
���������	��
�����
�����
����������������
����������
�� �!
��������"���#�$�&%'�(
���)*�$��+����(%'�,%

-/.10325456�7�0328.
9 456;:<.1=>7�6;?A@B ?

C 6;.14
DFE�G3H"IKJMLMNOIPERQ	SPTULWVXEZY\[^]K_a`�[cb>[^dPe

f�gMhci�g�jlknm>opoMm
q rts u vxw y{z}|~u � ��� s �,� ��vxs vx� �
� vxs �5|�s ��� � � y*��� �5w � |~����|~�\�

� vxw w � s y���r���y{v�s �

�^���������F�����*�/�� �¡"¢c ~£1�*���¥¤�¦¨§ª©�«¬'¦¯®�¬��

°�±�²´³�±�µR¶�·�¸1±�²�¹#º¼»�¸^¹¾½À¿3½ÂÁÄÃªÅ±�ÆRµR¹�Ç�È�½;¹�ÃÉµR½;·Ê>·Ä¹¾ÆRÆ�½Â·lË�ÆRÇ�»

Technical Report 183/1-120, Dept. of Automation, TU Vienna, January 2002 July 10, 2003

Randomized Asynchronous Consensus with Imperfect Communications

Ulrich Schmid
�

Christof Fetzer
Technische Universität Wien AT

�
T Labs-Research

Embedded Computing Systems Group (E182/2) Dependable Distributed Computing Department
Treitlstraße 3, A-1040 Vienna 180 Park Ave, Florham Park, NJ07932

s@auto.tuwien.ac.at christof@research.att.com

Abstract

We introduce a novel hybrid failure model, which fa-
cilitates an accurate and detailed analysis of round-based
synchronous, partially synchronous and asynchronous dis-
tributed algorithms under both process and link failures. Its
utility and expressiveness is demonstrated by means of a
complete analysis of the well-known randomized Byzantine
agreement algorithm of (Srikanth & Toueg 1987). Granting
every process in the system up to ��� link failures (with ����
arbitrary faulty ones among those) in every round, with-
out being considered faulty, we show that this algorithm
needs just �	��
������������ ����� � ��� processes for tol-
erating � � Byzantine process failures. The probability of
disagreement after � iterations is only ����� , which is the
same as in the FLP model and thus much smaller than
the lower bound ��� ��!��#" known for synchronous systems
with lossy links. We also provide a detailed analysis of
the algorithm’s running time, as well as an evaluation of
the model’s assumption coverage in systems with transient
link failures. Finally, stubborn links are shown to be suf-
ficient for this algorithm. In accordance with our findings
for synchronous systems obtained elsewhere, our results re-
veal that randomized Byzantine agreement can be solved ef-
ficiently even in asynchronous systems with imperfect com-
munications. Contrasting widespread believe, there is no
need to employ a perfect communications subsystem even
in case of excessive link failure rates.

Keywords: Fault-tolerant distributed systems, partially
synchronous systems, failure models, link failures, random-
ized Byzantine agreement, consensus, stubborn links.

$
Supported by the Austrian START programme Y41-MAT, in the con-

text of our W2F-project http://www.auto.tuwien.ac.at/Projects/W2F/

1 Motivation

Traditionally, most asynchronous fault-tolerant algo-
rithms have been designed for process failures only. A typ-
ical assumption is that at most � of the � processes in a
distributed system may be Byzantine faulty during the en-
tire execution. Link failures can also be handled within such
models as long as link failure rates are low. If link failure
rates are high, however, one cannot count link-related fail-
ures as sender or receiver process failures without quickly
running out of non-faulty processes [22, 23].

Most failure models for asynchronous systems hence
stipulate [12] or simulate perfect [1, 2, 4, 5] links, i.e., can
assume that any message sent by a correct process to any
other correct process will eventually be delivered. Although
many distributed protocols have been designed for reli-
able channels, this abstraction inevitably needs unbounded
memory and stable storage or, equivalently, UIDs in pres-
ence of crashes [11, 19]. Consequently, in wide area and
wireless networks, where long lasting link breaks and non-
FIFO behavior are common, the perfect communications
assumption of the Fischer, Lynch & Paterson (FLP) model
[12] is difficult to justify.

As the first contribution of this paper, we introduce1 a
hybrid failure model that incorporates both process and link
failures in both time and value domain. It is applicable
to any round-based distributed algorithm and consists of
a basic physical failure model facilitating assumption cov-
erage and timing analysis, and a more abstract round-by-
round perception failure model facilitating accurate fault-
tolerance analysis. Formalized for partially synchronous
systems [10] where delays are possibly unknown, our model
covers synchronous and asynchronous systems as limiting
cases and is hence widely applicable. Unlike existing ap-
proaches based upon stabilization [8] or round-by-round
fault detectors [13], it can handle Byzantine failures as well.

1This paper contains only a brief overview of our failure model; a forth-
coming journal paper will provide all the details.

We will demonstrate the utility of our failure model by
analyzing a hybrid version of the randomized Byzantine
agreement algorithm of [25, 26] under Byzantine process
and link failures. For synchronous systems, it has long
been known that randomized algorithms—unlike determin-
istic ones, see [22, 23]—can solve consensus in presence
of (unconstrained) lossy links [19]. There is a fairly large
lower bound ��! � � � � " for the probability of disagreement
after � rounds [19, Thm. 5.5], however. For asynchronous
systems under the FLP model, the algorithm of [26] has a
probability of disagreement of at most � � � . The question
is: Does this algorithm still work if one drops the perfect
link assumption and, if so, is there a penalty?

In this paper, we will show the following:

(1) Every process may suffer from � � additional lost
(faulty) messages sent and received via arbitrary links
per round, without being considered faulty, provided
that � is increased by
�� � (

� � �). Time redundancy typ-
ically used for implementing perfect communication
can hence be replaced by resource redundancy (more
processes).

(2) The lower bound ��� ��!��#" on the probability of
disagreement of randomized consensus with uncon-
strained lossy links after � rounds does not hold in
our model. Our algorithm actually provides the same
probability � � � as in the FLP model.

(3) Tolerating link failures considerably decreases the al-
gorithm’s running time, since tighter end-to-end delay
bounds for communication between correct processes
can be used.

(4) With very reasonable assumption coverage, unreliable
datagram communication can be employed in systems
with transient link failure rates up to ��� ��� .

(5) For even higher link failure rates, 2-stubborn links [15]
(guaranteeing reliable delivery of the last two mes-
sages) can be used. Unlike reliable communication
channels, they do not suffer from the unbounded mem-
ory requirements of ever growing “unacknowledged
message” queues.

The remaining sections of our paper are organized as fol-
lows: In Section 2, we will very briefly introduce our failure
model. Section 3 contains the analysis of hybrid versions
of two well-known reliable broadcast primitives, which are
the major building blocks of the randomized consensus al-
gorithm of [25, 26]. Its analysis in Section 4 consists of a
proof of correctness (Section 4.1), a detailed runtime anal-
ysis (Section 4.2), a coverage analysis (Section 4.3), and
the justification of using stubborn channels (Section 4.4). A
short summary of our accomplishments in Section 5 con-
cludes the paper.

2 Failure Model

This section contains a very brief overview of our failure
model. It consists of an execution model, a basic physical
failure model, and a more abstract perception failure model.
Both the physical and the perception failure model are hy-
brid ones [3,27], i.e., distinguish several classes of failures.
The advantage of a hybrid failure model is its improved re-
silience: Less severe failures can usually be handled with
fewer processes than more severe ones. Obviously, an algo-
rithm’s resilience in a standard model (like all-Byzantine) is
easily obtained by setting some model parameters to 0.

Due to lack of space, we will entirely omit the descrip-
tion of the physical failure model, which is an extension of
the model of [21]. It distinguishes several classes of time
and value failures for both processes and links, and uses
assertions like “at most � ��� processes may behave Byzan-
tine”. Due to the exploding number of possible combina-
tions of time and value failures, it is not used for analyzing
fault-tolerant algorithms, however. Its primary purpose is
the analysis of the assumption coverage [17] in real sys-
tems, cp. Section 4.3.

The physical failure model can be reduced to a more ab-
stract (and vastly simpler) perception failure model, which
is similar in spirit to the round-by-round fault detector ap-
proach of [13]. It is a generalization of the synchronous
model of [22, 23], and is solely based upon the local view
(= perception of failures) of every process in any round.
The perception failure model is particularly well-suited for
analyzing the fault-tolerance properties of distributed algo-
rithms.

2.1 Execution Model

We consider a distributed system of � processors con-
nected by a fully or partially connected point-to-point net-
work. All links between processors are bidirectional, con-
sisting of two unidirectional channels that may be hit by
failures independently. The system will execute a dis-
tributed round-based algorithm made up of one or more
concurrent processes at every processor. Any two processes
at different processors can communicate bidirectionally
with each other via the interconnecting links. Every proces-
sor is identified by a unique processor id 	�
������������� ��� ;
every process is uniquely identified system-wide by the tu-
ple (processor id, process name), where the process name�

is chosen from a suitable name space. Since a process
will usually communicate with processes of the same name,
we will distinguish processes primarily by their processor
ids and suppress process names when they are clear from
the context. Note carefully, however, that our model allows
sender and receiver process to have different names.

Since we restrict our attention to round-based algo-

2

rithms, all processes execute a finite or infinite sequence
of consecutive rounds ��� � � ��������� . In every round ex-
cept the initial one ��� � , which is slightly different,
a single process 	 may broadcast (= successively send) a
single message—containing the current round number �
and a value

� �� depending upon its local computation—
to all processes contained in 	 ’s current receiver set � ����
������������� ��� .2 We assume that every (non-faulty) receiver �
knows its current sender set 	 �
 � � 	���
�� �� � contain-
ing all the processes that should have sent a message to it,
and that a process satisfying 	
�� �� (and hence 	
�	 ��)
sends a message to itself as well. Note that this conven-
tion does not prohibit an efficient direct implementation of
self-reception, provided that the resulting end-to-end trans-
mission delay is taken into account properly.

Concurrently, for every round number � , process 	 re-
ceives incoming round � messages from the processes

	��� and collects their values in a local array (subsequently
called perception vector) ���� � � ����� �� ��������� ����� �� � . Note
that ���� ������ ��� " as well as its individual entries

� ��� �� ��!�"� �� ��� " are actually time-dependent; we will usually sup-
press � , however, in order not to overload our notation. Stor-
ing a single value for each peer process in the perception
vector is sufficient, since any receiver may get at most one
round � message from any non-faulty sender. The entry�
 � ��
#���� (subsequently called perception) is either $ if no
round � message from process � came in yet (or if �&%
&	'��),
or it contains the received value from the first round � mes-
sage from process � . In case of multiple messages from the
same sender � , which must be faulty, the receiver could also
drop all messages and set

�
 � �� to some obviously faulty
value, instead of retaining the value from the first message.

Process 	 ’s current round � is eventually terminated at
the round switching time (�� , which is the real-time when
process 	 switches from round � to the next round � � � .
Note that round switching is event-based—and part of the
particular algorithm—in case of asynchronous systems but
enforced externally in case of synchronous systems. At the
round switching time, the value

� �*) �� �,+ �.- � �� �/(�� " �10 �32
to be broadcast by process 	 in the next round � � � is com-
puted as a function + � of the round � perceptions available
in � �� �,� �� �/(�� " and 	 ’s local state 0 � at time (�� .

Formally, the essentials of the above execution pattern
are captured by two specific events: 4�5 �� � � ��76 � ��98 is
process 	 ’s round � broadcast event, whereas 	5 � � �
 �� � � �
 6 � � � �
:8 denotes process � ’s perception event of pro-

2Throughout the paper, we use the following notation: Single lower-
case letters ; , < , . . . denote “anonymous” processes; in most cases, only
the processor ids are used here. Process names and round numbers are de-
noted by single upper-case letters = , > , ? , Process subscripts denote
the process where a quantity like @BADC EF is locally available, process super-
scripts denote the remote source of a quantity. Calligraphic variables likeG EA denote sets or vectors, bold variables like H denote intervals.

cess 	 ’s broadcast event. Those events are related via their
parameter values

� � � �
 � � �� (which are equal if there is
no failure) and their occurrence times � � � �
 �I� �� �KJ � � �
 ,
where J � � �
 is the end-to-end computational + transmission
delay between sender 	 and receiver � in round � . Note
that J � � �
 includes any round � computation at the sender
and receiver process, in particular, + � - � �� �/(�� " �10 � 2 .

Our model stipulates lower and upper bounds L � � �
and L)NM,O 3, not necessarily known to the algorithm, such
that

L � M J � � �
 M L) (1)

for any two well-behaved processes 	 , � connected by a
non-faulty link. Note that this relation must be valid for
any round � and 	P�Q� as well.4 Introducing the intervalR � 6 L � �SL) 8 , the above relation (1) can be written con-
cisely as J � � �

 R . The resulting bound for J � � �
 ’s un-
certainty, which will play a central role in our perception
failure model in Subsection 2.2, is given by T!�,L)VU L � .

2.2 Perception Failure Model

Consider the round � perception vector � �
 ��� " —
observed at some real-time � — of a well-behaved process � .
First of all, our execution model implies that � �
 �/� " is
monotonic in time, in the sense that W � �
 ��� �YX � "ZW��[W � �
 ��� "\W
for any X � � � , since perceptions are only added. More-
over, since the value

� �*) �
 to be broadcast in the next
round � � � is computed solely from � �
 �]�^� �
 �/(�
 " and
� ’s local state at the round switching time (�
 , it is obvious
that, ultimately, only the failures in the perceptions present
at the respective round switching times count. Timing fail-
ures are no longer visible here (but will probably affect (�
 ,
recall Section 2.1), since a message that did not drop in by
(�
 at process � just results in

� � � �
 �,$. Consequently, the
resulting perception failure model is much simpler than the
physical one and therefore more suitable for analyzing an
algorithm’s fault-tolerance properties.

Our formalization solely rests upon the ��_ � matrix
� � �/� " 5 of round � perceptions observed at the same ar-
bitrary time � —typically, some process’s round switching

3Note that ` must be replaced by a in case of b3c&d�e . This conve-
niently models “totally” asynchronous systems, where only assertions like
“eventually, . . . ” are possible: f*ADC EF a7b c dge allows messages that
travel arbitrarily slow but are still distinguishable from lost ones. Since a
finite b/c is the more common case, we will use ` and closed intervals in
the description of our model — but bear in mind that upper bound results
must be interpreted as strict in case of b c dhe .

4Those assumptions could be somewhat relaxed. In case of time-
varying delays, for example, we could allow b"i and b c to be different
in different rounds; this is exploited in the j -model of [18], for example.
The very small self-reception delay could be considered as an (early) link
timing failure and hence be masked by increasing k3lnmo and kqprmo by 1.

5We will subsequently suppress the round number > in quantities likeG Etsvu/w for brevity.

3

time—at all processes:

� ��� " �

����
�
� � ��� "
� � ��� "...
� � ��� "

�����
� �

����
�
� �� � �� ����� ����� �
�

� �� ����� ���
�...

...
...

...� �� � �� ����� ����

�����
�	� (2)

Note that � �/� " is in fact a quite flexible basis for our failure
model, since different “views” of the state of the distributed
computation can be produced easily by choosing a suitable
time of observation � .

We distinguish the following failure modes for single
perceptions in � ��� " in our perception failure model:

Definition 1 (Perception Failures) Process � ’s perception� �
 of process 	 ’s broadcast value
� � can be classified ac-

cording to the following mutually exclusive failure mode
predicates:

correct - � �
 2 : � �
 � � � ,

omission - � �
 2 : � �
 � $,

value - � �
 2 : � �
 %� $ and

� �
 %� � � .
Next, we have to classify sender6 process failures. This

requires the important notion of obedient processes: An
obedient process is an alive process that faithfully executes
the particular algorithm. It gets its inputs and performs its
computations exactly as a non-faulty process, but it might
fail in specific ways to communicate its value to the out-
side world. We will subsequently use this term instead of
non-faulty whenever a process acts as a receiver (“obedient
receiver”), since this will allow us to reason about the be-
havior of (benign) faulty processes as well. If � � denotes
some sender 	 ’s receiver set, let � � � � � denote the set of
obedient processes among those.

Whereas the physical failure model differentiates timing
failures according to J � � �

 R vs. J � � �
 %
 R and hence in-
corporates those quantities explicitly, it is solely the choice
of � that is used in Definition 2 for this purpose: It only de-
pends upon � whether a non-faulty perception

� �
 represents
a perception event 	5 �
 from a non-faulty or rather a timing
faulty process 	 . Hence, neither J � � �
 nor R will show up in
the definitions of the perception failure model below.

Definition 2 (Perception Process Failures) Let 	 be a
(faulty) sender process and � be some obedient receiver
with $^%� � ��
^� �/� " , if there is any such � . In the ab-
sence of link failures, process failures of 	 can be classified
according to the perceptions

� �

h� �/����T " at all obedient
receivers �
 � � � � � as follows:

Non-faulty: �
 � � � correct - � �
 2 ,
6Receiver process failures will be considered below, when introducing

link failures.

Manifest: *� ���
 � � � � �
 � � �� %� � � detectably,

Clean crash: �
 � � � omission - � �
 2 ,

Omission: �
 � � � correct - � �
 2�� omission - � �
 2 ,

Symmetric: *� ���
 � � � � �
 � � �� ,

Arbitrary: no constraints.

A faulty process producing at most asymmetric omission
failures is called benign faulty and is assumed to be obe-
dient.

Bear in mind that both arbitrary and symmetric faulty pro-
cesses, but not benign faulty ones, may also be faulty in the
time domain.

The following Definition 3 specifies the possible failures
in perceptions caused by link failures.

Definition 3 (Perception Link Failures) In the absence of
sender process failures, a failure of the link from sender 	
to an obedient receiver � can be classified according to its
effect upon � ’s perception

� �

 � ��� " as follows:

Link non-faulty:

� �
 � � � ,

Link omission:

� �
 �K$,

Link arbitrary: no constraint.

The failure classes up to link omission failures are called
benign.

To overcome the impossibility of consensus in presence
of unrestricted link failures [14, 19], it turned out that send
and receive link failures should be considered indepen-
dently [22, 23]. The following link-failure-related param-
eters are hence incorporated in the final perception failure
model of Definition 4 below:

(A1 �) Broadcast link failures: For any single sender � , there
are at most � �� receiver processes � with a perception vector
�
 that contains a faulty perception

� �
 from � .
(A1

�
) Receive link failures: In any single process � ’s per-

ception vector �
 , there are at most � �� faulty perceptions� �
 .

Separating broadcast and receive link failures as above
makes sense due to the fact that we consider the unidirec-
tional channels, rather than the bidirectional links, as sin-
gle fault containment regions: Broadcast link failures affect
outbound channels, whereas receive link failures affect in-
bound channels. Still, broadcast and receive link failures
are of course not independent of each other: If a message
from process 	 to � is hit by a failure in 	 ’s message broad-
cast, it obviously contributes a failure in process � ’s mes-
sage reception as well. Nevertheless, our failure model will
consider (A1 �) and (A1

�
) as independent of each other and

of process failures, for any process in the system and any

4

round. Only the model parameters � �� and � �� cannot be in-
dependently chosen (without restricting the link failure pat-
terns), since the system-wide number of send and receive
link failures must of course match. Hence, � �� � � �� � � � is
the most natural choice, although other settings can also be
considered [22].

Note carefully that we allow every process in the sys-
tem to commit up to � �� broadcast and up to � �� receive link
failures, in every round, without considering the process as
faulty in the usual sense. In addition, the particular links
actually hit by a link failure may be different in different
rounds. A process must be considered (omission) faulty,
however, if it exceeds its budget � �� of broadcast link fail-
ures in some round. Note that a process that experiences
more than � �� receive link failures in some round must usu-
ally be considered (arbitrary) faulty, since it might be unable
to correctly follow the algorithm after such an event.

The following Definition 4 contains our complete
perception-based failure model, which just specifies the
properties of any round’s perception matrix � � ��� " . Note
carefully that this definition is valid for arbitrary times � , in-
cluding those where the perceptions from some senders did
not yet arrive (and are hence $).
Definition 4 (Asynchronous Perception Failure Model)
Let � � �/� " be the round � perception matrix of an
asynchronous system of processes running on different
processors that comply to our execution model. For any
obedient receiver � , it is guaranteed that

� � � �
 � $ if
	�%
#	 �
 or if

� � � �
 was not received by time � . Moreover:

(P1) There are at most � � , � � , ��� , ��� , and ��� columns in
� � �/� " that correspond to arbitrary, symmetric, omis-
sion, clean crash, and manifest faulty processes and
may hence contain perceptions

� � � �
 according to Def-
inition 2.

(A1 �) In every single column 	 , at most � �� percep-
tions

� � � �

I� � ��� " corresponding to obedient re-

ceivers �
 � �� � � �� may differ from the ones ob-
tained in the absence of broadcast link failures. At
most � � �� M � �� of those perceptions may be link ar-
bitrary faulty.

(A1
�
) In every single row � corresponding to an obedient re-

ceiver, at most � �� of the perceptions
� � � �

^� � �/� "

corresponding to senders 	
 	 �
 may differ from the
ones obtained in the absence of receive link failures. At
most � � �� M � �� of those may be link arbitrary faulty.

(A2) Process � can be sure about the origin 	 of
� � � �

� � �/� " .
(A3) $ %� � � � �

�� � �/� " � $ %� � � � ��
 � � �/� � T " for

every non-faulty sender 	 connected to obedient re-
ceivers � and � via non-faulty links.

Remarks:

1. The effects of process failures (P1) and link failures
(A1 �), (A1

�
) are considered orthogonal; it can hence

happen that a link failure hits a perception originat-
ing from a faulty sender process. This is also true for
manifest and clean crash failures, where link arbitrary
failures could create non-empty perceptions at some
receivers.

2. Our model also allows to model “totally” asyn-
chronous systems by setting L) � O , which implies
TN� O . Although the distinction between symmet-
ric and asymmetric failures is void here, it still makes
sense to distinguish arbitrary, (early) time, omission
and manifest failures.

The primary way of using our failure model in the anal-
ysis of agreement-type algorithms is the following: Given
the perception vector � �
 �r(�
 " of some specific obedient re-
ceiver process � at its round switching time (�
 , it allows to
determine how many perceptions will at least be present in
any other process � ’s perception vector � �� �/(�
 �hT " shortly
thereafter. The following Lemma 1 formalizes this fact.

Lemma 1 (Difference in Perceptions) At any time � , the
perception vector �
 ��� " of any process at an obedient re-
ceiver � may contain at most � � �� � � � � � � timing/value-
faulty perceptions

� �
 %� $. Moreover, at most X � �
� � �� � � �� � � � � ��� perceptions

� �� corresponding to
� �
 %� $

may be missing in any other obedient receiver’s � � ����� X � "
for any X � �PT .
Proof: The first statement of our lemma is an obvious
consequence of Definition 4. To prove the second one, we
note that at most � � �� � � � � ��� perceptions may have been
available (partly too early) at � without being avaliable yet
at � , additional � � �� � M � � �� perceptions may be late at � ,
and � �� U � � �� �

ones could suffer from an omission at � . All
symmetric faulty perceptions present in �
 �/� " must also be
present in � � �/� ��X � " , however. Summing up all the dif-
ferences, the expression for X � given in Lemma 1 follows.�

3 Elementary Broadcast Primitives

In Section 4, we will provide the complete analysis of
an advanced asynchronous algorithm, namely, the random-
ized Byzantine agreement algorithm of [25, 26], under our
perception failure model. It relies upon two well-known
broadcast primitives, echo broadcast [7, 26] and simulated
authenticated broadcast [25], which have to be adapted and
analyzed first. To keep the notation simple, we will use the
“all-Byzantine” restriction of the perception failure model
in Definition 4 (� � � ���7� ���V� ����� � , which also
implies obedient = non-faulty) throughout this section.

5

3.1 Echo Broadcasting

The echo broadcast primitive of [7, 26] implements cru-
sader’s agreement [9], which limits the power of faulty pro-
cesses during a broadcast. Its interface consists of two func-
tions echo-broadcast � � � " and echo-deliver � � � " , which al-
low a process 	 to broadcast some value

� � to all processes
in the system. The semantics of the echo broadcast primi-
tive ensures that any two obedient processes that ever echo-
deliver get the same value, and that all obedient processes
will echo-deliver if the broadcaster is non-faulty, see Theo-
rem 1 below.

Note that we will only consider a single instance of
echo broadcasting in this section. Typical applications like
the consensus algorithm of Figure 3 require multiple in-
stances, however, which can be distinguished by their pro-
cess names. We use the round number � of the application
process that calls echo-broadcast as the process name; it is
of course fixed and should not be confused with the round
numbers of the echo broadcast implementation.

Implementation of echo-broadcast s @ A w :
send s bcast �n>��n@ A � ; w to all;

Process for echo-deliver s @ A w :
cobegin

/* Concurrent block for > */

if received s bcast � >�� @ A �v; w from ;
� send s echo � > � � @ A � ; w to all [once]; /* rebroadcast */

fi

/* Concurrent block for > � */

if received s echo �n> � � @ A � ; w with identical @ A dh@ from
��� k po � k lo � k m distinct processes
� unblock echo-deliver s @ A w ; /* ready for echo-deliver at rec. */

fi

coend

Figure 1. Echo broadcast primitive for the “all-
Byzantine” hybrid failure model of Definition 4

Figure 1 shows the pseudo code of our hybrid version
of the original algorithm. It needs two concurrent single-
round processes named � and � �

on each processor, which
send messages consisting of a type (bcast resp. echo), the
process name (� resp. � �

), the broadcast value
� � , and the

originator of the broadcast 	 to each other (including itself).
In the implementation of echo-broadcast, the broadcaster 	
just disseminates its value

� � to all peers.
� � will be re-

ceived in process � at every processor and echoed to all.
The echo messages are collected by process � �

, which even-

tually unblocks echo-deliver when sufficiently many of of
those dropped in. The numbers � �� , � �� , and � � denote the
maximum tolerated number of failures as specified in Def-
inition 4. Note that � � gives the maximum number of pro-
cessors that may execute a faulty process � , � �

, or applica-
tion process (calling echo-broadcast or echo-deliver). Since
“at most � faulty processors” implies “at most � faulty
processes (of the same name)”, however, we will use the
phrases “faulty processors” and “faulty processes” synony-
mously.

The following Theorem 1 proves that the algorithm of
Figure 1 satisfies the properties of echo broadcasting:

Theorem 1 (Properties Echo Broadcasting) In a system
with � � � � �� � ��� � �� � � � �� � ��� � � � processors satisfying
the failure model of Definition 4, where � � � � gives the
maximum number of Byzantine faulty processors during the
entire execution, the echo broadcast primitive of Figure 1
guarantees:

(UC) Uniform Correctness: If non-faulty processor
	 executes echo-broadcast � � � " at time � , then
echo-deliver � � � " at every obedient processor is
unblocked within 6 � � � L � �S��� � L) 8 .

(UU) Uniform Unforgeability: If processor 	 is obedient and
does not execute echo-broadcast � � � " by time � , then
echo-deliver � � � " cannot unblock at any obedient pro-
cessor by ��� � L � or earlier.

(UA) Uniform Agreement: If echo-deliver � � �
 " and
echo-deliver � � �� " both return a value broadcast
by processor 	 at two obedient processes � and � ,
respectively, then

� �
 � � �� .

System-wide, at most � � � broadcasts of � �
	�� � � ��	��
�
�
� � �	��

�
��� � �" -bit messages are performed by obe-

dient processes, where
�
� resp.

���
give the cardinality of

the process name space resp. the set of broadcast values.

Proof: (Uniform Correctness.) Since the broadcaster 	
is non-faulty, at least � U � �� U � � non-faulty receivers
get � bcast � � � � � � 	�" in process � and emit � echo � � � � � � � 	�"
within time 6 � �,L � �S� �gL) 8 , according to (A1 �) in Defi-
nition 4 and the definition of L � , L) . Consequently, any
obedient receiver gets at least � � � � U � �� U � �� U � �
correct � echo � � � � � � � 	�" from different processes in pro-
cess � �

within another R � 6 L � �SL) 8 , by (A1
�
) and (P1)

in Definition 4. According to Figure 1, echo-deliver � � � " at
any obedient receiver is hence unblocked as asserted. Note
that echo-deliver � � � " cannot succeed before � L � , since this
could only happen if 	 was faulty, cp. the unforgeability
proof below.

(Uniform Unforgeability.) The proof is by contradiction:
Assume that there is an obedient process � that unblocks

6

echo-deliver by ��� � L � , which implies

W � �
�
 ��� �#� L � "\W�� � U � �� U � �� U � � � � �� �#� � � �� �#� �� �#��� � � �

according to the second if in Figure 1. Since only at most
� � �� � � � of the corresponding messages � echo � � � � � � � 	 "
might originate from arbitrary receive link failures7 and
Byzantine faulty processors, and at most � � �� obedient pro-
cesses could have sent � echo � � � � � � � 	�" in response to some
spurious � bcast � � � � � � 	�" messages caused by broadcast
link failures in process � , at least one obedient processor �
not affected by a broadcast link failure in process � must
have sent � echo � � � � � � � 	 " , by time � �NL � . This can only
happen if � got a true � bcast � � � � � � 	�" —not a spurious one
caused by an arbitrary broadcast link failure—in the first if
sent by time � . This contradicts the assumption of the un-
forgeability property, however.

(Uniform Agreement.) If two different obedient pro-
cesses � and � echo-deliver two different values, they must
have got sufficiently many same echo-messages with dif-
ferent values

� �
 %� � �� each. We use a simple pigeonhole
principle argument to show that this is impossible, given
that there are only � processes that could have sent such
messages: Obviously, �
 � � U � �� U � �� U � � U � � �� U � �
resp. � � � � U � �� U � �� U � � U � � �� U � � of the messages
received at � resp. � must originate from non-faulty pro-
cesses. Since there are at most � M � U � � such processes,
� � �
 � � � U � must satisfy

� � � U ��� � �� U � �� U ��� � U � � �� " � � � � ���

Consequently, at least one non-faulty process must have
sent different messages to � and � , which is impossible.

As far as the claimed message complexity of our algo-
rithm is concerned, it is of course impossible to bound the
number of message broadcasts by non-obedient processes.
Every of the at most � processes that faithfully executes
the algorithm of Figure 1, however, performs at most one
broadcast of � echo � � � � � � � 	�" in direct or indirect response
to the initial one, where only process 	 broadcasts the mes-
sage � bcast � � � � � � 	�" . This completes the proof of Theo-
rem 1.

�

3.2 Simulated Authenticated Broadcasting

We now turn to the more involved simulated authenti-
cated broadcast primitive of [25], which implements au-
thenticated reliable broadcasts without cryptography. Note
that we are dealing with the asynchronous version here; its
synchronous counterpart has been analyzed in the context
of the consensus algorithm of Srikanth & Toueg in [6].

7Link arbitrary failures could produce time faulty messages “out of thin
air”.

Simulated authenticated broadcasting is implemented by
means of two functions, namely, sa-broadcast � � � " and
sa-deliver � � � " , which allow a process 	 to reliably broad-
cast some value

� � to all processes in the system. The se-
mantics of simulated authenticated broadcasting is captured
by three properties, namely, correctness, unforgeability, and
relay, defined in Theorem 2 below.

As in Section 3.1, we will again consider only a single
instance of echo broadcasting in this section. Typical ap-
plications like the consensus algorithm of Figure 3 require
multiple instances, however, which can be distinguished by
their process names. We again use the round number � of
the application process that calls sa-broadcast as the pro-
cess name; it is of course fixed and should not be confused
with the round numbers of the broadcast implementation.

Implementation of sa-broadcast s @ A w :
send s bcast � >��n@ A � ; w to all;

Process for sa-deliver s @ A w :
cobegin

/* Concurrent block for > */

if received s bcast � >�� @ A �v; w from ;
� send s echo � > � � @ A �v; w to all [once]; /* rebroadcast */

fi

/* Concurrent block for > � */

if received s echo � > � � @ A �v; w with identical @ A dh@ from

k p mo�� k lnmo�� k m ��� distinct processes
� send s echo � > � � @ A �v; w to all [once]; /* sufficient evidence */

fi

if received s echo � > � � @ A �v; w with identical @ A dh@ from

k p mo ��� k lnmo � k lo �	� k m �
� distinct processes
� unblock sa-deliver s @ A w ; /* ready for sa-deliver at receiver */

fi

coend

Figure 2. Simulated authenticated broadcast prim-
itive for the “all-Byzantine” hybrid failure model of
Definition 4

Figure 2 shows the pseudo code of our hybrid simulated
authenticated broadcast primitive. It consists of two con-
current single-round processes named � and � �

on each
processor, which send messages consisting of a type (bcast
resp. echo), the process name (� resp. � �

), the broadcast
value

� � , and the originator of the broadcast 	 to each other
(including itself). The initial message � bcast � � � � � � 	 " is
used by the broadcaster 	 ’s process � to signal that the func-
tion sa-broadcast � � � " has been called, � echo � � � � � � � 	�" is
emitted (at most once) either by process � upon recep-

7

tion of � bcast � � � � � � 	�" from 	 , or when process � �
got

� echo � � � � � � � 	�" from at least one non-faulty process (“suf-
ficient evidence”). The figures � � , � �� , and � � �� give the
maximum tolerated number of failures as specified in Def-
inition 4. As in Section 3.1, those numbers give the maxi-
mum number of processors that may execute a faulty pro-
cess � , � �

, or application process (calling sa-broadcast or
sa-deliver). Since “at most � faulty processors” implies
“at most � faulty processes (of the same name)”, however,
we will use the phrases “faulty processors” and “faulty pro-
cesses” synonymously.

Theorem 2 below proves that the algorithm of Figure 2
satisfies the properties of authenticated broadcasting. It uses
the properties of perception vectors at two different obedi-
ent receivers established in Lemma 1 in Section 2.2.

Theorem 2 (Properties Simulated Auth. Broadcasting)
In a system with � � � � �� � � �� � � � � �� � ��� �� � ��� � ���
processors satisfying the failure model of Definition 4,
where � � � � gives the maximum number of Byzantine
faulty processors during the entire execution, the simulated
authenticated broadcast primitive of Figure 2 guarantees:

(UC) Uniform Correctness: If non-faulty processor 	 calls
sa-broadcast � � � " at time � , then sa-deliver � � � " at every
obedient processor is unblocked within 6 � � � L � �S� �
� L) 8 .

(UU) Uniform Unforgeability: If processor 	 is obedient
and does not execute sa-broadcast � � � " by time � , then
sa-deliver � � � " cannot unblock at any obedient proces-
sor by ��� � L � or earlier.

(UR) Uniform Relay: If sa-deliver � � � " at an obedient pro-
cessor is unblocked at time � , then every obedient pro-
cessor does so by time � �7L�� , where L�� � T ��L) .

System-wide, at most � � � broadcasts of � �	�� � � ��	��
�
�
� � �
	��

�
� � � �" -bit messages are performed by obe-

dient processes, where
�
� resp.

���
give the cardinality of

the process name space resp. the set of broadcast values.

Proof: (Uniform Correctness.) Here we can assume that
the broadcaster 	 is non-faulty. Hence, according to (A1 �)
in Definition 4 and the definition of L � , L) , at least � U
� �� U � � non-faulty receivers get � bcast � � � � � � 	 " and emit
� echo � � � � � � � 	�" in process � within time 6 ��� L � �S� � L) 8 .
Consequently, any obedient receiver gets at least

� � � � U � �� U � �� U � � � � � �� � � � � �� � � �� � � � � � �
correct � echo � � � � � � � 	�" from different processes in pro-
cess � �

within another R , by (A1
�
) and (P1) in Defini-

tion 4. According to Figure 2, sa-deliver � � � " at any obe-
dient receiver is hence unblocked as asserted. Note that
sa-deliver � � � " cannot erroneously succeed before � � �qL � ,
according to the uniform unforgeability property (UU).

(Uniform Unforgeability.) The proof is by contradiction:
Assume that there is an obedient process � that unblocks
sa-deliver by � ��� L � , which implies W � �

�
 ��� ��� L � "\W �
� � �� � ��� � �� � � �� � ��� � � � according to the third if in Fig-
ure 2. Since only at most � � �� ��� � of the corresponding
� echo � � � � � � � 	 " may be due to messages produced by arbi-
trary receive link failures8 and timing/value-faulty proces-
sors, and at most � � �� obedient processes could have sent
� echo � � � � � � � 	 " in response to spurious � bcast � � � � � � 	�"
caused by broadcast link failures in process � , at least one
obedient processor � not affected by a broadcast link fail-
ure in process � must have sent � echo � � � � � � � 	�" , by time
���7L � .

This happens if either (1) � got a true � bcast � � � � � � 	 " —
not a spurious one caused by an arbitrary broadcast link
failure—in the first if sent by time � , or (2) � achieved suffi-
cient evidence in the second if, that is, W � �

�� �/� �KL � "\W �
� � �� � � � �� � � � � � . By the same argument as before,
(2) requires that at least one obedient processor � sent
� echo � � � � � � � 	 " by time � , which in turn can only happen
if (1) applies to � (for time � U L �7M �). Case (1), however,
contradicts the assumption of the unforgeability property.

(Uniform Relay.) Since some obedient process � un-
blocks sa-deliver at time � , W � �

�
 ��� "\W�� � � �� � ��� � �� � � �� �
� � � � � according to the delivery criterion in Figure 2.
Hence, the perception vector at any obedient process � must
satisfy

W � �
�� ��� � T "ZW�� � � �� � � � �� � � � � �

according to Lemma 1. It follows that all non-faulty pro-
cesses achieve sufficient evidence in the second if of Fig-
ure 2 and send � echo � � � � � � � 	 " to all processes by this time.
As in the proof of correctness, this implies

W � �
�� �/� ��T �7L) "\W�� � � �� � � � � �� � � �� � � � � � �

for any obedient process � , which causes � to unblock sa-
deliver by ����T �7L) �,���7L � as asserted.

As far as the claimed message complexity of our al-
gorithm is concerned, it is of course impossible to bound
the number of message broadcasts by not obedient pro-
cesses. Every of the at most � processes that faithfully ex-
ecutes the algorithm of Figure 2, however, perform at most
one broadcast of � echo � � � � � � � 	 " in direct or indirect re-
sponse to the initial one, where only process 	 broadcasts
� bcast � � � � � � 	�" . This completes the proof of Theorem 2.�

It is important to note that the simulated authen-
ticated broadcast primitive of Figure 2—unlike echo
broadcasting—does not provide (uniform) uniqueness de-
fined as: If a non-faulty (obedient) process unblocks

8Link arbitrary failures could produce time faulty messages “out of thin
air”.

8

sa-deliver � � � " for a value
� � broadcast in round � , then no

non-faulty (obedient) process unblocks sa-deliver � � �� " for a
value

� �� %� � � broadcast in round � . In the algorithm of
Figure 2, a faulty broadcaster could hence “inject” multiple
values in the same round, simply by inconsistently sending
those to different echoing processes. Uniform relay (UR)
guarantees, however, that every obedient process eventually
gets every value. This fact will allow us to get rid of the
costly “proof-concept” in the original randomized Byzan-
tine agreement algorithm of [26].

4 Randomized Byzantine Agreement

Enabled by the results of the previous subsection, we
are ready for investigating the randomized consensus algo-
rithm of [25] under our perception failure model. A (ran-
domized) consensus—also called Byzantine agreement—
algorithm computes (with high probability) a common deci-
sion value

�
based upon initial values � � provided locally at

every process 	 . Our algorithm will be based upon Toueg’s
improvement [26] of the algorithm proposed by Rabin in
[20], which uses authenticated broadcasts and Shamir’s se-
cret sharing scheme [24]. By plugging in the hybrid broad-
cast primitives from Section 3.1 and 3.2, a hybrid version of
this algorithm is easily derived.

The secret sharing scheme of [24] assumes a non-faulty
dealer

�
, which generates a sequence of random bits� � � � � ������� and, for each bit ��� , � pieces � � � , � M�� M � .

Those pieces are such that the knowledge of � � � of those
is necessary and sufficient for computing ��� . The dealer
signs all pieces with its signature (�� to prevent forgery
and distributes to each process � the sequence of its pieces
(� � � � � "�� (� � � �� "�������� . Note that this happens off-line, prior
to the execution(s) of the actual consensus algorithm, and is
the only place where authentication will be required in our
hybrid algorithm. This secret sharing scheme makes it im-
possible for � faulty processes to compute the secret solely
from their pieces at runtime — at least one non-faulty pro-
cess’s piece must be available for this purpose as well.

The original algorithm of [26] (cp. Figure 3) computes,
with probability at least � U � ��! � "
	 , a common consensus
value

�
from all the processes’ input values � �
 � � � � � ,

� M 	 M � , by means of � iterations with three phases
(which may consist of multiple rounds each). In phase 1, all
processes broadcast their current consensus value

� � (ini-
tially

� � ��� �) and wait for the arrival of � U � authenti-
cated messages from different processes (including itself).
Every process then computes a new value for

� � based upon
the values in the received messages and saves the latter as a
proof for its choice.

In phase 2, every process echo-broadcasts its new value� � along with its proof to all processes in the system and

waits for � U � such messages from different processes.
It computes the number of messages containing

�
 � �
among those and saves them in the variable count.

In phase 3, every process 	 in iteration discloses its
piece of the secret � � � by broadcasting it to all processes,
and waits for the arrival of � � � pieces—with a correct
dealer’s signature—from different processes. When they ar-
rive, process 	 can compute the shared secret � � . Note that
it does not matter whether a piece comes from a faulty or
non-faulty process since forging a piece is impossible due
to authentication.

Finally, a new consensus value
� � is computed by suit-

ably combining the random bit � � with the value of count
obtained in phase 2: The algorithm ensures that, with prob-
ability at least 1/2, all non-faulty processes achieve the same
new consensus value at the end of an iteration, even if there
was arbitrary disagreement before.

4.1 The Hybrid Algorithm

We will now develop a hybrid variant of the above al-
gorithm for the “all-Byzantine” setting of our perception
failure model. It is assumed here that there are � �
� � �� ����� � �� � ��� �� � ��� � � � processors in the system,
with at most � � � � arbitrary faulty ones9 among those.
Faulty processes may omit to send any message or even
disseminate faulty values in a colluded attempt to fail the
system. Note that the “all-Byzantine” setting is appropriate
here, since crash failures are as severe as arbitrary failures
for our algorithm.

The pseudo code of our hybrid randomized consensus
algorithm is shown in Figure 3. Note that link failures show
up explicitly only in phase 3 of the hybrid algorithm, since
they are completely hidden by the broadcast primitives in
phases 1 and 2.

Figure 3 reveals that we only replaced the authenticated
broadcast in phase 1 of the original algorithm by the sim-
ulated broadcast primitive of Section 3.2. The latter does
not employ signatures, however, so we could not retain the
proof concept. Instead, we exploit the fact that simulated
authenticated broadcasting satisfies the uniform relay prop-
erty (UR) according to Theorem 2: It guarantees that, even-
tually, every non-faulty process must get all messages seen
by any other non-faulty process (although not necessarily
in the same sequence). As as consequence, our algorithm
needs to echo-broadcast the single value

� � only, which
considerably reduces the communication costs.

Receiver � can verify in phase 2 whether the value
� �

disseminated by some process 	 via echo-broadcast is le-
gitimate as follows: It just looks whether there are � U � �

9We will again use the terms “faulty process” and “faulty processor”
synonymously in this section. This implies, in particular, that the processes
executing at a non-faulty processor are all non-faulty.

9

Code for process ; :@ A d�� A ; /* Initial value */
for
� d�� to � � � do

/* Phase 1 (round > d�� �) */
sa-broadcast s @ A w ;
wait for sa-deliver s @ F w from ��� k m processes;
count := number of < ’s with @ F d � ;
if count � ��� � k m then @ A	� d � else @ A	� d�� ;
fi

/* Phase 2 (round � � �
�) */
echo-broadcast s @ A w ;
wait for echo-deliver s @ F w with acceptable s @ F w from � � k m distinct
processes;
count := number of < ’s with @ F d � ;

/* Phase 3 (round � � �	�) */

send s�
��s�� A � wrw to all; /* disclose piece */

wait for receive s�
���s�� F � w/w with correct
� from kqlnmo�� k m �
� procs;

compute � � from the received pieces;

if (� � d�� and count � �) or

(� � d � and count � � k m �
�) then @ A d � ;
else @ A	� d�� ;

fi

od

Figure 3. Randomized binary consensus algorithm
for the hybrid failure model of Definition 4

phase 1 messages among its—possibly larger—set of re-
ceived ones, such that

� � satisfies the condition of the if
of phase 1 if applied to those; we express this via the predi-
cate acceptable � � � " . It is important to note, however, that �
must wait until � U � � phase 2 messages from different 	 ’s
have passed this test — after all, it may be the case that the
phase 1 messages that were used by 	 to compute its

� � in
phase 2 did not yet arrive at � .

By means of a proof that almost literally follows the orig-
inal one in [26], it is not difficult to establish the following
major Theorem 3:

Theorem 3 (Properties Randomized Consensus) In a
system with � � � � �� � � � � �� � � � �� � ��� � � � processors
according to Definition 4, where � � � � denotes the
maximum number of arbitrary faulty processors during the
whole execution, the randomized consensus algorithm of
Figure 3 satisfies:

P1. Termination: All non-faulty processes terminate the
algorithm.

P2. Validity: If all non-faulty processes 	 start with the
initial value � � ��� , then every non-faulty process

terminates the algorithm with
� ��� .

P3. Randomized Agreement: With probability at least
� U � � ! ��" 	 , every non-faulty process terminates the
algorithm with the same value

�
.

Proof: (Termination.) We have to show that the wait state-
ments executed by non-faulty processes always terminate.
A tedious but easy proof by induction is based on the fol-
lowing remark: Suppose all the non-faulty processes reach
the beginning of a given iteration. Each one will broadcast
the message required by that iteration to all the processes in
phase 1. By the uniform correctness property (UC) in The-
orem 2, every non-faulty process will eventually sa-deliver
the message broadcast by a non-faulty process. Therefore,
every non-faulty process sa-delivers a message from at least
� U � � distinct processes.

The same is true for echo-broadcast in phase 2, where
the uniform correctness property (UC) of Theorem 1 ap-
plies: Every non-faulty process 	 echo-delivers a message
from at least � U � � distinct non-faulty processes. We have
to verify, however, that acceptable � �
 " is eventually true for
all of those: Since all the messages sa-delivered at process �
in phase 1 must also arrive within L � at process 	 according
to the relay property (R) in Lemma 2, this is obviously the
case.

Last but not least, termination of the wait in phase 3 is
obvious, since at least � U � � U � �� � � � �� �#� � � � pieces from
different non-faulty processes must arrive at any non-faulty
process. Consequently, every non-faulty process terminates
its iteration and arrives at the start of the next one.

(Validity.) Suppose � U � � (or more) non-faulty pro-
cesses 	 have the same value

� � ��� at the beginning of
iteration . We show that all the non-faulty processes will
have

� ��� at the end of this iteration. Consequently, once
an agreement on a value � is reached by the non-faulty pro-
cesses, this agreement on � will hold at the end of each
subsequent iteration.

We first claim that, in phase 1 of iteration , every non-
faulty process 	 has count � � U � � � if and only if � ��� :
Since at most � � processes broadcast a value different from
� , at least � U � � � of the � U � � messages received by 	
have the value � and at most � � have a value different from
� . So, if � � � then count � � U � � � , and if � � �
then count M � � . Note that � �

� � U � � � , and the claim is
proved.

From this claim, we conclude that every non-faulty pro-
cess sets

� � ��� at the end of phase 1 of iteration . We
now show that, at the beginning of phase 2, there are no
echo-delivered messages that satisfy acceptable � �
 " with�
 %��� : Suppose � � � , so at least � U � � non-faulty
processes 	 have

� � � � at the beginning of iteration .
However, acceptable � �
 " with

�
 � � would require at
least � U � � �

� � � messages with value � sa-delivered in

10

phase 1, which is impossible. If, on the other hand, ����� ,
then acceptable � �
 " with

�
 � � would require � � � � �
messages with value � sa-delivered in phase 1, which is also
impossible.

This implies that every non-faulty process considers only
messages with

�
 � � acceptable in phase 2, so count is
set to either 0 if � � � or � U � � � � � � � � if � � � .
Consequently,

� � � ��� , independently from the value of
the bit � � .

(Randomized Agreement.) Assume that there is no agree-
ment in the system at the beginning of iteration , in the
sense that that not all non-faulty processes 	 have the same
value

� � � � . We show that, with probability at least 1/2,
we have agreement at the end of iteration .

Consider phase 2 of iteration and let 	 be the first non-
faulty process that terminates the appropriate wait by having
echo-delivered � �
 " satisfying acceptable � �
 " (we call this
accepted) from � U � � distinct processes 	 � � 	 � ������� � 	 � � ��� .
There are two possibilities for 	 ’s variable count:

(i) count ��� � � � . In this case, we claim that all the non-
faulty processes will have count �	� in phase 2. Without
loss of generality, 	 accepted a message with value � from
processes � 	 � ��������� 	 � �) � � . In the same phase, every non-
faulty process � accepts messages from all but � � processes.
Therefore, � accepts a message from at least one process
	��
 � 	 � ��������� 	 ���) � � . By the uniform agreement property
(UA) in Theorem 1, the messages echo-delivered by 	 and
� from 	�� must be identical, so � has count � � as asserted.

(ii) count
� � � � � . In this case, we claim that all non-

faulty processes will have count
� � � � � � in phase 2.

Any non-faulty process � accepts messages with
� � � �

from at most � � processes in � 	 � ������� � 	 � � ��� � , and from at
most � � processes in � 	 � � ���) � ��������� 	 � � . Therefore, � has
count

� ��� � � � at the end of this phase � as asserted.

Clearly, event (i) vs. (ii) is established before any non-
faulty process reveals its piece of the shared secret bit ��� .
Since � � � � pieces are required to compute ��� , this event is
hence established before ��� is known by any process and is
hence independent of ��� ’s value. Let � � be the probability
that (i) applies. If � � � � and count � � � ��� , then all
non-faulty processes 	 have count � � , and therefore they
all set

� � � � at the end of iteration . This happens with
probability � � ! � .

If � � � � and count
� � � � � , then all the non-

faulty processes 	 have count � � � � � � , and therefore
they all set

� � �]� � at the end of iteration . This hap-
pens with probability � � U � � " ! � . Putting everything to-
gether, disagreement is transformed into systemwide agree-
ment among all non-faulty processes with probability at
least � � ! � � � � U � � " ! ��� � ! � . This eventually completes
the proof of Theorem 3.

�

4.2 Running Time Analysis

We now turn our attention to the analysis of the run-
ning time of the randomized Byzantine agreement algo-
rithm of Figure 3, which will be based upon the lower and
upper bounds L � , L) on the end-to-end computational and
transmission delays. Note carefully that the algorithm does
not know anything about those bounds, and that we as-
sume L) � O in case of purely asynchronous systems.
For performance analysis purposes, however, we just stipu-
late that any two non-faulty processes communicate to each
other over a non-faulty link within 6 L � �SL) 8 . Relying upon
this assumption, we can compute the best case and worst
case running time as an expression involving L) , L � and
T!�gL) U L � .

In sharp contrast to the existing approaches for tolerating
link failures in asynchronous system, which are all based
upon time redundancy, our algorithm tolerates link failures
by means of resource redundancy only: Eventually, other
processors assist—implicitly via the consensus algorithm—
any given processor in getting all the required informa-
tion, despite of link failures. Consequently, L) needs to
cover only a single message transmission (without retrans-
missions) between two correct processes via a correct link
here. Since excessive delays can be considered as (early)
link timing failures in our model, we can usually stipulate a
much smaller L) . By contrast, approaches that explicitly or
implicitly assume perfect communication must choose L)
according to the maximum message delay among all trans-
missions. Consequently, the concurrency offered by the as-
sisting processors leads to a considerably smaller execution
time and hence better real-time capabilities.

The algorithm of Figure 3 is essentially sequential, in the
sense that its iterations and phases cannot be executed con-
currently. The processes required for simulated authenti-
cated broadcasting and echo broadcasting run concurrently
with the main process, however, and must all be started at
boot time in order not to lose messages sent by fast pro-
cesses. Note that our implementations of echo broadcasting
and simulated authenticated broadcasting employ � � ded-
icated processes per iteration each; in practice, however,
their responsibilities can be taken over by two generic pro-
cesses with slightly extended capabilities.

The algorithm’s running time will be computed by track-
ing the maximum differences L �� �
	��� nf. � �
 W (�� U (�
 W of
the round switching times of non-faulty processes during
the iterations. Let us first stipulate a process 	 that is fast
enough so that sa-deliver and echo-deliver block upon in-
vocation. Clearly, 	 calls its instance of simulated authenti-
cated broadcasting for iteration at time (� � �� when round
��� � commences (phase 1). Next it will call iteration ’s
echo-broadcast at round switching time (�� , which is deter-
mined by the � U � � -th sa-deliver. Finally, at time (�*) ��

11

defined by the � U � � -th echo-deliver, it discloses its piece
and computes a new value

� � . This round is terminated
upon reception of the � � �� � � � ��� -st correct piece at the
round switching time (�*) �� , which starts the next iteration
 � � .

For a slower process 	 , the above description must be
modified in order to account for the fact that 	 might call
e.g. sa-deliver late, i.e., at some time where it has already
been unblocked by the simulated authenticated broadcast-
ing process and hence returns immediately. In this case, (��
is equal to the maximum of the actual unblocking time of
sa-deliver and (� � �� (recall that all pseudo code statements,
except wait, are executed in zero time).

We start our treatment with Lemma 2, which bounds
the maximum difference of the times when two non-faulty
processes switch from phase 1 to phase 2 resp. phase 2 to
phase 3 in the algorithm of Figure 3. This lemma is valid for
both echo broadcasting and simulated authenticated broad-
casting, since its proof depends only upon the uniform cor-
rectness property (UC) that is the same for both broadcast
primitives.

Lemma 2 (Running Time Phase 1 & 2) For � � �
resp. � � � ��� , let L � � �� � 	��� nf. � �
 W (� � �� U (� � �
 W
be the maximum difference of the round switching times of
all non-faulty processes in the execution of the algorithm
in Figure 3, where phase 1 resp. 2 of some iteration is
entered. If the first non-faulty process � enters at time
� � �g(� � �� , then

� � � � L � M (�� M � � ��L � � �� � � L) (3)

for any non-faulty process 	 . Moreover,

L �� � 	���
nf. � �
 W (�� U (�
 W M � T ��L � � �� � (4)

Proof: Let � � � (� � �� be the time when (non-faulty)
process 	 executes broadcast, and � � � be the time when the
corresponding deliver � � � " returns at non-faulty process � .
If � � � M � � � denotes the time when the broadcasting process
unblocks deliver, then

� � � � 	��� � � � � �S(� � �� � �
	 � � � � � � � � �
and hence � � � U � � � 	����� � � � U � � �#� � U � � �S� � U � � � . Since
the correctness property in both Theorem 2 and 1 guarantees
� L � M � � � U � � M � L) for any two non-faulty processors 	
and � , we obtain

�qL � M � � � U � � M L � � �� � � L) (5)

for any two non-faulty processors 	 and � . We now have to
show that this extends also to faulty 	 ’s, since we cannot be
sure that the � U � � -th deliver is from a non-faulty process.

With � � resp. ��� denoting the time when the � U � � -th
distinct deliver returns at non-faulty processes � resp. � , we
argue that there must be non-faulty processes 	 and � � resp.
� � such that

� � � M � � M �
��� resp. � � � M � ��M �
	�� � (6)

The existence of � � and � � follows immediately from tak-
ing the � U � � -th delivery, since only � U � � U � deliv-
ers occur earlier than � � and � � , respectively; at least one
of the � � � � remaining ones must be non-faulty. More-
over, in presence of � �� M � � faulty processes, at least
� U � � U � �� delivers among the � U � � ones must origi-
nate from non-faulty processes at � and � . Since there are
only � U � �� non-faulty processes in the system, at least
��� � U � � U � �� " U � � U � �� "#� � U � � � U � ��

� � must
be the same. This also confirms the existence of 	 .

Since (6) implies

� � � U �
	�� M � � U �
� M �
��� U � � � � (7)

we obtain

� � U ��� � 	�� � � � � � � � � U 	�� � �
 �� � ��� �
� 	�� � � � � U � � � � � U � � � U

	 � �� �
 �� U � � � ��� U � � �
� 	�� � � � � U � � ��� � U � � � � � U � � � U

	 � �� �
	�� U �
	� �7�
	� U � � � � � U � � �
� �qL � U 	�� ��� L) ��L � � �� �SL � � �� � (8)

and analogously, by upper bounding,

� � U �
� M 	��� � �qL) ��L � � �� �SL � � �� � U �qL � � (9)

It only remains to show that there cannot be any further
delay due to the acceptance test in phase 2 of Figure 3, i.e.,
that actually (�� � � � . This is evident, though, since the
above time bounds ensure that the round � U � messages
of all non-faulty senders are available at any receiver � , � :
After all, L � � �� is incorporated in (5). Combining (6) with
(5) hence justifies (3), and (8) combined with (9) confirms
(4). This eventually completes the proof of Lemma 2.

�

Next we will improve the result of Lemma 2 for the
first phase in each iteration, where simulated authenticated
broadcasting is employed. We need a technical lemma on
the � -th largest elements of two corresponding sets of real
values for this purpose. It simply says that if any two cor-
responding elements differ at most by some � , then this is
also true for the � -th largest elements:

Lemma 3 (Uniform Bounds � -Maxima) Let
	 � �
 � � ��� ��� � with � � � � ��� � and � be given,
such that � � M � � for � � �

and � � M � for

12

� M � � � M � . If 	 � � ��� � � ��� ��� � with � � � � � � �
for � M � M � , then the respective � -th largest elements
satisfy 	��� � 	 M 	��� � 	 � .
Proof: If 	�� �h	 � � for some � M � M � , we claim
that there exists some index 	 M � U ��� � such that � M
 � , since otherwise � � � � �

� � ��������� � � �) �
� � .

However, � is the � -largest element in 	 , which means
that there are only � U � � ’s that could possible satisfy � �
 � , providing the required contradiction. Since of course
� � M � � for � � � , we have 	��� � 	K� � M � M � � M
� � � �) � �
	 � � 	 � .

�

Using this lemma, a bound on the maximum difference
of the times when two non-faulty processes switch from
phase 1 to phase 2 in the algorithm of Figure 3 can be de-
duced from the relay property of simulated authenticated
broadcasting. It will turn out, however, that this bound
is only slightly better than the one already established in
Lemma 2. The reason for this is the sequential nature of
the algorithm of Figure 3, which does not allow slow pro-
cesses to speed up if sufficiently many messages dropped in
already.

Lemma 4 (Running Time Phase 1) For � � � , let
L � � �� �
	�� nf. � �
 W (� � �� U (� � �
 W be the maximum differ-
ence of the round switching times of all non-faulty processes
in the execution of the algorithm in Figure 3, where phase 1
of some iteration is entered. Then,

L �� � 	��
nf. � �
 W (�� U (�
 W

M T ��L) � 	����� � � L � � �� U � L � � � (10)

Proof: Since the relay property of simulated authenti-
cated broadcasting in Theorem 2 guarantees that any two
non-faulty processes unblock sa-deliver for the same set

�
of messages within L�� , although perhaps in different order,
it follows that 	��� nf. � �
 W (�� U (�
 W is just the maximum dif-
ference of the � U � � -largest elements in the sets of delivery
times � � � �\� �� � �
 � � and �
 � �D� �
 � �
 � � over any
pair of non-faulty processes 	 , � .

With (�� , (�
 denoting the � U � � -largest elements in

the corresponding sets of the times � � � � � �� � �
 � �
and �
 � � � �
 � �
 � � where simulated authenticated
broadcasting unblocks sa-deliver, choosing ��� L � , � �
� �� , 	 � � � , � � � � �
 and 	 � � �
 � L � � � � �
 � L � � �
� � in Lemma 3 reveals (�� M (�
 ��L�� .

Since � �� � 	��� � � �� �S(� � �� � and � M � � 	 � � � � � M
	 � �
��� � for any real � , � , , it follows from the resulting
identical ordering of � � and � � that if (�� � � �� with index � ,
then also (�� � 	����� (�� � (� � �� � � � �� . Hence,

(�� U (�
 � (�� U (�
 � 	�� � � � (� � �� U (�� � U

	�� � � �S(� � �
 U (�
 �
M L � � 	�� � � � (� � �� U � �� �
M L � � 	�� � � � (� � �� U (� � �� U ��� �� U (� � �� "��
M L�� � 	�� � � �SL � � �� U � L � ���

in the last step, we used the time bound from the correctness
property in Theorem 2. Repeating the same argument with
	 and � exchanged produces the same result, which finally
confirms (10) and completes the proof of Lemma 4.

�

It only remains to determine the running time of the final
phase 3 of an iteration. Using the same argument as in the
proof of Lemma 2, it is not difficult to establish the follow-
ing Lemma 5.

Lemma 5 (Running Time Phase 3) For � � � � � , let
L � � �� � 	 � nf. � �
 W (� � �� U (� � �
 W be the maximum differ-
ence of the round switching times of all non-faulty processes
in the execution of the algorithm in Figure 3, where phase 3
of some iteration is entered. If the first non-faulty pro-
cess � enters at time � � � (� � �� , then

� � � L � M (�� M � � �7L) �7L � � �� (11)

for any non-faulty process 	 , and

L �� � 	���
nf. � �
 W (�� U (�
 W M T �7L � � �� � (12)

Proof: Let � � � (� � �� be the time when (non-faulty) pro-
cess 	 broadcasts its piece, and � � � be the time when (non-
faulty) process � delivers 	 ’s piece. If � � � M � � � denotes the
time when the piece from 	 actually drops in, then

� � � �
	��� � � � � � (�� � � 	����� � � � � � � �
and hence � � � U � � � 	�� � � � � U � � �#� � U � � � � � U � � � . Since
the delivery of a non-faulty message over a non-faulty link
occurs within L � and L) , it follows that L �7M � � � U � � M L) .
Plugging this into the above equation confirms (11).

Moreover, if � � � (�� denotes the time when the
� � ��� � �� � � -th piece from a distinct sender is received
in process � , it is evident that there must be two non-faulty
processes 	 � , � � —not hit by a link (timing) failure—such
that � � �� M � � M �
 �� : Since � � is the time of reception of the
� � �� � � � � � -st correct piece from a distinct process here,
there is at least one reception from a non-faulty process not
later than � � , and one that is not earlier than � � . Hence,

� � U ��� � 	�� � � � �� � � � � U 	����� �
 �� �S��� �
� 	�� � � � �� U � � � � � U � � � U

	 � �� �
 �� U � � � ��� U � � �
� 	�� � � � �� U � ��� ��� ��� U � � �S� � U � � � U

	 � �� �
	�� U �
	� �7�
	� U � � � � � U � � �
� L � U L) U L � � ��

13

and analogously, by upper bounding, � � U ��� M L) �
L � � �� U L � . This also confirms (12) and completes the proof
of Lemma 5.

�

Now we are ready for our final Theorem 4, which pro-
vides a lower and upper bound on the running time of our
algorithm.

Theorem 4 (Running Time Randomized Consensus)
Assume a system with � � ��� �� � ��� � �� � � � �� � ��� � ���
processors according to Definition 4, where � � � � denotes
the maximum number of arbitrary faulty processors during
the whole execution and T ��L � . If the first resp. last
non-faulty process starts iteration � � of the randomized
consensus algorithm of Figure 3 at time � resp. � �7L � �� for
some L � �� � � , then any non-faulty process completes its �
iterations within 6 ������� L � � � ��L � �� ����� L) 8 . Moreover,
all non-faulty processes complete iteration � within

L�� 	 � �� M � ��� T U L � " � 	�� ��� L � �SL � �� � � (13)

During � iterations, at most � � broadcasts of (signed)
pieces and at most ��� � � � � " broadcasts of � �
	�� � � ��	��

�
�
� � � " -bit messages are performed by obedient pro-

cesses, where
�
� � � � gives the cardinality of the process

name space.

Proof: Plugging in the results (10), (4), and (12)
of Lemma 4, Lemma 2 and Lemma 5, respectively, into
each other shows that a single iteration increases L � by

qT � L)PU �qL � ��� T U L � , where we exploited T � L �
to derive L) � T � 	 � � � �SL � � �� U � L � � � � T U L � �
	 � ��� L � �SL � � �� � . This confirms (13) in case of � itera-
tions. Similarly, plugging in the result (3) of Lemma 2 for
both phase 1 and 2, and (11) of Lemma 5 into each other re-
veals that each iteration’s running time is within 6 � L � ��� L) 8 ,
which eventually justifies (13) as well.

The claimed message complexity is an immediate con-
sequence of the fact that the algorithm calls simulated au-
thenticated broadcast, echo broadcast, and broadcast of its
piece once per iteration. Recalling the message complexi-
ties given in Theorem 1 and 2, Theorem 4 follows.

�

4.3 Assumption Coverage

In [6,22,23], we conducted an analysis of the assumption
coverage in systems where individual links may fail inde-
pendently with a fixed probability 	 in any round: Assum-
ing that model parameters related to process failures (like
� �) are chosen conservatively enough to be never violated,
we computed the probability of failure � � that the allowed
maximum number of link failures � �� � � �� � �� is ex-
ceeded at least once during � rounds.

In [6], � � was computed for a “generic” algorithm,
which executes � full message exchanges (= broadcasts
of all processes) per round, 	 additional single broadcasts
per round, and � additional broadcasts. Hence,

�
�

�
�

� � ��� �	 ��� � "�� � � � � " broadcasts are performed
system-wide during an � -round execution. Each broadcast
is a full one, i.e., involves all � U � remote processes (the
transmission to itself is assumed to be fault-free). The fol-
lowing Theorem 5 from [6] revealed that adding processors
for tolerating more link failures always decreases � � as
long as � 	 � � sufficiently small:

Theorem 5 (Assumption Coverage [6, Thm. 7]) For
� 	 � � sufficiently small, the probability of failure � �
of the generic algorithm with

�
�

�
broadcasts during an

� -round execution satisfies

� � M � �� � �
� ��� �� " �

�
�

���
� �

� � ����� � 	�" ���) �
� �� � �"��

�
�

(14)
where � �� ��

�
�

� � � U �
� � � �

�
	
���) � (15)

Using this generic result, we can compute the assump-
tion coverage for our randomized consensus algorithm. Ac-
cording to Theorem 4, we just have to set

�
�

�
� � � � � � �

with � � � � � � ��� � � � here; note that this applies to the
case where all link faults may be arbitrary. Table 1 provides
the corresponding values of the (approximate) probability
of failure � �� for � ��� , 	h� � � ��� and the minimal num-
ber of processors � � � � � ����� � � � . They reveal that
our algorithm could reasonably be used even in bandwidth-
limited wireless systems, where link faults with loss proba-
bilities up to 	&� � � � � are common. Needless to say, much
smaller values are obtained for smaller 	 , cp. [6, 22, 23].

��� ��� ��!"��� ��#$���%��&����'�"(����'�")����'�"*# �,+ � �,+ - �,+ . � � �& �,+ � � �,+ ��. �,+ � �,+ � �,+ � �,+ /) �,+ � � ��0 �,+ � � � �,+ � � � �,+ � ��/ �,+ � ��0 �,+ � �1 � + � � i�2��,+ � � � �3- �,+ � � � ��4 �,+ � � � � �,+ � � � � �,+ � � �3-!65 � + � � i�7 � + � �Di87 �,+ � � i879/,+ � �Di87:0,+ � � i87 � + � � i<;
Table 1. Value of (approximate) probability of failure� �� for 	&��� � � � for the hybrid randomized Byzantine
agreement algorithm for � ��� with minimal number
of processes.

4.4 Stubborn Channels

The previous analysis showed that our algorithm toler-
ates a considerable number of link faults without additional

14

measures, provided that sufficiently many processors are
available. For moderate link failure rates, pure UDP data-
gram communication can hence be used instead of TCP, for
example. For high link failure rates, however, it is quite
likely that our link failure bounds � �� and � �� are too restric-
tive, cf. our assumption coverage analysis in Section 4.3.
Resorting to some kind of reliable communication is in-
evitable here. It is well-known, however, that perfect com-
munication requires unbounded memory space [11].

Stubborn channels [15] have been proposed as an al-
ternative. A -stubborn channel is a point-to-point com-
munication link that reliably delivers the last messages
submitted to it for transmission, provided that both sender
and receiver are non-faulty and the sender eventually stops
submitting messages (such that “last messages” makes
sense). Obviously, a � -stubborn channel can easily be im-
plemented atop of datagrams by using a single buffer: The
message in the buffer is periodically retransmitted until an
acknowledgment is received. If a new message is submitted
for transmission before the previous one has been acknowl-
edged, it just overwrites the previous message in the buffer.
A -stubborn channel can be implemented by using 1-
stubborn channels operating on a circular buffer.

In spite of being powerful enough for solving consensus
in asynchronous systems [15], a -stubborn channel needs
only bounded memory space. Our algorithm reconfirms this
fact, since it is easily modified to work with 2-stubborn
channels. The modification required is forcing the execu-
tion of the algorithm to some future iteration: A process
currently in iteration is forced to iteration

� � by in-
terrupting the current execution, setting the iteration loop
counter to

�
, and resuming execution in the wait of phase �

in iteration
�
. Note, however, that sa-broadcast � � � �� " is not

called when forcing process 	 .
The following Lemma 6 shows that forcing does not af-

fect the consensus result, provided that at least one non-
faulty process is ahead by two iterations:

Lemma 6 (Forcing Rounds) Suppose some non-faulty
process 	�� is currently in iteration

� M U � at time
� , when some other non-faulty process 	 � is already in
iteration � � . Then, all non-faulty processes will
complete iteration U � and thus enter iteration within
the time bounds given by Theorem 4 also when 	�� is forced
to iteration U � . The consensus value resp. the probability
of reaching agreement is not affected by forcing process 	�� .

Proof: Consider the algorithm in Figure 3. Since 	 � is
non-faulty and in iteration , it must have completed itera-
tion U � by � . Since process 	 � did not enter iteration U �
by � , 	 � did not see a non-faulty value

� � � ���� from 	 � by
the time when it terminates any phase of iteration U � .
Since 	 � terminated iteration U � , however, it must have

got � U � � sa-delivers from distinct
� � � � � 	 � ��������� 	 � � ��� �

in phase 1 that satisfy 	�� %
 � � � .
Nevertheless, even when 	�� is forced to phase 1 of it-

eration U � , all non-faulty processes—including 	�� —
eventually sa-deliver the messages from all processes in
� � � , by the relay property of Theorem 2. It follows that all
non-faulty processes can complete phase 1 and hence, even-
tually, iteration U � as asserted, according to the proof of
termination in Theorem 3. Since the execution time bounds
of Lemma 2 and 4 are based upon the maximum acceptance
delay L � , termination occurs in accordance with the results
of Theorem 4.

As far as agreement is concerned, we have to distin-
guish 2 situations: (a) all non-faulty processes, including 	�� ,
(would) have agreed on the same value � in iteration U � ,
and (b) there is no agreement among those. In case (a), the
validity proof in Theorem 3 ensures that 	 � and hence all
other non-faulty processes decide upon � in iteration U � .
For case (b), we note that since 	 � did not see a non-faulty� � � �� � from 	 � by the time when it terminates phase � in it-
eration U � , the same must be true for the first non-faulty
process 	 that terminates phase � of iteration U � . This
implies 	 � %
 � � , such that 	 ’s variable count cannot depend
upon

� ��� . Since the event (i) vs. (ii) defined in the proof of
randomized agreement in Theorem 3 is solely determined
by count, probability � must be independent of

� ��� . As
the shared secret bit is obviously independent of all values,
the probability of disagreement is the same as for the non-
forced operation. This completes the proof of Lemma 6.�

The result of Lemma 6 implies that process 	 � can be
forced to iteration U � at time � , without changing the
outcome of iteration U � , when sufficient evidence for
the existence of a non-faulty process in iteration is ob-
tained. This is the case when iteration messages from
� � � � � �� � � distinct processes arrive, since only at most � � ��
of those could be spurious messages from arbitrary receive
link faults, and � � messages could originate from faulty pro-
cesses.

Most importantly, if round forcing is employed, there is
no need for a process in iteration to support iteration

�

for any
� M U � . In particular, all echo broadcasting

and simulated authenticated broadcasting processes belong-
ing to iteration

�
can be killed upon switching to round .

After all, it is guaranteed that all non-faulty processes will
eventually complete iteration U � and enter iteration ,
which means that all late processes—which might not ter-
minate since some forced processes stopped their support of
earlier rounds—must eventually get sufficient evidence and
be forced to iteration U � .

Since a process in iteration needs to deal with mes-
sages belonging to iteration or U � only, it is not dif-

15

ficult to show that it suffices to reliably transmit (and re-
ceive) only the two highest-round messages of a given type
if forcing is employed, i.e., that 2-stubborn channels will be
sufficient. This will be done in Theorem 6 below, where
we assume that each processor executes ��� “generic” pro-
cesses 6 sa-R8 resp. 6 sa-R’ 8 , which implement all the itera-
tion’s (dedicated) processes � resp. � �

of simulated authen-
ticated broadcasting for the � peer processors; recall that
one dedicated process per iteration and processor was as-
sumed in Section 4.1. Similarly, we need ��� generic pro-
cesses 6 echo-R8 resp. 6 echo-R’8 on each processor for echo
broadcasting. Finally, one process per processor executes
the randomized Byzantine agreement algorithm. Note that
all those processes are always in the same round, and are all
forced together.

Theorem 6 (Stubborn Channels) Theorems 3 and 4 re-
main valid if every pair of instances of the algorithms of
Figure 3, 2 and 1 employs a dedicated 2-stubborn chan-
nel for basic communication, provided that round forcing
is applied when (1) � � � � � �� ��� sa-broadcast or echo-
broadcast init-messages � bcast � � � � � � 	 " arrived from dis-
tinct processors, or (2) � � � � � � �� � �"t_�� � � � � � �� � �" dis-
tinct echo-messages � echo � � � � � � � 	�" arrived, as witnesses
of � � � � � �� � � distinct � bcast � � � � � � 	 " .
Proof: (Sketch.) Stubborn channels imply that the reli-
able delivery of current messages is given up when a new
message is submitted for transmission. Consequently, we
must show that if a message belonging to some iteration
is handed over to send, it cannot be harmful to meaningful
earlier iterations. This is guaranteed if either (a) the receiver
process will eventually be forced to at least iteration U � ,
or (b) the content of the previous messages is void anyway.

For the phase 3-messages sent by the randomized Byzan-
tine agreement algorithm of Figure 3 itself, (a) is implied by
Lemma 6; (b) applies if the sender process is faulty. Re-
calling the operation of echo broadcasting and simulated
authenticated broadcasting, we have exactly two situations
where messages � echo � � � � � � � 	 " are generated and submit-
ted to the stubborn channels.

(1) In the algorithm of Figure 2, when � � � � � �� �	�
� echo � � � � � � � 	 " arrived from distinct processes, then
� echo � � � � � � � 	 " is submitted for transmission to the
stubborn channel. However, this implies sufficient ev-
idence for Lemma 6, so case (a) above applies.

(2) In the algorithms of Figure 1 and 2, when
� bcast � � � � � � 	 " arrives, then � echo � � � � � � � 	�" is sub-
mitted for transmission to the stubborn channel.
Here we must distinguish 2 cases: If the sender of
� bcast � � � � � � 	 " is non-faulty, Lemma 6 applies and
overwriting the previous message is allowed, since
round forcing will eventually happen. If the sender

of � bcast � � � � � � 	 " is faulty, on the other hand, its
value(s) and hence any echoing is void anyway. There-
fore, case (b) applies here.

This confirms that 2-stubborn channels are sufficient for
our algorithm and completes the proof of Theorem 6.

�

Note that (the proof of) Theorem 6 also implies that any
process � needs to store only the two perceptions

��� � �
 with
the highest round numbers received from any 	 , i.e., one
does not need unbounded memory space for perception vec-
tors.

5 Conclusions

We presented a brief overview of a novel hybrid fail-
ure model for round-based distributed algorithms in par-
tially synchronous systems with possibly unknown delays.
It accommodates both process and link failures and distin-
guishes asymmetric, symmetric, omission, clean crash, and
manifest failures, both in the time and in the value domain.
Our model considerably simplifies accurate fault-tolerance
analysis and allows the evaluation of assumption coverage
and running times as well. It is hence well-suited for both
synchronous and asynchronous wireline and, in particular,
wireless networked systems.

We analyzed a hybrid version of the randomized Byzan-
tine agreement of Srikanth & Toueg, which is based upon
suitably adopted variants of the asynchronous echo broad-
cast and simulated authenticated broadcast primitives. Its
probability of disagreement was found to be only � � 	 ,
which is the same as for asynchronous systems without link
failures. With respect to link failure tolerance, it turned
out that resource redundancy (more processes) can be used
instead of time redundancy (retransmissions) for this pur-
pose: Tolerating � �� resp. � �� receive resp. send link fail-
ures at every node, in every round, with � � �� M � �� arbi-
trary ones among the � �� receive link failures, just needs
� � �� � � � �� � ��� � �� additional nodes. Although a comparison
with the lower bound � �� � � � �� � � �� � � � �� from [22] reveals
that this is sub-optimal (whereas the resilience with respect
to process failures is optimal [16]), our algorithm can never-
theless cope with up to � - � � � 2 link failures system-wide
during � iterations.

A detailed analysis of the running time of the algorithm
under our system model revealed a considerably perfor-
mance improvement over the FLP model. Since excessive
delays can be interpreted as link failures here, we can stip-
ulate a much smaller upper bound L) on the delay between
non-faulty processors when computing worst case execu-
tion times. Moreover, our analysis of the assumption cov-
erage in systems with transient link failures revealed that
unreliable datagram communication is sufficient here, even

16

for typical wireless link failure rates up to � � � � . For ex-
cessive link failure rates, 2-stubborn links, which avoid un-
bounded memory space required for implementing perfect
communications, can also be used.

References

[1] Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Man-
sour, D.-W. Wang, and L. Zuck. Reliable communication
over unreliable channels. Journal of the ACM (JACM),
41(6):1267–1297, 1994.

[2] M. K. Aguilera, W. Chen, and S. Toueg. On quies-
cent reliable communication. SIAM Journal of Computing,
29(6):2040–2073, April 2000.

[3] M. Azadmanesh and R. M. Kieckhafer. Exploiting omissive
faults in synchronous approximate agreement. IEEE Trans-
actions on Computers, 49(10):1031–1042, Oct. 2000.

[4] K. Bartlett, R.A.Scantlebury, and P. Wilkinson. A note on re-
liable full-duplex transmission over half-duplex links. Com-
munications of the ACM (JACM), 12(5):260–261, 1969.

[5] A. Basu, B. Charron-Bost, and S. Toueg. Crash failures vs.
crash + link failures. In Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing,
page 246. ACM Press, 1996.

[6] M. Biely and U. Schmid. Message-efficient consensus in
presence of hybrid node and link faults. Technical Report
183/1-116, Department of Automation, Technische Univer-
sität Wien, August 2001. (submitted).

[7] G. Bracha and S. Toueg. Resilient consensus protocols.
In Proceedings of the 2nd Symposium on the Principles of
Distributed Computing (PODC’83), pages 12–26, Montreal,
Canada, 1983.

[8] F. Cristian and C. Fetzer. The timed asynchronous dis-
tributed system model. IEEE Transactions on Parallel and
Distributed Systems, 10(6):642–657, 1999.

[9] D. Dolev. The Byzantine generals strike again. Journal of
Algorithms, 3(1):14–30, 1982.

[10] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, Apr. 1988.

[11] A. Fekete, N. Lynch, Y. Mansour, and J. Spinelli. The im-
possibility of implementing reliable communication in the
face of crashes. Journal of the ACM (JACM), 40(5):1087–
1107, 1993.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty processor. Journal
of the ACM, 32(2):374–382, Apr. 1985.

[13] E. Gafni. Round-by-round fault detectors (extended ab-
stract): unifying synchrony and asynchrony. In Proceedings
of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pages 143–152. ACM Press, 1998.

[14] J. N. Gray. Notes on data base operating systems. In G. S.
R. Bayer, R.M. Graham, editor, Operating Systems: An Ad-
vanced Course, volume 60 of Lecture Notes in Computer
Science, chapter 3.F, page 465. Springer, New York, 1978.

[15] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn com-
munication channels. Technical Report 98-278, Dèpartment
d’Informatique, Ècole Polytechnique Fédérale de Lausanne,
1998.

[16] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Lan-
guages and Systems, 4(3):382–401, July 1982.

[17] G. Le Lann. Certifiable critical complex computing sys-
tems. In K. Duncan and K. Krueger, editors, Proceedings
13th IFIP World Computer Congress 94, volume 3, pages
287–294. Elsevier Science B.V. (North-Holland), 1994.

[18] G. Le Lann and U. Schmid. How to implement a timer-
free perfect failure detector in partially synchronous sys-
tems. Technical Report 183/1-127, Department of Automa-
tion, Technische Universität Wien, January 2003. (submit-
ted).

[19] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
[20] M. O. Rabin. Randomized Byzantine Generals. In Proceed-

ings of the 24th Annual IEEE Symposium on Foundations of
Computer Science, pages 403–409, 1983.

[21] U. Schmid. How to model link failures: A perception-based
fault model. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN’01), pages 57–
66, Göteborg, Sweden, July 1–4, 2001.

[22] U. Schmid and B. Weiss. Synchronous Byzantine agreement
under hybrid process and link failures. Technical Report
183/1-124, Department of Automation, Technische Univer-
sität Wien, Nov. 2002. (submitted; replaces TR 183/1-110).

[23] U. Schmid, B. Weiss, and J. Rushby. Formally verified
byzantine agreement in presence of link faults. In 22nd In-
ternational Conference on Distributed Computing Systems
(ICDCS’02), pages 608–616, July 2-5, 2002.

[24] A. Shamir. How to share a secret. Communications of the
ACM, 22:612–613, 1979.

[25] T. Srikanth and S. Toueg. Simulating authenticated broad-
casts to derive simple fault-tolerant algorithms. Distributed
Computing, 2:80–94, 1987.

[26] S. Toueg. Randomized byzantine agreements. In Proceed-
ings of the 3rd Symposium on Principles of Distributed Com-
puting (PODC’84), pages 163–178, 1984.

[27] C. J. Walter and N. Suri. The customizable fault/error model
for dependable distributed systems. Theoretical Computer
Science, 290:1223–1251, October 2002.

17

