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Abstract

This report surveys the existing literature on security issues in dis-
tributed systems. It aims to give an overview on existing protocols and
current research.

1 Introduction

In our project WoF! (Wireless/Wired Factory/Facility Fieldbus), we intend to de-
velop a next-generation LAN/fieldbus which will properly address distribution,
security, fault-tolerance, and real-time issues as well as flexibility w.r.t. wire-
line/wireless interconnections. In the security field, we will have several decisions
to make:

e What requirements to security do we have?
e Which security protocols should we implement?
e Should we use existing protocols or develop new ones?

e How can we prove that the protocols we choose are fault-free?

The following report surveys existing security methods relevant to these issues.
In Section 2, we explain what requirements to security protocols exist, and in
Section 3 we examine current design methods. We look at hardware solutions to
security issues in Section 4 and discuss the basic structure of software protocols
in Section 5. In the concluding Section 6 we briefly examine the appropriateness
of the surveyed methods for WoF. Appendix A lists some popular encryption
schemes, and Appendix B presents some existing security protocols.

Before we adress these issues, let us briefly review why we need security in the
first place. We assume a distributed computing environment, with n nodes which
can only communicate over a network. In order to provide or use a distributed
service the nodes need to exchange information. However, sending a message in
an arbitrary environment rises several potential problems:

e Any node in the communication path from the sender to the receiver can
read the message.

e In a partially connected network, the message can be intercepted and re-
moved by an adversary.

e In a partially connected network, the message can be replaced by an adver-
sary. The adversary can alter the sender, the receiver, and/or the contents
of the message.

!This work is part of our WoF-project (http://www.auto.tuwien.ac.at/Projects/W2F/),
which received funding from the Austrian START-programme Y41-MAT.



e An adversary can generate forged messages.

Security protocols aim to guarantee to the sender and the receiver that some
or all of the above-mentioned problems either cannot occur or are at least noticed.
For our own project, we will have to identify which of these requirements we have
to meet and how we should meet them.

2 Protocol Goals

Although the term “security protocol” is commonly used for a wide range of
protocols, the goals of these protocols can differ significantly. Different situations
require different demands on the security policy and not every protocol needs to
implement every possible security mechanism to achieve its goals. We believe
that it is important to discern between the requirements of the security policy
and the goals of a particular protocol. The former are global issues, which can be
enforced by using one or more security protocols. The latter are the goals of one
protocol and may differ between different protocols. The following list explains
some possible requirements of a security policy.

Accounting logs service requests of users. The goals are manifold, ranging
from the ability to trace back system attacks up to the maintainance of
disk quotas for each client. The service depends on authentication.

Authentication aims to guarantee the identity of principals during communi-
cation. In one-way authentication, only one of the partners is sure about
the identity of the other, in two-way authentication both peers know with
whom they are talking.

Authorization strives to grant access only to special groups. The requirement
depends on authentication to ensure who the principal is, but additionally
has to check whether the principal is allowed to access given services.

Integrity guarantees that message modifications are either impossible or can at
least be detected by the receiver.

Nonrepudiation prohibits a sender from later denying that it has sent a mes-
sage.

Secrecy tries to keep the contents of a communication exchange hidden from
possible spies. There are different degrees of secrecy, from simple encryption
of the message’s contents up to the hiding of message senders and recipients.

In contrast, protocol goals are concerned with particular problems that arise
when implementing the above requirements (e.g., secrecy is achieved by an en-
cryption protocol which in turn requires a key exchange protocol). Boyd [Boy97]
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has examined the goals which are normally associated with key distribution and
authentication protocols. He follows the classification of Roscoe [R0s96] who has
parted goals into extensional and intensional ones. Extensional goals are abstract
and therefore independent of the protocol, whereas intensional goals are protocol
specific and concerned with the way particular protocol states are reached. Boyd
lists possible extensional goals for key distribution and authentication and orders
them into a hierarchy, see Figure 1.

Mutual Belief in Key

Good Key Entity Authentication

FreshKey  Key Exclusivity Liveness  Once Authenticated

Figure 1: Hierarchy of extensional goals

Good Key: A accepts a key for use with B only if the key is fresh (key freshness)
and the key is known only to A and B (key exclusivity).

Entity Authentication of A to B. B accepts A only if A wishes to communicate
with B.

Key Confirmation: B accepts A with key K only if K is a good key to com-
municate with A and B has received K.

Mutual Belief in Key: B accepts A with key K only if K is a good key for use
with A, and B wishes to communicate with A using key K which B believes
is good for this purpose.

Boyd concludes that protocol designers should use extensional goals because
they are easier to handle and implement. Roscoe, however, states that intensional
goals are easier to analyze.

3 Protocol Design

Although there are many security protocols, only few papers on design methods
have been published. Until recently, designing security protocols did not follow
any particular rules and no formal methods were used. This led to protocols
which were apparently sound but which contained subtle flaws that were often



discovered years after the protocols had been published. Fortunately, the atten-
tion of researchers has now been drawn to this matter and several mechanisms
have been proposed.

3.1 Design Guidelines

Abadi and Needham [AN96] list eleven general design principles. The princi-
ples are informal guidelines, but adhering to them should help to avoid some
commonly made mistakes.

Principle 1: Every message should say what it means.

Principle 2: The conditions for a message to be acted upon should be clearly
set out.

Principle 3: If the identity of a principal is essential to the meaning of a mes-
sage, include it explicitly in the message.

Principle 4: Be clear about why encryption is being done. In a smaller recom-
mendation, the authors also advise designers to be clear on how encryption
is used, and on the meaning of encryption.

Principle 5: When a principal signs encrypted data, it should not be inferred
that the principal knows the data. On the other hand, when the principal
signs data and then encrypts it, it can be inferred that the content of the
message is known to the principal.

Principle 6: Be clear about the properties of nonces and what they should
achieve. In a smaller guideline at the beginning of the paper, the authors
also recommend to be clear on how the timeliness of messages is proved,
and on the meaning of temporal information in messages.

Principle 7: If a nonce is predictable, then it should be protected so that an
intruder cannot simulate a challenge and later replay a response.

Principle 8: If timestamps are used as a freshness guarantee and are refering to
absolute time, then the difference between all local clocks must be much less
than the allowable age of the message. Furthermore, the time maintenance
mechanism becomes part of the trusted computing base.

Principle 9: Recent use of keys does not imply that they are new and uncom-
promised.

Principle 10: If an enconding is used to present the meaning of a message, then
it should be possible to tell which encoding is being used. If the encoding
is protocol dependent, then it should be possible to deduce whether the



message belongs to the protocol, whether it is part of the current protocol
run, and its position in the run.

Principle 11: The protocol designer should know which trust relations the pro-
tocol depends on, and why the dependence is necessary.

Liebl [Lie93] mentions several questions that a protocol designer should take
into consideration:

e Does the protocol work?

Exactly what does the protocol achieve? What beliefs are established?

Does the protocol need more assumptions than other protocols?

Does the protocol do anything unnecessary?

e Which encryption algorithms are used?
Additionally, protocols should have

Perfect Forward Secrecy: Disclosure of long-term secrets should not compro-
mise the secrecy of the exchanged keys from earlier runs.

Direct Authentication: In indirect protocols, authentication is not complete
until the parties prove their knowledge of a shared key by using it in the
subsequent communication. So authentication is linked with key exchange
and cannot exist without it.

No Timestamps: Since using timestamps introduces new difficulties and attack
opportunities into protocols, they should be avoided.

3.2 Design Toolkits

Currently, only few design toolkits exist. A comprehensive toolkit is SPEAR
[BAGI7] and its successor SPEAR II [SH99]. SPEAR II encompasses formal
specification, a modal logic analyzer for GNY logic including constructs for digital
signatures and certificates, automated code generation for Java or SDL (Standard
Description Language), meta-execution within the framework of SPEAR II for
testing, and a performance analysis.

The protocol design stage consists of declaring the principals and defining the
message passing specifications. Message passing is represented by MSC (Mes-
sage Sequence Charts), message items themselves can be declared with ASN.1
(Abstract Syntax Notation One) if they need to be extracted from the message.
The user can define external functions that are applied to message components,
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specify communication settings, and declare information specific to the modal
logic analysis. The specification is done via a graphical user interface.

Security analysis deals with the progressions of beliefs and growth of pos-
session sets during the run of the protocol. It is able to determine the degree
of redundancy in the protocol, the type of authentication achieved (one-way or
n-way), check for information that is sent both in plain text and ciphertext, and
examine and enumerate possible replay attacks. Additionally, fail-safe analysis is
incorporated.

Elaborate performance analysis is used which can subject the protocol to dif-
fering conditions and stresses, can keep track of the number of messages and
their sizes, and can decide whether a protocol is optimal w.r.t. the number of
messages and rounds. The impact of different algorithms like encryption meth-
ods can be evaluated, and the performance under concurrent conditions can be
gauged. With the SDL output, the protocol can also be analysed by other tools
specifically designed for the analysis of distributed protocols, like SPECS II or
Geode.

Meta-execution allows the designer to execute the protocol in a simulated
environment under different conditions. The designer should be able to view the
progression of the protocol and to set up simulated attacks and scenarios for
demonstrations or further research.

Source code generation already implements most of the protocol, like network
communication or encryption functions. The designer just has to fill in special
functions specific to the protocol.

An altogether different approach is taken by Perrig and Song [PS00]. The
authors conclude from the numerous mistakes found in well-known protocols that
it is best if the design is completely automated. They propose a system where
the designer just has to specify the desired security properties of the protocol and
the system requirements, and an optimal protocol is generated automatically.

The system requirements consist of metric functions specifying the “cost”
of operations like encryption or nonce generation. The protocol generator then
searches all possible protocols (automatically generating all possible message ex-
changes) whose costs are below a given threshold. These protocols are sorted
according to their costs and then analyzed by a protocol screener to filter out the
flawed ones, until a correct protocol is found. The output of the whole tool is the
protocol with the least cost according to the given metrics.

4 Hardware Approaches

Apart from software protocols, some papers propose tamper-resistant hardware
devices as a means to establish trust [SW99], [WSB99], [Yee94]. In Norway,
the NSK cryptochip was developed to protect communications over telephone



lines [PP96]. In [Gol96], several secure store and forward devices are described.
Unfortunately, there are means to cope even with tamper-resistant hardware, as
is demonstrated in [AK97].

The american standardization institution NIST has developed the FIPS 140
Standard [FIP99] which defines security requirements for cryptographic modules.
It describes four levels of security, and developers of such modules can get their
programs and/or devices certified for a given security level. Each level builds
upon the previous one and adds additional security mechanisms.

Level 1: This is the lowest level of security. It does not require any special
physical security mechanisms. An example would be a PC encryption board
or software cryptographic functions.

Level 2: This level adds the requirement for tamper-evident coatings or seals or
for pick-resistant locks. All critical security parameters (CSP) are placed
inside the module, which are tamper-evident. Additionally, tamper-evident
seals or pick-resistant locks should be placed on covers or doors to protect
against unauthorized access. Authentication must at least be role-based,
which means that the module authenticates the authorization of an operator
to assume a specific role and to perform a corresponding set of actions.?

Level 3: In this level, intruders are prevented from gaining access to critical
security parameters. Whenever tampering is detected, the parameters are
deleted (zeroized). Data ports used for entering and outputting CSPs must
be physically separated from other data ports. Authentication is identity-
based, so the module verifies the identity of an operator and checks whether
this particular operator is authorized to assume a specific role and perform
actions.?

Level 4: This is the highest level of security. The module is required to detect
penetration from any direction and zeroize all critical security parameters.
Environmental protection must be available, and excursions beyond the
normal environmental range must be answered with immediate zeroization

of all CSPs.

5 Software Approaches

In the following subsections, we will try to sketch the basic structure of the
protocols and give an example.

2 An example would probably be the root account in UNIX systems. The system just checks
the role (system administrator), but not the identity of the operator.

3In this case, the identity of the operator is checked, and the operator may have a system
administrator role associated with him or her.



In general, all protocols we have encountered so far achieve their goals at
best (many are even flawed) and do not concern themselves with problems like
replication, fault tolerance, or even denial-of-service attacks.

5.1 Authentication

The general aim of authentication protocols is to ensure that each principal knows
he is talking to the correct peer and that the peer also knows this. To achieve this
aim, the protocols generally have the following structure, where Alice initiates a
communication with Bob

| ID  Message | Knowledge
A knows A - B
Ml A—B:ITamA B knows A — B

B knows B = A
= B knows A <+ B

M2 B — A:1am B, I am replying to M1 | A knows B knows A < B
A knows B — A
= A knows A <~ B

M3 A — B:Tam A, I am replying to M2 | B knows A knows A < B
B knows A knows B knows A <> B

M4 B — A:1am B, I am replying to M3 | A knows B knows A knows A < B

In this table, X — Y means that X wants to talk to Y. The “Knowledge”
column denotes what each principal knows after receiving the message. Message
4 is just to ensure A that B has got M3 (that is, the protocol run has completed
successfully). It is the task of the particular protocol to ensure that the knowledge
can indeed be derived from the messages. It is our understanding, however, that
the goal cannot be achieved in less messages than stated in the above skeleton.

The last message is often left out in protocols. Its effect can be achieved by
any message from B that is linked to M3, so the first message from the following
communication is perfectly adequate.

Once the identity of the communication parties has been established, they
can start to exchange data. However, most of the time the main goal is to ensure
secrecy to the subsequent message exchange. This leads to the request for key
distribution protocols.

5.2 Key Distribution

Key distribution, also called key exchange, is generally based on authentication.
The aim is to provide two principals with an encryption key that is used to
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encrypt the subsequent communication. Basically, the encryption scheme can
be symmetrical (one secret key) or asymmetrical (public/private key pair), see
Appendix A.

Asymmetric schemes implicitly provide authentication, because only one prin-
cipal knows the private key and can use it as a signature. On the other hand,
the association between a public key and a given principal must be correct and
tamper-proof, so it requires a public key certificate which has to be provided by
a trusted authority. Public keys are typically valid for a long time, so the cryp-
tosystem must be very secure. If a private key is compromised and a new key pair
has to be issued to its owner, then every node who possibly uses the old public
key certificate has to be notified that the key has been changed. However, this
might perhaps be alleviated if certificates are exchanged as part of the initiation
of a communication.

How the private key of such a key pair is distributed to its owner is not really
clear. Apparently, stations get it offline. If it is sent online, then it is encrypted
with a key shared between the trusted authority and the station. It is not stated
what happens if this key is compromised as well. In any case, if a key has to be
encrypted with another key, then the second key used for the encryption has to
be stronger than the key which is exchanged. Offline entry seems to be the best
thing anyway. However, this appears to be an open issue.

There is no real protocol for the distribution of the certificates. If Alice wants
to send a message to Bob, she typically gets his public key certificate from a
trusted authority. In fact, as long as there is only one certificate, she might get
it from anywhere, the only real requirement to Alice is that she must be able to
recognize and trust the signature of the trusted authority. So she could also ask
Bob. After obtaining the certificate, she uses the public key contained in it to
encrypt her message to Bob. Only Bob will be able to decrypt it again, so she
can be sure that only Bob can read the message she sends. If Bob needs to be
sure who sent the message, Alice should sign it using her own private key.

The situation gets more complicated if Bob has to change his key due to
compromisation. This problem, called key revocation, is quite severe because
just issuing a new certificate to Bob is not enough. Every node in the system
has to be informed that the old certificate is not valid anymore. Otherwise, an
intruder who knows Bob’s old key could impersonate him by distributing the
old certificate. Therefore, the approach suggested above, that Alice asks Bob
to provide his own certificate, is highly insecure. An intruder might capture
and suppress the message and send the old certificate as a reply. This strongly
suggests that a trusted authority should be involved into the distribution of the
certificates, at least, if the intruder is capable of suppressing messages.

Symmetric schemes use just one key for encryption and decryption which is
known to both principals participating in the communication. This is considered
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to be less secure than a public key system, so these keys are normally just used
for one exchange and negotiated before the start of every data exchange. The
key exchange does not require a trusted authority, although some protocols use
it for security reasons.

In the two-party case, a common solution is to equip all users with a secret and
a corresponding public value which serves as their certificate. After the identities
have been established, each party computes a master key from his or her own
secret and the public value of the peer. From this master key, a communication
key is derived using a one-way function. An example for this kind of protocol is
SKIP (Simple Key-management for Internet Protocols), see Appendix B.

In the three-party case with a trusted authority, every user shares a secret
key with the authority and uses it to obtain a key for the communication. The
obvious disadvantage of a three-party method is that the authority is a bottle-
neck. However, not all possible keys are equally secure, and a trusted authority
can be equipped with the means to check a newly generated key for its quality,
cf. [LGSN&9].

5.3 Secure Login

When a user logs into a system, he has to enter a password which is checked by
a trusted authority. The tendency of users to choose poor passwords leads to the
necessity of creating login protocols which can nevertheless protect the user from
password-guessing attacks. In [LGSN89], the problem is reduced to the ability of
intruders to capture a message and do offline experimentations like a dictionary
attack. In consequence, the authors propose a system where the attacker must
interact with a server to check whether the guess is valid, and the server can log
every incorrect guess and raise an alarm. In addition, they suggest that messages
should be constructed in such a way that an attacker cannot verify if he has
guessed the correct key. They also recommend that the password itself should
never be used in communication, instead the client should use a one-way function
to generate a key from the password.

When guessing the contents of messages, known plaintezrt is a handy aid for
attackers. It means that the attacker can already predict part or all of the
message before decrypting it. An example would be an address field the position
and contents of which is known beforehand. The knowledge can be exploited to
deduce the rest of the message, or even the key used for encryption.

However, in [LGSN89] the authors concern themselves with verifiable plain-
text, which is more general than known plaintext. It occurs if a message contains
information which is recognizable when decrypted. An example would be a mes-
sage which contains some random number and its complement. An attacker
does not know the random number but can try out keys until he finds one that
produces two numbers whose sum is zero.
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As an example, we look at the login phase of the Kerberos protocol. Here,
Alice logs in and sends a plaintext request for an authentication key to the trusted
authority Kas. The reply is encrypted with Ka, which is a key shared between
the trusted authority and Alice and which is derived from the password [NKT00].

1. A — Kas: A, Tgs, Tal
2. Kas — A: {AuthKey, Tgs, Tk, {A, Tgs, AuthKey, Tk} xtgs}ra

Although the protocol is widely used, we would like to point out a few prob-
lems (more about Kerberos can be found in Appendix B). First, an intruder can
just monitor the traffic to find out when each user logs in. So we would prefer to
somehow hide the identity of the user. As stated in [NKT00], password-guessing
attacks are not solved by Kerberos. An intruder can store message 2 and try to
decrypt it with a dictionary. Sending the message A — Kas: A, Tgs, {Tal}g,
might help, because now A must know the key to initiate the conversation, and
Kas can log failed guesses. Of course, an intruder can always block a legitimate
user by a denial-of-service attack. Kerberos cannot handle such attacks. We
believe that a better method for solving the above problems is to use a public
key for the initial communication with Kas. Message 1 is A — Kas: {A, Tgs,
{Tal}ka, Natry,, - Again, Tal is encrypted to enable Kas to detect password
guesses. To avoid a plaintext attack where the intruder tries to guess the plain-
text and then encrypts it to see if he is right, a random nonce N4 is added to the
message. The lower bits of T'al have the same effect if the intruder cannot guess
the exact value.

5.4 Virtual Private Networks

Before we conclude the paper, let us briefly look at Virtual Private Networks
(VPNs). Their aim is to provide a secure (sub-)network on top of a larger in-
secure public network like the Internet. This is achieved through tunnelling
methods, where connections between two members of the private network are en-
crypted during their transit through the public network. According to [Han97],
the endpoints of the tunnel can be:

e routers
e firewalls
e dedicated VPN boxes

The idea is that a VPN client A who wishes to establish a connection to some
other VPN client B connects to a VPN endpoint, e.g. a router. This router calls
the VPN endpoint on the receiver’s side and establishes a VPN connection. All
further traffic over this connection is encrypted. The method even allows for
tunnelling of non-IP based protocols.
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VPNs use existing security methods for achieving their secure communication.
They need authentication and key exchange protocols. They do not incorporate
any new ideas, but are simply an application of security methods. Therefore,
they are not of interest for this survey.

6 Conclusion

There are many different protocols for the same task. Some have been designed
for specific systems or assume certain services like synchronized clocks. For our
system, we will definitly need protocols for authentication and for key exchange.
We must also look into secure group communication. Since WoF' is only used in
a secluded area, we will not need VPNs.

As far as hardware support is concerned, WoF should include a secure co-
processor and have at least FIPS Level-1 certification.

Finally, whatever protocols we choose to employ, we must subject them to
formal analysis to verify whether they achieve their goals under the system as-
sumptions of WoF. We will need tools which are able to deal with different intruder
capabilities, so we can handle different WoF' system states.
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A Cryptocraphic Methods

Since security protocols generally need encryption to achieve their goals, we will
give a brief overview over the different methods used for encrypting data. Ba-
sically, one has to distinguish between symmetric and asymmetric encryption
methods. A good overview —albeit in german— can be found in [Sel00]. It has
been used as the basis for the following subsections. A very good english book
is [Sch96].

A.1 Symmetric Encryption Schemes

Symmetric methods use one key for encryption and decryption. In consequence,
both the sender and the receiver have to know the key. This is why such methods
are often called shared key systems. Of course, the receiver must obtain the key
prior to decrypting the message, and transmission of the key must be secure
for the scheme to work. It the receiver compromises the key, the sender must
change its key as well. This makes symmetric key schemes more problematic
than asymmetric ones.

Examples of symmetric systems are

DES (Data Encryption Standard): This method encrypts blocks of 64 bits
with a key of length 56 (the last 8 bits of the block are a check-
sum). Basically, the data is combined with the key, and then processed
by S(ubstitution)-Bozes which map a 6-bit input to a 4-bit output and
P(ermutation)-Bozes which swap the bits of the resulting encrypted block.
This is done several times (16 rounds). Decryption is achieved with the
same method in reverse order. Since the algorithm is quite simple, it can
easily be implemented in hardware and is therefore very fast.

Until recently, DES fell under the export restrictions of the USA, preventing
longer keys to be used. However, the 56-bit version of DES has already been
cracked using a brute-force algorithm which checks all possible keys until
it finds the right one. The effort necessary to launch such an attack is
relatively moderate, so 56-bit DES cannot be considered to be secure. A
key length of 128 bit is therefore recommended by the security community.
Nevertheless, DES is a problem because it is feared that the NSA (National
Security Agency) of the USA, which has been involved in the development
of DES, may have left some backdoor (the S/P-Boxes are suspected here)
to decrypt messages even without the key.

Triple DES: This is a variant of DES which encrypts the data with a 56-bit
key, decrypts it using another 56-bit key, and then encrypts it again. This
has more or less the same effect as a longer key, making a brute-force attack
unfeasible.
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IDEA (International Data Encryption Algorithm): The method has
been developed at the ETH Zurich (Switzerland) and also encrypts data
blocks of 64 bits length, but uses a 128-bit key. It avoids several drawbacks
of DES. The long key makes brute-force attacks unfeasible, the algorithm
does not need any S- or P-Boxes, and it only needs eight rounds. The
encryption is done with a combination of XOR, addition modulo 2!¢ and
multiplication modulo 2'. The method is considered to be very secure,
but is protected by a patent.

Rijndael: The Rijndael algorithm [DR99] has been developed quite recently and
has been selected as the new Advanced Encryption Standard (AES) [FIP01]
by the American NIST (National Institute of Standards and Technol-
ogy). The algorithm along with several other candidates has undergone
intense public scrutiny. It can use keys of 128, 192, and 256 bits to en-
crypt data of 128 bits per block. The algorithm replaces DES as the
standard. Its selection criteria included that the algorithm should be
faster than Triple DES, be freely available and have been publicly scru-
tinized. Further information can be obtained from the AES homepage at
http://csrc.nist.gov/encryption/aes/ .

The above methods are all block ciphers, that is, they encrypt the plaintext
one block at a time. However, this leads to the problem that an intruder can
replace blocks and thus manipulate the message without being detected. For this
reason, cipher block chaining (CBC) has been introduced. In this method, the
plaintext of a block is XOR-ed to the encrypted previous block before being en-
crypted itself. The first block is encrypted random data to make every ciphertext
unique.

An altogether different approach is to use a stream cipher, where the plaintext
is XOR-ed to a random sequence one bit at a time. Obviously, the quality of the
encryption depends on the random generator.

A.2 Asymmetric Encryption Schemes

Asymmetric methods use a pair of keys (K,up, Kpriv) Which are related to each
other. Everybody may obtain the public key K,,;, but only the owner A of the
pair knows the private key Kpri,. The keys are chosen such that ((M)x,,,)x,,., =
((M)k,,:,) K, = M. Knowing the public key does not enable anyone to guess the
private key, and there is only one private key which is the inverse of the public
key.

This scheme enables any user B who knows K, to send an encrypted message
to the owner A of K. Since the private key is only known to A, it is guaranteed
that nobody else can read the message. On the other hand, A may encrypt a
message using K, and send it to B who applies K,,; to obtain the plaintext.
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Since only K, is the inverse of K, and only A knows K., B is assured
that the message has been sent by A. Thus, asymmetric methods can be used
to electronically sign messages. Their major disadvantage, however, is that due
to the difficult computations involved, encryption takes much longer than with
symmetric schemes.

Well-known asymmetric schemes are

RSA: This method, which has been named after its inventors Rivest, Shamir,
Adleman [RSAT78|, has been the first asymmetric method to become widely
popular. It is based on the hardness of factorization of large numbers into
their primes. In this scheme, Alice, who wishes to generate a key pair,
chooses two large prime numbers, p and ¢. She then computes n = p * ¢
and 7 = (p— 1) x (¢ — 1). Now, she chooses an arbitrary number e which
must not have a common divisor with r. The numbers e and n together
form the public key. Additionally, Alice computes d such that e x d =
1 mod r. The numbers d and n form Alice’s private key. If user Bob wants
to send Alice a message, he splits it into blocks m which are each smaller
than n and computes Enc(m) = m® mod n. These encrypted blocks form
the message which is sent to Alice. Alice now computes Dec(Enc(m)) =
Enc(m)¢ mod n. Since d is the inverse to e, Alice obtains the original block
m.

The RSA scheme is protected by a patent in the USA (until 2000).

ElGamal: This scheme, also named after its inventor, uses discrete logarithms.
The problem of computing from a given y, g, and p the x for which holds
y = ¢* mod p is extremely hard for large p (at least as hard as the factor-
ization problem utilized by RSA). Alice creates a pair of keys by choosing a
sufficiently large prime number p and some arbitrary numbers g and x and
computes y = ¢® mod p. The numbers p, g, and y form the public key, z is
kept secret. When Bob wants to send a message, he parts the message into
blocks m which are smaller than p. Then he chooses an arbitrary number
k which has no common divisor with p — 1 and computes the two numbers
a= ¢*¥ mod p and b = y*m mod p, which he sends to Alice. The number
k must be kept secret by Bob. Upon reception, Alice computes b/a® to get
the plaintext m.

The main disadvantage of asymmetric schemes is that the execution of the
algorithm is very time-consuming and that secure keys are much longer than in
symmetric schemes (e.g., RSA needs at least 1024 bits). Additionally, it is hard
to change the public key, since most users will download it only once and then
store it locally. On the other hand, the schemes are scalable because the effort
necessary to break the method grows exponentially with the size of the chosen
numbers, so whenever computers get fast enough to break a key one can always
use larger numbers to make brute-force attacks unfeasible again.
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A.3 Hash Functions

In contrast to encryption methods, which aim to keep the contents of messages
secret, hash functions, which are also called message digest functions, try to
guarantee the integrity of messages. The idea is to append to the message a
short sequence of bytes which has been computed from the message itself. The
function used for obtaining the hash value should be easy to compute, reasult in a
small hash value of fixed length independend of the original message length, and
it should be impossible to construct a message that has the same hash value than
a known hash value. In fact, it is often demanded that it should be unfeasible to
find two messages that have the same hash value (this is called a collision).

The sender of a message computes its hash, sends the message to the receiver
and uses some secure way to transmit the hash of the message to the receiver.
The receiver also computes the hash of the message and compares it to the hash
stated by the sender. If the two values match, then the message has not been
tampered with.

MD5: Message Digest 5 is the last of a series of message digest functions de-
veloped by Ron Rivest (the others are MD2 and MD4). It computes hash
values of 128 bits length, has been widely used, is very fast, but unfortu-
nately has some weaknesses that allow to find collisions. Therefore, its use
is not recommended.

SHA-1: The Secure Hash Algorithm has been developed by the NSA and is
considered as one of the best currently known methods. It computes hash
lengths of 160 bits and operates on 512 bits of the message with bit shuffling,
addition, bit shifting, and some non-linear function.

RIPEMD-160: This algorithm has evolved from an EU project and is very
similar to SHA-1. Its hash value also has 160 bits, although the authors
have also described variants that use 128, 256, and 320 bits. The method
also uses 512 bit blocks and uses shifting, addition and a non-linear function
which is similar to that used in SHA-1.

Currently, SHA-1 and RIPEMD-160 are the best hash functions avail-
able. Their performance is comparable, although SHA-1 is slightly faster than
RIPEMD-160. None is protected by any patents.

A.4 Signatures

As we have seen in the previous section, hash functions guarantee the integrity
of the message, provided that the hash value is transmitted to the receiver in a
secure way. A signature normally does a lot more: it binds the sender (who has
signed a message) to the message. This involves guaranteeing the authenticity of
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the sender, the integrity of the message, and the connection between the message
and its signature.

Fortunately, there is a simple method to achieve all requirements to electronic
signatures which is based on asymmetric key encryption in combination with
message digest functions: the sender Alice simply computes the hash value of
the message, encrypts this value with her private key, and appends the hash to
the plaintext message. The receiver Bob decrypts the hash and compares it with
his own computation of the hash of the message. This guarantees Bob that the
message has not been tampered with (the hash values are equal), that Alice has
been the sender of the message (only Alice could encrypt the hash value with her
private key), and that Alice has sent this particular message (Alice has sent the
correct hash value). In order to guard herself against possible attacks or misuse
of her message (e.g., sending the same bank transaction request twice), Alice
should also include a timestamp or some other unique value into her documents
before she signs them. If the message should also be secret, Alice first appends
her signature to the plaintext message and then encrypts the complete message
(including her signature) with Bobs public key.

The american standard DSS (Digital Signature Standard) [FTP00] describes
a method which uses SHA-1 for computing the hash value and a public key
cryptosystem to compute two values from the hash and the private key. These
are transmitted as the signature. The receiver can verify the signature by using
the public key.

In general, signatures or hash functions which are based on shared secret keys
are called Message Authentication Codes (MACs). Since the value is based both
on the message and on a secret which is only known to the sender and the receiver,
an intruder cannot simply intercept the message, change it, and forge the hash
function for it. What is more, he cannot even try to change the message until it
has the same signature or hash function as the original message, because he does
not know how to compute it. Obviously, MACs guarantee both the integrity of
the message as well as the authenticity of the sender, provided that the secret
key is only shared between the sender and the receiver.
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B Some Protocols

The most important attack types on protocols are

Denial of Service (DoS): This attack tries to cause the server to deny its ser-
vice to a legitimate user. A typical way to achieve this goal is to flood the
server with bogus messages. A more subtile method would be to replace the
message from a legitimate user with a fake message that causes the server
to abort the protocol run, or to send additional messages with this result.
Normally, denial-of-service attacks are not considered in security analyses,
possibly because they are very hard to prevent, especially if the intruder is
assumed to have full control over the network.

Message Replay: The intruder takes a message sent by a legitimate user (Alice)
during a previous protocol run and replays it in a current run. The aim is
to reuse information of the old message so that the current communication
partner (another legitimate user Bob) accepts it as a valid message in the
current run. Bob should possibly be tricked into believing he is talking
to Alice instead of the intruder. In any case, he should conclude that the
intruder knows more information (secrets) than is the case.

Parallel Session: Here, the intruder opens a session with two legitimate users
(Alice and Bob) at the same time and uses the messages from Alice to reply
to challenges from Bob. The effect is much the same as in the message-
replay attack, Bob will believe he is talking to Alice instead of the intruder.
However, the intruder can use the parallel session with Alice to dynamically
react to a challenge from Bob (he challenges Alice and sends her reply to
Bob). The attack type is also called man-in-the-middle attack.

Timing Attack: Any protocol that uses timestamps as nonces is susceptible to
suppress-replay attacks, where the message from a node with an overly fast
clock is suppressed by the attacker until the timestamp becomes valid and
is then replayed.

In the following sections, we describe some commonly used security protocols.
To allow comparison of different algorithms, we will list the number of messages
they need. Generally, we feel that an algorithm which uses few messages presents
less opportunity for attacks than an algorithm with many messages, although of
course this also depends on the nature and contents of the messages. See [Gon95|
for lower bounds on the number of messages required for authentication algo-
rithms. We will also list how many encryption operations each algorithm requires.
Encryption operations can be exploited to launch denial-of-service attacks.
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B.1 CCITT X.509

Goals: Authentication
Messages: 4
Encryption: 2 (2)

The CCITT X.509 authentication protocol, which is a standard, has been
analysed in [GS91]. The paper only analyses the “two-way strong authentication”
mode of the standard (the other modes would be one-way and three-way). This
mode of the protocol needs two clients A and B and a certification authority (CA)
which signes certificates for A and B. The certificate for a user A which has been
issued by I basically contains the names of A and I, a duration, the public key of A,
and it is signed by L, i.e., Cy = (1,9, A, P4)r. The clients exchange signed tokens
which contain the name of the receiver, a timestamp and duration, a random
number generated by the sender, and optionally some signed data encrypted with
the public key of the receiver, so G4 = (ta, Ra, B, sgnData, E(pp, encData)) 4
and Gp = (tg, Rp, A, Ra, sgnData, E(pa,encData))g. The protocol exchanges
the following messages:

1. A—>CA:A,B

2. CA = A: Cy4, Cp
3. A—> B:Cy, Gy
4. B—+ A: Gp

Message 1 is a request for certification. In Message 2, the CA forwards to A
both A’s and B’s certificates, which are both signed by the CA and which have
a limited validity (due to the lifetime 6). A checks the signature of the CA on
Cp and if it succeeds, it sends its own certificate along with its token G4 to B in
Message 3. B checks the signature of the CA on C4, then checks A’s signature
on G 4. If the checks succeed, B processes the contents of the token. B replies in
Message 4 with its own token G g, which is likewise checked by A. Note that this
message is linked with Message 3 by including A’s random number R4 into the
reply.

According to [GS91], the goals of CCITT X.509 are:

e After a run of the protocol, both A and B should believe they have a valid
public key of the other.

e Both A and B should believe that the token they have received has recently
been sent by their peer.

e Both A and B should believe that the are legitimate receivers of the respec-
tive token.
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e Optionally, they should believe that their peer believes the sgnData part
of the token.

e Optionally, they should believe in the mutual secrecy of part of the token.

The authors of [GS91] can prove the first four goals, but not the last one.
The reason is that neither A nor B provide any knowledge about the value of the
secret.

Like Kerberos, CCITT X.509 also depends on synchronized clocks. Therefore,
the remarks concerning the vulnerability of Kerberos in case of clock faults also
hold for X.509.

B.2 Diffie-Hellman

Goals: (Shared) Key Exchange
Messages: 2
Encryption: 0

The Diffie-Hellman [DH76] key exchange protocol has been in use for some
decades now. It can compute a shared secret key between two parties, see [Sch96,
p. 513ff.] for a good overview. The protocol assumes that two parties select a
large prime n and some value g that is primitive mod n. These two values are
public knowledge. To establish a common shared key, Alice resp. Bob each select
a large random number z resp. ¥ and exchange the following information:

1. A—B: X=¢"modn

2.B—=>A: Y=¢gmodn

Since k = Y* = X¥ = ¢*™, Alice and Bob now share a key £ than cannot be
computed by anyone else. The method relies on the fact that it is a lot easier
to compute the exponent than it is to calculate the discrete logarithm in a finite
field. However, n should be chosen well, it must be large and (n — 1)/2 should
also be a prime.

The algorithm can easily be extended for communication among groups by
adding more rounds, see [Sch96, p. 514]. Better algorithms that minimize the
number of rounds and the amount of computations can be found in [STW96].

Note that the algorithm is open to parallel session attacks, since Alice and
Bob are not authenticated.
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B.3 Kerberos

Goals: Authentication, Accounting, Authorization
Messages: 2 + 4
Encryption: 2 + 5

One of the most well-known protocols is Kerberos [NKT00], which is a
shared key protocol. Its goals are authentication, accounting and authorization.
In [BP98], Kerberos Version IV is described and analysed. Kerberos consists of
two principals and two trusted third parties, the Kerberos Authentication Server
(Kas) and the Ticket Granting Server (Tgs). Upon login, a principal obtains an
authorization key AuthKey from Kas, which has a limited lifetime. After the key
expires, the principal is automatically logged out. In order to use the remote
service of some principal B, a principal A has to ask the Tgs for a service key
ServKey, which has again a limited lifetime. With this key, A requests a service
from B. The messages necessary for completing the protocol are as follows:

1. A — Kas: A, Tgs, Tal
2. Kas — A: {AuthKey, Tgs, Tk, {A, Tgs, AuthKey, Tk} xtgs}ra

3. A — Tgs: {A, Tgs, AuthKey, Tk} kg5, {A, Ta2} authicey, B
4. Tgs — A: {ServKey, B, Tt, {A, B, ServKey, Tt} s} authicey
5. A — B: {A, B, ServKey, Tt} ks, {A, Ta3}servicey

6. B — A: {A, Ta3+1} seroxey

The first two messages are issued only once, during the login phase. The
AuthKey is valid for a given time, after which A is automatically logged out.
Messages 3 and 4 are exchanged whenever A needs to use the service of some
remote principal B. A gets a ServKey, which is again valid for a certain time,
and a ticket encrypted with B’s key. With this information, A contacts B to
request the service and B sends back an acknowledgement (messages 5 and 6).
Kerberos uses the Data Encryption Standard (DES) for encryption, a symmetric
cryptographic method using just one key for both en- and decryption.

As pointed out in [BP98|, leakage of the AuthKey results in compromisation
of the ServKey. This can be a problem if the lifetime of the ServKey is longer
than that of the AuthKey and the latter is obtained after it has expired. The
spy can then decrypt message 4 and obtain the server ticket to request services
in the name of A. As a solution, the authors propose to limit the lifetime of the
ServKey to that of the AuthKey.

Obviously, Kerberos requires synchronized clocks to make use of the times-
tamps and lifetimes sent with the messages. In [Gon92], it is shown that Ker-
beros is vulnerable to attacks based on faulty clocks. The scenario describes a
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suppress-replay attack during which the post-dated Message 1 from a client with
a fast clock is suppressed, kept until the timestamp has been reached, and then
replayed, prompting the server to accept the message as valid.

Kerberos V enhances version IV by fixing some known deficiencies [BM91].
But it also introduces new problems: Tickets can now be forwarded, allowing
clients to use services that are depending on other services. However, this feature
causes the problem of cascading trust: A may trust B, and B may trust C, but
this does not imply that A trusts C. However, since the originator of a forwarded
message is unknown, A may get requests from C without knowing it.

B.4 Needham-Schroeder

Goals: Authentication
Messages: 7
Encryption: 3 (2)

The Needham-Schroeder protocol uses public keys and a trusted authority is
required to send these public keys to the users. The original protocol had a flaw
which has been pointed out by Lowe [Low96]. Another flaw has been found by
Meadows [Mea96]. The following version already incorporates the fix proposed
by Lowe, which also repairs the flaw found by Meadows. A stronger version using
authentication has been suggested by Boyd [Boy97].

1. A—S:B

2. S — A: {Kp, B}Kgl

3. A — B: {Ny, Abg,

4. B—S:A

5.5 = B {Ku, A}jeon

6. B — A: {N4, Ny, Blx,
7. A - B: {Ng}xk,

Alice requests Bob’s public key in message 1 and receives it (signed by the
trusted authority) in message 2. She then sends a nonce and her name to Bob,
who in turn obtains Alice’s public key in messages 4-5. Bob then replies with
Alice’s nonce, his own one, and his name, in message 6, and Alice completes the
protocol by returning Bob’s nonce in message 7. After the run, both parties are
certain about the identity of their peer.
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We note that the algorithm strongly depends on the security of the link to
the CA. Assume that there is an intruder [ sitting between S and A. Then I can
send any {Kg, B} k! Message S has ever sent and suppress recent messages from
S. If I knows some old key Kpg, it can send that key to A in message 2 and is
then able to read everything sent by A. Likewise, it can give B an old known key
K4 in message 5 and is then able to read everything sent by B. This will continue
until a message from S containing the current keys comes through.

The algorithm in fact consists of two parts, the retrieval of the public keys
from the CA in messages 1-2 and 4-5, and the authentication in messages 3 and
6-7. Message 3 can be sent by anyone, but if the keys used are fresh, then the
sender can be assured that only B can read the message and the nonce N4.
Message 6 can only have been sent by B because it includes N4, and the nonce
Np contained in it can only be read by A. After this message, A knows that B
has received the communication request and is willing to communicate with A.
Message 7, finally, can only have come from A, so now B knows that it really is
A that wishes to talk.

I presume that the nonces should be included in the following data exchange
as well if the peers want to be sure that the exchange is linked to this particular
session.

B.5 Neuman-Stubblebine

Goals: Authentication
Messages: 4 + 3
Encryption: 4 + 3

The Neuman-Stubblebine protocol [NS93] has been analysed in [HLL95] and
two attacks have been described. The protocol provides mutual authentication
and uses timestamps as nonces. It needs less messages than protocols using
nonces based on random number, but does not depend on synchronized clocks
like timestamp-based protocols. It only requires that all servers have a local clock.
The protocol is parted into an initial authentication during which a session key is
established, and a subsequent authentication in which communication is started.
In the following description, Nx is a nonce generated by principal X, Kxy is a
secret key shared between the principals X and Y, and Ty is the expiration time
suggested by principal X. This is the corrected version of the original protocol.

1. A= B: A, Ny
2. B— S: B, (A, N4, Ng, Tg)kps

3. S — A: (B, NA, KAB, TB)KAS) (A7 KAB’ TB)KBS7 NB
4. A — B: (A, Kag, Ts)kys: (NB)

Kap
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In the initial authentication, Alice sends a request to Bob in message 1. She
includes a nonce to identify answers to her request. Bob, who like all principals
has a secret key Kpgg for communication with the authentication server S, sends
Alice’s name and nonce, together with an expiration time and a nonce of his own,
to the authentication server in message 2. The server generates a new session key
K 4p and forwards this key to Alice in message 3, together with a ticket for Bob.
In message 4, Alice sends the ticket to Bob, together with his nonce which she

encrypts with the new session key. This assures Bob that message 4 came from
Alice.

1. A — B: NAl; (A, KAB; TB)KBS
2. B— A: (NAl, NBI)

Kap

3. A - B: (NBI)

Kap

In the subsequent authentication, Alice requests the communication by send-
ing Bob a new nonce and his ticket. Bob replies by encrypting Alice’s nonce with
the session key (this assures Alice that message 2 came from Bob) and by sending
a nonce of his own. In message 3, Alice encrypts this nonce with the session key,
thus proving her identity to Bob.

B.6 SKIP

Goals: Shared Key Exchange (together with data exchange)
Messages: 1
Encryption: 2

A Simple Key-Management for Internet Protocols (SKIP) is proposed
in [AP95]. The protocol is intended for connectionless datagram communica-
tion and like the protocols in [LL95] it assumes that every user I has secret ¢ and
a public key ¢* mod p, so two users I and J share the secret ¢” mod p from which
they can compute a common master key K;;. When Alice wants to send Bob a
message, she generates a random packet key Kp, encrypts her message with it,
and sends the encrypted message together with Kp, which is encrypted with the
master key K . The protocol requires only one message, which already contains
the data that should be sent:

1. A= B: A B, (Kp)k,5, (Message) gk,

Only Bob can compute the shared key K45 and can thus extract the packet
key Kp. Alice is free to change the session key as often as she likes. The authors
suggest that the shared secret key K45 should be changed as well. They propose
not to use Kp itself, but to use keys Kap, = h(Kap,n), where h is a suitable
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hash function and n is a monotonically increasing value that is transmitted with
every message.

The protocol can be extended to multicast communication, where a group in-
terchange key (GIK) takes the role of the shared secret key. The GIK is managed
by the owner of the group, and every new member uses the unicast version of
SKIP to send a request to the owner, which checks the access rights of the new
member and then sends it the GIK. As in the unicast version, every member of
the group uses random keys to encrypt their packets, which makes the protocol
harder to analyse.

B.7 SPLICE/AS

Goals: Authentication
Messages: 2 + 6
Encryption: 2 + 5

As an alternative for Kerberos, which does not scale well due to the large
amount of shared keys that have to be managed, the SPLICE/AS protocol has
been proposed for large systems. It is very similar to Kerberos and also provides
authentication, but achieves it with a public key cryptosystem. In [HC95], the
protocol is analyzed and two flaws of the original proposal are pointed out and
corrected. The protocol has two parts, a login and a service request. In the
following description, C is the client, S the server, AS the authentication server,
PKx the public key of user X, SKx the private key of user X.

1. C— AS: C, (C, AS, nonce) pw,,
2. AS — C: AS, (C, AS, nonce, PKc, SKc, PKAS)PWC

During the login, the client uses her password to (symmetrically) encrypt the
request to the AS. The AS replies with a public/private key pair for the client
and with its own public key. All following service requests use an asymmetric
encryption scheme and require the following messages:

1. C = AS: C, S, nonce;

2. AS — C: AS, (AS, C, noncey, S, PKg)sk s

3. C—S: C, S, (C, timestamp, life, (nonces) px) sk,
4. S — AS: S, C, nonces

5. AS — S: AS, (AS, S, nonces, C, PK¢)sk,q

6. S— C: S, C, (S, nonces+1) px,
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The client gets the public key of the server from the authentication server
(messages 1 and 2), then requests the service in message 3. The server obtains
the public key of the client in message 4 and 5, and then replies to the request
in message 6. The advantage of this protocol is that the authentication server
only has to manage one pair of public/private keys for each user, whereas in
Kerberos every service request requires a new shared key. Another advantage is
that service requests in SPLICE/AS do not need the AS if the client and the
server do already know the public keys of their peers.

B.8 TLS

Goals: Authentication, Secrecy
Messages: 8 (6 without optional ones)
Encryption: 2 (1 without optional ones)

The Transport Layer Protocol (TLS) [DA99] is a descendant of SSL 3.0 and
is used for Internet security. In [Pau97], it is analysed with the Isabelle theorem
prover. TLS has been designed to protect transmissions. Its goals are authenti-
cation and secrecy. The protocol allows two parties, Alice and Bob, to exchange
nonces and compute session keys from them. With the final message, both par-
ties should be sure that they are communicating with each other, that they have
both agreed on the same set of critical parameters (like the nonces), and that
the following transmission will be secret. Paulson states that the protocol is very
complicated and has many options. He has chosen the following version of the
protocol for his analysis:

1. A = B: A, Ny, Sid, P4

2. B — A: Ny, Sid, Pp

3. B — A: certificate(B, Kp)

4. A — B: certificate(A, K4) (optional)

5. A — B: (PMS)gk,

6. A — B: (Hash(Ng, B, PMS))K; (optional)
7. A — B: (Finished)gicntk (V4N 5,M)

8. B — A: (Finished)semerK(NA’NB,M)

In Message 1, Alice sends a client hello message to B, containing her name, a
nonce N4, an arbitrary session identifier Sid, and her preferences for encryption
and compression P4. Bob replies with a server hello message containing his
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nonce, the session key, and his own preferences. Bob also sends his public key
certificate in Message 3. Optionally, Alice can send her own certificate to Bob
to authenticate herself. Alice then computes a Pre-Master Secret (PMS) and
sends it to Bob encrypted with his public key in Message 5. Optionally, Alice
may also send a hash of the important data, signed with her own private key.
Both parties use this value and the nonces to compute a master secret M and
calculate session keys from the nonces and M. Before sending application data,
both parties exchange Finished messages (7 and 8) to confirm the details of the
handshake. Tampering will be noticed at this point.

Paulson’s analysis in [Pau97] comes to the result that the basic protocol goals,
which are

1. The peer’s identity can be authenticated.

2. The negotiated secret is unavailable to eavesdroppers, and for any authen-
ticated connection the secret cannot be obtained, even by an attacker who
can place himself in the middle of the connection.

3. No attacker can modify the negotiation communication without being de-
tected by the parties.

can all be proved. However, he suggests to change Message 5 to (A, PMS) k, to
ensure B that the PMS came from Alice. For Message 6, the TLS specification
states that the server’s name and nonce should be hashed. However, analysis
suggests that the pre-master-secret is also necessary.

B.9 Wireless Protocols

There are also some protocols which are written specifically for wireless systems.
A wireless environment is special because eavesdropping is a lot easier and cannot
be detected. In addition, mobile computers typically have less computing power,
are not always online, and may change their position. This makes it harder to
provide authentication and secrecy to the users. Note that normally a “wireless”
system denotes a system where there are both mobile and stationary principals.
The stationary computers are connected to a wired network, and only some of
them, so-called base stations provide access points to the wireless part of the
network.

In [BM98], several key establishment protocols for a wireless system are sur-
veyed and flaws are pointed out. An authentication and key exchange protocol is
presented in [AD94]. The authors state that a wireless network is often added
to an existing wired one and should be seamlessly integrated. To achieve this
goal, security mechanisms have to concentrate on securing the wireless link it-
self, instead of aiming for end-to-end security. This ensures that adding wireless
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components and the security mechanisms specifically tailored for them will not
require modifications on most nodes on the wired network. Dedicated base sta-
tions are the link between the wireless and the wired network, and mobile stations
communicate directly with them.

The protocol suggested by the authors needs three messages:

1. M — B: Cert(M), Ny, alglist

2. B— M: CeI‘t(B); {RNI}PM7 Sela‘lg: {h({RNl}PM’ Selalg’ NM’ algliSt)}P§1
3. M — B: {RNy}p,, {h({RN;}p,,, {RNQ}PB}PA_/II

In message 1, the mobile sends its public key certificate, a nonce, and a list
of possible shared-key algorithms to the base station. The base replies with its
own certificate, a random number, the selected algorithm, and its signature on
a hash of these three items plus the original list of algorithms. This ensures
the mobile that the message has come from the base and is in reply to its own
message. In message 3, the mobile sends another random number RN, and its
own signature on both RN; and RN,. The signature serves for the base as an
authentication of the mobile. If the protocol run completes, then the shared key
used for the subsequent data transfer is computed by RN; & RN,. This ensures
that an intruder would have to compromise the keys of the base and the mobile
to obtain the key for the data transmission.

The authors have analyzed their protocol using BAN logic and have proven
that at the end of the protocol, both the mobile and the base believe that the
shared key they have computed is a good key for communication between them.

Lin and Harn [LH95] focus on mutual authentication and key exchange in
wireless networks with roaming mobile stations. They claim that established
standards like GSM and DECT do not incorporate sufficient protection against
masquerading and propose new protocols which are better suited to the needs
of roaming stations. Their protocols provide mutual authentication between the
roamer and the visited network and do not require the network to store sensitive
data which might be compromised. The protocols use public key encryption only
sparingly and ensure that the roamer, which is a mobile station without much
computing power, only has to perform simple computations.

B.10 Other Protocols

Many papers propose protocols to solve special problems. Their basic ideas are
often used by larger protocols.

In [LL95], five protocols which combine mutual authentication with secret key
exchange are described. There must be a trusted authority to publish some global
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data (like public keys, prime numbers p and ¢ which have certain properties) and
to issue private data (like the secret key) to the users. So all users know the public
key P, = g~ of any user 7, and only user 7 knows his or her secret key S;. Apart
from this initial information exchange between the user and the trusted authority,
it is not needed. The protocols are based on the intractability of computing the
discrete logarithm over a finite field. They use random numbers to compute the
secret key. For example, the first protocol, which is the simplest but which needs
encryption to work, exchanges the following messages:

1. A — B: Ex(R4), where R, is a random number.

2. B— A: Ex,(A, Rp), where Ry is again a random number and the key Kp
has been computed from R4 and K with Kp = K ® Rs.4

3. A — B: Ex,(R4), where Ky = K& Rp.

The key K used in encrypting the first message is computed by both parties
from a master key K, = PjB = Pg*‘ = ¢g~54*58 mod p using a suitable one-way
function. Since only user A knows the secret key S, and only B knows Spg, both
users can be certain that the random numbers must have come from the correct
peer. Only B could have known how to compute Kz in message 2, and only user
A was capable to compute the right K4 for message 3. So after the message
exchange, both users know that the random numbers must have come from the
correct peer, and can compute a session key Ks = R4 & Rp.

Gong [Gon89] presents an authentication protocol that uses one-way functions
to ensure secrecy. The protocol requires the existance of a trusted authority. In
the following protocol, P4 and Pg are Alice’s and Bob’s passwords which they
share with the server S, NV; is a nonce generated by principal 7, and f and g are
two one-way functions.

1. A > B: A, B, Ny,

2. B —S: A, B, Ny, Np

w

S — B: NS; f(NSa NBa Aa PB)@(k; HA, HB); g(ka HA; HBa PB)
4. B - A: Ns, HB

5. A — B: Hy

In message 1, Alice initiates a conversation with Bob. Bob sends the request
to the server in message 2. The server generates a nonce Ng and computes

4The @ denotes the bit-wise exclusive-or operation.
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(k,Ha,Hp) = f(Ng, N4, B, P4). In the triple, k is the secret to be shared be-
tween Alice and Bob, Hy and Hp are handshake numbers. The server then
computes f and ¢ and sends it back to Bob in message 3. Bob computes
f(Ns, N, A, Pg) to retrieve (k, Ha, Hg) and computes g to check that the mes-
sage has not been tampered with. Since Pg has been used in the computation,
Bob can be sure that the message has come from the server. The message must
also be fresh because it included Np. Bob now sends Ng and Hp to Alice in
message 4. Alice now computes f(Ns, Na, B, Pa) to get (k, Ha, Hg). If her Hp
matches the one Bob sent her, she deduces that she has received k correctly. She
acknowledges this in message 5 by sending H 4.

B.11 Comparison

The following table compares the protocols we have described in the previous
sections. It shows the design goals of the protocols.

‘ Protocol H Acc ‘ Authen ‘ Author ‘ Integ ‘ Secr ‘
CCITT X.509 [GS91] Y
Diffie-Hellman
Kerberos [NKTO00], [BP98] | Y
Needham-Schroeder
Neuman-Stubblebine
SKIP

SPLICE/AS

TLS [DA99|

R R <

Y

This table compares the requirements of the protocols. Here, TA stands for
trusted authority, SS for shared secret, CS for clock synchronization, ES for
encryption scheme.

Note that the Neuman-Stubblebine protocol uses timestamps, but does not
require synchronized clocks.

| Protocol [ TA|SS|CS| ES |

CCITT X.509 Y | N | Y | asym.
Diffie-Hellman

Kerberos Y | N | Y | sym.
Needham-Schroeder asym.
Neuman-Stubblebine || Y | N | N | asym.
SKIP N|Y | N | sym.
SPLICE/AS Y | N | N | asym.
TLS N | N | N | asym.
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