
���������	��
�����
�����
��������������������������
�� �!
��������"���#�$�&%'�(
���)*�$��+����(%'�,%
-/.10325456�7�0328.
9 456;:<.1=>7�6;?A@B ?C 6;.14

DFE�G3H"IKJMLMNOIPERQ	SPTULWVXEZY\[^]K_a`�[cb>[K[Ud
e�f>g�h$i>j�hlkXm�n3n^o

p qsr t5uvr txw t y z*{}| ~ �}���c� �/z*{5{�uvr
u�t�t��X��u�t�� � z�r � � ��w �*{�t � u�� z�t�z*{�u��

�1���������F�c���*���� F¡"¢£ ,¤�¥'¦�¦§�¨¢c¡ª©«¥��§¬�¬

�®�¯±°�®�²R³�´£µ1®�¯�¶#·¹¸ºµ^¶¼»¾½3»À¿ÂÁÄÃ®�ÅR²R¶�Æ�Ç�»;¶�ÁÈ²R»;´ÊÉ>´Â¶¼ÅRÅ�»À´lË�ÅRÆ�¸

TR 183/1-110, Dept. of Automation, TU Vienna, February 2001 (OBSOLETE – replaced by TR 183/1-124) Dec. 28, 2001

Consensus with Oral/Written Messages: Link Faults Revisited

ULRICH SCHMID, BETTINA WEISS

Technische Universität Wien
Department of Automation

Treitlstraße 1, A-1040 Vienna
Email: {s, bw}@auto.tuwien.ac.at

Phone: ++43-1-58801-18325, FAX: ++43-1-58801-18391

Abstract

This paper1 shows that deterministic consensus in syn-
chronous distributed systems with link faults is possible, de-
spite the impossibility result of (Gray, 1978). Instead of
using randomization, we overcome this impossibility result
by moderately restricting the inconsistency that link faults
may cause system-wide. Relying upon a novel perception-
based hybrid fault model that provides different classes of
faults for both nodes and links, we prove that the m + 1-
round Byzantine agreement algorithms OMH (Lincoln &
Rushby, 1993) and its authenticated variants OMHA, ZA
(Gong, Lincoln & Rushby, 1995) require

n > 2fs
` + fr

` + fra
` + 2(fa + fs) + fo + fm + m

n > 2fs
` + fr

` + 2(fa + fs) + fo + fm + m

n > fs
` + fr

` + fa + fs + fo + fm + 1

nodes for transparently masking at most f s
` broadcast and

fr
` receive link faults (including at most f ra

` arbitrary ones)
per node(!) in each round, in addition to at most fa, fs,
fo, fm arbitrary, symmetric, omission, and manifest node
faults, provided that m ≥ fa + fo + 1. If signatures are
broken, OMHA degrades to OMH, whereas ZA can be made
tolerant to fb broken signatures by increasing fa accord-
ingly. An analysis of the assumption coverage in systems
where links fail independently with probability p reveals
that adding nodes for tolerating link faults yields a van-
ishing probability of violating the fault model as long as
np < 1. A number of theoretical results, including tight
lower bounds for the number of nodes in presence of link
faults and a precise characterization of what makes a node
fault Byzantine, establish a sound theoretical foundation for
our framework as well.

Keywords: Fault-tolerant distributed systems, fault mod-
els, link faults, consensus, Byzantine agreement, authenti-
cation, impossibility results, lower bounds.

1This research is part of our W2F-project, which targets a wire-
line/wireless fieldbus based upon spread-spectrum (CDMA) communica-
tions, see http://www.auto.tuwien.ac.at/Projects/W2F/ for details. W2F is
supported by the Austrian START programme Y41-MAT.

1 Motivation

Although process2 fault models, like the one that at most
f of the n nodes of a distributed system may be faulty dur-
ing a particular execution, have always been applied most
successfully in the analysis of fault-tolerant distributed al-
gorithms, they do have limitations. In fact, given the steadily
increasing dominance of communication over computation
in modern distributed systems, it becomes increasingly dif-
ficult to apply fault models that capture only node faults.

Indeed, due to the high reliability of modern processors,
communication-related faults like receiver overruns (run out
of buffers), unrecognized packets (synchronization errors),
and CRC errors (data reception problems) in high-speed
wireline and, in particular, all sorts of wireless networks are
increasingly dominating node faults. Such link faults3 occur
on the communication channel or in the network interface
and can cause any data packet to be lost or even faulty. The
resulting error, however, cannot reasonably be attributed to
the innocent sender node. Declaring the receiver node as
faulty would be overly conservative either, since a packet
error does not usually imply a node failure (after all, its pro-
cessor executes the particular algorithm correctly). Conse-
quently, link faults should be a category of their own in a
more realistic fault model.

Unfortunately, we do not know of any fault model for
synchronous systems that adequately captures both node
and link faults. We will hence provide a suitable one in
this paper, which is a generalization of the perception-based
fault model developed in [28] for single round (approxi-
mate) agreement algorithms. Belonging to the class of hy-
brid fault models, it will distinguish different types of node
and link faults to ensure maximum fault-tolerance degree
under realistic operating conditions, something that is par-
ticularly important for small n.

Still, there is a discouraging general impossibility result
for deterministic consensus in presence of link faults, which

2We will use the term node instead of the more abstract term process
throughout this paper.

3Since sender-caused link faults, which affect more or less all the re-
cipients, can reasonably be considered as node faults, we will use the term
link fault exclusively for those that affect a single message reception only.

1

goes back to Gray’s 1978 paper [12] on atomic commitment
in distributed databases:

Theorem 1 (Gray’s Impossibility [16, Thm. 5.1]) There is
no deterministic algorithm that solves the coordinated at-
tack problem in a synchronous two-node system with lossy
links.

Due to this result, almost all the work on deterministic
consensus developed during the past 20+ years deals with
node faults only. Link faults have been addressed by ran-
domized consensus algorithms like the one of [35], how-
ever, which circumvent the impossibility result by adding
non-determinism (coin tossing) to the computations. Still,
apart from sacrificing the simplicity of—and compatibility
with—deterministic solutions, randomized algorithms are
not suitable for all applications due to the inherent non-zero
probability of failure/non-termination within a fixed num-
ber of rounds.

In order to save deterministic algorithms, one must ad-
dress the question of whether and how some of the pivotal
assumptions of the impossibility result could be relaxed.
The present paper is the first one to show that this can in-
deed be done: If the power of link faults is moderately re-
stricted with respect to the inconsistency that they might
cause system-wide, (most) existing consensus algorithms
can be made resilient to a large number of link faults if the
number of nodes n is increased appropriately. We will es-
tablish detailed formulas for the family of Hybrid Oral and
Written Messages algorithms4 for Byzantine agreement and
show that they are optimal. The correctness of our proofs
has rigorously been justified by means of a formal verifica-
tion using PVS in a companion paper [23]. An analysis of
the assumption coverage in systems where links fail inde-
pendently with probability p reveals that our approach in-
deed decreases the probability of violating the fault model
if np < 1. Therefore, our algorithms can reasonably be
employed even in wireless systems, where link loss proba-
bilities up to p = 10−2 are common.

The remaining sections of our paper are organized as fol-
lows:

• Section 2: Generalization of the perception-based hy-
brid fault model of [28] to the consensus framework.

• Section 3: Analysis of the Hybrid Oral Messages al-
gorithm (OMH) of [15].

• Section 4: Introduction of authentication issues for
the Hybrid Written Messages algorithms OMHA and
ZA of [11].

• Section 5 and 6: Analysis of OMHA and ZA, respec-
tively.

4Note that we are aware of the fact that those algorithms suffer from
an exponential number of messages. Given that they are hybrid instances
of the most well-researched algorithm [14] for Byzantine agreement, how-
ever, they are certainly the most suitable candidates for introducing our
fairly general approach. More efficient consensus algorithms are treated
in [8].

• Section 7: Analysis of the assumption coverage in
typical system architectures.

• Section 8: Discussion of some consequences of our
results, including the costs of tolerating link faults
(Section 8.1), OMHA’s and ZA’s behavior in case of
broken signatures (Section 8.2), and application in
systems with a broadcast network (Section 8.3).

• Section 9: Conclusions and directions of further re-
search.

2 Perception-based Fault Model

Deterministic fault models, like the one that at most f
nodes may behave Byzantine in each execution, usually rest
upon the total number of faults in the entire system. Chan-
nel or receiver-originating link faults, however, are difficult
to accommodate in such models for synchronous5 systems:
The practical considerations of Section 1 suggest to grant
every receiver node its own budget of f` link faults per
round, which may hit any of the incoming links. If those
link faults are simply mapped to (sender-)node faults, as in
the model of [11], however, this assumption would generate
many fault patterns where all f = n nodes must be con-
sidered faulty; Figure 1 shows an example for n = 4 and
f` = 1. This suggests that consensus is not solvable in this
model.

p1 p2

p3p4 p1 p2 p3 −
Perception vector V3:

Perception vector V2:
− p2 p3 p4

in a round)
(messages collected by p2

(messages collected by p3)

f` omissions/node

Figure 1. Example of a 4-node system with f` = 1
receive faults per node in each round, where all nodes
must be considered faulty in existing fault models.

A similar argument applies to the more detailed send/rec-
eive-omission fault model of [19], where receive omissions
are mapped to receiver node faults. Although it has been
observed in this paper that only the number of nodes that
commit a send omission (but not the number of nodes com-
mitting a receive omission) needs to be counted in f , agree-

5Note that it is relatively easy to handle link faults in asynchronous
systems satisfying the “fair loss” property: If sending an infinite number
of messages over a link causes an infinite number of messages to be re-
ceived, a perfect link can be simulated by suitable retransmission schemes,
see e.g. [3, 7, 39]. Clearly, this approach cannot be used in synchronous
systems without unduly increasing the duration of the rounds, according to
the maximum number of successive message losses that are to be tolerated.

2

ment has only been shown to hold for a node that did not
commit either type of fault. Hence, in the example of Fig-
ure 1, no node would remain that could be guaranteed to
reach agreement.

In both models, the situation gets worse by the fact that
the f` receive omissions of a single receiver node could hit
different inbound links in different rounds of the execution.
Since node faults are usually considered persistent during
an execution, the “exhaustion” of non-faulty nodes would
progress rapidly with every round, which makes any attempt
to solve consensus in such models even more hopeless.

In this paper, however, we will show that the resilience of
consensus algorithms is much better than the above discus-
sion suggests: For example, Theorem 4 will establish that
ZA solves Byzantine agreement in the above setting (where,
in addition to node faults, every node may lose messages
from up to f` arbitrary senders per round), provided that the
number of nodes n0 required for masking node faults is in-
creased by 2f` (and one round is added); ZA would easily
achieve consensus among all nodes—viewed as receivers—
in the example of Figure 1.

Since f` could be as much as O(n), any of our algo-
rithms can cope with an impressive number of O

(

(m +

1)n2
)

link faults in the system during the whole execution.
This dramatically outperforms the b(n − 2)/2c = O(n)
result of the few instances of related work on Byzantine
agreement under link faults [20, 24, 32] known to us, which
basically relies upon the well-known 2f + 1 connectivity
lower bound of [9]. Note that our result reveals that Byzan-
tine agreement algorithms can in fact cope with about the
same number O(n2) of link faults as leader election algo-
rithms [2, 31], without, however, sacrificing the ability to
deal with Byzantine faulty nodes.

The key to our results is a perception-based hybrid fault
model for synchronous systems, which is a generalization
of the one introduced for our analysis of clock synchroniza-
tion and single-round agreement algorithms in [27, 28]. In
this model, the global, i.e., system-wide, number of faults
is replaced by the number of faults that are observable in
the nodes’ local “perceptions” of the system. Formally,
node r’s perception vector

Vr = (V 1
r , V 2

r , . . . , V n
r), (1)

is considered, where every perception V s
r ∈ Vr represents

the message node r received from node s in some specific
round; type and value(s) depend upon the particular algo-
rithm considered. For approximate agreement algorithms,
for example, the V s

r are real values that represent the re-
ceiver’s opinion about the sender’s local value V s.

In case of the single-round algorithms analyzed in [27,
28], we found it sufficient to just impose a bound upon the
maximum number of faults in any pair of perception vec-
tors {Vp,Vq}, i.e., p’s and q’s lines in the “matrix” of per-
ceptions on the right-hand side of

V1 = (V 1
1 , V 2

1 , . . . , V n
1)

V2 = (V 1
2 , V 2

2 , . . . , V n
2)

...

Vn = (V 1
n , V 2

n , . . . , V n
n).

Recalling the example from Figure 1, it is apparent that any
two perception vectors can differ only in at most 2f` = 2
perceptions, namely, the ones where either receiver node
experienced its omission. Moreover, only at most f` = 1 of
the non-faulty perceptions present at some non-faulty node
can be missing or faulty at any other non-faulty node. Last
but not least, since f node faults can produce at most f
faulty perceptions in any Vr, our perception-based model
is compatible with traditional node fault models. Hence, all
existing lower bound and impossibility results remain valid.

Depending upon the type of the fault of a perception,
e.g., missing or value faulty, several different classes of
faults (manifest/omission/symmetric/asymmetric)can be dis-
tinguished. This leads to a hybrid fault model [5, 6, 15, 17,
22, 26, 29, 32, 34, 36, 37], which allows to exploit the fact
that less severe faults can be handled with fewer nodes than
more severe ones. For example, it will turn out that mask-
ing f symmetric faults requires only n ≥ 2f + 1 nodes,
whereas n ≥ 3f + 1 is needed if all faults are asymmet-
ric (Byzantine) ones. Since a large number of asymmetric
faults is quite unlikely in practice, this effectively leads to a
smaller n for tolerating a given number of faults. This, in
turn, has a positive effect upon dependability by reducing
the number n of components that could be faulty, cf. [21].
System designers will hence appreciate our very detailed
hybrid fault model for getting the maximum fault-tolerance
out of a given—and usually quite small—n. Obviously, an
algorithm’s node requirements in standard models (like all-
Byzantine) are easily6 obtained by setting some model pa-
rameters to 0.

For Srikanth & Toueg’s consistent broadcasting primi-
tive [33] in asynchronous systems, for example, our analy-
sis in [28] revealed that

n ≥ 4fia + 3fa + 2(fs + fis + fo + fio) + fm + 1

nodes are sufficient for tolerating at most fm, fo, fs, fa

crash, omission, symmetric, and arbitrary node faults and
fio, fis, and fia additional omission, symmetric, and arbi-
trary link faults per receiver node.

In view of these encouraging results, it was natural to
consider the question of whether a perception-based fault
model can also be used to attack deterministic consensus
in presence of link faults. More specifically, as the gen-
eral problem is unsolvable by Theorem 1, one might ask
whether there is a meaningful restriction of the power of
link faults that can be expressed in a perception-based man-
ner. And indeed, there is a suitable perception-based fault
model that allows e.g. consensus with oral messages [14]

6Note, however, that the general hybrid analysis might be too conser-
vative for certain restricted cases, see Remark 2 on Theorem 2 for an ex-
ample.

3

even in wireless systems with high link failure rates, see
Section 7. Recalling the “matrix” of perceptions above, it is
based upon limiting both

1. the number of columns with wrong perceptions in any
single line, which puts a limit upon the number of
sender nodes that may appear faulty to a single re-
ceiver (already employed in [28]), see Figure 2,

Node 1

Node n

Node q

Node p

(send)

(send)

(send)

(send)

(recv)

Node r

... faulty

Vr = (V 1

r , . . . , V p

r , V q

r , . . . , V n

r)

Figure 2. Example of a receive fault that involves the
messages from two senders.

2. the number of lines with wrong perceptions in any
single column, which puts a limit upon the number of
receiving nodes that may obtain a wrong (or no) mes-
sage in the broadcast of a single sender, see Figure 3.

Node n
(recv)

(recv)

Node p

(recv)

Node q

Node 1
(recv)

Node s

... faulty

(send)

V1 = (V 1

1 , . . . , V s

1 , . . . , V n

1)

Vp = (V 1

p , . . . , V s

p , . . . , V n

p)

Vq = (V 1

q , . . . , V s

q , . . . , V n

q)

Vn = (V 1

n , . . . , V s

n , . . . , V n

n)

Figure 3. Example of a broadcast fault that affects
the messages to two recipients.

To align the present paper with the existing literature, the
above perception-based model is recast into a simple mod-
ification of the original oral messages assumption of [14].
Node faults will be modeled according to a generalized ver-
sion of the hybrid fault model of [15]. Our contribution here

is to add the important class of omission faults to the already
present manifest, symmetric, and arbitrary node faults. In
doing so, those frequently encountered faults [5] need not
be counted as arbitrary any more, which further decreases
the required number of nodes n (but see Remark 2 on The-
orem 2).

Definition 1 (System Model) We consider a distributed sys-
tem of n nodes interconnected by a fully connected point-to-
point network, which has the following properties:

(P1) In any execution, there may be at most fa, fs, fo,
and fm arbitrary, symmetric, omission, and manifest
faulty nodes.

• A manifest faulty node p produces (detectably) miss-
ing messages or a received value that all non-faulty
recipients q can detect as obviously bad; they all de-
liver the value V p

q = E in this case.

• An omission faulty node p may fail to send the correct
value V p to some of its receivers qi, which deliver
V p

qi
= E instead of V p in this case.

• A symmetric faulty node p sends the same wrong—
but not usually detectably bad—value Xp to every
non-faulty receiver. All receivers q deliver V p

q =
Xp—the value “actually sent”—in this case.

• An arbitrary (asymmetric) faulty node may inconsis-
tently send any value to any non-faulty receiver.

(A1s) If a single non-faulty node p broadcasts (= succes-
sively sends) a message containing V p to some set of non-
faulty or omission faulty receiver nodes R, at most f s

` of the
delivered values V p

qi
may differ from V p. Let fsa

` ≤ fs
` be

the maximum number of non-omissive, i.e., non-empty and
hence value faulty, V p

qi
among those.

(A1r) If all nodes pi ∈ S of a set of non-faulty sender nodes
send a message containing V pi to some non-faulty or omis-
sion faulty receiver node q, at most f r

` of the delivered val-
ues V pi

q may differ from V pi . Let fra
` ≤ fr

` be the max-
imum number of non-omissive, i.e., non-empty and hence
value faulty, V pi

q among those.

(A2) The receiver of a message knows who sent it.

(A3) The absence of a message from sender p can be de-
tected at any receiver q, which leads to V p

q = E for some
distinguished value E.

Remarks:

1. Assumption (A3) ultimately implies a synchronous
system, where all non-faulty nodes operate in lock-
step rounds. Any node’s round consists of some lo-
cal computation based upon the messages received
in the previous round, the broadcast of the resulting
messages to all nodes (including itself) in the system
(A1s), and the reception of those messages (A1r).

4

2. Our hybrid node faults can easily be mapped to the
standard terminology [4]: A clean crash is equivalent
to a manifest fault that reappears in every round af-
ter its first occurrence. A crash can be viewed as an
omission fault that reappears as a clean crash in every
round after its first occurrence. Finally, a send/receive
omission [19] is equivalent to our omission fault.

3. Faulty nodes must not change their fault mode, i.e.,
must be counted in fa, fs, fo or fm according to their
most severe behavior. A node that behaves symmetric
faulty in one round and omission or manifest faulty in
another should be considered arbitrary faulty.

4. A sender node that suffers from link faults according
to (A1s) is said to commit a broadcast fault, recall
Figure 3, whereas a receiver node that experiences
link faults according to (A1r) is said to commit a re-
ceive fault, recall Figure 2. Each node’s receive resp.
broadcast fault has its own “budget” f r

` resp. f s
` of

individual link faults, which are independent of node
faults, and the particular links actually hit are usually
different for any two message broadcasts resp. recep-
tions. Note that our model assumes links that are (vir-
tually) made up of a pair of unidirectional channels,
which can be hit by faults independently.

5. The model parameters f r
` and fs

` are not independent
of each other: If a message from node p to q is hit by
a fault in p’s message broadcast, it contributes a fault
in node q’s message reception as well. In fact, (A1s)
and (A1r) can only be guaranteed unconditionally if

fs
` ≤ fr

` and fsa
` ≤ fra

` , (2)

since at most n · f s
` messages may be faulty sys-

temwide in any round’s broadcasts according to (A1s).
By (A1r), they must be spread over all message re-
ceptions in a way that no node experiences more than
fr

` faulty messages. This is only possible if n · f r
` ≥

n · fs
` , because otherwise there would be at least one

message reception with more than f r
` faulty messages.

Note that (2) implies f r
` = 0 ⇒ fs

` = 0.

It also follows that, in case of f r
` > fs

` , only at most
bnfs

` /fr
` c nodes can experience a message reception

that exhausts its full budget f r
` of link faults. This in

turn shows that f r
` = fs

` is in fact the optimal choice,
although f r

` > fs
` also makes sense if an accumula-

tion of more than f s
` receive faults must be tolerated

at certain nodes e.g. for safety reasons. Note care-
fully, however, that we will treat f r

` and fs
` as inde-

pendent in the subsequent analysis (unless otherwise
specified).The analysis of our algorithms will confirm
that this assumption makes sense, see Remark 4 on
Theorem 2.

6. In (A1s) and (A1r), we assume that link faults hit
only messages from non-faulty senders/receivers. In

practice, however, it is more realistic to consider node
and link faults as being completely independent of
each other. It could then happen that a link fault hits
a message from a faulty node, which probably ends
up in a node fault of increased severity.

Fortunately, it can be shown7 that the results obtained
under the model of Definition 1 are valid for the more
general independent model as well. This is particu-
larly easy in the usual case where both the implemen-
tation of an algorithm and its analysis results do not
depend upon the values of the individual model pa-
rameters fa, fs, . . . and fs

` , fsa
` , . . ., but rather on a

suitable (weighted) sum of those. For example, the
algorithm of Section 3 is completely independent of
those parameters and requires n > 3fa +2fs +2fo +
fm + 2fs

` + fr
` + fra

` nodes for guaranteeing the
agreement and validity property for Byzantine agree-
ment. Since all changes to the individual parameter
settings caused by collapsing e.g. a symmetric node
fault and a separate link fault into an arbitrary node
fault (fs → fs − 1, fr

` → fr
` − 1, fa → fa + 1) pre-

serve validity of such expressions, Theorem 2 holds
under the general independent model as well.

7. Since the consequences of an incomplete communi-
cation graph can be viewed as link omission faults
[32], any analysis under our model provides results
that are valid for partially connected networks as well.

3 The Hybrid Oral Messages Algorithm

In this section, we will show that the Hybrid Oral Mes-
sages algorithm (OMH) derived from [14] in [15] solves
consensus under the system model of Section 2. To retain
compatibility with the existing papers, it will be presented
in its original “Byzantine generals” style, where the value
v of a dedicated transmitter is to be disseminated to the re-
maining n − 1 receivers. Eventually, every non-faulty re-
ceiver p must deliver a value vp ascribed to the transmitter
that satisfies the agreement and validity properties (B1) and
(B2), as specified below. A fully-fledged consensus algo-
rithm is obtained by using a separate instance of Byzantine
agreement for disseminating any node’s local value and us-
ing a suitable choice function (majority) for the consensus
result.

The algorithm OMH as specified in Definition 2 below
uses two primitives:

• The wrapper function R(v) encodes a statement “I
am reporting v” as a unique value. Reporting is un-
done by means of the inverse function R−1(v), which
must guarantee R−1(R(v)) = v. Note that only E,
R(E), R(R(E)), R(R(R(E))), . . . must actually be
distinguishable here; for each legitimate value v, we
can allow R(v) = R−1(v) = v.

7Consult [30] for a direct proof and its history, which consisted of a
sequence of manual and formal verification efforts.

5

• The hybrid-majority of a set V of values provides the
majority of all non-E values in V . If no majority ex-
ists, the default value R(E) is returned. Note that this
particular default value is required for securing valid-
ity in presence of an omission faulty transmitter, see
the proof of Lemma 1.

Consult [15] for a detailed discussion of the above primi-
tives and the operation of OMH in general.

Definition 2 (Algorithm OMH [15]) The Hybrid Oral Mes-
sage algorithm OMH is defined recursively as follows:

OMH(0):

1. The transmitter sends its value v to every receiver.

2. Every receiver p delivers the value vp received from
the transmitter, or the value E if a missing or mani-
festly erroneous value was received.

OMH(m), m > 0:

1. The transmitter sends its value v to every receiver.

2. For every p, let wp be the value receiver p receives
from the transmitter, or E if no value or a manifestly
bad value was received.

Every receiver p acts as the transmitter in Algorithm
OMH(m−1) to communicate the value R(wp) to all8

receivers [including itself].

3. For every p and q, let wq
p be the value receiver p deliv-

ers as the result of OMH(m−1) initiated by receiver q
in step 2 above, or else E if no wq

p or a manifestly bad
value was delivered. Every receiver p calculates the
hybrid-majority value among all values wq

p and ap-
plies R−1 to that value. The result is delivered as the
transmitter’s value vp.

In the above description of OMH, we did not explic-
itly address the question of how to uniquely assign received
messages to the particular recursive instances of OMH they
belong to. The uniqe id of the transmitter node is appended
to each message for this purpose, which in fact produces a
string of ids that uniquely determines the particular recur-
sive instance. Note carefully that this string must be recon-
structed upon reception of an E value and included in the
R(E)-message prior to submitting it to further recursive in-
stances.

By adopting and extending the analysis of [15] for our
perception-based fault model, we will show that OMH sat-
isfies the following properties:

8There are n − 1 receivers in the first instance OMH(m) of the al-
gorithm; the transmitter does not participate in any way in further recur-
sive instances. Our n-node, m + 1-round Byzantine agreement algorithm
OMH(m) can hence be viewed as an initial broadcast of the transmitter’s
value to all receivers combined with an n − 1-node, m-round consensus
algorithm.

(B1) (Agreement): If nodes p and q are both non-faulty,
then both deliver the same vp = vq .

(B2) (Validity): If node p is non-faulty, the value vp deliv-
ered by p is

• v, if the transmitter is non-faulty,
• E, if the transmitter is manifest faulty,
• v or E, if the transmitter is omission faulty,
• the value actually sent, if the transmitter is sym-

metric faulty,
• unspecified, if the transmitter is arbitrary faulty.

Following the line of reasoning in [15], we start with the
validity property secured by Lemma 1. Note carefully that
the lemma is void in case of an arbitrary faulty transmitter,
since (B2) does not say anything about the value a receiver
ascribes to the transmitter in this case.

Lemma 1 (Validity) For any m ≥ min{1, f s
` } and any fa,

fs, fo, fm, fs
` , fr

` , fra
` , algorithm OMH(m) satisfies the

validity property (B2) if there are strictly more than 2f s
` +

fr
` + fra

` + 2(fa + fs) + fo + fm + m participating nodes.

Proof: The proof is by induction on m. For the base
case, assume that the transmitter sends some value ν (ν = v
if the transmitter is non-faulty) to all receivers. Ignoring
link faults for the moment, we only have to distinguish the
following cases: For any non-faulty receiver p,

(1) vp = ν = v, if the transmitter is non-faulty,
(2) vp = ν = E, if the transmitter is manifest faulty,
(3) vp = v or vp = E, if the transmitter is omission

faulty.
(4) vp = ν, if the transmitter is symmetric faulty.

Therefore, if f s
` = 0, i.e., if there are no link faults, re-

ceiver p can simply deliver its received value vp according
to OMH(0) to ensure (B2). The induction starts at m = 0
in this case.

If fs
` > 0, however, induction must start with m = 1 as

the base case: According to the definition of OMH(1), every
(non-faulty) receiver p of step 1 of OMH(1) uses OMH(0) to
disseminate its wp to all other receivers q. Let us first con-
sider the cases where the transmitter is not omission faulty,
i.e., (1), (2) and (4): Abbreviating the number of initially
participating receivers by

n′ ≥ 2fs
` + fr

` + fra
` + 2(fa + fs) + fo + fm + m, (3)

with f ′
m ≤ fm manifest faulty ones among those, there

must be at least n′ − fs
` − fa − fs − f ′

m non-faulty or
omission faulty receivers p of step 1 of OMH(1) that get the
same wp = ν (recall that ν = E in case of a manifest faulty
transmitter), despite the at most f s

` link faults according to
(A1s).

It hence follows that any non-faulty receiver q of step 1
of OMH(0) obtains at least n′

q identical values R(ν) with

n′
q = n′ − fs

` − fa − fs − f ′
m − f ′

o − fra
`

′ − fro
`

′, (4)

6

where f ro
`

′ resp. f ra
`

′ ≤ fra
` with fro

`
′ + fra

`
′ ≤ fr

` de-
notes the number of omission resp. value faults caused by
link faults according to (A1r), and f ′

o ≤ fo is the num-
ber of omission faulty nodes that actually caused an omis-
sion at node q. Note carefully that (4) is also valid for the
transmitter (q = p), which must be non-faulty if at all con-
sidered here and must hence have “sent” itself the correct
value R(ν). Since we assumed exactly f ′

m manifest faulty
receivers, our receiver q gets a minimum of f ′

o + f ′
m + fro

`
′

values equal to E, hence at most n′′
q = n′ − f ′

o − f ′
m − fro

`
′

values different from E.
Recalling (4), we thus find

2n′
q − n′′

q = n′ − 2fs
` − 2fa − 2fs − f ′

o − f ′
m

−2fra
`

′ − fro
`

′

≥ fr
` + fra

` − 2fra
`

′ − fro
`

′

+(fo − f ′
o) + (fm − f ′

m) + m

> 0 (5)

since m = 1 and both f ro
`

′ + fra
`

′ ≤ fr
` and fra

`
′ ≤ fra

` ,
which implies that R(ν) wins the hybrid-majority at any
non-faulty receiver. Since R−1 is applied to the result, the
final value ν is obtained as required.

Turning to the remaining case (3) for m = 1, where the
transmitter is omission faulty, n′

q given by (4) is a lower
bound on the number of values obtained by a non-faulty re-
ceiver q that are either R(E) or else R(ν), depending upon
whether its source node encountered an omission from the
transmitter or not. We cannot hope to get a majority for ei-
ther of those values in the general case, but since (5) still
holds, it is also clear that if there is no majority for either
R(E) or R(ν), then there cannot be a majority for any other
non-E-value as well. Hence, by our default value for the
hybrid-majority primitive, R(E) is returned here. In any
case, (B2) is also satisfied for omission faulty transmitters.

Assuming now that the lemma is already true for m −
1 ≥ min{1, f s

` }, we will show that it is also true for m:
The proof is almost the same as for the base case; we only
have to replace the application of OMH(0) by OMH(m−1)
with n′ participants: For case (1), (2) and (4), we have at
least n′ − fs

` − fa − fs − f ′
m non-faulty or omission faulty

receivers p of step 1 of OMH(m) that apply OMH(m−1) to
consistently disseminate their R(wp) = R(ν). Since both
m and the number of participants decreased by one, we can
apply the induction hypothesis to OMH(m−1) to conclude
that any non-faulty receiver q actually delivers R(ν) in this
step. Consequently, any non-faulty receiver q must have at
least

n′
q = n′ − fs

` − fa − fs − f ′
o − f ′

m

values equal to R(ν) among the at most n′′
q = n′− f ′

o− f ′
m

non-E values it may have got at all. Herein, f ′
o ≤ fo

gives the number of E-values delivered to receiver q by
OMH(m− 1) when p was omission faulty. Since m > 1,

2n′
q − n′′

q = n′ − 2fs
` − 2fa − 2fs − f ′

o − f ′
m

≥ fr
` + fra

` + (fo − f ′
o) + (fm − f ′

m) + m

> 0 (6)

as before, so R(ν) wins the hybrid-majority at any non-
faulty receiver and the final value ν = R−1(R(ν)) follows.

For the remaining case (3), exactly the same reasoning
as for m = 1 reveals that only the default value R(E)
can be returned by hybrid-majority if no majority of either
R(ν) or R(E) exists. This eventually completes the proof
of Lemma 1. 2

With the help of Lemma 1, it is not too difficult to show
the major Theorem 2.

Theorem 2 (Agreement and Validity) For any m ≥ fa +
fo + min{1, f s

` } and any fa, fo, fs, fm, fs
` , fr

` , fra
` , the

algorithm OMH(m) satisfies agreement (B1) and validity
(B2) if there are strictly more than 2f s

` +fr
` +fra

` +2(fa +
fs) + fo + fm + m participating nodes.

Proof: The proof is by induction on m and is an exten-
sion of the one of [15]. In the base case m = min{1, f s

` },
we must have fa = fo = 0 since m ≥ fa+fo+min{1, f s

` }
by assumption. Hence, the transmitter must not be arbitrary
or omission faulty here, such that Lemma 1 already implies
both (B2) and (B1).

We can therefore assume that our theorem is true for
OMH(m − 1) with m − 1 ≥ min{1, f s

` }, and prove it for
OMH(m). Again, it suffices to consider the case where the
transmitter is arbitrary or omission faulty, since Lemma 1
implies both (B2) and (B1) in the other cases. Since we
have at most fa + fo arbitrary or omission faulty nodes and
the transmitter is one of those, either (1) at most fa − 1 ar-
bitrary faulty nodes or (2) at most fo − 1 omission faulty
ones remain among the strictly more than 2f s

` +fr
` +fra

` +
2(fa + fs) + fo + fm + m − 1 receivers. Since obviously

2fs
` + fr

` + fra
` + 2(fa + fs) + fo + fm + m − 1 >

2fs
` + fr

` + fra
` + 2([fa − 1] + fs) + fo + fm + [m − 1]

as well as

2fs
` + fr

` + fra
` + 2(fa + fs) + fo + fm + m − 1 >

2fs
` + fr

` + fra
` + 2(fa + fs) + [fo − 1] + fm + [m − 1],

we can apply the induction hypothesis to conclude that any
OMH(m − 1) satisfies (B1) and (B2). Hence, for any q,
any two non-faulty receivers deliver the same value for wq

p

in step (3). Note carefully that this follows from (B2) if
one of the two receivers is node q, and from (B1) otherwise.
Hence, any two non-faulty receivers get the same vector of
values and hence the same hybrid-majority, thereby proving
(B1). 2

Remarks:

1. It would be possible—and even makes perfect sense—
to extend both properties (B2) and (B1) to apply to

7

omission faulty nodes p and q as well. In fact, since
all that a omission faulty node could do is to omit
sending the correct value to some recipients, it must
participate in the algorithm like a non-faulty node in
order to know the correct value. In the original ver-
sion of this paper, we conjectured that our proofs re-
main valid for these extended validity and agreement
properties if omission faulty nodes always send the
correct value to itself, i.e., do not commit an omission
in this internal “send”. However, formal verification
in [23,30] showed that this is not true if OMH is used
in its present form.

2. It is apparent from Theorem 2 that 2fo nodes are re-
quired by OMH to tolerate fo omission faulty nodes,
which is definitely sub-optimal: Algorithms like the
one of [19] require only fo < n − 1. This is not due
to an overly conservative analysis, but rather the price
paid for the ability to mask additional symmetric and
asymmetric faults. If the latter were disallowed, how-
ever, i.e., if fa = fs = fra

` = 0, it should be possible
to show—by a modified analysis—that OMH has op-
timal resilience. Note that this is a similar situation
as encountered in [15, Thm. 2] for manifest and sym-
metric faults.

3. For OMH, receive faults (A1r) resulting in an omis-
sion are easier to tolerate than those that produce a
value fault, cf. Theorem 2, since f r

` + fra
` = fro

` +
2fra

` with fro
` bounding the number of “pure” omis-

sion faults.

Interestingly, this is not the case for broadcast faults
(A1s) here.

4. From the proof of Lemma 1, it is apparent that (A1r)
is only required to eventually rule out the inconsis-
tencies caused by (A1s). This is solely done in the
base case m = 1 of the induction, which implies that
limiting the number of link faults for a single receiver
by fr

` according to (A1r) is only required in the last
round, where in turn (A1s) is not explicitly used. This
supports our approach of considering both types of
faults independently from each other, recall Remark 5
on Definition 1.

4 Authentication

Consensus with written messages [14] assumes that no
node can make undetectable modifications to messages and
that the originator of a message is always known. It is gener-
ally agreed that electronic signatures can be used to achieve
these goals, although there are some pitfalls [11]. The as-
sumptions placed on the authentication scheme are:

(SA1) A node cannot change the contents of a message.

(SA2) A node cannot forge a signature.

(SA3) A valid signature cannot be mistaken for an invalid
one (i.e., the signature does not introduce new errors).

In addition, we must also ensure that a node can detect
whether a message belongs to the current execution run to
avoid replay attacks.

Generally, every node p uses its signature σp to sign a
message v, thereby generating the signed message σp(v).
The value v of the transmitter is consistently disseminated
to all remaining nodes in the system by forwarding mes-
sages via paths of distinct processors in every round, such
that a value v that is sent from node p1 along the chain of
nodes p2 . . . pk arrives as a message M = σpk

· · ·σp1
(v).

This allows a node to recognize several manifest faults upon
message reception:

(M1) If a message arrives in round m − k, then it must
either bear k +1 signatures, the first of which is from
the original transmitter, or it must contain the value
E. All other messages are manifest faulty.

(M2) The message arrives on the link from node pi but has
not been signed by pi last.

(M3) The message contains a signature at least twice (i.e.,
one node has signed the message twice).

(M4) Two messages bear the same signature chain and con-
tain different values.

Of course, for (M1), all nodes must know who the ini-
tial transmitter is. The reaction of a node to these manifest
faults depends on its own fault status. We assume the fol-
lowing:

• A non-faulty or omission faulty node recognizes (M1)-
(M4) and discards the message received in (M1)-(M3),
reporting E instead. In (M4), since the nodes wait
until they receive all messages from one round of
the algorithm before sending these values in the next
round, the node will discard both messages and report
E instead.

• A manifest faulty node produces a manifest fault at
all receivers regardless of what it receives. However,
in case of broken signatures we must assume that the
node does not send two messages in (M4) in order to
secure Lemma 6.

• A symmetric faulty node may ignore (M1)-(M3) and
send the manifest faulty messages. If the signatures
are secure, then it may also ignore (M4) and send
both messages it has received. However, if we as-
sume that signatures are broken, then we again must
assume that a symmetric faulty node recognizes (M4)
and does not send two different messages along, cf.
Lemma 6.

8

• A arbitrary faulty node ignores (M1)-(M4) and sends
along whatever it likes. In particular, it may send a
message it should have recognized as manifest faulty.

Using signatures has a beneficial effect on node faults,
because faulty nodes cannot introduce new values into the
system, as will be proved in Lemma 6 in Section 8.2. A
faulty node that relays a message can only choose not to
relay it at all, or to report that it has experienced a manifest
fault.

How does authentication affect link faults? Obviously,
a link fault can either produce a detectable fault or replace
the original message with some other valid message sent
by the same node. In case of a non-arbitrary faulty node,
replacing the message has no effect since all valid messages
are the same, and in case of an arbitrary faulty node, the
value sent is not important anyway. So authentication does
have a positive effect on the severity of link faults as well,
since it prohibits value faults.

5 Algorithm OMHA

In this section, we will analyze a variant of the algorithm
OMHA developed in [11] under the system model of Sec-
tion 2. The original algorithm OMHA is the same as OMH
except that every message sent in OMHA(m) with m > 0
must be signed.

As we have argued in the previous section, faulty nodes
cannot generate new values, so the only values that do occur
are those originally sent by the transmitter, E, and various
R(E)’s. In the hybrid fault model of [15], the fact that a
faulty node can inject an R(E) value is enough to make the
performance of OMHA no better than that of OMH. But
how does authentication affect link faults in OMHA? The
previous section tells us that link faults do not introduce any
new values if authentication is used. However, the original
version of OMHA does not sign messages in OMHA(0),
and at this stage, a link fault could insert a bogus R(E)
value. Therefore, we must assume that messages are signed
even in OMHA(0).

Lemma 2 (Validity) For any m ≥ min{1, f s
` } and any

fa, fs, fo, fm, fs
` , fr

` , algorithm OMHA(m) satisfies the
validity property if there are strictly more than 2f s

` + fr
` +

2(fa + fs) + fo + fm + m participating nodes.

Proof: The proof is virtually the same as for OMH in
Lemma 1. Our initial number of participating receivers is

n′ ≥ 2fs
` + fr

` + 2(fa + fs) + fo + fm + m,

and again a non-faulty receiver obtains at least

n′
q = n′ − fs

` − fa − fs − f ′
m − f ′

o − fra
`

′ − fro
`

′

identical values R(ν). The only difference to OMH is that
due to the signatures, both omission (f ro

`
′) and value (f ra

`
′)

link faults are detectable and result in E values. Hence, a
non-faulty receiver q can get at most n′′

q = n′ − f ′
o − f ′

m −
fro

`
′ − fra

`
′ values different from E, so instead of equation

(5) we get

2n′
q − n′′

q = n′ − 2fs
` − 2fa − 2fs − f ′

o − f ′
m −

−fro
`

′ − fra
`

′

≥ fr
` − fro

`
′ − fra

`
′ + (fo − f ′

o) +

+(fm − f ′
m) + m

> 0 (7)

since m = 1 and f ro
`

′+fra
`

′ ≤ fr
` , which again implies that

R(ν) wins the hybrid-majority at any non-faulty receiver. 2

Theorem 3 (Agreement and Validity) For any m ≥ fa +
fo +min{1, f s

` }, algorithm OMHA(m) satisfies agreement
and validity if there are strictly more than 2f s

` +fr
` +2(fa+

fs) + fo + fm + m participating nodes.

Proof: As one can see in the proof for Theorem 2, agree-
ment follows directly from validity and the fact that we use
enough rounds to ensure that in at least one round the trans-
mitter is neither arbitrary nor omission faulty. Link faults
are not considered here. Therefore, the proof for Theorem 2
is also valid for OMHA. 2

Remarks:

1. Note that the proof for agreement only uses the va-
lidity property and the fact that fa and fo are added
to the m required by validity. Hence, every consen-
sus algorithm of this type that achieves validity for a
given m will also achieve agreement for m′ = m +
fa + fo.

2. We already mentioned that the original OMHA in [11]
avoided signing the messages sent by OMHA(0). Re-
call that (A2) in Definition 1 assumes a point-to-point
network where the transmitter of a message can be
uniquely identified. If a link fault could only cause
an omission or a manifest fault, Theorem 3 would re-
main valid for the original algorithm as well. How-
ever, if a link fault can substitute an R(E) value for
the real message, then the original algorithm performs
no better than OMH. Hence, by Theorem 2, we would
need strictly more than 2f s

` +fr
` +fra

` +2(fa+fs)+
fo + fm + m nodes for this variant of OMHA.

Since OMHA just adds signatures to OMH, both algo-
rithms send and receive the same messages. Therefore, the
results of OMH’s assumption coverage analysis in Section 7
(Theorem 5 and 6 as well as Tables 3–8) will also be valid
for OMHA.

6 Algorithm ZA

In this section, we will analyze the authenticated algo-
rithm ZA of [11] under our perception-based fault model.

9

The algorithm ZA has been derived from the flawed algo-
rithm Z of [34] and provides a much better resilience than
OMHA. However, its correctness depends critically upon
Assumptions (SA1)–(SA3)—but see Section 8.2—and upon
the fact that the transmitter must be known.

Definition 3 (Algorithm ZA [11]) The algorithm ZA is de-
fined recursively as follows (we assume that E is assigned
whenever a message was not received or manifest faulty or
incorrectly signed):

ZA(0):

1. The transmitter sends its value to every receiver.

2. Every receiver delivers the value obtained from the
transmitter, or some fixed value E.

ZA(m), m > 0:

1. The transmitter signs and sends its value to every re-
ceiver.

2. For every node p, let wp be the value p has obtained
from the transmitter, or E. Every receiver p acts as
the transmitter in algorithm ZA(m − 1) to send the
value wp to the n − 1 receivers [including itself].

3. For every node p and q, let wq
p be the value p has

obtained from receiver q in step (2) using algorithm
ZA(m− 1), or E if no such value of a manifest faulty
one was delivered. Every receiver p calculates the
majority value among all non-E values wq

p it has re-
ceived; if no non-E value exists, E is delivered, if no
majority exists, some arbitrary but fixed value is used.

Note that the strength of the signed algorithm lies in the
fact that the only values that can occur are the values sent
by the original transmitter and E. So if the transmitter is
not arbitrary faulty, then every node can only receive the
original value and E.

Lemma 3 (Validity) For any m ≥ min{1, f s
` } and any

fa, fs, fo, fm, fs
` , fr

` , algorithm ZA(m) satisfies the validity
property if there are strictly more than f s

` + fr
` + fa + fs +

fo + fm + 1 participating nodes.

Proof: Let us assume a not arbitrary and not omission
faulty transmitter that sends the value ν. Then we only have
to show that every good receiver obtains at least one ν in the
first min{1, f s

` } + 1 rounds, because once it has obtained
the value, it will also deliver it. Recall that any transmitter
“sends” its value to itself in step 2 of ZA(m) as well.

If fs
` = 0, then we allow m = 0. However, since the

transmitter is non-faulty and the links are non-faulty as well
(recall that f s

` = 0 implies f r
` = 0), every good receiver

will obtain ν in ZA(0) and will deliver it.
Now let m ≥ 1. In ZA(m), the transmitter signs and

sends its value ν to all n − 1 receivers, n′ ≥ n − 1 − fa −
fs − fo − fm of which are non-faulty. At least n′ − fs

`

of these will receive ν. In round m − 1, the n′ − fs
` non-

faulty receivers will broadcast ν. So by the end of the sec-
ond round, every receiver gets ν from at least n′ − fs

` − fr
`

nodes and all we have to do is to ensure that the number of
non-faulty nodes is n′ > fs

` + fr
` , so the number of nodes

must be n > f s
` + fr

` + fa + fs + fo + fm + 1. As soon
as a node has obtained at least one ν, it will deliver it, so for
all m ≥ 1, any non-faulty receiver will deliver ν.

Now assume that the transmitter is omission faulty. Let
ni

v be the number of non-faulty nodes which receive ν in
ZA(m − i), and ni

E the number of non-faulty nodes which
receive E in ZA(m−i). If the transmitter is omission faulty,
then only some non-faulty nodes n0

v will initially get the
value ν, and the other non-faulty nodes n0

E will get E. If
n0

v > fr
` , then every non-faulty node will receive at least

n0
v − fr

` > 0 values ν in the next round. If, however, n0
v ≤

fr
` , then we have to distinguish two cases:

If n0
E ≤ fs

` , then the nodes in n0
E may never get ν, re-

gardless of the number of rounds we spend. For n0
E > fs

` ,
however, in the next round all good nodes except at most
fs

` ones will have received ν, i.e., n1
v ≥ n − 1 − fa −

fs − fo − fm − fs
` . If we require n1

v > fr
` , i.e., n >

fs
` + fr

` + fa + fs + fo + fm +1, then we can again ensure
that all good nodes will receive ν in the second round. In
any case, every good node will either receive and deliver ν,
or it will not receive anything and therefore deliver E. 2

Theorem 4 (Agreement and Validity) For any m ≥ fa +
fo +min{1, f s

` }, algorithm ZA(m) satisfies agreement and
validity if there are strictly more than f s

` + fr
` + fa + fs +

fo + fm + 1 participating nodes.

Proof: As argued in Remark 1 on Theorem 3, the proof
is the same as that for agreement in OMHA. 2

Remarks:

1. We have changed the definition of ZA so that every
receiver relays the message to all other receivers in-
cluding itself in step 2 of ZA(m), since it needs its
own value in step 3. In the original paper [11], the
message was only relayed to the other n−2 receivers.

2. Since ZA does not distinguish between E and R(E)
as OMHA does, using signatures means that the only
possible values a node ever encounters are those orig-
inally sent by the transmitter and E values. Link
faults are also recognized as manifest faults in all sub-
sequent stages of the algorithm. Contrary to OMHA,
where the algorithm benefits from signing messages
in OMHA(0), link faults can only insert the values
E or a valid signed message ν in ZA(0), so we do
not require signatures in this last stage if the mes-
sage has been signed at least once (hence, we require
m ≥ min{1, f s

` }).

3. In case of validity with an omission faulty transmit-
ter, we cannot guarantee that every non-faulty node

10

delivers ν if the transmitter has sent at least one ν.
However, if we require that m ≥ 2, then we can at
least ensure that as many nodes as possible deliver ν.

4. Although ZA is defined recursively like OMHA, its
execution develops quite differently: ZA(m) achieves
validity after the first two (or three, see the previous
remark) rounds regardless of the number of rounds m
actually employed. Validity of OMHA(m), however,
is achieved only after its full number m+1 of rounds.
Moreover, m needs to be included into n for OMHA,
since the faulty nodes can inject R(E)’s in the addi-
tional rounds that must be balanced. This is not true
for ZA, since the latter deals with ν and E only.

Like OMHA, ZA also sends and receives the same mes-
sages as OMH. The results of OMH’s assumption coverage
analysis in Section 7, namely, Theorem 5 and 6, will hence
remain valid for ZA as well. Note carefully, however, that
the numerical results in Tables 3–8 will not apply since they
assume n = 4f` + 3m + 1 and not ZA’s minimum setting
n = 2f` + m + 1.

7 Assumption Coverage

To apply a deterministic fault model like the one of Def-
inition 1 in practice, one has to address the question of
assumption coverage. More specifically, for the particular
system in mind, the probability of failure Q implied by a
possible violation of the fault assumptions (fa, fs, fo, fm,
fs

` , fr
`) needs to be evaluated. Note carefully that this is

a mandatory step for any algorithm where safety9 depends
upon non-violation of the fault model. It is particularly im-
portant for link faults, however, since Q increases with ev-
ery message broadcast during the execution of the algorithm
here: According to (A1s) resp. (A1r), no message broadcast
resp. reception may suffer from more than f s

` resp. f r
` link

faults. Given the fact that our algorithms send many, many
messages, the question arises whether Q can eventually be
made as small a desired by choosing suitable values of f s

`

and fr
` .

In this section, we will derive an upper bound on the
probability of failure Qm of OMH(m)—valid for OMHA
and ZA as well, since they employ the same communi-
cations pattern—for a simple probabilistic model of link
faults: We assume that the probability of losing or corrupt-
ing a single message on the link or in the network interface
is 0 < p < 1, and that those link faults occur indepen-
dently of each other. Despite of its simplicity, this model is
commonly used in practice, see e.g. [10,18], since it is ana-
lytically tractable and facilitates easy comparison of results.
It is in fact a quite accurate and realistic model for uncor-
related transient channel/network interface faults in homo-
geneous system architectures. Persistent and, in particular,
correlated faults are of course beyond its scope.

9We note that this is not true for certain randomized algorithms, which
violate only liveness but not safety in this case.

Since fs
` = fr

` = f` is the only reasonable choice in
presence of independent link faults, recall Remark 5 on Def-
inition 1, the success probabilities for a single message broad-
cast/reception, namely,

ps
n−k = Prob{≤ f s

` faults in a single broadcast to

n − k receivers}
pr

n−k = Prob{≤ f r
` faults in a single reception from

n − k senders}

for 0 ≤ k ≤ n − 1 are the same ps
n−k = pr

n−k = pn−k and
follow a binomial distribution:

pn−k =

f`
∑

l=0

(

n − k

l

)

pl(1 − p)n−k−l

The total probability of success Pm = 1−Qm that there
is no violation of our assumption of at most f` link faults
in any message broadcast/reception during the execution of
OMH(m) is given by

Pm = Prob{All broadcasts in OMH(m),. . . ,OMH(1)

have ≤ f` link faults each ∧ all receptions

in OMH(0) have ≤ f` link faults each}. (8)

Recall from the proof of Lemma 1 that (A1r) in Definition 1
is required in the base case of the induction only, i.e., in
OMH(0).

It is immediately apparent from step 1 of Definition 2
that the execution of OMH(m) evolves as shown in Table 1.

OMH(m) # instances # receivers
m 1 n − 1
m − 1 n − 1 n − 2
m − 2 (n − 1)(n − 2) n − 3
...

...
...

1 (n − 1) · · · (n − m + 1) n − m
0 (n − 1)(n − 2) · · · (n − m) n − m − 1

Table 1. Recursive instances in the execution of al-
gorithm OMH.

With the notation

[n]k = n(n − 1) . . . (n − k + 1) for k > 0

[n]
0

= 1

it is apparent that, for k < m, there are [n − 1]k instances
of OMH(m − k) that each issue a single broadcast [where
(A1s) applies] to n − k − 1 receivers. For k = m, on
the other hand, we have to consider message receptions
[where (A1r) applies] only: There are [n − 1]m instances
of OMH(0), and every receiver of a particular instance of
OMH(0) should receive a message from all n − m recip-
ients in the prior instance of OMH(1). Not counting the

11

“self-reception” by the transmitter of OMH(0), there remain
n − m − 1 “true” message receptions by any receiver of
OMH(0).

Abbreviating nk = [n − 1]k, (8) translates to

Pm =

m−1
∏

k=0

pnk

n−k−1
· pnm

n−m−1 =

m
∏

k=0

pnk

n−k−1

=
m
∏

k=0

(1 − qn−k−1)
nk with qn−k = 1 − pn−k

=

m
∏

k=0

(

1 − nkqn−k−1

nk

)nk

≥ e

−
m

∑

k=0

nkqn−k−1 m
∏

k=0

(

1 −
(

nkqn−k−1

)2

nk

)

,

(9)

where we used the relation [38, p. 242]

e−t ≥ (1 − t/n)n ≥ e−t(1 − t2/n) (10)

valid for t < n; since qn−k−1 is some probability < 1, this
condition is of course satisfied. Assuming

m
∑

k=0

nkqn−k−1 < 1, (11)

the application of the well-known facts (1) log(1 − x) =

−∑

j≥1
xj/j for |x| < 1, (2)

∑

i∈I aj
i ≤

(
∑

i∈I ai

)j
for

ai ≥ 0 and integer j ≥ 1, and (3) e−x ≥ 1−x for 0 ≤ x <
1 yields

Pm ≥ e

−
m

∑

k=0

nkqn−k−1 +

m
∑

k=0

log
(

1 −
(

nkqn−k−1

)2

nk

)

≥ e

−
m

∑

k=0

nkqn−k−1 −
m

∑

k=0

∑

j≥1

(
√

nkqn−k−1)
2j

j

≥ e

−
m

∑

k=0

nkqn−k−1 −
∑

j≥1

(
∑m

k=0

√
nkqn−k−1

)2j

j

≥
(

1 −
m

∑

k=0

nkqn−k−1

)(

1 −
(

m
∑

k=0

√
nkqn−k−1

)2
)

≥ 1 −
m

∑

k=0

nkqn−k−1 −
(

m
∑

k=0

√
nkqn−k−1

)2

(12)

≥ 1 −
m

∑

k=0

nkqn−k−1 −
(

m
∑

k=0

nkqn−k−1

)2

. (13)

To obtain an upper bound on the overall probability of
failure Qm = 1 − Pm, we hence need an upper bound on

m
∑

k=0

[n − 1]kqn−k−1 = (n − 1)!
m

∑

k=0

qn−k−1

(n − k − 1)!
(14)

and, if the more accurate lower bound (12) is addressed,

m
∑

k=0

√

[n − 1]kqn−k−1 =
√

(n − 1)!

m
∑

k=0

qn−k−1
√

(n − k − 1)!
.

(15)
The required bound for the dominating term (14) follows

from the following Lemma 4.

Lemma 4 (Upper Bound) For n − m − f` − 2 ≥ 1,

Gm =
m

∑

k=0

qn−k−1

(n − k − 1)!

≤
(

1 +
1

n − m − f` − 2

)

· qn−m−1

(n − m − 1)!
(16)

≤
(

1 +
1

n − m − f` − 2

)

·

1

(n − m − f` − 2)!
· pf`+1

(f` + 1)!
. (17)

Proof: According to [1, Eq. 26.5.24], qn−k equals the
incomplete Beta function Ip(f` + 1, n − k − f`), i.e.,

qn−k =
n−k
∑

l=f`+1

(

n − k

l

)

pl(1 − p)n−k−l (18)

=
(n − k)!

(f`)! (n − k − f` − 1)!
·

∫ p

0

tf`(1 − t)n−k−f`−1 dt. (19)

Hence,

Gm =
1

(f`)!

∫ p

0

tf`

m
∑

k=0

(1 − t)n−k−f`−2

(n − k − f` − 2)!
dt, (20)

which involves

S =

m
∑

k=0

(1 − t)n−k−f`−2

(n − k − f` − 2)!

=
(1 − t)n−m−f`−2

(n − m − f` − 2)!

(

1 +
1 − t

n − m − f` − 1
+

+ · · · + (1 − t)m

(n − m − f` − 1) · · · (n − f` − 2)

)

≤ (1 − t)n−m−f`−2

(n − m − f` − 2)!

m
∑

j=0

(1 − t

n − m − f` − 1

)j

≤ (1 − t)n−m−f`−2

(n − m − f` − 2)!
· 1

1 − 1−t
n−m−f`−1

≤ (1 − t)n−m−f`−2

(n − m − f` − 2)!
· n − m − f` − 1

n − m − f` − 2 + t

≤ (1 − t)n−m−f`−2

(n − m − f` − 2)!
·
(

1 +
1

n − m − f` − 2

)

12

since 0 ≤ t ≤ p. Plugging the above expression into (20),
we obtain

Gm ≤
1 + 1

n−m−f`−2

(f`)! (n − m − f` − 2)!

∫ p

0

tf`(1− t)n−m−f`−2 dt

(21)
from where the major result (16) of our theorem follows
easily by recalling (19).

To finally establish (17), we use the definition (18) of
qn−k−1 to find

g =
qn−m−1

(n − m − 1)!

=

n−m−1
∑

l=f`+1

pl

l!
· (1 − p)n−m−l−1

(n − m − l − 1)!
(22)

=

n−m−f`−2
∑

j=0

pj+f`+1

(j + f` + 1)!
· (1 − p)n−m−f`−2−j

(n − m − f` − 2 − j)!

≤ pf`+1

(f` + 1)!

n−m−f`−2
∑

j=0

pj

j!
· (1 − p)n−m−f`−2−j

(n − m − f` − 2 − j)!
.

Applying the binomial theorem (p + 1− p)n−m−f`−2 = 1,
we finally get

qn−m−1

(n − m − 1)!
≤ 1

(n − m − f` − 2)!
· pf`+1

(f` + 1)!
(23)

which completes the proof of our lemma. 2

Remarks:

1. Lemma 4 reveals that the sum (14) is dominated by
the term k = m, which just reflects the intuitively
clear fact that the many messages from OMH(0) in
the last round determine OMH(m)’s overall proba-
bility of failure.

2. By subtracting qn−m−1/(n−m−1)! from both sides
of (16), and multiplying by (n−1)! according to (14),
it is easy to see that (16) also implies monotonicity of

qn−k−1

(n − k − 1)!
≤ qn−m−1

(n − m − 1)!
(24)

[n − 1]kqn−k−1 ≤ [n − 1]mqn−m−1 (25)

for any 0 ≤ k ≤ m.

3. The bound given by (17) is reasonably small—and
also accurate, cp. the derivation starting with (22)—
only if np < 1 is sufficiently small, since the ulti-
mately required quantity (n−1)!Gm that must be < 1
according to (11) has order O

(

nm(np)f`+1/(f` +

1)!
)

.

By a very similar proof, it is not difficult to show a simi-
lar Lemma 5 related to the square-rooted sum (15). Since it
is only used to improve the remainder O-term in Theorem 5
below, its proof will be left as an exercise to the reader.

Lemma 5 (Upper Bound √) For n − m − f` − 2 ≥ 1,

Hm =

m
∑

k=0

qn−k−1
√

(n − k − 1)!

≤
(

1 +
1√

n − m − f` − 2

)

·
√

[n − 1]f`+1

[n − m − 1]f`+1

· qn−m−1
√

(n − m − 1)!

≤
(

1 +
1√

n − m − f` − 2

)

·
√

[n − 1]f`+1

(n − m − f` − 2)!
· pf`+1

(f` + 1)!
.

2

By virtue of those results, we can establish the following
Theorem 5.

Theorem 5 (Assumption Coverage OMH) For n − m −
f` − 2 ≥ 1 and np < 1 sufficiently small, the probability of
failure Qm of OMH(m) satisfies

Qm ≤ Q′
m + O

((Q′
m)2

[n − f` − 2]m

)

= O
(

nm (np)f`+1

(f` + 1)!

)

,

(26)
where

Q′
m =

(

1 +
1

n − m − f` − 2

)

[n − 1]m+f`+1

pf`+1

(f` + 1)!
.

Proof: Recalling (14) resp. (15), the result of Lemma 4
resp. 5 immediately yields (n − 1)!Gm ≤ Q′

m resp.

R′′
m = (n − 1)!H2

m

≤
(

1 +
1√

n − m − f` − 2

)2

·

[n − 1]f`+1 · [n − 1]m+f`+1 ·
(

pf`+1

(f` + 1)!

)2

≤ O
((Q′

m)2

[n − f` − 2]m

)

, (27)

where the last bound is easily confirmed by comparing R′′
m

with (Q′
m)2. Recalling the lower bound (12) on the proba-

bility of success, (26) is established by straightforward up-
per bounding. Note that (12) is only guaranteed to hold
when (11) holds, which is secured by np < 1 sufficiently
small according to Remark 3 on Lemma 4. 2

In order to assess the dependency of the probability of
failure Qm upon the model parameters n, m, f`, we substi-
tute n = n0 + c` in (26), where c · ` gives the number of
nodes that must be added to cope with (a sufficiently small
number) ` of additional link faults per node:

Qm = O
(

nm
0

(n0p)f`+`+1

(f` + ` + 1)!

(

1 +
c`

n0

)m+f`+`+1

)

= O
(

nm
0

(n0p)f`+1

(f` + 1)!
· (n0p · ec)`

[f` + ` + 1]`

)

(28)

13

In the last step, we employed the well-known relation
(

1 +

t/(k + j)
)k ≤ et for t ≥ 0 in conjunction with k + j =

n0 ≥ m + f` + ` + 1 = k.
It is hence apparent from (28) that, as long as np < 1

sufficiently small, the probability of failure Qm

• rapidly grows with m and hence with the number fa+
fo of arbitrary and omission faults,

• marginally grows with n and hence with the number
of any kind of faults,

• decreases with the number of tolerated link faults f`

(and with decreasing p, of course), since the last fac-
tor in (28) is < 1 for any suitably chosen `.

Note carefully that the latter implies that increasing f` is
always beneficial for reasonable parameter settings, which
actually justifies our whole approach.

In Tables 3–6, we give numerical values for Q′
m for dif-

ferent values of m and f` in case of n = 4f` + 3m + 1,
which allows e.g. f s

` = fr
` = f`, fa = m − 1, fo = 0, and

fs = fm = 1 by Theorem 2.

f` m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 8 11 14 17 20 23

2 12 15 18 21 24 27

3 16 19 22 25 28 31

5 24 27 30 33 36 39

7 32 35 38 41 44 47

10 44 47 50 53 56 59

15 64 67 70 73 76 79

20 84 87 90 93 96 99

Table 2. Value of n = 4f` + 3m + 1 for different m,
f`.

f` m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 0.64 1. 1. 1. 1. 1.

2 0.59 1. 1. 1. 1. 1.

3 0.52 1. 1. 1. 1. 1.

5 0.36 1. 1. 1. 1. 1.

7 0.22 1. 1. 1. 1. 1.

10 0.095 1.0 1. 1. 1. 1.

15 0.019 0.86 1. 1. 1. 1.

20 0.0036 0.37 1. 1. 1. 1.

Table 3. Value of (exact) probability of failure Qm

for p = 0.1.

Whereas the probability of failure of OMH(m) given in
Tables 3–6 is not bad, even in case of a typical “wireless”
loss probability p = 0.01, it is nevertheless clear that an
algorithm that uses less messages is preferable with respect
to our fault model. As an example, we consider the algo-
rithm OMH that results from combining all messages that a

f` m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 0.01 0.3 1 1 1 1

2 0.002 0.04 1 1 1 1

3 0.0002 0.006 0.3 1 1 1

5 2. 10−6 0.00009 0.005 0.3 1 1

7 2. 10−8 1. 10−6 0.00009 0.007 0.6 1

10 2. 10−11 2. 10−9 2. 10−7 0.00002 0.002 0.2

15 2. 10−16 2. 10−14 3. 10−12 4. 10−10 5. 10−8 8. 10−6

20 2. 10−21 2. 10−19 4. 10−17 7. 10−15 1. 10−12 2. 10−10

Table 4. Value of (approximate) probability of failure
Q′

m for p = 0.01.

f` m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 1. 10−6 0.00003 0.0009 0.03 1 1

2 2. 10−9 4. 10−8 2. 10−6 0.00007 0.004 0.2

3 2. 10−12 6. 10−11 3. 10−9 1. 10−7 7. 10−6 0.0004

5 2. 10−18 9. 10−17 5. 10−15 3. 10−13 2. 10−11 2. 10−9

7 2. 10−24 1. 10−22 9. 10−21 7. 10−19 6. 10−17 5. 10−15

10 2. 10−33 2. 10−31 2. 10−29 2. 10−27 2. 10−25 2. 10−23

15 2. 10−48 2. 10−46 3. 10−44 4. 10−42 5. 10−40 8. 10−38

20 2. 10−63 2. 10−61 4. 10−59 7. 10−57 1. 10−54 2. 10−52

Table 5. Value of (approximate) probability of failure
Q′

m for p = 0.0001.

f` m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 1. 10−10 3. 10−9 9. 10−8 3. 10−6 0.0001 0.007

2 2. 10−15 4. 10−14 2. 10−12 7. 10−11 4. 10−9 2. 10−7

3 2. 10−20 6. 10−19 3. 10−17 1. 10−15 7. 10−14 5. 10−12

5 2. 10−30 9. 10−29 5. 10−27 3. 10−25 2. 10−23 2. 10−21

7 2. 10−40 1. 10−38 9. 10−37 7. 10−35 6. 10−33 5. 10−31

10 2. 10−55 2. 10−53 2. 10−51 2. 10−49 2. 10−47 2. 10−45

15 2. 10−80 2. 10−78 3. 10−76 4. 10−74 5. 10−72 8. 10−70

20 2. 10−105 2. 10−103 4. 10−101 7. 10−99 1. 10−96 2. 10−94

Table 6. Value of (approximate) probability of failure
Q′

m for p = 0.000001.

14

node sends during OMH in a round into a single message.
According to Table 1, such a combined message consists of
exactly [n − 1]k/(n − k) = [n − 1]k−1 single messages—
corresponding to the instances of OMH(m − k) at any of
the n−k originating nodes—that are broadcast to n−k−1
receivers. Clearly, during the whole execution of OMH(m),
any node broadcasts only m messages, except for the initial
transmitter, which broadcasts only one message.

It is not difficult to show that the proofs of correctness
for OMH are also valid for OMH. In fact, the only differ-
ence lies in the fact that the receivers in OMH experience
a link fault in a correlated fashion: If f s

` of the combined
messages are lost in the broadcast of a single sender, any
affected receiver looses the round message for all instances
of OMH(m − k). This situation, however, could also oc-
cur when link faults are independent for all instances of
OMH(m− k).

By the same devices as used before, the probability of
success P m for OMH(m) evaluates to

P m = pn−1

m
∏

k=1

pn−k
n−k−1

≥
m
∏

k=0

(

1 − (n − k)qn−k−1

n − k

)n−k

where the bound is even valid if all nodes (and not only the
initial transmitter) send an initial message in OMH(m). Due
to that simplification, we just have to substitute nk = n− k
in (13) and use the same line of reasoning as before to show
the following Theorem 6.

Theorem 6 (Assumption Coverage OMH) For n − m −
f` − 2 ≥ 1 and np < 1 sufficiently small, the probability of
failure Qm of OMH(m) satisfies

Qm ≤ Q
′

m +O
(

(Q
′

m)2
)

= O
(n

f` + 3
· (np)f`+1

(f` + 1)!

)

, (29)

where

Q
′

m =
[n + 1]f`+3 − [n − m]f`+3

f` + 3
· pf`+1

(f` + 1)!
. (30)

Proof: Applying (12) with nk = n − k reveals that P m

and hence the probability of failure Qm is dominated by

Q
′′

m =
m

∑

k=0

(n − k)qn−k−1 =
m

∑

k=0

(n − k)!
qn−k−1

(n − k − 1)!
,

(31)
Using the upper bound (23) with m = k established in

the proof of Lemma 4, we find

Q
′′

m ≤
m

∑

k=0

(n − k)!

(f` + 1)! (n − k − f` − 2)!
· pf`+1

≤ (f` + 2)pf`+1

m
∑

k=0

(

n − k

f` + 2

)

≤ (f` + 2)pf`+1

n
∑

k=n−m

(

k

f` + 2

)

≤ (f` + 2)

[(

n + 1

f` + 3

)

−
(

n − m

f` + 3

)]

pf`+1

≤ [n + 1]f`+3 − [n − m]f`+3

f` + 3
· pf`+1

(f` + 1)!
,

where we employed the well-known identity [13, p.54.(11)]
∑n

k=0

(

k

m

)

=
(

n+1

m+1

)

. Recalling (13), which is again valid
for np < 1 sufficiently small, and applying some simple
majorizations on (30) that consider the fact that the coeffi-
cient of nf`+3 in both [n + 1]f`+3 and [n−m]f`+3 is 1 and
hence cancels out, (29) follows. 2

Comparing (26) and (29) clearly shows that the probabil-
ity of failure Qm no longer grows with m. Tables 7 and 8
contain a few numerical values for Q

′

m for different values
of m and f` and the same n = 4f` + 3m + 1 used be-
fore, which ensures compatibility with Tables 3 and 4. We
should note, however, that the messages sent by OMH are
much longer than the ones of OMH—it is perhaps not re-
ally fair to consider the same values for the loss probability
p here.

f` m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 0.88 1. 1. 1. 1. 1.

2 0.85 1. 1. 1. 1. 1.

3 0.80 0.99 1. 1. 1. 1.

5 0.62 0.93 1. 1. 1. 1.

7 0.42 0.77 0.96 1. 1. 1.

10 0.20 0.43 0.71 0.91 0.99 1.

15 0.041 0.10 0.21 0.37 0.58 0.78

20 0.0078 0.019 0.041 0.08 0.14 0.24

Table 7. Value of (exact) probability of failure Qm

for p = 0.1.

f` m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 0.04 0.1 0.4 0.9 1. 1.

2 0.004 0.02 0.04 0.1 0.2 0.4

3 0.0004 0.002 0.004 0.01 0.02 0.04

5 5. 10−6 0.00002 0.00005 0.0001 0.0002 0.0005

7 5. 10−8 2. 10−7 5. 10−7 1. 10−6 3. 10−6 5. 10−6

10 5. 10−11 2. 10−10 4. 10−10 1. 10−9 3. 10−9 6. 10−9

15 4. 10−16 1. 10−15 4. 10−15 1. 10−14 2. 10−14 5. 10−14

20 4. 10−21 1. 10−20 3. 10−20 9. 10−20 2. 10−19 5. 10−19

Table 8. Value of (approximate) probability of failure
Q

′

m for p = 0.01.

8 Discussion of Results

In this section, we will discuss some consequences of the
results of the previous sections.

15

8.1 Costs of Tolerating Link Faults

The results of Theorems 2, 3 and 4 allow us to compare
the costs for tolerating link faults. Table 9 summarizes the
relevant figures for f` = fr

` = f`: The second resp. third
column gives the number of nodes required for tolerating f`

omission resp. f` arbitrary link faults; n0 denotes the num-
ber of nodes required for f` = 0, where only node faults
are present. The last column gives the number of rounds
for either type of link fault; m0 is the number of rounds for
f` = 0.

Algorithm omissions arbitrary # rounds

OMH n0 + 3f` n0 + 4f` m0 + 1
OMHA n0 + 3f` n0 + 3f` m0 + 1
ZA n0 + 2f` n0 + 2f` m0 + 1

Table 9. Additional costs of tolerating f r
` = fs

` = f`

omission resp. arbitrary link faults in terms of number
of nodes and number of rounds.

The best algorithm, ZA, needs only 2f` additional nodes
(and one additional round) to cope with f` · n link faults
per node in each round; for f` = 1, only n = 4 nodes are
required in the absence of node faults.

Since f` could be as much as O(n), each of our algo-
rithms can cope with an impressive number of O

(

(m +

1)n2
)

link faults during the whole execution. It is impor-
tant to note, though, that this does not mean that those al-
gorithms are resilient to link faults per se. After all, we had
to add O(f`) nodes to n0 in order to mask f` link faults per
node, which means that we added O(n2) links. What we re-
ally gained, however, is that any link—and not just the ones
added—may experience a fault. Moreover, the bound (28)
on the probability Qm of violating the fault model reveals
that adding sufficiently many nodes is always beneficial as
long as np < 1 is sufficiently small. In this case, the dis-
advantage of increasing the number of links that could be
faulty is more than compensated by the ability to mask ad-
ditional link faults per node. This ultimately confirms that

1. limiting the power of link faults according to our fault
model is not an undue restriction,

2. our algorithms can even be employed in wireless sys-
tems, where link fault probabilities p up to 10−2 are
common,

which was the ultimate goal for starting this research at all.

8.2 Broken Signatures

In the original Byzantine Generals paper [14], it was as-
sumed that only messages from non-faulty nodes cannot be
forged. If we translate that to the hybrid fault model, then

messages from arbitrary faulty nodes can be forged, i.e.,
their signature is not secure. If we take this one step fur-
ther, we can assume that the signatures of all arbitrary faulty
nodes as well as the signatures of at most fb not arbitrary
faulty nodes are common knowledge. Knowing a signature
allows a node to generate a message in the name of some
other node, although this does not imply that it is able to
eventually generate a valid chain of signatures.

Lemma 6 (Signatures) At the end of OMHA’s and ZA’s ex-
ecution run, there are no two messages M = σpk

. . . σp1
(v)

and M ′ = σpk
. . . σp1

(v′) with v 6= v′, if at least one sig-
nature σpi

in M, M’ is from a not arbitrary faulty node pi

with an unbroken signature.

Proof: Let us assume that two such messages M and
M ′ exist. If we consider one node pi which has signed both
messages, then this node must have received σpi−1

. . . σp1
(v)

and σpi−1
. . . σp1

(v′). But according to (M4) in Section 4,
every not arbitrary faulty node at most signs the first mes-
sage, but not the second one. So if pi has signed both mes-
sages, it must be arbitrarily faulty. If the node has not signed
the messages, then someone else must have done so in its
name, so its signature must have been broken. 2

Recalling the operation of our Byzantine agreement al-
gorithms, it is apparent that in OMHA(1) and ZA(1) every
non-faulty node applies the hybrid-majority to an input set
whose chain of signatures only differs in the last one. The
chains may have different lengths, though, but if a chain has
less than m + 1 signatures, then it must contain the value
E. For all chains with length m + 1, we can deduce from
Lemma 6 that each node will act upon the same input set
if there is at least one not arbitrary faulty node in the chain
whose signature has not been broken. So we can solve the
problem of broken signatures by treating nodes with com-
promised signatures like arbitrary faulty nodes.

Theorem 7 (ZA with Broken Signatures) For any m ≥
fa + fb + min{1, f s

` }, algorithm ZA(m) satisfies agree-
ment and validity if there are strictly more than f s

` + fr
` +

fa + fb + fs + fm + 1 participating nodes.

Proof: For validity, it is easy to see that if the transmitter
is not arbitrary faulty (and thus due to our assumption has
no broken signature), then the only values that a non-faulty
node considers are the value ν sent by the transmitter and
E. Therefore, the argument of Lemma 3 still holds.

For agreement, we now use enough rounds to ensure
that every message received in ZA(0) has been signed by at
least one not arbitrary faulty node or contains E. Therefore,
Lemma 6 guarantees that no fictive messages can occur, and
the algorithm is still the same as without broken signatures.
So the proof of Theorem 4 still holds if we count broken
signatures as arbitrary faults. 2

Algorithm OMHA could be made tolerant to broken sig-
natures in the same fashion as ZA. However, for OMHA it

16

is probably cheaper with respect to the required number of
nodes to simply let it degrade to OMH. So in fact, if there
is a possibility that signatures might be compromised, then
one should spend additional f ra

` nodes according to Theo-
rem 2 or, preferably, simply dispose of authentication and
use OMH instead.

8.3 Broadcast Networks

The consensus algorithms analyzed in this paper assume
a point-to-point network, which implies that the sender of
a message is always known. If we use those algorithms on
a broadcast network, however, the sender is not necessarily
known: If we do not sign messages, we obviously loose the
ability to identify the sender of a message, thus allowing
faulty nodes to impersonate non-faulty nodes. So the oral
messages algorithms would not work in this case. Written
messages algorithms, however, should reasonably10 work
because they do not allow impersonation. To be precise,
any oral messages algorithm that achieves consensus under
the system model of Definition 1 will achieve consensus in
a broadcast network if authentication is added. This is due
to the fact that using a broadcast network only violates as-
sumption (A2), i.e., the sender is not known. With authenti-
cation, (A2) is ensured again and the system model remains
the same. In fact, without link faults, written messages al-
gorithms would even benefit from the broadcast network,
because neither arbitrary nor omission faulty nodes are pos-
sible anymore. Since every node sends only one message,
which is automatically broadcast to all nodes, every receiver
must get the same value. So we can in fact set fa = fo = 0
and count all arbitrary faults as symmetric faults and all
omission faults as manifest faults for any written messages
algorithm analyzed under the hybrid fault model.

If link faults are possible, however, we find that they now
have a lot more power than before. Whereas they can sim-
ply be caught by adding an appropriate multiple of f r

` and
fs

` to the number of nodes in the point-to-point case, we
experience the unpleasant effect that they make arbitrary
(but not omission) faults possible in the broadcast case [25].
However, the behavior of arbitrary nodes is restricted:

Consider a message from an arbitrary faulty node which
is not received by f s

` receivers. If that node sends a sec-
ond message containing a different value, which is not re-
ceived by another f s

` receivers, then at most 2f s
` receivers

will only get one message and will assume that the message
is valid. The other nodes do detect the second message from
the same sender and will use the value E due to the mani-
fest fault. So the obvious solution is either to count arbitrary
faults again, or to count sender link faults twice, i.e., require
4fs

` instead of 2f s
` additional nodes.

When analyzing OMHA in broadcast networks, we can
exploit the restricted behavior of arbitrary nodes. First, it

10Besides of the problem of jamming.

is easily seen that the validity proof can be taken over un-
changed: Since the transmitter is not arbitrary faulty, and
since arbitrary faulty nodes do not occur in the last but one
line of equations (5) and (6) in the proof of Lemma 1, their
different behavior in the broadcast network has no impact
on validity and the proof of Lemma 1 still holds. As far
as omission faulty nodes are concerned, they either behave
non-faulty or like crashed nodes. In any case, all receivers
will deliver the same value for them.

Theorem 8 (Agreement and Validity) For any fa, fs, fo,
fm, fs

` , fr
` and any m ≥ min{1, f s

` }, OMHA(m) satisfies
agreement (B1) and validity (B2) if there are strictly more
than 4f s

` + fr
` + 2(fa + fs) + fo + fm + m participating

nodes.

Proof: Again, we only look at the case where the trans-
mitter behaves arbitrary faulty as described above.

Let m = 1. Abbreviating the number of initially partic-
ipating receivers with n′ ≥ 4fs

` + fr
` + 2(fa + fs) + fo +

fm + m, the transmitter sends ν, ν ′, which is received and
turned into E by at least n′−2fs

` − (fa−1)−fs−f ′
o−f ′

m

non-faulty receivers, whereas at most f s
` nodes receive only

ν and f s
` only ν′. Here, f ′

o ≤ fo is the number of omission
faulty receivers that will commit a crash fault in OMHA(0)
(all others will appear like non-faulty nodes) and f ′

m ≤ fm

is the number of actual crashed nodes.
In OMHA(0), a non-faulty receiver gets R(E) from at

least n′
q = n′−2fs

` − (fa−1)−fs−f ′
o−f ′

m−fr
`
′ nodes,

with fr
`
′ ≤ fr

` link faults according to (A1r), and it receives
at most n′′

q = n′ − fr
`
′ − f ′

o − f ′
m values different from E.

Therefore, we have

2n′
q − n′′

q = n′ − 4fs
` − 2fa + 2 − 2fs − f ′

o − f ′
m − fr

`
′

≥ (fr
` − fr

`
′) + (fo − f ′

o) + (fm − f ′
m) + m + 2

> 0

and R(E) will win the hyrid-majority on every non-faulty
node.

Let us now consider m > min{1, f s
` }. At least n′

q =
n′ − 2fs

` − (fa − 1) − fs − f ′
m non-faulty or omission

faulty receivers will receive E in OMHA(m). From these,
all but at most f ′

o will disseminate R(E) in OMHA(m−1),
and validity ensures that every non-faulty node will deliver
R(E) for them. The f ′

o omission faulty nodes will appear
crashed and cause E. Therefore, every non-faulty node will
deliver at most n′′

q = n′ − f ′
o − f ′

m values different from E.
Since

2(n′
q − f ′

o) − n′′
q = n′ − 4fs

` − 2fa − 2fs − f ′
o − f ′

m

≥ (fo − f ′
o) + (fm − f ′

m) + fr
` + m

> 0,

R(E) will again win the hybrid-majority on all non-faulty
nodes, hence all non-faulty nodes will deliver E. 2

17

The algorithm ZA, however, cannot exploit the different
behavior of arbitrary faults so easily. Here, arbitrary faulty
nodes must still be counted in m. The reason is obvious
from the proof of Theorem 8: We have utilized the fact that
every non-faulty node receives enough R(E) values to win
the hybrid-majority. This has saved us from using enough
rounds to ensure that all nodes get exactly the same input set
for the hybrid-majority. In ZA, however, only E does exist,
which is not considered in the majority function. Therefore,
we will again have to ensure that all nodes work with the
same input set in ZA(0), effectively requiring m ≥ fa +
min{1, fs

` } again.

Remarks:

1. Note that an arbitrary faulty node can do the worst
damage by sending two messages. With a third mes-
sage, again only f s

` receivers might not detect a man-
ifest fault.

2. When executing OMHA on a broadcast network, the
tradeoff between the point-to-point algorithm of The-
orem 3 and the broadcast version of Theorem 8 is fa

vs. 2f s
` additional nodes and fa + 1 vs. 1 rounds.

3. When executing ZA on a broadcast network, there is
the slight tradeoff fa vs. 2f s

` . However, since f s
` will

probably be larger than fa anyway, ZA does not ben-
efit from the broadcast network.

Acknowledments

We are grateful to Martin Biely for his comments on an
earlier version of this paper.

9 Conclusions

In this paper, we showed that deterministic consensus
in presence of link faults is possible, despite the impossi-
bility result of [12]. The latter is avoided by limiting the
maximum number of link faults in the broadcast resp. re-
ception of any node. We introduced a novel perception-
based hybrid fault model for this purpose, which grants ev-
ery node at most f r

` independent receive link faults (with at
most fra

` non-omission faults among those) and f s
` broad-

cast link faults in each round, in addition to at most fa, fs,
fo, fm arbitrary, symmetric, omission, and manifest node
faults. For m ≥ fa + fo + 1, we analyzed three exist-
ing m+1-round Byzantine agreement algorithms under this
fault model, namely, the non-authenticated OMH as well as
its authenticated variants OMHA and ZA. Their respective
number of nodes was shown to be

n > 2fs
` + fr

` + fra
` + 2(fa + fs) + fo + fm + m,

n > 2fs
` + fr

` + 2(fa + fs) + fo + fm + m,

n > fs
` + fr

` + fa + fs + fm + 1.

We also provided an impossibility result and associated
lower bounds for the required number of nodes in presence
of omission and arbitrary link faults, which are matched by
ZA and OMH and are therefore tight. Moreover, our inves-
tigations led to a precise characterization of what makes a
node fault arbitrary/omissive. Last but not least, we con-
ducted an analysis of the assumption coverage for a simple
probabilistic system model, where link faults occur with a
fixed probability p independently of each other. We com-
puted the probability Q of violating the link fault assump-
tion fr

` = fs
` = f`, which shows that our approach of

adding nodes in order to tolerate additional link faults per
node always decreases Q as long as np < 1. Consequently,
for reasonably small m, our algorithms can be used even in
wireless systems, where link faults with loss probabilities
up to p = 10−2—as well as intrusions—are the dominat-
ing source of errors. Given the limited bandwidth usually
available in wireless systems, the excessive communication
requirements may be prohibitive, though.

Our results also reveal that the usefulness of authentica-
tion depends heavily upon the particular algorithm used. In
fact, a consensus algorithm should be specifically designed
for using written messages and not simply adapted from
an oral messages solution: Whereas OMHA did not profit
much from authentication, ZA benefits considerably— but
also depends critically upon its strength. It turned out, how-
ever, that both algorithms can withstand intrusions to some
extent: In case of broken signatures, OMHA degrades to
OMH and hence requires an additional f ra

` in the number
of nodes. For ZA, a node with a compromised signature
must be considered as arbitrary faulty and therefore counted
in fa. As far as link faults are concerned, authentication
serves to identify and tolerate link value faults: Any algo-
rithm that requires f r

` +fra
` nodes to tolerate link faults will

only require f r
` nodes in the authenticated version. Apart

from that, authentication is the only means to (more or less)
safely employ algorithms like OMHA on top of broadcast
networks.

There are two primary directions of current/future re-
search in this area: First, we have already made progress
in the analysis of less message-costly consensus algorithms
[8] under the perception-based fault model, which even in-
cludes algorithms for asynchronous systems. Second, there
are many applications like intrusion-tolerant admission con-
trol, on-line diagnosis, distributed database commitment,
etc. that could benefit from the possibility to achieve con-
sensus in systems with link faults. A major part of our fu-
ture research will hence be devoted to the exploration of
such applications.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathemati-
cal Functions. Dover Publications, Inc., New York, 1970.

[2] H. Abu-Amara and J. Lokre. Election in asynchronous com-
plete networks with intermittent link failures. IEEE Trans-
actions on Computers, 43(7):778–788, July 1994.

18

[3] M. K. Aguilera, W. Chen, and S. Toueg. Failure detec-
tion and consensus in the crash-recovery model. Distributed
Computing, 13(2):99–125, Apr. 2000.

[4] H. Attiya and J. Welch. Distributed Computing. McGraw-
Hill, 1998.

[5] M. Azadmanesh and R. M. Kieckhafer. Exploiting omissive
faults in synchronous approximate agreement. IEEE Trans-
actions on Computers, 49(10):1031–1042, Oct. 2000.

[6] M. H. Azadmanesh and R. M. Kieckhafer. New hybrid fault
models for asynchronous approximate agreement. IEEE
Transactions on Computers, 45(4):439–449, 1996.

[7] A. Basu, B. Charron-Bost, and S. Toueg. Crash failures vs.
crash + link failures. In Proceedings of the fifteenth an-
nual ACM symposium on Principles of distributed comput-
ing, page 246. ACM Press, 1996.

[8] M. Biely and U. Schmid. Message-efficient consensus in
presence of hybrid node and link faults. Technical Report
183/1-116, Department of Automation, Vienna University
of Technology, August 2001.

[9] D. Dolev. The Byzantine generals strike again. Journal of
Algorithms, 3(1):14–30, 1982.

[10] P. T. Eugster, R. Guerraoui, S. Handurukande, A.-M. Ker-
marrec, and P. Kouznetsov. Lightweight probabilistic broad-
cast. In Proceedings of the International Conference on De-
pendable Systems and Networks (DSN’01), pages 443–452,
Göteborg, Sweden, July 1–4, 2001.

[11] L. Gong, P. Lincoln, and J. Rushby. Byzantine agreement
with authentication: Observations and applications in tol-
erating hybrid and link faults. In Proceedings Depend-
able Computing for Critical Applications-5, pages 139–157,
Champaign, IL, Sept. 1995.

[12] J. N. Gray. Notes on data base operating systems. In G. S.
R. Bayer, R.M. Graham, editor, Operating Systems: An Ad-
vanced Course, volume 60 of Lecture Notes in Computer
Science, chapter 3.F, page 465. Springer, New York, 1978.

[13] D. E. Knuth. Fundamental Algorithms, volume 1 of The
Art of Computer Programming. Addison-Wesley, Reading,
Massachusetts, 2nd edition, 1973.

[14] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Lan-
guages and Systems, 4(3):382–401, July 1982.

[15] P. Lincoln and J. Rushby. A formally verified algorithm for
interactive consistency under a hybrid fault model. In Pro-
ceedings Fault Tolerant Computing Symposium 23, pages
402–411, Toulouse, France, June 1993.

[16] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
[17] F. J. Meyer and D. K. Pradhan. Consensus with dual failure

modes. In In Digest of Papers of the 17th International Sym-
posium on Fault-Tolerant Computing, pages 48–54, Pitts-
burgh, July 1987.

[18] S. E. Nikoletseas and P. G. Spirakis. Expander properties
in random regular graphs with edge faults. In 12th An-
nual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’95), pages 421 – 432, Munich, Germany, 1995.

[19] K. J. Perry and S. Toueg. Distributed agreement in the pres-
ence of processor and communication faults. IEEE Trans-
actions on Software Engineering, SE-12(3):477–482, March
1986.

[20] S. S. Pinter and I. Shinahr. Distributed agreement in the pres-
ence of communication and process failures. In Proceedings
of the 14th IEEE Convention of Electrical & Electronics En-
gineers in Israel. IEEE, Mar. 1985.

[21] D. Powell. Failure mode assumptions and assumption cov-
erage. In Proc. 22nd IEEE Int. Symp. on Fault-Tolerant
Computing (FTCS-22), pages 386–395, Boston, MA, USA,
1992. (Revised version available as LAAS-CNRS Research
Report 91462, 1995).

[22] J. Rushby. A formally verified algorithm for clock sychro-
nization under a hybrid fault model. In Proceedings ACM
Principles of Distributed Computing (PODC’94), pages
304–313, Los Angeles, CA, Aug. 1994.

[23] J. Rushby. Formal verification of hybrid Byzan-
tine agreement under link faults. Technical re-
port, Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, 2001. Available at
http://www.csl.sri.com/˜rushby/abstracts/byzlinks01.html.

[24] H. M. Sayeed, M. Abu-Amara, and H. Abu-Amara. Optimal
asynchronous agreement and leader election algorithm for
complete networks with Byzantine faulty links. Distributed
Computing, 9(3):147–156, 1995.

[25] U. Schmid. Synchronized Universal Time Coordinated
for distributed real-time systems. Control Engineering
Practice, 3(6):877–884, 1995. (Reprint from Proceed-
ings 19th IFAC/IFIP Workshop on Real-Time Programming
(WRTP’94), Lake Reichenau/Germany, 1994, p. 101–107.).

[26] U. Schmid. Orthogonal accuracy clock synchroniza-
tion. Chicago Journal of Theoretical Computer Science,
2000(3):3–77, 2000.

[27] U. Schmid. A perception-based fault model for single-round
agreement algorithms. Technical Report 183/1-108, Vienna
University of Technology, Department of Automation, Oct.
2000.

[28] U. Schmid. How to model link failures: A perception-based
fault model. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN’01), pages 57–
66, Göteborg, Sweden, July 1–4, 2001.

[29] U. Schmid and K. Schossmaier. How to reconcile fault-
tolerant interval intersection with the Lipschitz condition.
Distributed Computing, 14(2):101 – 111, May 2001.

[30] U. Schmid, B. Weiss, and J. Rushby. Formally verified
byzantine agreement in presence of link faults, 2001. (sub-
mitted).

[31] G. Singh. Leader election in the presence of link fail-
ures. IEEE Transactions on Parallel and Distributed Sys-
tems, 7(3):231–236, Mar. 1996.

[32] H.-S. Siu, Y.-H. Chin, and W.-P. Yang. Byzantine agree-
ment in the presence of mixed faults on processors and
links. IEEE Transactions on Parallel and Distributed Sys-
tems, 9(4):335–345, Apr. 1998.

[33] T. K. Srikanth and S. Toueg. Optimal clock synchronization.
Journal of the ACM, 34(3):626–645, July 1987.

[34] P. M. Thambidurai and Y. K. Park. Interactive consistency
with multiple failure modes. In Proceedings 7th Reliable
Distributed Systems Symposium, Oct. 1988.

[35] G. Varghese and N. A. Lynch. A tradeoff between safety
and liveness for randomized coordinated attack protocols. In
Proceedings of the 11th Annual ACM Symposium on Pprin-
ciples of Distributed Computing, pages 241–250, Vancou-
ver, British Columbia, Canada, August 1992.

[36] C. J. Walter and N. Suri. The customizable fault/error model
for dependable distributed systems. Theoretical Computer
Science, 2000. (Special issue on Dependable Computing, to
appear).

19

[37] C. J. Walter, N. Suri, and M. M. Hugue. Continual on-line
diagnosis of hybrid faults. In Proceedings DCCA-4, Jan.
1994.

[38] E. Whittaker and G. Watson. A Course of Modern Analysis.
Cambridge University Press, Cambridge, 1927.

[39] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A
secure distributed on-line certification authority. Technical
Report TR2000-1828, Computer Science Department, Cor-
nell University, Dec. 2000.

20

