Technische

I Institut fir Automation Universitit
Abt. fir Automatisierungssysteme Wien

Projektbericht Nr. 183/1-111
July 2000

Security Issues in W2F

Bettina Weiss

Salvador Dali, ”"Die Bestandigkeit der Erinnerung”

Security Issues in WoF

Bettina Weiss

July 2000
Contents
1 Introduction 2
2 System Description 3
3 System Models 4
4 Security Requirements 5
5 Service Groups 5
6 Components 7
6.1 Workstations e e e e e 7
6.2 SErVerS i i e e e e e e e e e e e e e 8
6.3 Users e e e e e e e e e e e e e 9
7 Security Policy 10
7.1 Authentication e e e 10
7.2 Key Distribution oo 10
7.3 Communication L e e e e e e 11
8 Open Issues 12

Abstract

This report is dedicated to the security policies required for our project WoF. As
we will see, WoF is not yet in a state of development where we can give policies for
everything. We will instead try to identify some of its needs and the areas where
further work is required.

1 Introduction

In our project WoF! (Wireless/Wired Factory /Facility Fieldbus), we intend to develop a next-
generation LAN/fieldbus which will properly address distribution, security, fault-tolerance,
and real-time issues as well as flexibility w.r.t. wireline/wireless interconnections [FS00]. In
the security field, we will have several decisions to make:

e What requirements to security do we have?

Which security protocols should we implement?

Should we use existing protocols or develop new ones?

e How can we prove that the protocols we choose are fault-free?

The following report will address these issues. Section 3 tries to create system models
suitable for categorizing security protocols. Section 4 will give an overview on the WoF
project and point out its security requirements. Section 5 lists the services provided by WoF.
Section 6 identifies the components of WoF. In Section 7, our security protocols and their
positions within the WoF protocol stack will be described. Finally, Section 8 will address
open issues which need to be solved.

Why do we need security in the first place? Our system consists of n nodes which are
connected over a network. It provides services for the user (e.g., process automation) and
for some of its nodes (e.g., clock synchronization). Of course, we expect the system to
accomplish its tasks reliably. This requires that the nodes which are providing a specific
service are selected with care and behave as expected. These nodes will have to be checked
somehow, probably off-line, and marked as capable of participating in the service. But even
if the system is assembled and started correctly, we must enable our system to handle the
dynamic exchange of components, either because they have failed or because of an upgrade.
As soon as we allow such an exchange, however, we must also provide the systems with a
means to detect malicious use of this feature. So we need a mechanism that allows members
of a service group to assay the capabilities of a potential new group member and to ascertain
that the aspirant is not malicious.

Apart from internal services, our system conducts tasks for its human user, who might
want to keep its activities and data secret. Therefore, we must enable our system to keep
sensitive data unaccessible to outsiders, both on the storage hosts and during communication.
We will need some kind of access control to the hosts and encryption for communication.

1The WoF-project (http://www.auto.tuwien.ac.at/Projects/ W2F /) has received funding from the Austrian
START-programme Y41-MAT.

2 System Description

The WoF project targets automation (factory, home). So we have lots of different components
(small sensors, servers, external PCs, ...).

On the lowest level, we assume a system consisting mainly of sensors and actors together
with one controller (several controllers if we need fault tolerance). The components are
grouped together because they are physically near each other and share a common goal /task.
They will form a cell. We assume that a cell can have an upper bound on the number of its
components.

Several cells can be connected to form a larger structure, which is unlimited in size. So
our system consists of an unlimited number of cells, each of which combines a limited number
of components.

An example (white circles are sensors, black circles are controllers):

- = ~ - -~

\

O

N RO

\ //
9 -

Figure 1: Three Cells

As one can see, the grouping of sensors to controllers has no direct connection to the
location of the sensors (the controller does not have to be in the center of the cell and it
does not serve all sensors nearest to it). The grouping is mainly functional and only loosely
based on the location of the objects. The only real restriction is that wireless sensors will
require a controller within their transmission range.

Imagine for example a tour guide system in a museum. In our case, the sensors used
for locating the position of a visitor within one room together with a node responsible for
controlling these sensors are forming a cell. We can savely assume that this small system
will not need to scale well (larger rooms can be served by two such cells if necessary). The
cells are connected to form the whole system. Since we do not know how many rooms the
museum has, or if the exhibitions are distributed over several buildings, the system must
scale well.

How do controllers know which sensors they serve? Obviously, the members of a cell
should form a group. If we use secure group communication techniques, then we can even
ensure that messages from a particular sensor can only be decoded within its group, regard-
less of who else is within sending range.

What should we do with new sensors? How do they know which cell to join, if cell
boundaries have nothing to do with location? Possible solution: put in the sensor, let it

broadcast a join request, but notify the intended controller that it should react to the request.
All other controllers will ignore the request. This is not bad because it makes certain that
you cannot uncontrollably add sensors to a cell. Every new component is “authorized” by
the system. This does not make the system less flexible (a human has to sit down and notify
the controller vs. fully automatic join — since the sensor has to be installed anyway, one
additional action is no loss of flexibility), it just adds a little bit more security to it. When
the sensor has joined (and its credibility has been checked), it gets the group data.

But of course, this is not very fault tolerant. If a controller breaks down, its sensors
should be allocated to other controllers. This should happen dynamically, without human
help. And in any case, it is rather insecure to let a human decide on the controller. We
need some way to make sure a new sensor finds the controller it should work with. But
how? What feature decides to which cell a sensor belongs? In the museum example, it is the
location. The controller has the task to track human movement within the room, and every
sensor in that room adds to the data used by the controller. So the controller has a given
3D-range for which it is responsible, and the sensor simply is in this range. It would suffice
if the sensor were aware of its location and would send it in the initial cell joining phase.

What other possibilities are there? Functional reasons. Perhaps one controller in the
room is responsible for movement tracking, another for controlling the room temperature. In
this case, the tracking sensor is allocated to the tracking controller and not to the temperature
controller. So it is the location as well as the functional specification which controls the
allocation. What if we have two controllers doing the same things? Both could use the
sensor, or they could decide on who gets the sensor.

3 System Models

Although there have been many proposals for security protocols, most of them do not ex-
plicitly state any system assumptions. This commonly leads to misconceptions about the
protocols.

Inspired by the sync./async. model of distributed systems, we will try to discern several
system models suitable for security protocols. The models can be used to position a protocol
and to clarify what powers an adversary can have.

Currently, attacks on protocols are launched with an all-powerfull adversary and solutions
are suggested, but obviously nobody has ever bothered to state that a protocol is suited for
one environment but not for another. For example, many attacks assume that the intruder
has complete control over the network and can remove and insert messages at will. This may
well be the case in a wired network, but might be impossible in a wireless environment. So
we need a system to categorize protocols into those that work only in the wireless world and
those that work in wired systems as well. The models should be hierarchical, so we can, e.g.,
show that a protocol working in the wired network will also work in the wireless network.
Other things the models should include are the capabilities of the principals (sync. clock,
local clock, amount of computing power, ...), of CAs, ...

4 Security Requirements

We expect that even sensor data may have to be encrypted, and sensors will need some
credentials to participate in the network. Sensors must have certificates and at least be able
to sign their data. Therefore, the interface between the sensor and the CDMA-network,
which features the CDMA-sender (and perhaps a receiver), must also contain basic security
features. Nevertheless, the interface must be cheap. (These might be mutually exclusive
goals...)

Sensor data must always be signed (so we can check if the data comes from a good source)
and perhaps be encrypted (if the data is sensitive). A signature requires some random text in
the message to avoid replay-attacks. This could either be a random number or a timestamp.

Actors have at least a CDMA-receiver. They must be able to verify the origin of control
commands (check a signature).

Units which process the sensor data and provide user data are called servers (S). They
may or may not have a user interface for login. Servers are part of the WoF system and all
software comes from a known and trusted source. Servers must have the facility to check
the source of data (verify signatures). They must also be capable to sign control commands.
They might get data access requests from workstations, so they must be able to verify the
access rights of users.

Since a company will also have lots of PCs with common operating systems like Linux,
Windows, Mac-OS, ..., which are used to generate reports and such things, these computers
should be allowed to gain access to our system to gather data for status reports. They should
only have read access. We term such computers with foreign and untrusted operating systems
workstations (WS). They must be able to offer users secure login.

We will need authentication and secret key exchange (perhaps public keys?) at very low
levels in the protocol stack. We might implement other security issues on higher levels, when
synchronized clocks and other services are available. But for the low levels, nothing except
the existence of unreliable datagram services can be assumed. We should also assume that
an intruder has control over the network and can replace messages with his own (this has
the advantage that the network card need not be part of the trusted computing base).

5 Service Groups

Services are generally provided by a group of nodes (for fault-tolerance reasons). A node
gets some kind of certificate stating which services it can provide. It can then join services
if necessary. Our system should be able to optimize service groups so that the load on the
nodes is balanced (otherwise, a very good server might join every group, get overloaded, and
in the end reduce the quality of the service). Fault-tolerant and reliable group management
is very important in WoF, it is one of the core problems we have to solve.

Should a super-user (SU) be able to set up the system, i.e., specify the members of service
groups? Definitly not. The system should handle such things automatically. Ideally, human
intervention should be kept to a minimum because it is a security leak. The SU should
be able to remove a node from a group (because it is faulty and the system did not notice
that), but should not be able to force a node into a group. The system is responsible for

assessing the capabilities of the node and only the system can allow a node to join a group.
This removes the problem of an SU undermining a service by adding malicious nodes and
removing the good ones. What if the SU removes all nodes from the group, i.e., makes the
service unavailable? The group must always know how many members there are, or at least
notice when a given lower limit necessary for keeping up the service is reached. At this point,
the group should notify the system and start enlarging the group.

So the system automatically constructs the service group and manages the membership.
It joins and removes nodes as required. A human user may remove nodes from the group
but may not add new nodes.

What should our (distributed) group management algorithm be able to do?

e Create a group.

e Keep track of the number of members. Perhaps keep track of the number of good
members (dynamically determine the number of faulty members!).

e Join a new member.
e Remove an existing member.
e Merge a group.

e Detect splitting of a group (network partitioning). Automatically done if the number
of good members is determined dynamically.

After starting the system, service groups begin to form. When a node is started up,
it sends its service certificates to all service groups it can participate in and offers its own
services. Three reactions are possible:

e The group does not exist. The node will experience a timeout and assume that it
has to form the service group. It will enter itself into the group and broadcast a join
request for the service to all nodes to get new members.

e The group exists, the participation offering is denied. The node is not part of the
service. It should nevertheless poll the service periodically to avoid that the service is
lost (due to some error or because of network partitioning).

e The group exists, the offering is accepted. The node is now a member of the group.

When a group determines that it has too few good members, then it will broadcast a join
request. Nodes capable of participating will reply to the request and the group will elect the
new member.

When a group determines that it has too many members, it will elect one node and send
it a leave request. The node then stops participating in the service.

We will need some algorithm to determine which node is the best candidate for joining a
service. Every candidate will be evaluated (also against the nodes already in the group) and
will be selected if it is the best candidate. It might replace an existing node if the existing
node provides worse service.

If two groups providing the same service have formed (due to network partitioning) and
the groups detect each other, then the groups will merge into one large group and this new
group will remove any surplus members.

Since services might have to use other services, each member of a service group should
get a certificate stating that it does provide a certain service (in addition to the certificate
stating that it is capable of providing this service). This is the node’s ticket for using other
services. Of course, passive usage does not require a service certificate (like listening in on
clock synchronization messages), only active usage (like data requests) does require such a
certificate.

All group action (join, leave) is logged. Suspicious actions can at least be detected by
a human user, or perhaps by some automated tool (perhaps even an artificial intelligence
program?).

6 Components
Abbreviations used in the following sections:

S: server

SU: super-user

system: the WoF' system
WS: workstation

6.1 Workstations

The workstation (WS) is the interface between the company and the system. It uses an
unknown operating system and must be considered as insecure. Two scenarios are possible:

1. Access to WoF' is gained through login from the WS.
2. Access to WoF is gained through a web-server.

In the first scenario, the WS is equipped with a network interface card (PCI slot or
similar) and its driver. The card might be able to verify the integrity of the driver, or
perhaps the card must be able to load and install its own driver (if such a thing is possible).
Either the card or the driver must know that the host is not secure and notify the system
through a low-level certificate or something. Even a super-user (SU), when logging onto a
WS, only has read access to the system data.

In the second scenario, the data is gained by browsing and no particular access restriction
on the WS is necessary.

If we do need some access feature, then the WS must provide the user with a secure login
protocol, secure data access, and reliable data synchronization. A session consists of three
phases:

1. Login
2. Work
3. Logout

In the first phase, the user is prompted to enter a login-name and a password. The
station then tries to access the system and download the user data (work profile). The login
phase can result in one of the following outcomes:

e The WS detects that the system in general is currently unavailable, perhaps due to a
communication problem. The user is notified and logged out. If the WS checks the
availability of the system periodically, such a breakdown could already be detected
before the user logs in and a message could be shown that login is currently useless.
However, we might not want an outsider to see on the screen whether the system is
available from a particular WS or not. A good way to check general availability might
be for the system to ping its interface nodes from time to time. The WS expects
the periodic ping and notifies the user on screen if it misses a fixed number of pings.
Another way of checking could be the clock synchronization service. The WS will want
to use this service as a client and will know when the service is not available. It can
then notify the user on screen.

The WS detects that the authentication service is unavailable. The user is notified and
logged out.

The WS gets an authentication-failed message from the authentication service. The
user is notified and logged out.

The WS detects that the database service is unavailable. Since this service provides
all user-relevant data, the user cannot use the WS without it. So the user is notified
and logged out.

Authentication succeeds and the user data is available. The WS downloads the user
profile (work profile like desktop layout, ...) and presents the desktop.

In the second phase, the user accesses data (system status, personal system messages,
..) for further processing (in reports).
We also have to decide whether we keep a local copy of the data in the WS for performance
reasons. If we do, we have to guarantee that the data remains secure. We might also need
a database service which handles data synchronization.

In the third phase, the user is logged out. Any data not synchronized until then is
synchronized now. If the data cannot be sent to the system, the user is notified and can
either discard the modifications or wait until the system gets online again. Since it would
be a pain to discard many changes, keeping the WS synchronized with the system database
would ameliorate such communication problems, because the user is notified at once.

6.2 Servers

The server (S) is a powerful node which is able to provide services and maintain critical
data. It is controlled by the WoF operating system. A malicious server should not be able
to weaken the overall system security, so we might not have too many requirements to the
security of the system. However, we must ensure that good servers can detect a malicious
server.

Concerning the user interface: our login program allows access to the system, but not to
the machine which is providing this access. Only a system administrator with access rights

for the machine can modify the machine itself. The machines might be classified according to
the services they provide, and only a sysadmin with the proper rights can modify a machine
of a given class. So we need to classify users and sysadmins as well. Each user has a set of
personal access rights to every component or every component class in the system. We need
a good distributed database to manage these sets.

6.3 Users

Although strictly speaking not part of our system, users play an important role in the security
of the system. Since every user gets a personal set of access rights, the selection of these sets
is very sensitive and can open security holes.

We should provide a couple of commonly known fixed roles (Super-User, Administrator,
User, Technician, ...) to guide companies in the choice of sensible sets. The final choice
of access rights is up to the company and may be a security hazard. Either we design our
system in such a way that even a bunch of malicious super-users cannot destroy it, or we have
to provide a guideline which assesses the damage done by assigning one or more malicious
users a given set of access rights.

I also recommend using at least two persons for every major system change. Perhaps
major changes (like adding/removing nodes, restructuring service groups, ...) should be
automatically broadcasted to a whole group of sysadmins, apart from being logged? A log
file may be edited by a super-user, but not even a super-user should be able to modify
personal data of other users. Each user should get a private space with personal data
(the things which are downloaded when the user logs on), including a message pad where
everybody can send to, but only the user in person can read/delete. Of course, the above-
mentioned log file could be implemented in such a way, as some kind of personal message
pad of the system, and anybody with the correct access rights can read the messages.

If we require two persons (accounts) for important changes, than we have to ensure that
no single person uses two accounts. To make the four-eyes-principle really secure, we would
have to use biometrical methods to determine the identity of the users. If we cannot do this,
then we have no means to check whether a malicious super-user creates for himself the two
accounts needed to perform an action.

Do not forget: users logging in from a WS cannot be protected from malicious software.
In Windows, e.g., every keyboard input can be caught and stored by hook functions before
they are passed on to the application software. These hook functions can be installed by any
program, a fatal situation for a login program. Although the functions can be removed by
the login software, other (undocumented) ways to protocol keyboard input may exist. And
of course the keyboard itself might be rigged (a commercial hardware solution does exist).
So users should not use critical passwords when accessing the system from a WS.

A biometric input device would also circumvent the problems of entering a password on
a hostile machine. On the other hand, we would need a secure line from the input device to
our system.

We already mentioned that the SU can remove nodes from a group. It might be a good
idea to use certificates for these actions. What I would like is a certificate template which
can be filled out with the name of its holder and a certain action. When the account for

the SU is created, a certificate is generated which contains the name of the account and
the remove-from-group action. The certificate can be verified and the SU has to provide it
together with a proof of authenticity (signature) to really remove a node from a group.

The important thing is: the certificate is a template and is filled out dynamically. So we
do not have one statically generated certificate that allows to remove a member from a group,
but we generate such a certificate for every person that is allowed to perform the action.
Thus, a certain account can loose trust and get its certificate revoked without revoking the
certificates of all other persons.

Instead of the certificate, we can also use a database service to store access rights. In this
case, the system checks the database before executing an action, i.e., we have three messages
(action request, check, reply to check) before an action is performed. So it is better if
the node already sends a valid certificate with the action request. To avoid problems with
revokation, the certificate could be valid for a short time (this requires a trusted time base!).

7 Security Policy

In this section, we will describe what requirements to our security policy exist and how we
might be able to solve certain problems. See the technical report [Wei00] for an overview on
commonly used security protocols.

7.1 Authentication

We can use an asymmetric encryption scheme and use the private key to sign messages by
encrypting the hash of the message. The receiver can then verify the sender’s identity by
applying the public key to extract the hash and comparing it to its own hash of the message.
This also ensures the integrity of the message. In order to avoid replay attacks, messages
should include a timestamp or some other freshness indicator.

7.2 Key Distribution

If we use an asymmetric encryption scheme, then information about current keys is exchanged
with public key certificates and revocation lists. The former are used to assign public keys
to users, the latter is necessary if the public key has to be changed. If Alice has originally
been equipped with the key K4; but has changed it to K 4o, then the revocation list will
contain the certificate for K4, a certificate for the transfer from K4, to K49 signed by the
certification authority (CA), and the certificate for K 4o. [Perhaps the list need not contain
all that information. Its purpose is to assure everyone that Ko is Alice’s current key and
that K 41 should not be used anymore./
The problems associated with public key encryption are:

1. Getting the first public/private key pair.
2. Changing the key after if has been compromised.

3. Getting the most recent revocation list of another user.

I believe that many problems can be solved more easily if we assume that Alice and
the CA share a common key K4 ¢4 which is known only to them. The key is only used

10

when Alice requires a key pair and should be kept in a highly secure environment. If this
secret is compromised, then Alice cannot participate in the system until she and the CA
get a new secret (entered manually). The CA should also have a public key which cannot
be compromised. If it is, then the whole system breaks down and has to be reconfigured
manually. So our requirements to the system are

e A certification authority (CA) exists.
e The CA has a public key which cannot be compromised.
e The CA does not disclose its private key.

e Each client shares a secret key with the CA (the CA needs to store a key for every
client).

e The secret key cannot be compromised (is implied because it is used very seldom).
e The client does not disclose the secret key (needs special hardware for storage).

e The CA does not disclose the secret key.

e The CA can generate good public/private keys.

After being installed in the system, Alice uses the secret key to request a key pair. The
CA sends it to her. From then on, Alice only uses the key pair for communication, so
disclosure of the secret key is unlikely.

1. A — CA: {Key RequeSt}KA,CA
2. CA — A: {Ky4, K3, Cert(Ka) Yk a04

I would suggest the following protocol for getting the most recent certificate. In the
protocol, Alice wants to talk to Bob and needs his current certificate. She only trusts the
certification authority, so she asks the CA for the most recent list. To avoid overhead, and
also for security reasons, each list has a unique identifier (counter), so a revocation list is
uniquely identified by the pair IDp = {Name, ID}.

7.3 Communication

All data should be encrypted before it is sent. This includes the header (address field) as well.
The encryption should be done by hardware and use a CBC mode to avoid substitutions.
Each network controller encrypts the message and sends it on the bus. Incoming messages
are decrypted with the secret key of the network card and the address field is checked. If it
is addressed to the client, then the rest of the message is decrypted and relayed to the higher
protocol layers. Note that a symmetric encryption is less reliable, because all keys must be
stored in the network card or the card must at least be trusted. In a pulic key system, the
public key of the receiver is common knowledge and can be stored by the application. It is
handed down to the network card together with the message. Only the secret key associated
with the card (and its client?! — might be a problem?) has to be stored in the card.

How is routing handled? We could make a public key for routers and send the encrypted
message plus the address field encrypted with the routing key. The router can keep a table
of such encrypted address fields and forward messages accordingly. So a message to Alice

11

has the form ({A, M}k,, {A}kg). A problem occurs if an intruder can control the network,
because he could substitute {A}x, with {B}x,. This does not matter if the message does
not have to be routed, but is a problem if routing is thus suppressed.

We do not yet know how to solve this problem in a secure way. Signing of messages is
impossible because we want to hide both sender and receiver. We need some way to make
the two parts inseparable (or at least tamper-aware) without giving away any identities.

8 Open Issues

To begin with, we need a good system model. Up to now, apparently nobody cared about
it, but I think that it is required if we want to compare algorithms fairly. It also helps to
define one’s needs if one can read about different models and then decide which fits best.

Then, we have to decide what our system is capable of and what it needs from security.
For example, we have sensors. What do we want to do with them? Is their data confidential?
Do actors need to authenticate the sender of commands? Do these components need to exe-
cute protocols for group management/participation? What about the computers controlling
them? What applications do we expect in the first place? It may very well be possible that
different applications of WoF need different security solutions. We have to identify what we
are catering for.

When it is clear what our target applications are, we have to do a list of requirements
for each possible application. From this list, we can identify the services we should provide.
The level of security integrated into these services may well be a different one for different
applications.

Finally, when we know what we need, we have to find ways of doing it. This is the stage
where we decide what protocols to use. It is also the stage where we develop the general
security framework (decide whether we need logging capabilities, decide about access policies
a.8.0.).

Finally, we have to verify the correctness of our protocols and framework. There are many
tools for protocol verification, but I have not encountered any for framework verification up
to now. Maybe we will have to develop our own verification mechanisms for that.

References

[FS00] Christof Fetzer and Ulrich Schmid. Architecture and services of the W2F fieldbus. Tech-
nical Report 183/1-101, Department of Automation, Vienna University of Technology,
(forthcoming) 2000.

[Wei00] Bettina Weiss. Security in distributed systems - a survey. Technical Report 183/1-99,
Department of Automation, Vienna University of Technology, February 2000.

12

