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Abstract

We present a new! fault-tolerant intersection func-
tion F, which satisfies the Lipschitz condition for
the uniform metric and is optimal among all func-
tions with this property. F thus settles Lamport’s
question about such a function raised in [Lam87].
Our comprehensive analysis reveals that F has ex-
actly the same worst-case performance as the optimal
Marzullo function M, which does not satisfy a Lip-
schitz condition. The utilized modelling approach in
conjunction with a powerful hybrid fault model en-
sures compatibility of our results with any known ap-
plication framework, including replicated sensors and
clock synchronization.

Keywords: fault-tolerant intersection functions,
Marzullo function, optimality, interval-based clock
synchronization, convergence functions.

1 Motivation

Consider some quantity like a point in real-time (for
clock synchronization) or a temperature value (for
replicated sensors) that is not known exactly but only
within some range. Such a quantity ¢ can be rep-
resented by a real interval I = [z,y] containing ¢,
which makes the uncertainty explicit by its length
|I| = y — z. Now suppose that we are somehow pro-
vided with n > 1 different intervals T = {I;,...,I,}
all representing the same ¢, and that we want to ex-
tract a single interval of minimum length that con-
tains ¢. If all input intervals are accurate (i.e. non-
faulty), in the sense that t € I;, 1 < i < n, it is obvi-
ous that J = (;_, I; contains ¢ and hence J # §. In
fact, J is the best (deterministic) information about
t that can be deduced from Z.
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However, the question arises what to do if some
of the input intervals are not accurate (i.e. faulty),
that is, ¢t ¢ I; for some (unknown) j’s. Some sort of
fault-tolerant intersection has to be employed here to
compute an interval that is guaranteed to contain ¢.

It is well-known that, if at most f of the n in-
put intervals may be faulty, the minimum length re-
sult containing t is provided by the Marzullo function
M/ (Z) introduced in [Mar84]: It is the largest inter-
val whose edges lie in the intersection of at least n— f
different I;’s. Therefore, to compute for example the
left edge of M (Z), one has to “sweep” over the set
of intervals from left to right and stop when n — f
intervals intersect for the first time. Thus M/ (Z)
can be computed in O(nlogn) time by sorting the
intervals’ edges, cf. [Mar90]. Figure 1 shows an ex-
ample with n = 4 and f = 1. Note that the unknown
t cannot lie in the region between the right edge of
I3 and the left edge of I, in this example. However,
since there is no way to decide whether ¢ lies in the
area left or right of this region, both must be covered
to secure inclusion of ¢.
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Figure 1: Ezxample of the Marzullo function M with
n =4 and f = 1. The edges of the result lie in
n— f = 3 input intervals. Changing interval I to I,
has a big impact on the result.



It is easily seen, though, that M exhibits a some-
what irregular behavior: If the left edge of I is
slightly moved right, as given by I, then the right
edge of the result suddenly jumps to the right edge
of Is. Thus, moving Iy by a small amount €, just
large enough to prohibit intersection with I, causes
a variation by much more than e. In [Lam87], this
behavior was formalized as violation of a Lipschitz
condition w.r.t. a suitable metric defined on inter-
vals. This is an undesirable property, since it implies
that M applied to two slightly different input sets
may deliver quite different results.

For example, in the clock synchronization context,
two nodes p and ¢ usually obtain (slightly) different
local input sets Z,, and I, even if all senders are
non-faulty, since intervals are time-dependent here.
For that reason, Lamport did not use the Marzullo
function for his Synchronizing Time Servers [Lam87],
but rather an averaging function A/ based on the
fault-tolerant average algorithm of [LWL88]. How-
ever, Lamport wrote: “While the averaging function
AT gives reasonable worst-case behavior, it does not
make the best use of the available information because
it ignores the widths of intervals. Very wide inter-
vals are given the same weight as narrow ones, even
though they provide less information. One can con-
struct exzamples in which the function Af does not
provide the best possible approximation to UT. How-
ever, I know of no simple function F satisfying the
Lipschitz condition that does better.”

The simple Fault-Tolerant Interval (FTI) intersec-
tion function F proposed and analyzed in this paper
satisfies a Lipschitz condition and takes into account
the widths of intervals. Since F is in fact optimal
among all such functions, we can reasonably claim to
have settled Lamport’s question.

The remainder of our paper is organized as follows:
FTI’s definition and basic properties can be found in
Section 2, along with the proof that it satisfies the
Lipschitz condition and is optimal. Section 3 is de-
voted to the worst case analysis for local and dis-
tributed application of F in presence of faults. Some
conclusions in Section 4 eventually round off the pa-
per.

2 FTI Definition and Relations

We consider real intervals I = [z,y], z < y,
where |I| = y — x denotes the interval’s length,
x = left(I) its left edge, and y = right(I) its right
edge. The intersection of two intervals is the set-
theoretic one, the union is defined as [z,y] U [u,v] =
[min{z,u}, max{y,v}], hence covers the closure of
disjoint intervals as well. In what follows, we assume
a single (unknown) value ¢, and a set of real inter-

vals T = {I,...,I,}, n > 1, that all represent ¢;
we will call such intervals compatible. An interval I
that is meant to represent ¢ is accurate (also termed
correct) if t € I, otherwise it is non-accurate (also
termed faulty).

The interval-based paradigm and the Marzullo
function M was introduced in Marzullo’s thesis
[Mar84], and several publications [Lam87], [JIK91],
[OSF92], [IIN94], [Sch95], [Mil95], [BI96], [SS97],
[Sch97b], [SKM*00], [SHK99], etc. reveal that it is
widely applied in practice. The properties of M
have been studied thoroughly both in the context of
replicated sensors [Mar90] and clock synchronization
[Sch97a]. Recall that the latter application differs
fundamentally from the former due to the fact that
two nodes usually perceive slightly different intervals
even from a non-faulty sender.

Our novel fault-tolerant interval intersection func-
tion F is similar to the Marzullo function and defined
as follows:

Definition 1 (FTI Function F) Let a set T =
{Ii,...,I,} of n > 1 non-empty compatible inter-
vals I; = [z;,y;] with at most f < n of those being
faulty be given. The fault-tolerant interval intersec-
tion (FTI) function FI(T) is defined as the interval

[(f + V)-maz{z1,..., 2z}, (f + 1)-min{y1,...,yn}],

where h-maz{zy,..., 2y} resp. h-min{z1,...,2,} de-
notes the h-st largest resp. h-st smallest element of
the set {z1,...,2n}.

Like MY (Z), our function is translation invari-
ant in the sense that FI(I, + A,...,I, + A) =
FI(I,,...,I,)+ A for any real A, and can be com-
puted in O(nlogn) time by sorting the intervals’
edges: In order to compute the left edge of F/(Z),
one has to sweep over the set of intervals (by look-
ing at their left edges) from right to left, discarding
left edges until the (f + 1)-st largest is encountered.
Similarly, to find the right edge of FI(Z), one has
to sweep over the set of intervals from left to right
and stop when the (f + 1)-st smallest right edge is
encountered. Figure 2 shows how F behaves in the
scenario taken from Figure 1.

Note carefully that the resulting interval is the
same as computed by M when I, is used as input in-
terval. Nevertheless, it is apparent here that the right
edge of F’s result does not jump when the slightly
moved interval I, is used instead. In Lemma 4 be-
low, we will show that F indeed satisfies the desired
Lipschitz condition of [Lam87]; its optimality will be
proved in Lemma, 5.

Definition 1 reveals some similarity between F
and the fault-tolerant midpoint (FTM) algorithm of
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Figure 2: FEzample of the Fault-Tolerant Interval
function F with n = 4 and f = 1. Changing interval
I, to I '2 has no impact on the result.

[LWL88]: Given a set of point values C = {c¢1,...,¢n}
with at most f of those being faulty, FTM/(C) is de-
fined as the midpoint (center) of the interval

[(f + 1)—min{cl, LR Cn}7 (f + 1)—max{cl, LR cn}]

F can hence be viewed as a generalization of FTM
to the interval domain. In fact, F even emulates
FTM when applied to intervals with identical length:
If all I; = [zj,y;], 1 < j < n, satisfy |I;| = I,
we may write I; = [¢; — 1/2,¢; + 1/2] with mid-

point ¢; = center(I;) = (z; + y;)/2. From F’s
definition and the fact that h-max{z;,...,z,} =
h-max{ci,...,cn} — /2 = h-max{yi,...,yn} — !

for any h here, it is immediately apparent that
FTM (c1,...,cn) = center(F7(T)).

We start the detailed analysis of F’s properties
with the following technical Lemma 1, which is need-
ful for proving Lemma 2 and Lemma 5.

Lemma 1 (Edges of M in presence of disjoint
intervals) Let a set T = {I,...,I,} of n > 1
non-empty compatible intervals I; = [x;,y;] be given,
which ensures M = MI(Z) # 0. If there are ezactly
[l + f1 < f intervals I, € T with I, "M = (), where
f] > 0 resp. fl > 0 of those lie left resp. right of M,
then

lef(M)
right(M) =

(f +1— f))-maz{z:,...,z,}
(f+1—fy-min{ys,...,yn}

Proof: By the definition of M, there must be
n — f intervals containing left(M), and by assump-
tion there are exactly f/ other intervals strictly left
of M, which implies that the remaining f — f/ in-
tervals have a left edge equal or right to left(M).
Hence, obviously edge (f — f/ + 1)-max{zi,...,z,}
determines left(M). The proof for right(M) is anal-
ogous. O

The following Lemma 2 establishes some relations
between F and M.

Lemma 2 (Relations between F and M) Given
a set T = {I,...,I,} of n > 1 non-empty com-
patible intervals such that both MI(Z) # 0 and
FI(T) # 0 (f as required in each item below), the
following relations hold true:

Fl@ 2 MIT) (1)
FLIT) = MLT) (2)
if Al € T with INML(Z) =0
Frl@ = MPYT)=UpL I 3)
Fol) = M) =1, (4)

Proof: To show relation (1), let F = F7/(Z) and
M = M (Z). Suppose that left(M) < left(F), then
left (M) has to be selected from the at most n—(f+1)
remaining left edges that are smaller than left(F).
However, left (M) requires at least n— f intersections,
which is not possible here. A similar contradiction
can be derived for right(F) < right(M).

The equality relation (2) follows immediately from
Lemma 1 by setting f; = f/ = 0 and recalling the
definition of F. Finally, the equivalences (3) and (4)
are a direct consequence of their definitions. O

Remarks:

1. Since M computes an accurate result, inclusion
(1) guarantees that F is accurate as well.

2. The behavior of both functions “changes” from
intersection to union as f increases, and is iden-
tical for the extreme settings.

Next we establish a few useful monotonicity rela-
tions of F with respect to both parameters and input
arguments.

Lemma 3 (Monotonicity of F) Let a set T =
{I1,...,I,} of n > f > 0 non-empty compatible in-
tervals with f', 0 < f' < f, faulty ones among those
be given. Then, FL(T) satisfies the following mono-
tonicity relations:

(1) FI(ZT) C FIH(T) for any integer k with 0 <
k<n-—Ff,

(2) FL(XT) C FL(T) for any T = {J1,..., T}

with I CJ; for1 <1 <mn,

(3) For f > f' > 1, if L = I\ {I;} is obtained
by discarding some faulty interval I; from I,
Tflj([,) is accurate and satisfies

FITl(L) C FL(@). (5)



Proof: Item (1) of the lemma is trivial, since discard-
ing f + k edges of input intervals in ’s Definition 1
provides a larger interval.

For proving item (2), it is sufficient to establish the
following monotonicity properties of the h-smallest
and h-largest element of a set:

h—min{rl + €1,y + 5n}
h-max{l; —¢€1,...,ln —&n}

h-min{ry,...,r,} <
h-max{ly,...,l,} >

for any ¢; > 0,1 <14 < n, and any integer 1 < h < n.
Let us thus assume that w.l.o.g. the property for the
“h-min-part” was not true. However, this would im-
ply that there are h different indices j with r; < r; 4+
gj < hrmin{ri+ey,...,rp+en} < h-min{ry,...,ry},
which provides the required contradiction.

Turning our attention to item (3), n > f > 1 im-
plies that n — 1 > f — 1 > 0, hence Fflj([,) is ac-
curate. If the discarded interval I; contributed a left
resp. right edge to the f ones skipped by FZ(Z), the
same left resp. right edge is computed by F fbj (L) as
well. If I; did not contribute, the same argument as
used in the proof of item (1) applies and establishes
relation (5). This eventually completes the proof of
Lemma 3. O

Remarks:

1. Ttem (3) of Lemma 3 implies that one should al-
ways try to detect and discard faulty intervals
before F is applied, since this can only improve
the result. Moreover, this does not affect valid-
ity /applicability of the results of this paper.

2. Comparison? with [Sch97a, Lem. 3] reveals that
F satisfies the same monotonicity properties as
established for the Marzullo function M.

As a prerequisite for defining the Lipschitz condi-
tion of an interval-valued function, a suitable metric
(“distance function”) on intervals needs to be chosen.
The following ones were used in [Lam87]:

e The wuniform metric p(U,V) that equals the
maximum of |left(U) — left(V')| and |right(U) —
right(V)].

e The midpoint pseudo-metric w(U,V) that
equals the distance of the midpoints |center(U)—
center(V')| of U and V, where center(I) =
(left(I)+right(I))/2. Note that & is not a metric
since w(U, V) = 0 does not imply U = V.

Note carefully that u(U,V) < § implies (U, V) <
4, since writing left(V') = left(U) + [ and right(V) =

2Note carefully that we used the notation Mz_f instead
of M{ in [Sch97a]!

right(U) + r delivers |I| < 6 and |r| < §, which leads
to m(U,V) = |l +r|/2 < §. The converse, however,
is not true in general.

We will now show that F satisfies the Lipschitz
condition for the uniform metric.?

Lemma 4 (Lipschitz condition for p) The FTI
intersection function F satisfies the Lipschitz con-
dition for the uniform metric p, which means that
for any § > 0 and any two sets T = {I4,...,1,},
T' ={I,,...,I.} of non-empty compatible intervals
with at most f < n of those being faulty,

w(Fh@), Fl@)) <o (6)
provided that u(I;,I;) < 6, 1 <i < n.
Proof: Let F = FI(Z) and F' = FI(T)).

Since left(F) = h-max{left(I),...,left(I,)} and
right(F) = h-min{right(I,),...,right(I,)} for h =
f+1, we can look separately at the involved left and
right edges in our proof. Abbreviating x; = left(I;),
z; = left(I;) and y; = right(I;), y; = right(I}), it
boils down to show that

|h-max{z1,...,o,} — h-max{z},...,z}| < 4,
|h-min{y1,...,yn} — h-min{yi,...,y.} < 3§,
for any integer 1 < h < n, where z} = z; + [;

and y} = y; + r;. Remember that we assumed
—0 < l;j,r; < 8,1 <i<n. Toshow the “h-max part”
consider the following independent cases for z; =
h-max{z1,...,2z,} and 2} = h-max{z},...,7,}:

1. Regarding z; either z; = z; +1; <z}, or > ).
The first case immediately provides x; —d < z;+
lj < z’y. Otherwise there must be another zj >
z; with j = zj + Iy < 2, which again yields
zj — 6 < z;. The existence of zj, is warranted,
since |{z; : 7; >z }\ {z; +1;}| =h—12> 0 but
Hzi:zi 2z} =h

2. Regarding =, either z;; = =, — Iy < =z, or
> x; The first case immediately provides :c;, <
z; + 1y < x; + 6. Otherwise there must be an-
other z;, < z; with z), = zp + 1 > m},, which
again yields 27, < z; + 6. The existence of zy, is
warranted, since [{z; : z; > z;} \ {2} —l;}| =
h—12>0but [{z: z; > 2 }[ = h.

Combining both cases, we arrive at z; — ¢ < 2, <
x; + 6 as required. In order to show the “h-min part”
we just note that the h-smallest element of a set with
cardinality n is the (n + 1 — h)-largest one. O

3Since we will primarily consider the uniform metric in our
paper, the phrase “the Lipschitz condition” usually assumes
this metric.



The following Lemma 5 finally shows that F is
optimal in the sense that its result is a lower bound
for any proper intersection function X that satisfies
the Lipschitz condition.

Lemma 5 (Optimality of F) Let a set T =
{Ii,...,I,} of n > f > 0 non-empty compatible
intervals with at most f faulty ones among those be
given. Any proper fault-tolerant intersection function
X7(T) that satisfies the Lipschitz condition for the
uniform metric fulfils X1 (Z) 2 FI(T).

Proof: Abbreviating X = X/ (Z) and F = FI(T),
let us assume that the statement of our lemma was
not true, i.e., that w.l.o.g. left(X) > left(F'). Then,
there must be f/ > 0 intervals I, € T with I, N
M = () lying strictly left of M = MJ(Z), since
otherwise left(F) = left(M) according to Lemma 1
and Definition 1. This, however, would contradict
our hypothesis due to M’s optimality.

Let § = max,{left(M) —right(I,)}, which is guar-
anteed to be non-negative by the above claim, and de-
fine Z' to be the set of intervals obtained by extending
any left and right edge of the intervals in Z by §/2.
Then, by the definition of F, left(F) —left(F') = §/2
for F' = FI(I'). Moreover, since u(I;,I;) = §/2,
the Lipschitz property of X guarantees u(X,X') <
§/2 for X' = XI(T'). However, combining this with
our hypothesis implies left(X') > left(F') as well.

Now, since left(M) — left(M') > §/2 for M' =
M/ (T"), which follows easily from the definition of
M, we arrive at the situation where M' NI’ # () for
any I' € T', such that F' = M’ according to eq. (2).
Since X' must of course include M', we have con-
structed the required contradiction. An analogous ar-
gument can be used to disprove right(X) < right(F).
O

Whereas this optimality result shows that no inter-
section function satisfying the Lipschitz property can
do better, this does not mean that the midpoint of
F always provides the best approximation of the un-
known ¢, recall Section 1. In our deterministic worst-
case setting, the optimal choice is the midpoint of
the interval provided by the Marzullo function, as it
guarantees the smallest maximum distance to ¢ in the
worst case. The midpoint of an interval that prop-
erly contains M, however, is usually a sub-optimal
approximation.

Even worse, it may well be the case that a defi-
nitely sub-optimal function like Lamport’s Af, which
is just the fault-tolerant average algorithm [LWL88]
(i.e., the average of the input values after discard-
ing the f largest and f smallest ones) applied to the
midpoints of the input intervals, provides a better ap-
proximation of ¢ than F in some cases. We will show

that this is true for any intersection function X} that
satisfies the Lipschitz condition and is “good” in the
sense that it satisfies (2) of Lemma 2, which intu-
itively means that such an intersection function does
not compute a sub-optimal result in the case where
no input interval can be cast out as obviously faulty.
Figure 3 shows the scenario used in our argument,
which is easily generalized to arbitrary n and f.
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Figure 3: Scenario where the approximation of t pro-
vided by any “good” fault-tolerant intersection func-
tion Xy({I1, I, Is,1}}) that satisfies the Lipschitz
condition is worse than the one provided by A'.

The input intervals have been chosen such that
X = X}(T) = M due to X’s “goodness”. Replacing
I, by Iy with pu(I4,I)) < 6 in X' = X}(T'), the
Lipschitz property of X reveals u(X,X') < § and
hence (X, X') < § as well, recall our remark on the
introduction of the midpoint pseudo-metric. On the
other hand, the left edge of M’s result jumps by > 2§
upon the transition from M to M’, which leads to
u(M,M') > §. Combining this with the midpoint
pseudo-metric’s triangle inequality

(M, M) (M, X') + (X', M')

I
A(X,X") +a(X', M)

<
<

eventually yields 0 < (X', M'). Consequently, the
midpoint of X’ cannot be equal to the one of M'.
The midpoint provided by A7, however, is equal to
center(M') by construction, and the claimed sub-
optimality of X follows.

We hence conclude that although we can expect the
approximation of ¢ provided by center(F) to surpass
A’ in most cases, we cannot demand that it —like
any other “good” intersection function satisfying the
Lipschitz condition— always outperforms A7.

M' = M‘IL({IlaI%ISiI:L})



3 Worst-Case Analysis in Pres-
ence of Faults

In this section, we analyze the worst-case perfor-
mance of F according to the framework introduced
in [Sch97a]. Subsection 3.1 is devoted to the simple
case of “local application”, where JF is applied to a
single input set, say, at a particular node p. In the
following Subsection 3.2, we consider the more ad-
vanced “distributed application” scenario, where two
instances of F are applied to similar input sets at two
different nodes p and gq.

3.1 Local Application

In order to reason about the behavior of F in pres-
ence of faults, a fault model is required. Any interval
may be faulty due to the following reasons:

Definition 2 (Single Faults) An interval I repre-
senting t can suffer from the following faults:

e Omission: I = {).
e Non-accurate interval: ¢t ¢ I

e Unbounded accuracy: t € I but |I| too large
according to some condition (that need not be
known explicitly).

Note that it is of course easy to recognize and discard
an omissive faulty interval, but usually impossible to
decide reliably whether an interval I is accurate or
not. Masking or detecting —and thus ruling them
out completely— unbounded accuracy faults is also
difficult in most circumstances.

The following Lemma 6 reveals how JF behaves in
presence of faults according to Definition 2. It an-
swers the question of how many non-faulty intervals
are required for tolerating at most f, non-accurate
intervals and f, unbounded accuracy faults. The
most important property shown is that F’s result lies
within the intersection of n—2f, —3 f,, > 1 non-faulty
input intervals.

Lemma 6 (Local Application of F) Let J =
{J1,...,dn} be a set of n > 1 non-empty com-
patible accuracy intervals representing t, and define
wh to be the length of the largest intersection of
h > 1 non-faulty intervals among them. If fl, > 0
of the J; suffer from unbounded accuracy faults and
fl > 0 are non-accurate, where f,, < f,, and f), < fn
with fo, + f, = f' < fu+ fo = F < n (so that
n— f'>n—f >0 of the n intervals are non-faulty),
then:

(1) F = FL(T) is accurate and contains any inter-
section W of n— f > 1 different non-faulty input
intervals Joy s o I, g, te€ey

n—f
W=()Jm CF, (7)
j=1

so that |F| > w™ ! (minimal intersection prop-
erty).

(2) There are at least n — 2f — fl > n —
2f — fu different non-faulty input intervals
Jbl,...,an_2f_f, € J such that

n-2f~f.
FC (] JyC
j=1

n—2f—fu

J
m b;.;
Jj=1

where the set of indices {b}1<j<n 27 1. 18
obtained from {bj}i<j<n—27—s by discarding
fu — [l arbitrary elements. Hence, |F| <
wn72f7let S w"foffu'

(8)

(8) There are at least f — f' +1 > 1 non-faulty in-
tervals Jy, resp. I, 1< k< f—f'+1,in T
satisfying left(F) < left(Jy,) resp. right(F) >

right(J ).

Proof: We first show that F = F!(J) contains any
intersection of at least n — f input intervals: By F’s
definition, we have at most n — (f + 1) intervals with
left edge strictly smaller than left(F'). Therefore, as-
suming an intersection of n — f intervals strictly left
of left(F') immediately leads to a contradiction. An
analogous argument can be applied to the right edges.
Finally, since inclusion of any intersection of at least
n — f intervals implies inclusion of any such intersec-
tion made up of non-faulty intervals only, it follows
that t € F and |F| > w™/ as asserted in item (1) of
the lemma.

Turning our attention to item (2), it is apparent
that at least

gi+g.=2n-2f=2f, - f, 9)

non-faulty input intervals* must have a left edge left
or equal to left(F') as well as a right edge right or
equal to right(F'). This is due to the fact that, apart
from the 2f intervals contributing the f largest left
edges and the f smallest right edges (which cannot
have this property by Definition 1), there may be still
up to f;, intervals with unbounded accuracy faults
that could have edges both left of left(F') and right
of right(F'). They must hence be subtracted twice in

4Note that we do not count different intervals here, but
rather intervals according to the total number of edges.



eq. (9). Similarly, there may also be up to f), non-
accurate intervals, which must be subtracted only
once since any such interval J; could satisfy either
left(J;) < left(F) or else right(J;) > right(F') but
not both, due toto ¢t ¢ J; but t € F.

However, since there are only ¢' = n — f' dif-
ferent non-faulty intervals in the input set J =
{J1,...,J,}, the pigeonhole principle reveals that

g+ —9 >2n=2f=-2f, —fr—n+f =n=2f-f,

of the non-faulty intervals counted in eq. (9), say
Jbl,...,an_Zf_f;, must be the same. Therefore,
F must lie in the intersection of those intervals and
|F| < w*2/~fu as asserted. The upper bound in

eq. (8) follows immediately from f; < f,.

Finally, item (3) of our lemma follows directly from
JF’s Definition 1 in conjunction with the fact that at
least f — f' of the discarded left edges (and analo-
gously for the right edges) must belong to non-faulty
intervals. This eventually completes the proof of
Lemma 6. O

Remarks:

1. We excluded omission faults in our lemma, since
F as defined in Definition 1 cannot deal with
empty intervals. However, intervals with omis-
sion faults can of course be discarded before F is
applied. Therefore, if f! of presumed n intervals
suffer from an omission fault, we just have to set
n:=n—f) and f := f— f! in Lemma 6 to obtain
the results for this case as well. Note that it is
feasible to let f depend on f), see Lemma 7.

2. Interpreting item (2) of Lemma 6 and the previ-
ous remark in terms of the usual fault-tolerance
degree notion, it follows that n > f.+2f+ f, +1
nodes are required to guarantee that F' remains
bounded by the length of at least one non-faulty
input interval. Hence, as many as

fi+1 for f! omission faults,
2fn+1 for f], < fn non-acc. faults,
2fu+ fl, for fl < f, unbounded acc. faults

nodes are required for tolerating faults of the
given type. It is thus apparent that F can toler-
ate | (n — 1)/2] non-accurate intervals but only
|(n—1)/3] intervals that suffer from unbounded
accuracy faults. Note carefully that the numbers
above do not solely depend on the actual number
of faults (e.g., fl,), but also on their maximum
number (e.g., f,); this is due to the fact that the
latter is compiled into the superscript argument
of F.

3. The lower bound on |F| in item (1) expresses the
rather obvious fact that F cannot improve the
accuracy beyond the one “hidden” in the input
intervals; the term minimal intersection property
was coined in [Mar84]. Note that F' contains any
intersection of n — f intervals, hence includes in-
tersections involving unbounded accuracy faults
as well.

4. Ttem (3) just says that F' contains the left and
right edge of at least one (not necessarily the
same) non-faulty interval.

5. Comparison? of Lemma 6 and [Sch97a, Lem. 2]
reveals that JF has literally the same worst-case
performance as the optimal Marzullo function
M. This means that both functions produce the
same result for worst-case scenarios. Of course,
for “average” input sets, F will usually provide
a slightly larger interval.

3.2 Distributed Application

In this section, we will consider the case where F is
applied to (similar) input sets Zp,, Z, at two different
nodes. Those sets could be produced by a remote
clock reading algorithm or replicated sensors, for ex-
ample. It will turn out that the respective outcomes
F,=F/(Z,) and F, = FI(Z,) cannot deviate too
much from each other, even if faults lead to quite
different input sets. Note carefully, however, that
Lemma 4 does not help here, since exploiting the Lip-
schitz condition would require u(I;, I;) < d for any
1 < ¢ < n. This requirement cannot be guaranteed
when faults cause the input sets to differ at node p
and gq.

Of course, one might consider to employ a consen-
sus protocol prior to F’s application for alleviating
such inconsistencies. This is expensive, though, since
only complete agreement upon the set of faulty /non-
faulty senders would render Lemma 4 applicable.
Lemma 2 reveals that using a binary decision value
vj, meaning “I7; N M(Z;) empty/non-empty”, as an
input to the s-th instance, 1 < s < n, of a consensus
protocol would lead to consistent input sets I; that
even guarantee F(Z};) = M(Z}) for all non-faulty
nodes j. Less costly (approximate) agreement proto-
cols, however, are difficult to apply in our context for
the reasons explained below.

In fact, any distributed application of F is consid-
erably complicated by the fact that we cannot always
assume that the information disseminated by a single
sender s leads to the same interval at two receivers
p and ¢, even if there is no fault at all. More specif-
ically, in typical clock synchronization applications,
it is not a constant-valued interval that is dissemi-
nated by s to p and ¢, but rather a time-dependent



one. Any time-dependent quantity, however, is af-
fected by transmission delays, clock granularities and
related effects. As a consequence, p and ¢ may not
only receive slightly different information from non-
faulty senders, but also perceive faults differently: An
interval from sender s may be correct at p but faulty
at g, both due to faults occurring at the sending and
the receiving side. This implies that approximate
agreement protocols are of limited use for alleviating
inconsistencies (although part of our current research
indicates some potential for improvement).

In order to be able to reason about faults in dis-
tributed applications, the single-interval faults of Def-
inition 2 are complemented by faults of pairs of inter-
vals I, € T, resp. I, € I, obtained at nodes p resp.
q- This will lead to a perception-based fault model as
introduced in [Sch97a], where the usual omniscient
(= global) perception of faults is replaced by the lo-
cal perceptions of any two non-faulty nodes in the
system. This way, both node and link faults can be
accurately modeled.

We therefore assume that the intervals in both in-
put sets can be uniquely grouped as n pairs {I, €
T,,I; € Z,} originating in the same source of infor-
mation s, 1 < s < n. We will use the term ordered
sets for T}, and Z, to indicate this property. The cor-
responding intervals in two ordered sets need not be
the same, although they should be reasonably sim-
ilar. Definition 3 exhaustively specifies all possible
faults of pairs of intervals:

Definition 3 (Pairwise Faults) A pair of compat-
ible accuracy intervals {I,,, I} representing t suffers
from

e a crash fault iff I} = I; =0,
e ¢ symmetric fault iff either

(1) both I}, and I} are not accurate in the sense
of t < left(I,) and t < left(Iy), or elset >

right(I,) and t > right(Iy),

(2) without loss of generality, I} =0 and I}, #
0 does not suffer from an unbounded accu-
racy fault.

e gn asymmetric fault iff either

(1) both I, and I}, are not accurate in the sense
of t > right(I,) and t < left(Iy) or else t >
right(I;) and t < left(I}) (true Byzantine
fault),

(2) without loss of generality, I, # 0 is faulty
and I} is arbitrary (and none of the other
faults applies).

Remarks:

1. The “classical” asymmetric fault [WLS97] is
caused by disseminating information that is per-
ceived differently at p and ¢. In our special con-
text, it is characterized by the fact that node p
arrives at the conclusion that the interval I,
from sender s is, say, strictly left of the sought
value ¢, whereas g thinks that I, is strictly right
of ¢ (or correct). This situation usually also oc-
curs in presence of an unbounded accuracy fault.

2. The “classical” symmetric fault [WLS97] is
caused by disseminating information that is per-
ceived identically at p and ¢. In our special con-
text, both p and ¢ must arrive at the same con-
clusion on whether the intervals from sender s
are both left or right of t. Alternatively, one
of the intervals may be missing due to a receive
omission.

3. A crash fault causes an omission both at node p
and g. Note carefully, though, that it is impos-
sible for either node to decide locally (without
further information) whether its omission is due
to a crash fault or a more severe receive omission.

4. Note that Definition 3 does not cover the case
where a more severe fault comes out as a less se-
vere one. For example, it is reasonable to assume
that an asymmetric fault could just be a sym-
metric or even a crash fault only. In this paper,
we will typically use phrases like “asymmetric
(or weaker) fault” to indicate such extensions.

Introducing different classes of faults as in Defi-
nition 3 is known as a hybrid fault model in litera-
ture, cf. [AK96], [WLS97]. It allows us to exploit the
fact that masking f symmetric faults requires only
n > 2f + 1 nodes, whereas n > 3f + 1 are needed
if all faults are asymmetric ones. Since a large num-
ber of asymmetric faults is very unlikely in practice,
cf. [Sch95], this effectively leads to a smaller n for
tolerating a given number of faults.

We should explicitly mention, though, that our def-
inition of symmetric and asymmetric faults extends
and, in some cases, apparently contradicts the “classi-
cal” meaning of those terms. Still, we think that their
usage is legitimate due to the fact that our extension
preserves the essentials of their meaning: The mean-
ing of symmetric / asymmetric fault is basically re-
ceived identically / not identically at different nodes.
In our context, however, we have to relax the mean-
ing of “received identically” since we cannot assume
identical information at different nodes even in the
faultless case, as explained earlier. We also have to
accept the fact that the interval-based paradigm in-
troduces unbounded accuracy faults, which are not
known in traditional settings but can create asym-
metric perception.



The following Lemma 7 gives the number of non-
faulty pairs of intervals required by F for tolerating
a certain number of

e crash faults (f. < f.),
e symmetric faults (f] < fs),
e asymmetric faults (f. < f,).

The most important result is an upper bound on the
non-commutative union (nc-union®) F, U F,, which
must lie within at least n — min{f] + f.,2f. — f.} —
2fs — 3fa > 1 nc-unions I, U I} of non-faulty input
intervals. Note that using (nc-)unions in our lemma
takes into account that two different nodes p and ¢
may have slightly different input sets, even if there is
no fault.

Lemma 7 (Distributed Application of F) Let
I, = {I,,....I}} and T, = {I,,...,I}} be two
ordered sets Ofn > fc + fs + fa; fcafs:fa > 0,
compatible (or empty) accuracy intervals represent-
ing t, where fi < fa, f,; < fs; and f; < fc of
the n pairs of intervals {I,, I} exhibit asymmetric,
symmetric, and crash faults, respectively, and the re-
maining ones are non-faulty. Define u® resp. v* to
be the length of the largest intersection of h > 1 nc-
unions resp. intersections of pairs of non-faulty in-
tervals, formally u" = max{|U| : U € Uzq} and

v =max{|V|:V € qu} for

h
ut, = {U:U: (1% U LY with u; # uy, i # 5,
i=1
and I) € I, I € I, being non—faulty}
h
Vi = {V:V: (I2 N IY with vi #vj, i # ],

i=1

and I} € T, I} € I, being non—faulty}.

Let d,, 0 < d, < f, resp. e,, 0 < e, < f;, de-
note the (unknown) number of empty intervals caused
by symmetric resp. asymmetric faults at node p, and
Tp =A{J1,...,Jn,} be the set of n, = n — o, non-
empty intervals obtained from I, by discarding any
of the (known) op = fé+d;;+e;) < fet+ fs+ fo empty
intervals caused by crash and symmetric/asymmetric
faults.  Using the upper bound f, = fs + fo —
max{0,0p,— f.} on the number of intervals in Jp, that
(still) may be faulty in presence of o, omissions, de-

fine

F, Fir(Ty)
F, -7'-5‘2(-711)-

Then,

5Defined as [z,y] U [u,v] = [z,v] if £ < v and @ otherwise.

(1) both F,, and F, are accurate and

n—fi—fs—fa

N

=1

F,nF,2 NI =V (10)

for any subset V' € quffé*f‘*f“, so that |F, N
F,| > vr—fe=tfe=to (distributed minimal inter-
section property),

(2) there are at least n — min{f. + fL,2f. — fl} —
2fs —2fa — f, pairs of non-faulty intervals {I*,
I;*} with I* € Jp and I* € T4 such that
F,UF, is contained (C) in

n_min{f;"‘f;gfc_fé}_zfs_2fa_f;
I uT (11)
k=1

and hence

|Fp Ll Fq' S un_min{fé'i'f.«l;72fc_fé}_2.fs_2fa_f¢;_

Proof: First of all, we note that f, gives indeed an
upper bound on the number of intervals in J, that
still may be faulty in presence of 0, = f. +d,, + e}, <
fl+fi+ fL < fe+ fs+ fo omissions, since f, = fs+ fa
if op < fe, and fp = fs + fo — (0p — fc) otherwise
(accounting for o, — f. > 0 symmetric/asymmetric
faults that must have caused omissions at node p),
hence

fo < fs+ fa (12)

Evidently, at least n, — f, of the intervals in J, must
be non-faulty. Rewriting the definition

n—0op— fs - fa +max{07011 - fc}
n— fs— fo+ max{—op, _fc} (13)

np — fp

and applying max{0,z} > z for any z, and the simple
fact that max{—o,, —f.} < —f/ since obviously o, >
fiand f! < f., it follows easily that

n_fc_fs_fa S np_fp S n_fé_fs_fa S n_fs_fa-
14

(14)
Of course, analogous bounds hold for ng — f,.
Lemma 6 is applicable, and it follows that F', and
F, are both accurate and satisfy the (local) mini-
mal intersection property. That is, F', contains any
intersection of ny — f, < n— f.— fs— fo non-faulty in-
tervals present in J . If {v;}1<j<n— s —s,—s, denotes
any set of different indices of non-faulty pairs of in-
tervals {I7 € Z,, I, € Z,} (of course also present
in J,, J,), we thus have

n—fe—fs—Ffa np—Jfp
W,= () Iyc () IjCF,
j=1 j=1



and, for the same set {v;}, W, = ;2] Jefato I C
F,. By elementary set algebra, it thus follows that
V=W,NnW, € V'~ Je=fs=fa gatisfies eq. (10).
Finally, |F, N Fy| > v fe~fs—Ja is a simple conse-
quence of the definition of v" as the maximum length
of Ve qu. This completes the proof of item (1).

For item (2), suppose that gp; intervals belonging
to a non-faulty pair of input intervals have a left edge
smaller or equal than left(F',), whereas g, , intervals
belonging to a non-faulty pair of input intervals have

a right edge larger or equal than right(F;). We must
have
gp,l > Np — fp - (f¢’1 - e;)) - (sieft - d;;,left)
> n—fs—fat max{_opa —fe}
—fa = Slete + Ay 1os; + €5
9qr = — fo = (fa — €5) — (Stight — 94 right)
> n—fs—fat max{—oq, _fc}
_fclr, - S;ight + di;,right + 6;7
where Sjop + Sppne = fo < fs are the number of

symmetrically faulty pairs of intervals lying left resp
right of ¢, and d}, 1o, + d,, 1ighe = By Dy 1ot + D right =
d; denote the number of omlssmns among those at
node p resp. gq; the lower bounds follow immediately
from (13).

However, we only have g = n— f.— fi — f! different
non-faulty pairs of intervals. Thus, the pigeonhole
principle reveals that at least Y = g,; + g4r — g
given by
Y > 2n+max{—op, —fc} + max{—o,, —fc}
_2fs - 2fa - 2fclz - f.;
+d}, 1ot + Ay right T+ €5 + €5

—n+ fot+ fo+ fa

> n+max{—f, —d ione, —fe + dp e T €5}
+ max{— f, — d;,lefta —fe+ d;,right + e;}
+fé - 2fs - 2fa - fé

> n+max{-2f; - f;, -2}
+fé - 2fs - 2fa - fé,

> n—min{fé+f;;2fc _fé} —2fs —2fo — fclz

of those must be the same. Abbreviating p =
min{ f. + f},2f. — f.}, we can conclude that there are
at least n—u—2f;—2f,— f. pairs of accurate intervals,
say, If,l I_IIgl,...,IZ"_"_%_”“_”‘II I_IIZ"_”_ZfS_Zf“_f"‘
with Ib" € Jp and IZ" € J, such that F, U F, is
contalned (©) in

n—p—2fs—2fa—f4

N

j=1

I uIh eun e 2ete (15)

which proves eq. (11). To complete the proof of
Lemma 7, it only remains to justify |F, U F,| <
unp 22 a1, Wthh is a simple consequence of
the definition of u” as the maximum length of U €
up,. o

Remarks:

1. Note carefully that Lemma 6 could also be used
to deduce a “distributed application”-related re-
sult: Since F', and F, are both accurate and
hence contain ¢, it follows from item (2) that
|F, U Fy| < 2w"2f~f«. However, comparison
with item (2) of Lemma 7 reveals that this result
is essentially twice as large.

2. Our crash faults are more severe than the
(system-wide consistently perceived) benign
faults of [WLS97], since it cannot be decided lo-
cally whether an omissive interval belongs to a
crash fault or to an (inconsistent) receive omis-
sion. However, it is of course possible to “merge”
crash and symmetric faults, in the sense that
the former are counted in f! (resp. fs) and
[l = fo = 0 (note that n,— f, = n— fs— f, in this
case). After all, we already accounted for sym-
metric/asymmetric faults involving empty inter-
vals in the proof of Lemma 7.

3. Interpreting the accomplishments of Lemma 7
and the previous remark in terms of the usual
fault-tolerance degree notion, it turns out that
n > min{f; + f5, 2fc — fo} +2fs +2fa + fo + 1
nodes are required to guarantee that F, Ll F,
remains bounded by the length of the nc-union
of at least one pair of non-faulty input intervals.
Hence, as much as

min{ f, + fi,2fc — fi} +1 for f. crash faults,
2fs+1 for f! < fs symm. faults,
2fa+ fi+1 for f. < f, asymm. faults

nodes are required for tolerating faults of the
given type.

4. Tt should be clear from the proof of Lemma 7
that the property that really pins down symmet-
ric faults is the following one: If a symmetrically
faulty interval I} satisfies right(I7) > right(F)
(correctly accounted for in spgn¢), then its cor-
responding I, must not have left(I}) < left(F,)
(since it is not accounted for in spef;). This is
the reason why I, # 0 being faulty and I} # 0
being non-faulty must be counted as an asym-
metric fault in item (2) of Definition 3.

5. Comparison? of Lemma 7 with [Sch97a, Lem. 4]
again reveals that F has exactly the same worst-
case performance as the optimal Marzullo func-

tion M.
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6. The proof of Lemma 7 reveals the ultimate rea-
son for using nc-unions LI instead of U in the
statement of item (2): It may be the case that,
say, Fq C Fy, such that F, would determine
both left and right edge of F, U F;. By apply-
ing Lemma 6 with n :=n,, f := f,, and f, < f!
(as well as f,, < fa), we could show that there are
at least n, — 2fp — fl, >n—pu—2f; —2f, — f
non-faulty intervals Ifj in J, the intersection
of which majorizes F,. This does not imply,
however, that all of those intervals appear in J 4
as well — just think of symmetric faults appear-
ing non-faulty at p but omissive at gq. Hence,
we cannot claim that all the unions If,f U sz
—the intersection of which would of course ma-
jorize F'yU F,— involve non-fauly intervals only.
Clearly, focussing upon F, U F, C F,U F, en-
tirely avoids this difficulty.

The following lemma shows that the results of
Lemma, 7 remain valid if a more severe fault comes
out as a less severe one, and shows what happens
if certain fault assumptions are violated. Note that
crash faults are counted as symmetric ones here.

Lemma 8 (Graceful Degradation of F) Let
I, = {I,,....,I}} and T, = {I,,...,I}} be two
ordered sets of n > fs + fa, fs,fa = 0, compatible
(or empty) accuracy intervals represem_fmg t, where
fs < fs of the n pairs of intervals {I,,, I} exhibit
symmetric (or weaker) faults, f! < f, exhibit asym-
metric (or weaker) faults, and the remaining ones are
non-faulty. As in Lemma 7, define u" resp. v to be
the length of the largest intersection of h > 1 nc-
unions (€ qu ) resp. intersections (€ qu ) of pairs
of non-faulty intervals.

Let Tp = {J1,...,Jdn,} be the set of n, =n — o,
non-empty intervals obtained from I, by discarding
any of the o, empty intervals caused by omissions.
Using the upper bound f, = fs+ fo—o0p on the number
of intervals in J, that (still) may be faulty in presence
of o, omissions, define

Fp, = -7'-3;’;(571))
F, = -7'-{[2(3(1)

Then:

(1) Both Fp, and F, are accurate and

n—fs—fa
(| IynIi=v
j=1

F,NF,D (16)

for any possible subset V € V;‘q_fs_f“, so that
|F, N F,| > v f—fa (distributed minimal in-
tersection property).
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(2) There are at least n—2f; —2f, — fi > n—2fs —
3fa pairs of non-faulty intervals {I;*, I*} with
I e J, and IF € T, such that

n72f572fa7f;
F,uF, C N Iyury
k=1
n—2f,~3f
c ()] r%urs, 1)
k=1

where  {u} }1<k<n—2f,—37. s obtained from
{urtri<w<n-2p,-2f.—p; by discarding fo — f;
arbitrary elements.  Hence, |Fp, U Fy| <
,u/n72f,,721“.,‘7‘)”"L < un72f573fa_

(3) Assume that the fault model is violated in the
sense that f' = fi+ fi. > fs + fo but still
n > 2f' + fI + 1, where fi, < f. denotes the
number of pairs of intervals that involve un-
bounded accuracy faults. If the violation of the
fault model is not obvious, in the sense that F,
and F, can be computed and are not empty due
to L > R in Definition 1, then there are n —
2f" — f,, non-faulty intervals I}, .. .,Ii"_”’_ﬂ*
in Jp and n — 2f" — fl non-faulty intervals
,... ,IZ"_Z)fI_f"‘ in J ¢ such that F,UF, (and
hence Fp, U Fy) is contained (C) in

n—2f’—f,’t n—2f’_f1ll
N m|ul [ 1Y (18)
j=1 j=1

Hence, |Fp U Fy| < wg_ﬁ ~he 4 w?‘” _f",
where wg resp. wg denote the length of the
largest intersection of h accurate intervals in I,

resp. L.

Nevertheless, F';, and F; are not necessarily ac-
curate and possibly not even intersecting; accu-
rateness is guaranteed, however, if f' < fs+ fa
but all f' faults are asymmetric ones.

Proof: Since crash faults are now considered as sym-
metric ones and hence accounted for in f. and f;,
see Remark 2 on Lemma 7, items (1) and (2) fol-
low directly from adopting the results of Lemma 7
to fl = f. = 0. Note that n, — fp, =n—fs — fa
here. To confirm the assertions for asymmetric faults
appearing as weaker ones, just consider the expres-
sions supplied by Lemma 7 when temporarily setting
fo:=fao—1land fs:= fs+ 1.

To show item (3), we first note that we only have
to consider the case where f; + f, — o0, > 0, since
otherwise there would have been too many omissions
to compute F',. Moreover, recalling that we assumed
F, # 0, we find

Fy=FlHmon(g,) CF (T, (19)



by item (1) of Lemma 3. Lemma 6 is now applicable
to the right-hand side of eq. (19) and it follows by its
item (2) that

n—2f'—f,
F,C ﬂ Jbi.
j=1

An analogous result holds for F;. Of course, the
majorizing intersections for F', and F; involve non-
faulty intervals only, hence are both accurate and
thus intersecting. This justifies eq. (18) and the con-
dition on |F, U F,| given in the lemma. Note care-
fully, however, that this does not imply that F', and
F, itself are accurate or even just intersecting! On
the other hand, if f' < fs+ f,, it follows from item (1)
of Lemma 6 applied to the left-hand side of eq. (19)
that F, (and analogously F;) is accurate. O

Remarks:

1. It follows from item (3) of the above lemma that
there are two possibilities in case of a violation of
the fault assumptions: Either a node recognizes
this fact because the result of F is empty, or
the computed interval is not “too wrong”. Ob-
viously, this is some form of graceful degradation
of F’s performance.

Evidently, the worst situation with respect to
the number of faults where one can hope to get
a meaningful result is n > 2f' + 1. Item (3)
of Lemma 8 can be used to deduce a result for
this case as well: Setting f, = 0 and declaring
any interval with an unbounded accuracy fault
as being “non-faulty”, we get from eq. (18) that
F, U F, lies in the union of the intersection of
n —2f' “non-faulty” intervals in J, (resp. Jq).

Comparison? of Lemma 8 with [Sch97a, Lem. 5]
shows that F again provides the same results as
the Marzullo function M. This finally justifies
our claim that F and M have the same worst-
case performance.

4 Conclusions

We presented and analyzed a novel Fault-Tolerant
Interval (FTI) intersection function F, which is op-
timal like the well-known Marzullo function M but
satisfies a Lipschitz condition as well. The Lipschitz
condition ensures that minor changes of the input in-
tervals cause minor changes of the result only.

Our thorough analysis revealed that F has exactly
the same worst-case performance as M, although
it may provide slightly sub-optimal results for non-
worst-case input scenarios. For the local application
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case, we showed that the interval F' provided by F on
a single node lies within n—2 f,, —3 f,, non-faulty input
intervals, where f, resp. f, is the maximum number
of non-accurate resp. excessively long intervals among
the totally n input intervals. For the distributed ap-
plication case, we showed that the union of the results
F,UF, provided by F at two different nodes p and ¢
lies within the intersection of n — 2f; — 3 f, unions of
corresponding non-faulty input intervals at p and gq,
where f, resp. f, gives the number of symmetric resp.
asymmetric faults.

Therefore, F is a promising candidate for replacing
the widespread usage of M in distributed applica-
tions. Some of our future work will be devoted to the
investigation of its usefulness in our interval-based
clock synchronization framework [SS97], where F’s
Lipschitz condition might prove particularly benefi-
cial. This research also includes the use of agreement
protocols, which allow to reduce the inconsistency of
JF’s input sets at different nodes.
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