Technische

I Institut fir Automation Universitit
I Abt. fir Automatisierungssysteme Wien

Projektbericht Nr. 183/1-123
October 2002

An Algorithm for Three-Process
Consensus Under Restricted Link
Failures

Gunther Gridling

Salvador Dali, ”Die Bestdandigkeit der Erinnerung”

An Algorithm for Three-Process Consensus Under
Restricted Link Failures

Ginther Gridling

Abstract

This technical report presents an algorithm
that solves consensus among three processes
under restricted omissive link failures. The
problem was posed by Schmid and Weiss [1],
who distinguished two types of systems, R-type
resp. S-type, which are characterized by the fact
that out of the three processes, in each round
one may fail to receive (R-type) resp. send (S-
type) values from resp. to its peers. In both sys-
tems, there is one process which never fails, but
the processes do not know which one. Whereas
one can give an impossibility proof for the R-
type system, it turns out that the S-type system
has a solution which even works in a slightly
weaker link failure setting. This report presents
an algorithm that solves the consensus problem
in the S-type system and proves that the algo-
rithm does indeed achieve consensus.

Definition 1 (System Model) We assume
three fully connected processes A, B, C. In
any round, messages from A — B and B — A
may be dropped at will. In addition, one of the
messages A — C or B — C may be dropped,
but not both in the same round. Messages from
C must always arrive at the destination. Ini-

tially, none of the processes knows whether it
is A, B, or C.

In the following text, we will call C' the good
process or the master.

Definition 2 (Consensus) An algorithm
solves consensus if it fulfills the following
properties:

Agreement: All processes decide on the same
value.

Validity: If all processes start with the same
value v, then the decision must also be v.

Termination: All processes eventually de-
cide.

This report presents a solution to the con-
sensus problem under the system model of Def-
inition 1. The general idea of the algorithm is
as follows:

Since messages sent from the master never
fail, once a process has experienced at least
one fault at each of its two incoming links, it
can safely assume that it must be the master.
With that knowledge, it can send a message
forcing the other processes to decide upon its
current value: Since it is the master, both mes-
sages are guaranteed to arrive, and consensus
is achieved.

If the master does not become aware of its
special status, however, we cannot achieve con-
sensus so easily. In this case, though, at least
one of the master’s incoming links must never
fail, since the occurrence of at least one fault at
each of the incoming links leads to the above
situation. Therefore, since the master never
suffers any send failure, at least one of its links
must be bidirectional. This, however, improves
the communication structure enough for con-
sensus to be achieved. Let w.l.o.g. the bidirec-
tional link be between processes B and C, then
B and C can synchronize their input sets, and
A receives the result over the non-faulty link
C — A

In the following, we will describe the algo-
rithm in detail.

Algorithm 1 (Algorithm A) The algo-
rithm requires at most eight rounds and has
two main phases: One in which the decision
value s computed from all three input values,
and one in which it is computed from only two
of the input values.

The first part of Figure 1 describes the ini-
tialization of variables. The value set V, of
process p is set to its own initial value vy, and
the flag rec3 which indicates whether the pro-
cess has received a 3-value decision is set to
false. The set L, of processes which committed
a link failure is initially empty.

The remainder of Figure 1 describes general
actions executed by the algorithm. Computa-
tion of a decision value depends on the cardi-
nality of the input set V,: If there are three
values in the set, the majority is used as the
decision wvalue. If there are only two values,
we use either the majority if it exists, or the
default value 0.

If a process p experiences a link failure from
q in any round except master rounds, then it
puts q into its link failure set L.

A process always checks its link failure set
L, first thing in a round and determines it is
the master if the set contains two processes. In
this case, the master computes its own decision
value and sends this value as the master value
to its peers. The master then delivers the mas-
ter value and halts.

If a process p receives a master message, i.e.,
a message from the master process containing
a master value, then p immediately delivers the
master value and halts.

Figure 2 shows how processes compute a
three-value decision dec3. In the first round,
each process p sends its own initial value to its
peers, and collects all received values in its in-
put value set Vp,. In the second round, each
process sends this value set to its peers and
combines foreign sets with its own one.

Initialization (Round 0):
Vp := {vp}; [input value set]
L, := 0; [link failure set]
rec3 := false; [three-valued decision flag]
dec := ; [decision value]

Computation of decision value:
if |V, =3
return majority(V,);
fi
if |Vp| =2
return majority(V,); [if it exists]
else return 0; [no majority in V)

fi

Reaction to link failures at end of rounds except
master rounds:
if not received message from ¢
Ly =L, U{dk
fi

Reaction to master status (at start of each round):
if [£,] =2
dec := decision value; [master value]
send dec; [master message]
deliver dec;
halt;
fi

Reaction to a master message (done immediately):
if received master message
dec := master value;
deliver dec;
halt;
fi

Figure 1. Initialization and general actions.

At the beginning of the third round, each pro-
cess checks whether it has three values in its
set. If it has, then it computes the 3-value deci-
ston dec3 and sends it to its peers. If it does not
have three values, then it just sends an empty
message. Processes which receive a message
containing a dec3 value store this value and set
rec3 to true.

In the fourth round, each process which has
obtained a dec3 message in the previous round
forwards the message to its peers. Processes

which obtain such a message store the wvalue
and set rec3 to true.

In the fifth round, each process which has
obtained a dec3 message in round 4 forwards
this message to its peers, and processes receiv-
ing such messages store the value and set rec3
to true.

The sixth round is a master round, in which
processes only wait for master messages but
take mo own actions except to send a master
message if necessary. If no master message has
arrived until the end of this round, then each
process whose rec3 is set to true will deliver
the 3-value decision stored in dec and halt. As
we will show in Lemma 4, either all or none of
the processes will deliver dec3 at this point.

If the processes cannot decide after round 6,
then they must continue with the algorithm to
decide on a common two-value decision. As
Figure 3 outlines, each process p whose input
value set V, only consists of two values will
compute a 2-value decision dec2 from it and
send this decision to its peers. Nodes whose
set has three values will send an empty message
here. If a process receives such a two-value de-
ciston, it stores the value.

The last round 8 is again a master round, in
which processes simply wait for a master mes-
sage but do not send any messages of their own
(except master messages). If no master mes-
sage has arrived by the end of the round, the
processes will deliver their decision value. If
the algorithm proceeds this far, then all pro-
cesses will deliver the same dec2 value here, as
we will prove in Lemma 4.

In the following, we will show that the above
algorithm fulfills Agreement, Validity, and Ter-
mination. To prove this, we will prove each of
the properties separately. But first, we will
show some fundamental properties of the algo-
rithm.

Lemma 1 If C' does not know it is the good
process at the end of round r, then at least one

Round 1 and 2 [send value set]
send Vp;
if receive message containing V,
set V, =V, UV,;
fi

Round 3 [compute and send dec3]
if |V,| = 3 [three-valued decision]
send decision value;
else
send empty message;
fi
if received message containing value dec3
dec := dec3;
rec3d := true;

fi

Round 4 [forward dec3 from Round 3]

if received dec3 in R3

send dec3;
else

send empty message;
fi
if received dec3

dec := dec3;

rec3d = true;

fi

Round 5 [forward dec3 from R4]

if received dec3 in R4

send dec3;
else

send empty message;
fi
if received dec3

dec := dec3;

rec3 := true;
fi

Round 6 [master round]

Round 7 [in fact, end of Round 6]
if rec3 = true
deliver dec;
halt;
fi

Figure 2. Three-valued decision.

of the links A — C or B — C must have been
bidirectional up to and including round r.

Round 7 [compute and send dec2]

if |V, =2
send decision value;
else

send empty message;

fi

if received message containing value dec2
dec := dec2;

fi

Round 8 [master round]
Round 9 [in fact, end of Round 8]

deliver dec;
halt;

Figure 3. Two-valued decision.

Proof: If a process experiences a link failure
from another process p, then it knows that p
cannot be the good process. Therefore, as soon
as C has seen a link failure from both its peers
it knows that neither of them is the good pro-
cess and can conclude that it must be the good
process itself. So if C' does not know it is the
good process by round 7, then it has not seen a
link failure from at least one of its peers. Since
its own links to the peers are always correct,
there must have been at least one bidirectional
link up to and including round . O

In our proofs we will assume w.l.o.g. that the
link B — C' is bidirectional.

Lemma 2 After the second round of algo-
rithm A, either C knows that it is the master
process, or A has the value set {va,vp,vc} and
B, C either have {v4,vp,vc} or {vp,vc}.

Proof: Assume that C' does not know it
is good after round 2. Then according to
Lemma 1 one of C’s links must have been bidi-
rectional. Assume w.l.o.g. that B—C' has been
bidirectional. In the first round of A, each pro-
cess sends its own value to its peers. There-
fore, at the end of the first round, A must
have at least the set {v4,vc}, B must have

at least {vp, vc} and C must also have at least
{vp,vc}. In the second round, the sets are
exchanged and each process merges the set it
receives with its own set of round 1. There-
fore, at the end of the second round, A must
have the full set {va,vg,vc} and B, C will at
least keep their set {vg,vc}. Of course, if the
link from A to B or C works, then one or both
might also get the full set. O

With these two lemmas, we are ready to
prove the consensus properties of algorithm 4.

Lemma 3 (Validity) Algorithm A fulfills
Validity.

Proof: From Figure 1 we see that every de-
cision is computed from the input value set of
the processes which only consists of initial val-
ues. The default value 0 is only used if there is
no majority. But as long as all processes have
the same initial value, the decision will be that
value. O

Lemma 4 (Agreement) Algorithm A ful-
fills Agreement.

Proof: We will show that

1. if one process delivers the master value,
then all do,

2. if one process delivers dec3 after R6, then
all do,

3. if one process delivers dec2 after R8, then
all deliver the same dec2.

1) If one process delivers the master value,
then all do.

Only the good process C' can send a mas-
ter message because only the links to the good
process may both fail. The master is the first
process to deliver the master value at the be-
ginning of the round, and its message must ar-
rive at both A and B. If a process receives a
master message, then it immediately delivers
the master value and halts, regardless of its
current state. Therefore, A and B will deliver

the master value in the same round as the mas-
ter. After a master round (R6, R8) a process
cannot determine that it is master, therefore C
can only become master at the start of R3-R6
or R8. Hence, its master message must arrive
in these rounds. Since decisions are only made
after master rounds and since a master message
takes precedence over a decision, in the former
case (arrival in R3-R6) the master message will
override any decision dec3. In the latter case,
either a decision dec3 has already been made
and the algorithm will not come to R7, or the
master message will arrive before the end of R8
and will override any dec2 decision.

2) If one process delivers dec3 after R6, then
all do.

We have already seen in part (1) of the proof
that if a process becomes master in R3-R6,
then there will not be a dec3 decision. There-
fore, if one process delivers dec3, then there is
no master until the start of R6. From Lemma 1
we know that in this case there must have been
at least one bidirectional link. In order for a
process p to deliver dec3, it must have received
at least one dec3 in R3-R5. Assume that the
initial sender of dec3 in R3 has been ¢q. Of
course there may be more than one sender, but
a process only sends a dec3 message in round
R3 (in contrast to forwarding it in R4 and R5),
and it only does so if its value set has contained
three values. In order for a process to get a
dec3 message, there must have been at least
one sender of a dec3 message in R3.

We have three possible cases for the sender

q:
o If ¢ = C, then A and B get dec3 in R3
and C gets at least one dec3 in R4. So, by

the end of R4, all processes have received
dec3.

e If ¢ = B, then at least C gets dec3 in R3
and sends it to A and B, and again all

processes have received dec3 by the end
of R4.

e If ¢ = A, then theoretically neither B
nor C may get dec3. But in this case

there will be no forwarded dec3 message
in R4 and no process will get dec3 by the
end of R5. Therefore, either B or C' must
receive dec3 from A in R3. If C gets dec3,
then in R4 A and B also get dec3. If B
gets dec3, then in R4 at least C gets dec3
due to the bidirectional link B—C' and in
R5 A gets dec3 as well. So all processes
have received dec3 by the end of Rb5.

Hence, if one process delivers dec3 then all
have received dec3 and will deliver it as well.

3) If one process delivers dec2 after R8, then
all deliver the same dec2.

We have already seen in part (1) of the proof
that if a process becomes master in R8, then
there will not be a dec2 decision. Therefore,
if one process delivers dec2, then there is no
master until the start of R8 and there must
be a bidirectional link B — C' by Lemma 1.
From Lemma 2 we know that there is only one
possible two-value set, {vg, vc}, which can at
most be possessed by B and C'. If we arrive in
R7, then there was no dec3 value. From part
(2) of the proof and from the above text we
can see that in this case, only A has possessed
a three-value set and was unable to send dec3
in R3. Therefore, both B and C have dec2 and
will send it in R7. Hence, both A and B get the
dec2 from C, and due to the bidirectional link
C must get the (same) dec2 from B. Therefore,
by R8 all processes have received dec2 and will
decide on dec2. O

Lemma 5 (Termination) Algorithm A ful-
fills Termination.

Proof: From the proof of Agreement, we can
see that if there is no dec3 decision, then there
must be a dec2 decision at the end of R8. Both
decisions can only be overruled by a master
decision at the end of R8 or earlier. So the
algorithm terminates at the latest after round
R8. O

Remarks:

1. Note that R7-R8 can be executed in par-
allel with rounds R5-R6 if we assume
that sending a dec3 message takes prece-
dence over sending a dec2 message and
that we always deliver a dec3 decision if
rec3 is true. Hence, the algorithm in fact
requires only 6 rounds.

2. The algorithm was formulated for binary
consensus. To achieve multi-valued con-
sensus, one should change the compu-
tation of the decision value in Figure 1
to deliver an appropriate default value
whenever there is no majority (which can
now also occur for |V,| = 3).

References

[1] U. Schmid and B. Weiss. Consensus with
oral/written messages: Link faults revisited.
Technical Report 183/1-110, Department of
Automation, Vienna University of Technology,
Feb. 2001.

