pulse at 1
pulse per second (aka. IPPS), and a few a 10 MHz
reference frequency disciplined to the atomic clocks
inside the satellites. The associated information iden-
tifying the pulse along with other data is provided
some considerable time after the 1PPS, usually via a
serial interface. A few receivers even tell their status
on-line (e.g. locked) with the help of spectal output
lines.

The GPU is responsible for sampling the NTP-Bus
into registers and possible status lines of the GPS.
receiver when the 1PPS becomes active. The pola-
rity of these input lines are programmable. For red-
undancy purpose and for the sake of testing several
GPS-receivers simultaneously, it is useful to equip the
UTCSU with multiple instants of GPUs.

2.7 Application Unit (APU)

For application purposes two conceptually inverse
features are supported, namely generating events at
specific points In time, and recording the occurrence
time of events in question.

The first one is achieved by arming a 48 bit
programmable duty-timer. When its value equals or
exceeds the one onto the NTP-Bus, it activates a cor-
responding output line.

The second feature turns out to be more expensive,
since time/accuracystamping events requires atomic
read access of both NTP- and A-Bus. We provide on
<hip application support for up to nine different input
lines whose polarities are programmable.

2.8 Network Time Unit (NTU)

Exporting the 56 bit NTP-Bus and 32 bit A-Bus
allows external devices to capture and process time/
accuracystamps independently of the UTCSU opera-
tion. In addition, an 8 bit control word is derjived from
the NTP-Bus to detect/correct bit errors to some ex-
tent. Considering the throughput of 96 bits @ 223 Hg
(approx. 100 MByte/s) the interfacing NTU becomes
a challenging unit to implement. To reduce the pin
count, we achieve the necessary performance by pu-
shing out the data via a 48 bit wide multiplexed NTPA-
Bus (see Figure 1), driven by both edges of the oscil-
lator pulse.

2.9 Interrupt Unit (ITU)

The I'TU handles interrupts, status information and
configuration data. All interrupts can be individually
enabled/disabled via a configuration register, and the
status will be reflected by another compound register.
The interrupt sources encountered in the UTCSU are
mapped into three dedicated interrupt output lines:

¢ INT-T becomes active when duty-timers primarily
relevant to clock synchronization €XPpire Or excep-
tions (e.g. ALPHA+ exceeds BOUND=%) arise.

¢ External events, such as 1PPS signals from GPS-
receivers or reception/transmission of CSPs, get
announces via INT-N,

¢ INT-A indicates application-related events origi-
nating from the APU, and conditions for chip te-
sting purposes.

2.10 Snapshot Unit (SNU)

This unit supports debugging features for the
UTCSU during system integration phase. Debug-
ging requires atomic read access of several registers,
whereas the triggering events can originate from two
kinds of sources.

A software snapshot is triggered either by writing
a dedicated SNU register address or by expiration of
the snapshot duty-timer. This entails a simultaneous
sampling of register CLOCK and registers ALPHA+.
Further reads without latching semantics deliver the
sampled data.

A hardware snapshot is intended for an experimen-
tal evaluation of the time service precision. It takes
place when the input line HWSNAP becomes active,
causing a sample of the current NTP- and A-Bus into
dedicated hardware snapshot registers.

To be complete, there is another special input line
SYNCRUN that (re)starts the UTCSU from a well defi-
ned resynchronization state. This allows to start mul-
tiple redundant UTCSUs simultaneously at each node,
bypassing initial synchronization efforts.

2.11  Built-In Test Unit (BTU)

To guarantee and to verify proper system behavior,
test and self-test machinery is assembled in this unit.
The SSU, GPU, APU and SNU are tested off-line at
unit level, whereby the BTU enables the self-test op-
tion and generates test stimuli.

The LTU and ACU will be tested on-line at chip
level. As explained earlier, they permanently generate
values for local time resp. accuracy by pushing them
onto the NTP- resp. A-Bus. The BTU is in charge of
continuously computing signatures and blocksums over
all appearing time and accuracy values. Occasionally,
these measures are compared against others, produced
by a redundant UTCSU or a general purpose CPU.

3 Design Methodology

We wrap up our exposition by enumerating the
stages of the chip design process. Starting out from
a written functional specification of the UTCSU, we
created a behavioral VHDL model to get familiar with
the specification. This model was embedded into a si-
mulation environment including a very basic VHDL
model for both CPU and communication COProcessor.
In this stage we executed simple algorithms to ensure
that all intended functionalities for the clock synchro-
nization algorithm are onhand and work properly. It
also served as a feedback to the written specification.
A refining process lead us to the still foundry indepen-
dent register transfer level VHDL description ready for
logic synthesis.




SYNOPsYs Design Compiler was used to synthesize
the netlist for AMS in a 0.8 p#m standard cell CMOS
process and for ES2 in a 0.7 um standard cell CMOS
process. SYNOPSYS Test Compiler inserted Jull scan
path logic and boundary scan logic according IEEE
1149.1. CADENCE back-end tools finalize the design
with place& route for ES2. The chip size can be esti-

mated by 100 mm?2.

Conclusion

In this paper we gave a description of a custom
VLSI chip designed to support clock synchronization
for distributed real-time systems. We motivated the
features packed into our chip and revealed details
about their implementation up to some reasonable le-
vel. Readers interested in the nuts and bolts of our
UTCSU are again referred to the technical report {11]
or the dissertation [4]. A forthcoming datasheet will
provide a complete programming description including
register maps, timing diagrams and electrical charac.
teristics.

Besides all architectural strength, we would like
to reinforce advantages of the adder-based clock ap-
proach. First of all it avoids the use of a Phase-
Locked-Loop (PLL) with all its peculiarities, and pulse
insertion/suppression techniques with its asynchro-
nity. In general, any time dependent quantity can
be tracked with nearly arbitrary granularity by pro-
per increment/decrement operations decoupled from
a possible non-binary operating frequency. As poin-
ted out, it eases a fine grained clock rate adjustment
apt for both pure and amortization phase. Also leap
seconds can be treated. All these benefits are at the
expense of an adder instead of a counter and some
additional register space.

Further research will be devoted to study the adder-
based clock design, and to customize the chip for speci-
fic applications. Joining asynchronous running units,
in our case the UTSCU with surrounding devices, re-
presents a particular vexing problem and calls for more
exploration.
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