Technische

I Institut fir Automation Universitit
Abt. fir Automatisierungssysteme Wien

Projektbericht Nr. 183/1-124
November 2002

Consensus with Oral/Written
Messages: Link Faults Revisited

Ulrich Schmid and Bettina Weiss

Salvador Dali, ”Die Bestandigkeit der Erinnerung”

Synchronous Byzantine Agreement under Hybrid
Process and Link Failures

ULRICH SCHMID

and

BETTINA WEISS
Technische Universitat Wien

This paper shows that deterministic consensus in synchronous distributed systems with link fail-
ures is possible, despite the impossibility result [Gray 1978]. Instead of using randomization, we
overcome this impossibility result by moderately restricting the inconsistency that link failures
may cause system-wide. Relying upon a novel hybrid failure model that provides different classes
of failures for both processes and links in a round-by-round fashion, we prove that the m+ 1-round
Byzantine agreement algorithms OMH [Lincoln and Rushby 1993] and its authenticated variants
OMHA, ZA [Gong et al. 1995] require

n > 3fy+ fi +2(fa + fs) + fo+ fm +m
n > 3f£+2(fa+fs)+fo+fm+m
n>2fl+fa+fs+fo+fm+1

processes for transparently masking at most f; link failures (including at most f{ arbitrary ones)
per process in each round, in addition to at most fs, fs, fo, fm arbitrary, symmetric, omission,
and manifest process failures, provided that m > fq 4+ fo + 1. If authentication fails, we show that
OMHA degrades to OMH, whereas ZA can be made tolerant to broken signatures by increasing
fa accordingly. A uniform variant of OMH is also proposed, which guarantees validity and agree-
ment even on benign faulty processes. These specific results are complemented by a systematic
theoretical study of consensus under link failures. We provide impossibility results and (tight)
lower bounds for the required number of processes and rounds, as well as a precise characterization
of what makes a process failure Byzantine resp. omissive. Moreover, we explore the applicability
of our approach to systems with incomplete communication graphs. Finally, an analysis of the
assumption coverage in systems where links fail independently is provided, which reveals that the
probability of violating the failure model can be made arbitrarily small by sufficiently increasing
n.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems— Distributed applications; C.4 [Performance of Systems]: Fault tolerance and Mod-
eling techniques; F.1.2 [Computation by Abstract Devices]: Modes of Computation—Paral-
lelism and concurrency

General Terms: Algorithms, Performance, Reliability, Security, Theory

Additional Key Words and Phrases: Assumption coverage, authentication, Byzantine agreement,
failure models, fault-tolerant distributed systems, impossibility results, link failures, lower bounds,
uniform consensus

Authors address: Technische Universitdit Wien, Department of Automation, Treitlstrasse 1, A-
1040 Vienna. Email: {s, bw}@Qauto.tuwien.ac.at

This research is part of our W2F-project, which targets a wireline/wireless fieldbus based upon
spread-spectrum CDMA communications, see hitp://www.auto.tuwien.ac.at/Projects/W2F/ for
details. W2F is supported by the Austrian START programme Y41-MAT.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1-65.

2 . U. Schmid and B. Weiss

1. OVERVIEW

Although process failure models, like the one that at most f of n processes in a dis-
tributed system may be faulty during a particular execution, have always been ap-
plied most successfully in the analysis of fault-tolerant distributed algorithms, they
do have limitations. In fact, given the steadily increasing dominance of commu-
nication over computation in modern distributed systems, it becomes increasingly
difficult to apply failure models that capture only process failures.

Indeed, due to the high reliability of modern processors, communication-related
failures like receiver overruns (run out of buffers), unrecognized packets (synchro-
nization errors), and CRC errors (data reception problems) in high-speed wireline
and, in particular, all sorts of wireless networks are increasingly dominating process
failures. Such link failures occur on the communication channel or at the network
interface and can cause any data packet to be lost or even modified (without being
detected). The resulting failure, however, cannot reasonably be attributed to the
innocent sender process. Declaring the receiver process as faulty would be overly
conservative either, since a packet error does not usually imply a process failure.
After all, the—fault-tolerant—algorithm is executed correctly. Link failures should
hence be a category of their own in a more realistic failure model.

The first contribution of our paper is a suitable failure model for synchronous
systems with high link failure rates, which distinguishes several types of process and
link failures. It is a round-by-round model [Gafni 1998] that can even be applied to
systems with incomplete communication graphs. Belonging to the class of hybrid
failure models, it allows maximum resilience under real operating conditions and
is hence particularly beneficial for small systems. By analyzing the assumption
coverage in systems where individual links fail independently, we show that our
model can reasonably be applied even to communications-expensive algorithms in
wireless systems, where link loss probabilities up to p = 10~2 are common.

Reaching consensus (“Byzantine agreement”) among the processes of a distributed
system is widely recognized as one of the most fundamental problems in fault-
tolerant distributed computing [Lamport et al. 1982]. Unfortunately, there is a
discouraging impossibility result for deterministic consensus in presence of link fail-
ures (see Section 4.4 for its proof), which goes back to Gray’s 1978 paper [Gray
1978] on atomic commitment in distributed databases:

THEOREM 1.1 GRAY’S IMPOSSIBILITY [LYNCH 1996, TuM. 5.1]. There is no de-
terministic algorithm that solves the coordinated attack problem in a synchronous
two-process system with lossy links.

Due to this result, almost all deterministic algorithms for consensus developed
during the past 20+ years considered process failures only.! To be able to employ
deterministic algorithms in systems with high link failure rates, one might ask,
however, whether some of the pivotal assumptions of the impossibility result could
be relaxed.

1 Just compare Chapter 5 (“Distributed Consensus With Link Failures”) in Lynch’s book [Lynch
1996] with Chapter 6 (“Distributed Consensus With Process Failures”) ...

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 3

The present paper is the first one? to show that this can indeed be done: As the
second major contribution of our paper, we provide a comprehensive theoretical
study of consensus under link failures. It reveals that, if the power of link failures is
slightly restricted with respect to the inconsistencies caused system-wide, consensus
can be solved despite of a large number of link failures if the number of processes n
is moderately increased. Using new instances of bivalency and “easy impossibility
proof” techniques, we provide a complete suite of related impossibility results and
lower bounds for the required number of processes and rounds in presence of link
failures. They are primarily based upon a generalization of Theorem 1.1, which
stresses the importance of unimpaired bidirectional communication for solving con-
sensus. Our results also allow us to precisely characterize what makes a process
failure actually Byzantine resp. omissive.

As the third major contribution of our paper, we prove the correctness of all
known hybrid oral and written messages algorithms® for Byzantine agreement under
our failure model; detailed formulas for the required number of processes and rounds
are also established. Moreover, we provide an algorithm that guarantees uniform
agreement. Our results for written messages algorithms reveal that authentication
is beneficial with respect to both process and link failures, and that processes
with broken/disclosed signatures can be accounted for by increasing the number of
arbitrary process failures appropriately.

The remaining sections of our paper are organized as follows:

—Section 2: Overview of related work.

—Section 3: Introduction and discussion of our hybrid failure model, both in com-
plete and incomplete communication graphs.

—Section 4: Development of theoretical results, including tight lower bounds on
the required number of processes (Subsection 4.2), required number of rounds
(Subsection 4.3), and a precise characterization of Byzantine and omission process
failures (Subsection 4.4).

—Section 5: Analysis of the Hybrid Oral Messages algorithm OMH (Subsection 5.1),
and its uniform variant OMHU (Subsection 5.2).

—Section 6: Introduction of authentication issues for Hybrid Written Messages
algorithms.

—Section 7: Analysis of the authenticated algorithms OMHA (Subsection 7.1), ZA
(Subsection 7.2), and ZAr (Subsection 7.3), as well as application in systems with
a broadcast network (Subsection 7.4).

—Section 8: Analysis of OMH’s assumption coverage in systems with transient link
failures.

2Part of our work has been presented—in preliminary form, and usually without proofs—in
[Schmid et al. 2002] and [Weiss and Schmid 2001] (short paper). A formal verification of some of
our proofs can be found in the SRI technical report [Rushby 2001].

3Note that we are aware of the fact that those algorithms suffer from an exponential number of
messages. Given that they are hybrid instances of the most well-researched algorithm [Lamport
et al. 1982] for Byzantine agreement, however, they are certainly the most suitable candidates
for introducing our fairly general approach. More efficient (polynomial) consensus algorithms are
treated in [Biely and Schmid 2001].

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 . U. Schmid and B. Weiss

—Section 9: Summary and discussion of our accomplishments (Subsection 9.1
and 9.2) and some directions of further research (Subsection 9.3).

2. RELATED WORK

There are a number of hybrid failure models in the literature [Meyer and Prad-
han 1987; Thambidurai and Park 1988; Lincoln and Rushby 1993; Rushby 1994;
Walter et al. 1994; Cristian and Fetzer 1994; Azadmanesh and Kieckhafer 1996;
Schmid 2000; Siu et al. 1998; Schmid and Schossmaier 2001; Walter and Suri 2002;
Azadmanesh and Kieckhafer 2000], which differ primarily in the classes of process
failures considered: Early models like [Thambidurai and Park 1988] distinguish
only manifest and Byzantine failures, whereas fully-fledged models like the ones of
[Walter and Suri 2002] and [Azadmanesh and Kieckhafer 2000] provide a reasonably
complete classification of all conceivable failure modes. Hybrid failure models are
interesting, in particular for small-sized systems, since they exploit the fact that
less severe failures can usually be handled with fewer processes than more severe
ones. However, none of the existing hybrid failure models that are applicable to
consensus algorithms also covers link failures explicitly.

In fact, there are only a few failure models for synchronous systems? in the liter-
ature that deal with link failures at all. One obvious approach is to simply consider
link failures as (sender) process failures, as in [Gong et al. 1995], for example. Still,
allowing every process in the system to commit at most f, receive link failures, as
in our model, would cause many failure patterns where all f = n processes must be
considered faulty; Figure 1 shows an example for n = 4 and f, = 1. This (falsely)
suggests that problems like clock synchronization and consensus are not solvable in
presence of link failures.

A similar argument applies to the more detailed send/receive-omission failure
model of [Perry and Toueg 1986], where receive omissions are mapped to receiver
process failures. Although only the number of send omission faulty processes (and
not the receive omission faulty ones) needs to be counted in f, correctness properties
have only been established for processes that do not commit either type of failure.
Hence, in the example of Figure 1, no process would remain that could be considered
correct.

Declaring a process as faulty due to receive omissions is overly conservative,
however: Absent—even faulty—messages do not necessarily cause a fault-tolerant
algorithm to fail. For example, existing work on wniform consensus algorithms
[Charron-Bost and Schiper 2000] shows that validity and agreement can be guaran-
teed for receive omission faulty processes as well, provided that more than n/2 pro-
cesses are correct. Still, only specific processes (namely, the less than n/2 omission

4Note that it is relatively easy to handle link failures in asynchronous systems with “fair (lossy)
links”: If sending an infinite number of messages over a link causes an infinite number of messages
to be received, a perfect link can be simulated by suitable retransmission-based protocols [Afek
et al. 1994; Basu et al. 1996; Aguilera et al. 2000]. Such time redundancy techniques cannot
be used in synchronous systems, however, without unduly increasing the duration of the rounds
according to the maximum number of successive message losses that are to be tolerated. In sharp
contrast, our approach uses resource (process) redundancy only and therefore does not suffer from
this problem. A detailed survey of link failures in partially synchronous and asynchronous systems
may be found in [Schmid and Fetzer 2002].

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 5

odg

Perception vector Vs:
‘— D2 P3 P4 ‘

fe omissions/n

(messages collected by po
in a round)

Perception vector Vs:
‘Pl P2 ps —

(messages collected by ps)

Fig. 1. Ezample of a 4-process system with f; = 1 receive failures per process in each round,
where all processes must be considered faulty in traditional process-centric failure models.

faulty ones, but no correct one) may experience link failures here. This assump-
tion is dropped in the mobile failure model [Santoro and Widmayer 1989], where
at most one arbitrary process may suffer from any number of link failures in any
round. Consensus cannot be solved in this model, however.

Another class of models [Pinter and Shinahr 1985; Sayeed et al. 1995; Siu et al.
1998] considers a small number of link failures explicitly: Those papers assume
that at most O(n) links may be faulty system-wide during the entire execution of
a consensus algorithm. Leader election algorithms can even tolerate up to O(n)
link failures per process [Abu-Amara and Lokre 1994; Singh 1996]. Still, none
of the above models can deal with the fact that (transient) link failures usually
hit different links in different rounds of the execution. Since failures are usually
considered persistent during an execution, the “exhaustion” of non-faulty processes
and links would progress rapidly with every round, which makes any attempt to
solve consensus in models like [Gong et al. 1995; Perry and Toueg 1986; Hadzilacos
1987] even more hopeless. Link failures must hence be handled in a round-by-round
fashion, similar to the idea underlying round-by-round fault detectors [Gafni 1998].

The model introduced in [Reischuk 1985] can be seen as a first step in this direc-
tion. For a system with n > 20f + 1 processes, at most f of those being Byzantine
faulty during a single round, a consensus algorithm was given that tolerates a small
number | = n/20 of link failures at every node. The only work that provides a link
failure tolerance compareable to ours—without making this explicit, however—is
[Cristian et al. 1985], which describes a suite of synchronous atomic broadcast pro-
tocols. Although reliable/atomic broadcasting is usually investigated in a more
communication-oriented context [Hadzilacos and Toueg 1993], it obviously solves
Byzantine agreement as well. The three algorithms of [Cristian et al. 1985] tolerate
an arbitrary number of processes with omission, timing, or Byzantine failures (if
authentication is available) and work on general communication graphs subject to
link failures. Instead of making the number of link failures explicit, however, it
is just assumed that any two processes in the system are always connected via a
path of non-faulty links; [Hadzilacos 1987] explores the connecticity requirements
associated with such problems. Since our failure model (see Theorem 3.2) respects

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 . U. Schmid and B. Weiss

the requirements of [Cristian et al. 1985], we can compare our results in some detail
in Section 7.3.

Finally, we note that link failures have been considered in randomized consensus
algorithms like the one of [Varghese and Lynch 1992]. Such algorithms circumvent
the impossibility result of Theorem 1.1 by adding non-determinism (coin tossing)
to the computations. Still, due to the inherent non-zero probability of failure/non-
termination within a fixed number of rounds, randomized algorithms are unsuitable
for some applications. Moreover, there is a lower bound 1/(R+1) for the probability
of disagreement after R rounds [Lynch 1996, Thm. 5.5]. Note, however, that we
recently discovered in [Schmid and Fetzer 2002] that our approach of modeling
link failures allows to circumvent this lower bound and achieves a probability of
disagreement of only (1/2)%.

3. THE PERCEPTION-BASED HYBRID FAILURE MODEL

We consider a distributed system of n nodes, which execute one or more processes
that communicate via a fully connected point-to-point network. In case of ¢ > 1
processes per node, it is assumed that every such process has a unique peer at
every other node. The entire execution can hence be viewed as the execution of
¢ concurrent systems of n processes here. All processes executed by a non-faulty
node must be non-faulty; an arbitrary number of processes executed by a faulty
node may be faulty as specified.? All links between processes are bidirectional,
consisting of two unidirectional channels that may be hit by failures independently.

The entire system is synchronous in the usual sense, that is, the distributed
computation evolves in a series of rounds at all processes in lock-step. In every
round, all processes (or a subset of those) “broadcast” a single value to each other;
the received values are used to compute the value to be broadcast in the next round.
Broadcasting just means non-atomic, non-reliable sending of the same message to all
receivers (including the transmitter) here. In case of failures, inconsistent reception
of a broadcast message may occur. It is the purpose of the failure model to cleanly
specify the failures that are to be tolerated by the distributed algorithm in question.

The perception-based hybrid failure model introduced below is a generalization of
the failure model used for the analysis of clock synchronization and other single-
round agreement algorithms in [Schmid 2001]. In this model, the global, i.e.,
system-wide, number of failures is replaced by the number of failures that are ob-
servable in the processes’ local “perceptions” of the system. Formally, process r’s
perception vector

Vr = (Vrlvv;‘zr'-avrn) (1)

of any specific round R is considered (we suppress the round number R for clarity),
where every perception V,? € V, represents the message process r received from its
peer process s in round R; type and value(s) depend upon the particular algorithm
considered. For approximate agreement algorithms, for example, the V,* would be
real values that represent the receiver’s opinion about the sender’s local value V*.

5The terms process and node failures can hence be used more or less synonymously. We usually
prefer the more common term process failure in this paper.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 7

In case of the clock synchronization algorithm analyzed in [Schmid 2001], we
found it sufficient to just impose a bound upon the maximum number of failures
in any pair of perception vectors {V,, V,}, i.e., p’s and ¢’s lines in the “matrix” of
perceptions on the right-hand side of

Vi = (Vllavlza"'avln)
Ve = (VZlaV22a"'=VZn)

Vo = (anavrfaavr?)

For example, if every process may lose at most f; = 1 messages due to faulty links
(see Figure 1 in Section 2), any two non-faulty processes’ perception vectors can
differ only in at most 2f, = 2 perceptions, namely, the ones where either receiver
process experienced its omission. Moreover, only at most f; = 1 of the non-faulty
perceptions present at some non-faulty process can be missing or faulty at any
other non-faulty process. Even more, since f process failures can produce at most
f faulty perceptions in any V.., our perception-based model will be compatible with
traditional process failure models. Hence, all existing lower bound and impossibility
results remain valid.

Depending upon the type of failure of a perception, e.g., missing or erroneous
value, several different classes of failures (manifest/omission/symmetric/asymmetric)
can be distinguished. This leads to a hybrid failure model, see [Azadmanesh and
Kieckhafer 2000] for an overview, which exploits the fact that less severe failures
can be usually handled with fewer processes than more severe ones. In case of con-
sensus, for example, masking f symmetric failures usually requires only n > 2f +1
processes, whereas n > 3f + 1 is needed if all failures are asymmetric (Byzantine)
ones. Since a large number of asymmetric failures is quite unlikely in practice,
this effectively leads to a smaller n for tolerating a given number of failures. This,
in turn, positively affects dependability by reducing the number n of components
that could be faulty, cf. [Powell 1992]. System designers will hence appreciate our
very detailed hybrid failure model for getting the maximum fault-tolerance out of a
given—and usually quite small—n. Obviously, an algorithm’s resilience in standard
models (like all-Byzantine) is easily® obtained by setting some model parameters
to 0.

For Srikanth & Toueg’s consistent broadcasting primitive [Srikanth and Toueg
1987] in asynchronous systems, for example, our analysis in [Schmid 2001] revealed
that

nZ4fia+3fa+2(fs+fis+f0+fz'o)+fm+]-

processes are sufficient for tolerating at most f,, fo, fs, fo crash, omission, symmet-
ric, and arbitrary process failures and at most f;,, fis, and f;, omission, symmetric,
and arbitrary link failures at each receiver process.

In view of the results of [Schmid 2001], it was natural to consider the question of
whether a perception-based failure model can also be used to attack deterministic

6Note, however, that the general hybrid analysis might be too conservative for certain restricted
cases, see Remark 4 on Theorem 5.4 for an example.

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 . U. Schmid and B. Weiss

consensus in presence of link failures. More specifically, as the general problem
is unsolvable by Theorem 1.1, one might ask whether there is a meaningful re-
striction of the power of link failures that can be expressed in a perception-based
manner. And indeed, as will be shown in the subsequent sections, there is a suit-
able perception-based failure model that allows even consensus with oral messages
[Lamport et al. 1982] in systems with high link failure rates. Ignoring process fail-
ures for the moment, it is based upon constraining two quantities in the matrix of
perceptions of any single round:

(A1") Any receiver process may encounter at most f; receive link failures on its
in-bound links, without being considered faulty. Hence, there may be at most
f; columns with erroneous perceptions in any fixed single line. This puts a
limit upon the number of sender processes that may appear faulty to a single
receiver (already employed in [Schmid 2001]). Figure 2 shows an example with

fr=2.

Node 1
(send)).

Fig. 2. Ezample of a process T that suffers from two receive link failures in a round, hitting the
links from sender processes 1 and q.

(A1%) Every sender process may commit at most f; send link failures (also termed
broadcast link failures) on its out-bound links, without being considered faulty.
Hence, there may be at most f; lines with erroneous perceptions in any fixed
single column. This puts a limit upon the number of receiving processes that
may obtain a wrong (or no) message in the broadcast of a single sender. Figure 3
shows an example with fj = 2.

Note carefully that we allow every process in the system to commit up to f;
broadcast and up to f; receive link failures in every round, without considering the
process as faulty in the usual sense. In addition, the particular links actually hit
by a link failure may be different in different rounds. A process must be considered
(omission) faulty, however, if it exceeds its budget f; of broadcast link failures
in some round. Note that a process that experiences more than f; receive link
failures in some round must usually be considered (arbitrary) faulty, since it might
be unable to correctly follow the algorithm after such an event.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 9

— 1 s n
Vi=(Vi, . V)
Node 1
(recy)

R Vo= (VE . Ve V)

Node p

V=
Node ¢
(recv)

LV, LV

U VAU ()|

Fig. 3. Ezample of a process s that produces two send link failures, hitting the links to receiver
processes 1 and q.

The above distinction makes sense due to the fact that we consider the unidi-
rectional channels, rather than the bidirectional links, as single fault containment
regions: Broadcast link failures affect outbound channels, whereas receive link fail-
ures affect inbound channels. Still, broadcast and receive link failures are of course
not independent of each other: If a message from process p to ¢ is hit by a failure
in p’s message broadcast, it obviously contributes a failure in process ¢’s message
reception as well.

Nevertheless, our failure model considers (A1°) and (A1") as independent of
each other and of process failures, for any process in the system and any broad-
cast/reception. Only the model parameters f; and f; do depend on each other:
According to (A1), at most n - f; messages may be faulty system-wide in any
round’s broadcasts. By (A1"), they must be spread over all message receptions
in a way that no process experiences more than f; faulty messages. This is only
possible if r; = n - f; = n- f; = s;, however: If s; > 7 and hence f; > f/, then
there would be at least one receiver that gets more than f; faulty messages and
thus violates (A1") if all senders generated their maximum number f7 of send link
failures. Similarly, if s; < 7, and hence f7 < f/, there would be at least one sender
process with more than f; broadcast link failures if all receivers experienced their
maximum f; of receive link failures, thereby violating (A1°%).

Consequently, since both (A1°) and (A1") must” hold in any execution, there are
only two possibilities: (1) f§ = f; = fe, in which case (A1") and (A1°) always hold,
or (2) f§ # f7, in which case the failure model only applies if link failure patterns
are restricted to feasible ones by some additional assumptions. An example of (2) is
the alternative interpretation of restricted process failures as link failures introduced
in Section 4.4.

"Note carefully, however, that there are algorithms that do not need (A1®) and (A1") simultane-
ously in any single round, but only one of those, see Remark 5 on Theorem 5.4.

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 . U. Schmid and B. Weiss

To align the present paper with the existing literature, the above perception-
based model is recast into a simple modification of the original oral messages as-
sumption of [Lamport et al. 1982]. Process failures are modeled according to a
generalized version of the hybrid failure model of [Lincoln and Rushby 1993; Wal-
ter et al. 1997]. Our contribution here is to add the important class of omission
process failures to the originally provided manifest, symmetric, and arbitrary fail-
ures. An omission faulty process p may fail to send a message to any subset R, of
its receivers. In sharp contrast to send link failures in Figure 3, |R,| may be larger
than f7 here. By adding the seperate class of omission failures to our failure model,
those frequently encountered failures [Azadmanesh and Kieckhafer 2000] need not
be counted as arbitrary, which further decreases the required number of processes
n (but see Remark 4 on Theorem 5.4).

In order to cleanly specify the semantics of restricted failures, we will need the
notion of obedient processes: An obedient process is an operational (= not crashed)
process that gets its inputs and faithfully executes the particular algorithm like a
non-faulty process. Unlike a non-faulty process, however, it may fail in specific
ways to communicate its value to the outside world. For example, an obedient but
not non-faulty process could omit to send its (correctly computed) value to some
subset of its receivers. Note that Definition 3.1 given below will actually restrict
the meaning of obedient to non-faulty or manifest faulty or omission faulty (but
not crashed).

We will subsequently use the term obedient instead of non-faulty whenever a
process is considered from a receiver’s perspective only. Note carefully, however,
that a generalization from non-faulty to obedient processes may not always work,
cp. algorithms OMH vs. OMHU in Section 5 for an example.

DEFINITION 3.1 SYSTEM MODEL. We consider a synchronous distributed sys-
tem consisting of n nodes executing one or more processes, which are interconnected
by a fully connected point-to-point network made up of pairs of unidirectional chan-
nels.

(P1) In any round, there may be at most fo, fs, fo, and fp, arbitrary, symmetric,
omission, and manifest faulty nodes. The failure modes of their processes are
defined via the set rvals(Vy,p) of admissible values delivered by obedient receivers
when process p attempts to send them the value V,:

—A manifest faulty process p fails to send a message, or sends an obviously bad
value, to any receiver. All obedient receivers q in the system (including p itself)
deliver the distinguished value VP = 0 in this case, i.e., rvals(V;,p) = {0}.

—An omission faulty process p may fail to send the correct value V), to some of its
obedient receivers q;, which deliver VP = 0 instead of V,, in this case. Hence,
rvals(Vp, p) = {V}, 0}

—A symmetric faulty process p sends the same wrong (but not usually obvi-
ously bad) value X, to every receiver q. All obedient receivers (including p
itself) deliver VP = Xp—the value “actually sent” —in this case, such that
roals(Vy, p) = { X, }.

—An arbitrary (asymmetric) faulty process may inconsistently send any value to
any receiver, so rvals(Vy,p) is the set of all possible values, including (.

A process that is manifest or omission faulty is called benign faulty and is as-

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 11

sumed to be obedient (if not crashed). A process is consistent if it is either

non-faulty, manifest faulty, or symmetric faulty.
(AL?) If a single [faulty or non-faulty] process p sends a value V, to some set of

obedient receiver processes g; € R in a round, at most f; of the delivered values
VP may differ from the admissible receive values in rvals(Vp,p). Let fi* < f; be
the mazimum number of non-omissive, i.e., non-empty and hence value faulty,

VP among those.
(A1") If all processes p; € S of a set of [faulty or non-faulty] processes send a

message containing Vp, to some obedient recewer process q in a round, at most
I{ of the delivered values VP may differ from the admissible receive values in
rvals(Vp,,pi). Let fj* < f; be the mazimum number of non-omissive, i.e., non-

empty and hence value faulty, VP* among those.
(A2) The receiver of a message knows who sent it.
(A3) The absence of a message from sender p can be detected at any receiver q at

the end of a round, which leads to VP = 0.
Remarks:

(1) A single round consists of (1) all the processes’ local computations based upon
the values received in the previous round, (2) the broadcasts (= successive
sends) of the resulting messages according to (A1%), and (3) the reception of
those messages according to (A1").

(2) Properties (A1°) and (A1") must hold simultaneously in any execution and
are assumed to be independent of each other. Any process has an individual
“budget” f; (resp. f§) of link failures that may hit arbitrary inbound (resp.
outbound) links. Without restricting link failure patterns, however, this can
only be guaranteed if f; = f; and f;* = f;*.

(3) The system model of Definition 3.1 considers process and link failures inde-
pendently. Therefore, even a manifest or omission faulty process’s broadcast
could generate erroneous values at f7® receivers, for example. By contrast, the
original model in [Schmid and Weiss 2001, Def. 1] assumed that link failures
hit only messages from non-faulty senders/receivers. The new model is more
natural and has a better coverage in real systems, but requires a slightly more
involved analysis.

(4) For generality, Definition 3.1 has been specified as a round-by-round model also
with respect to process failures. Hence, the f,, fs, fo or f,, faulty nodes might
even change from round to round. Typically, however, it will be assumed in our
analysis that the set of faulty processors is the same in the entire execution.
In that case, faulty processes must not change their failure mode, i.e., must be
counted in f,, fs, fo or fn, according to their most severe behavior. Hence,
a node that hosts one or more processes that e.g. behave symmetric faulty in
some round and omission or manifest faulty in some round must be considered
arbitrary faulty.

(5) Our manifest failures differ from the systemwide detectable ones of [Powell 1992]
and the “benign failures” of [Azadmanesh and Kieckhafer 2000; Walter and Suri
2002] by also including symmetric omissions (produced e.g. by clean crashes),
where no receiver gets a non-{ value. Since a receiver does not know locally
whether a message is missing due to a symmetric omission or e.g. a Byzantine

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 . U. Schmid and B. Weiss

failure, symmetric omissions are usually more difficult to handle than “benign
failures”. This is not true for the algorithms analyzed in this paper, however, so
integrating both into manifest failures as in [Lincoln and Rushby 1993] makes
sense.

(6) Our failure model provides only strong manifest failures, where all receivers,
including the sender itself, get (-values only. Some related work like [Rushby
2001] considers weak manifest failures, where the sender is allowed to deliver the
correct value instead of 0, thereby causing some asymmetry in the reception. Of
course, weak manifest failures can always be incorporated as omission failures
in our model. Alternatively, they are equivalent to strong manifest failures if
at least one arbitrary link failure may also occur (i.e., if fj* = f§* > 1): Self-
delivery of the correct (even incorrect) value sent by a manifest faulty process
can then be explained by a spurious message generated on the link to itself.

(7) Specified in a round-by-round fashion, our failure model does not contain a
direct equivalent for standard crash failures, where a process can die once and
forever even during its broadcast. Crash failures are in fact more severe than
our manifest failures but weaker than omission failures [Perry and Toueg 1986].
Nevertheless, both manifest and omission failures are more severe than crashes
in that faulty processes may resume correct operation in any later round. Bear
in mind, however, that this behavior is not equivalent to the crash-recovery
model of [Aguilera et al. 2000], since our processes may not lose state but must
continuously follow the algorithm, see Remark 8 below.

(8) Benign faulty processes, i.e., manifest and omission faulty ones, are allowed to
convey either the correct value or else () to their receivers, which implies that
they must know the correct value at least internally. Although we need not
care how this is actually accomplished, it is nevertheless true that the only way
to ensure this in practice is to assume that benign faulty processes are obedient
(or have crashed).

(9) Arbitrary faulty processes need not adhere to the particular algorithm. Unlike
a symmetric or benign faulty process, an arbitrary faulty process could even
send multiple messages in a single round; a receiver may deliver any of those
or () in this case.

Since the failure model of Definition 3.1 allows link failures to be both transient
and permanent, it is possible to model incomplete communication graphs by con-
sidering missing links as faulty, cp. [Siu et al. 1998]. The following Theorem 3.2
will show, however, that sparsely connected graphs and, in particular, partitioned
ones are disallowed here.

Recall from elementary graph theory that a graph G is c-connected if it remains
connected by removing at most ¢ processes and their adjacent edges. Two paths
connecting processes p and ¢ are process-disjoint iff they do not have common
processes except p and q.

THEOREM 3.2 CONNECTIVITY. The communication graph of any system of n >
fi + fi processes complying to the system model of Definition 3.1 is c-connected
with ¢ =n — f; — f{ > 0. Moreover, any pair of processes p, q is connected by c
process-disjoint paths consisting of at most 2 non-faulty links.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 13

Proof: We use Menger’s theorem, which says that G is c-connected iff any pair
of processes p, q is connected by ¢ process-disjoint paths. To show the latter, we
argue as follows: From (A1°) in Definition 3.1, we know that p is connected to at
least n — f; processes (possibly including itself) via non-faulty links. From (A1"),
it follows that g is connected to a set of at least n — f; — f; = c of these processes
via non-faulty links. Let Z with |Z| > ¢ be this set of processes. If p ¢ 7 and g ¢ Z,
then p and ¢ are connected by ¢ paths consisting of 2 non-faulty links routed over
the processes in Z. Otherwise, there are only ¢ — 1 paths of length 2 and a direct
path from p to g, which are of course also process disjoint. O

4. THEORETICAL FRAMEWORK

In this section, we will develop a theoretical framework for consensus® in presence
of link failures. We restrict our attention to a synchronous distributed system of n
processes according to Definition 3.1 here, where only link failures but no process
failures are considered (f, = fs = fo = fm =0).

Our major tool will be a generalization of the well-known Theorem 1.1 [Gray
1978], which reveals the importance of unimpaired bidirectional communication
for solving consensus. It allows to derive (tight) lower bounds on the number of
processes required for solving consensus, both for the case of pure omission link
failures and arbitrary ones. We also show that solving consensus in presence of link
failures requires one additional round. A precise characterization of what actually
makes a process failure Byzantine (resp. omissive)—and thus requires even more
rounds to be executed by a consensus algorithm—eventually concludes this section.

8

Binary consensus is the problem of computing a common binary output value
from binary input values distributed among all processes. We assume that every
process p provides an input value z, € {0,1}, which is supplied to the local instance
of a distributed consensus algorithm that starts simultaneously at all processes.
Within a finite number of rounds (that may be different for different processes, and
may even depend upon the particular execution), p irreversibly computes (“decides
upon”) an output value y, € {0,1}, which must satisfy the following properties:

(C1) (Agreement): Every two processes p and ¢ compute the same output value
Yp = Yq-

(C2) (Validity): If all processes start with the same input value, then every pro-
cess p computes
—yp = 1if Vg : z, =1 and no link failure has occured in the entire execution,
—yp =0ifVg:z4 =0.

Note that practical consensus algorithms usually guarantee a stronger validity prop-
erty, where, in case of Vg : , = 1, every process p computes y, = 1 even when link
failures have occured. Considering a weaker form of validity in this theory section
makes sense, however, since impossibility of consensus under (C2) obviously implies
imposibility of consensus under any stronger validity property as well.

8Since Byzantine agreement can be used to implement consensus, impossibility results and lower
bounds derived for consensus carry over to Byzantine agreement as well, see our discussion at the
beginning of Section 5.1 and Remark 1 on Definition 5.1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 . U. Schmid and B. Weiss

4.1 Basic Results

We start with the well-known proof of Gray’s Theorem 1.1 in the formalization
of [Lynch 1996, Thm. 5.1], which uses the following argument: Suppose that the
failure-free execution E of a two-process system with omission faulty links termi-
nates at the end of round r when starting with initial values [1,1]. By validity,
the common decision value must be 1 in E. Since decisions are irreversible, we
can safely drop all the messages some algorithm might sent in rounds > r with-
out changing the decision value. The resulting “truncated” execution E shown in

Figure 4 is obviously feasible.
pi[1] P21

round 1

round r

Fig. 4. Ezecution of a two-process synchronous consensus algorithm with link omission failures,
starting with initial values [1,1], truncated after round r by which both processes decide.

If we now drop the last (dotted) round r-message from p; — p2 in E, the resulting
execution E' is indistinguishable for p;, so p1 and, by agreement, also p, must
eventually decide on 1 as well. Note carefully, however, that p, could decide later
now, i.e., in some round r’ > r, in E' — we can only guarantee that the decision
value is the same. An analogous argument reveals that we can also drop the round -
message from ps — p; in E' without changing the decision value. Note carefully
that, since ps could decide in round 7' > r here, the initial “truncation” made it
impossible for p; to tell p» about the lost message in some later round r+1,...,7".

The above procedure can be repeated until all the messages in all rounds have
been dropped, without changing the decision value. Since the processes are now
fully isolated from each other in the final execution, changing the initial values to
[1,0] and then to [0, 0] cannot affect the decision value either, but now the outcome
of the final execution would violate validity.

As our first result, we will now show that solving consensus is even impossible
when a link—viewed as a pair of unidirectional links—loses or, in case of arbitrary
link failures, corrupts messages only in one direction, i.e., when either process (but

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 15

not necessarily both) can withold its information for an arbitrary number of rounds.
Eventually bidirectional communication is hence mandatory for any deterministic
consensus algorithm. Solutions exist, however, if the direction of the message loss
is fixed, see the remarks following Theorem 4.3 below.

Unfortunately, this stronger result cannot be shown by generalizing the proof
of Theorem 1.1: We are not allowed to simply drop all messages in later rounds
to “hide” the effect of dropping/restoring round r-messages here, since this would
amount to a link failure in both directions and hence an infeasible execution. We
found out, however, that bivalency-type proofs [Fischer et al. 1985] are a powerful
tool in our setting as well (which could be employed in an alternative proof of
Theorem 1.1 as well).

In what follows, we use the following notation: A configuration C" = (], c}) of
our 2-process system is the vector of p;’s and p2’s local state c] and ¢} at the end of
round 7 > 1; the initial state—which primarily incorporates the initial values of the
consensus algorithm—is C°. A configuration is v-decided (decided for short) if all
processes have decided upon a common decision value v € {0,1}. A configuration
C is v-valent (univalent for short) if all decided configurations reachable from C
are v-decided; in particular, it is impossible to reach a 1-decided configuration from
a O-valent C.

Clearly, since we are considering deterministic algorithms in synchronous systems
under link failures only, the entire execution is solely determined by C° and the
pattern of message losses/corruptions. Actually, given any configuration C*~1,
there are only four possible (sets? of) successor configurations C§,, C¥,, Ck,, and
Ck,: Depending upon whether the message p» — p1 (x) and/or p1 — pa (y) is
lost/faulty (0) or correct (1) in round k > 1, C*~! is followed by a successor in C},
in this execution (message “self-transmission”, from p; — p; and p, — p, is always
assumed to be failure-free here). Note that Cf, is feasible only in Theorem 1.1,
since both messages may be lost there. In the context of the following Theorem 4.3,
however, C§, is empty since loosing both messages will not be feasible. Our notation
can be generalized to n > 2 in the obvious way: (Sets of) successor configurations
are indexed by strings of n(n—1) 0’s or 1’s, corresponding to each link in a n-process
system, with 0 denoting a lost or faulty message, and 1 denoting a non-faulty one.

In order to deal with different feasible link failure patterns in a consistent way, we
introduce some more notation: Two successor configurations C¥ and C{j are called
neighbors if the sets M, and M, of received round k messages that led to C¥ and
C{j, respectively, differ in at most one message. For example, all configurations in
Ck, and C§; (and hence the entire sets) are neighbors in the above system, but
the ones in C§, and C¥, are not. The successor graph Gc of some configuration C

9To keep the notation simple, we group individual successor states together according to the
pattern of message losses/corruptions here. For example, C(’fl actually consists of all configurations
reachable from C*—! where only the message ps — p; is lost or faulty. Multiple configurations in
C'(’)“1 are possible in case of arbitrary link failures, since different faulty messages p» — p1 might
result in different states of p;. By assuming that univalence of a set of configurations C’a’c“y means
that all individual configurations C* ¢ Ci“y are univalent, whereas bivalence means that least
one individual configuration C* ¢ Cﬁy is bivalent, we can use sets of configurations instead of
individual configurations in our proofs as well.

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 . U. Schmid and B. Weiss

consists of all successor configurations of C', where all neighbors are connected by
an edge. We can make the following fairly obvious observation:

LEMMA 4.1. The successor graph Go of any configuration C' of a consensus al-
gorithm under the system model of Definition 3.1 without process failures (f, =
fs = fo= fm = 0) is connected.

Proof: Let k > 1 be the round at the end of which the transition from C to
one of its successor configurations takes place. Obviously, the failure-free successor
configuration C1, where no round k& messages has been lost or corrupted must
be in Go. Let C, be any other successor configuration caused by a feasible link
failure pattern, with M, denoting the corresponding set of lost or faulty messages.
Since the link failure pattern M;, obtained from M, by removing (= repairing)
exactly one of the lost or faulty messages, is of course also feasible according to
Definition 3.1, the resulting successor configuration C’, is a neighbor of C, and
obviously C!, € G¢. Since [M,,| = [M,| — 1, this argument can be repeated until
the failure-free successor configuration C,, = C, is reached. Hence, there is a path
from any C,, to C14 in the successor graph Go. O

The result of Lemma 4.1 will be used primarily in conjunction with the following
Lemma 4.2:

LeEMMA 4.2. Suppose that all successor configurations of some configuration C
with connected successor graph Go are univalent. If there are two arbitrary successor
configurations C' and C" among those that are 0-valent and 1-valent, respectively,

. . . —! —I!
then there are also two neighboring successor configurations C° and C that are
0-valent and 1-valent.

Proof: Since C' and C" are connected in G- and have different valences, there
is a path of configurations connecting C' and C". This implies that there must be
neighbors C' and C' on this path where the valence changes. O

We are now ready to show that eventually bidirectional communications is manda-
tory for solving consensus in a 2-process system. Note that this theorem considers
omission link failures only and strenghtens Gray’s Theorem 1.1.

THEOREM 4.3 UNIDIRECTIONAL 2-PROCESS IMPOSSIBILITY. There is no deter-
ministic algorithm that solves consensus in a synchronous system with two non-
faulty processes connected by a lossy link, if communication is reliable only in one
direction that may change arbitrarily.

Proof: Assume that there are programs Cp,, and Cp, running on processes p; and
po that jointly solve consensus in a two-process system with unidirectional commu-
nication. We will show inductively that any bivalent configuration has at least one
bivalent successor. This implies that it is impossible to always reach a final decision
within any finite number of rounds.

For the base case k = 0 of our inductive construction, we have to show that there
is a bivalent initial configuration Consider the configuration C°(01) where p; starts
with initial value 0 and p, starts with initial value 1. If C°(01) is bivalent, we are
done. If C°(01) is O-valent, the execution where all messages from p; — ps are lost

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 17

in all rounds must also lead to a 0-decided configuration. This execution is indis-
tinguishable for ps from the equivalent execution that starts from C°(11) (where p;
has initial value 1 instead of 0), however, which implies that the common decision
value must also be 0 here. Since C°(11) must lead to a 1-decided configuration in
case of no link failures by validity, we have shown that C°(11) is bivalent in this
case. An analogous argument can be used to show that C°(00) must be bivalent
when C°(01) is 1-valent.

For the induction step £ > 1, we assume that we have already reached a bivalent
configuration C*~! at the end of round k — 1 and show that at least one of the
feasible successor configurations C§;, C¥,, and C¥, reached at the end of round k is
bivalent. Assuming the contrary, all of those must be univalent. The bivalence of
C*~! implies that at least one of Cf;, C¥;, and C¥, must be 0-valent and one must
be 1-valent (i.e., C¥~! must be a fork [Tel 1994]). By Lemma 4.2 in conjunction
with Lemma 4.1, either the neighbors C¥, and C¥;, or C¥, and Cf, must be v-
valent and 1 — v-valent, respectively. W.l.o.g. assume that Cf; is v-valent and C§,
is 1 — v-valent for some v € {0,1}. Since the only difference between those two
configurations is that the message from p, — p; has been arriving in the former
but not in the latter, we only have to consider the execution where all messages
from p; — po are lost in all rounds > k. However, as p; cannot tell po whether it
has received a round k message, the appropriate executions starting from CF, resp.
C¥, are indistinguishable for p,. Since p» must hence decide upon the same value,
CF, and C§, cannot have different valences. O

Remarks:

(1) If message losses can only occur in one and the same direction, and if that
direction is known to the algorithm, then there is a trivial 1-round algorithm
that solves consensus in a 2-process system: The process that can communicate
with its peer sends its own value and decides upon it; the other process decides
upon the value received from its peer.

(2) If message losses can only occur in one and the same (but unknown) direction,
there is a 2-round algorithm that solves consensus in a 2-process system: In
the first round, the initial values vy, vy are exchanged. In the second round,
Acks/Nacks signaling successful reception in the former round are sent. The
possible message receive patterns for the lucky process, say, ps, that gets all
messages are (v1, Ack) = min{vi,v2} and (v;, Nack) | v;, whereas the less
lucky p;1 could get (vz, Ack) = min{vi,v2}, (v2,0) = min{vi, vz}, (0, Ack) =
vy, or (0,0) E v;. It is easy to verify that the decision values (given after |= in
each case) satisfy validity and agreement.

Our next goal will be to show that consensus cannot be solved in any system
of n > 2 processes if, for every process, eventually bidirectional communication
with at least one peer cannot be guaranteed. More specifically, if every process
p could withold its information from some other process g(p) (but not necessarily
vice versa) arbitrarily long, in the sense that there is a failure pattern for rounds
R+ 1,R+2,... such that ¢g(p) has the same view of the resulting execution after
round R, independent of the information p has gathered in round R, then it is
impossible to solve consensus. Note that this implies that there is no information

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 . U. Schmid and B. Weiss

flow from p — ¢(p) at all, neither directly nor indirectly via other processes.

LEMMA 4.4 n-PROCESS IMPOSSIBILITY. Consider a synchronous n-process sys-
tem with omission and/or arbitrary link failures, where the successor graph Gc of
any configuration C is connected. There is no deterministic algorithm that solves
consensus in such a system if, for every process p, it could happen that p witholds
its information from some other process q(p) for an arbitrary number of rounds.

Proof: The proof is a generalization of the proof of Theorem 4.3, although more
involved: We assume here that there are n programs Cy, ..., C, running on the
n processes pi,...,P, in the system that jointly solve consensus. We will show
inductively that there is an infinite sequence of bivalent configurations, which makes
it impossible to always reach a decision within a finite number of rounds.

For the base case k = 0 of our inductive construction, we have to show that there
is a bivalent initial configuration C°. Consider the initial configuration C°(111x),
where all processes start with the initial value 1. If this configuration is bivalent,
we are done. Otherwise, C°(111%) can only be 1-valent, since validity requires a
decision value 1 in the failure-free case. Now consider C°(011x), where process
p1 starts with 0 and all others with 1. If this configuration is bivalent, we are
done. If not, we assume first that it is 0-valent and choose the execution starting
from C°(011%) where p; cannot tell its value to some process q(p1) = pz # pi;
such a process must exist due to the assumptions of our lemma. This execution
is indistinguishable for p, from the analogous execution starting from C°(111x),
however, so p,’s (and hence the common) decision must be 1 here. This contradicts
the stipulated single-failure 0-valence of C°(011x), however, which could hence only
be 1-valent.

The whole argument can now be repeated for p; in place of p;, etc., until either
a bivalent initial configuration has been found or the 1-valent initial configuration
C°(x001) has been reached; in C°(x001), the processes py, . .., pn_1 start with 0 and
Ppn starts with 1. We now consider the execution where p,, cannot communicate its
value to some process ¢(pn) = py # pn. For py, this execution is indistinguishable
from the analogous one starting from C°(*000), which must lead to a decision
value of 0 by validity (C2). This contradicts the stipulated 1-validity of C°(x001),
however.

For the induction step & > 1, we assume that we have already reached a bivalent
configuration C*~! at the end of round & — 1. We must show that at least one of the
feasible successor configurations C* that could be reached at the end of round &
is bivalent. If this is true in the first place, we are done. If not, all successor
configurations C* must be univalent. However, the bivalence of C*~! implies that
at least one of those must be 0-valent and one must be 1-valent (i.e., C*~! must be a
fork [Tel 1994]). By Lemma 4.2, there must also be 0-valent and 1-valent successor
configuration C¥ and C¥, respectively, that are neighbors. Assume that they differ
only in the state of process r that has got some specific round k& message correct
in CF but not or faulty in CF (or vice versa). Now consider the two executions
starting with C} resp. CF, where r witholds its round k-information from some
process q(r) = p, # r in any future round > k. They are indistinguishable for
P2, which means that p, and, by agreement, all other processes must compute the

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 19

same decision in both executions. This contradicts the stipulated different valences
of C} and Cf, however. O

Lemma 4.4 has a number of interesting consequences. First of all, there is an
interesting asymmetry in the “severeness” of receive link failures (A1") vs. send link
failures (A1%) in Definition 3.1. This can be seen by considering two instance of a
3-process systems, where two processes A, B cannot communicate bidirectionally
due to receive resp. send link failures: In the system of type R shown in Figures 5,
processes A and B may not receive the messages from both peers (f; = 2 and
f7 =1). In the system of type S shown in Figure 6, processes A and B may fail to
send to both peers (f; =1 and f] = 2).

Fig. 5. 8-process system (type R), where processes A and B cannot communicate in one direction.
The left scenario shows the case A / B, the right one B A A, which may alternate arbitrarily.

It follows from Lemma 4.4 that no algorithm can solve consensus in a system of
type R, even if process C' is fixed and known to the algorithm. For, since A may fail
to receive any information from any other process in the system, A is the process
q(p) required by Lemma 4.4 for any p # A. Since B may also fail to receive the
information from any peer, it provides the still required ¢(p) for process A. Hence,
consensus is impossible in a 3-process system with f; =2 and f; = 1; note that C
is not fixed here, which makes consensus even harder to solve.

Fig. 6. 3-process system (type S), where processes A and B cannot communicate in one direction.
The left scenario shows the case A / B, the right one B /A A, which may alternate.

On the other hand, for systems of type S where C is fixed and known to the
algorithm, there is a trivial solution that lets all processes decide upon the value of
process C. If process C is fixed but not known, consensus can be solved by means
of the algorithm described in [Gridling 2002]. No solution exists in a system of

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 . U. Schmid and B. Weiss

type S only if C is not fixed — as is the case in a 3-process system with f; =1
and f; = 2 according to Definition 3.1.

4.2 Number of Processes

Using the results of Section 4.1, we will first establish a lower bound for purely
omissive link failures (f;* = f;* = 0 in Definition 3.1).

For the special case f; = f; = f; > 0, such a lower bound can be infered from
Theorem 1.1, by a straightforward simulation-type proof: Assume that there is a
deterministic algorithm C that solves consensus for n = 2f,. Using C, it is possible
to construct a solution for consensus in a 2-process system with lossy links, however,
which is impossible.

The detailed proof is as follows: Partition the n processes into two subsets P4 and
Pg of size f; each. Two super-processes A and B are used to simulate the execution
of the processes in P4 and Pg, respectively. All the links between the simulated
processes in the two super-processes are routed over a single super-link. For a super-
process’ decision value, any simulated process’ decision value can be taken. In order
to ensure that C achieves consensus among all (simulated) processes, we must show
that Definition 3.1 is not violated for any simulated process in any super-process in
case of a super-link failure: Any simulated process must not get more than f; = f,
receive link failures, and must not produce more than f; = f¢ send link failures.
This is trivially satisfied since f; = f; = f;, however. Hence, our solution would
achieve consensus among the two super-processes, which violates Theorem 4.3 (even
Theorem 1.1, since bidirectional partitioning could happen here).

For the general case of arbitrary f; and f;, the lower bound for omission link
failures can immediately be derived from Lemma 4.4:

THEOREM 4.5 LOWER BOUND PROCESSES 1. Any deterministic algorithm that
solves consensus under the system model of Definition 3.1 with f7, f; > 0 arbitrary
needs n > f; + f;.

Proof: We first show that, for any process p, we can choose a set V, of f/
arbitrary processes including p, where no process in V, sends any messages to a
process outside V, in case of n = f7 + f;: Since there are f] processes outside Vp,
every process in this set may commit broadcast link failures that omits all outside
processes. Any outside process thus experiences exactly f; receive link failures,
which is also feasible with respect to our failure model.

Any of the f§ > 1 processes outside V, can hence be used as the process ¢(p)
required by Lemma 4.4, which implies that consensus cannot be solved here. O

Remarks:

(1) The lower bound n > f; + f; provided by Theorem 4.5 is tight, since it is
matched by the authenticated algorithm ZA analyzed in Section 7.2, see The-
orem 7.6.

(2) It is interesting to note that the result of Theorem 4.5 implies that, in order
to be able to solve consensus, any link failure may affect at most a minority
of processes only. In the setting of Theorem 1.1, however, there is no point in
considering this case at all: There is no non-empty minority of processes for

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 21

n = 2. We are reasonably convinced that our fairly simple escape from the
impossibility result would have been discovered earlier during the past 20 years
if Jim Gray had not presented his result for a simple 2-process system.

In order to find a lower bound for arbitrary link failures, we will again start with
the special case f; = f; = f;* = f;* = fe > 0. Our derivation will be based upon
the following Theorem 4.6, which shows that no algorithm can solve consensus in
a 4-process system in presence of a single arbitrary link failure (f;* = f;* = 1).
This will be proved by means of a technique, which is well-known from showing the
impossibility of consensus in a system of 3 processes with one Byzantine fault, see
e.g. [Attiya and Welch 1998, p.104].

THEOREM 4.6 4-PROCESS IMPOSSIBILITY. There is no deterministic algorithm
that solves consensus under the system model of Definition 3.1 for a single arbitrary
link failure in a 4-process system.

Proof: We employ a new instance of the “easy impossibility proof techniques”
of [Fischer et al. 1986] to show that any deterministic algorithm violates agreement
if every process may see an inconsistent value from one of its neighbors. Suppose
that our 4 processes execute a distributed algorithm consisting of specific programs
A, B, C, D, which solve consensus under the system model of Definition 3.1 with

7%= f;* = f; = Ji = 1. In order to derive a contradiction, we arrange 8 processes
in a cube as shown in Figure 7. For example, the lower leftmost process labeled
A[0] executes program A starting with initial value 0 (the @ on its left displays
this process’s decision value, as explained below). Note carefully that all processes
and all links are assumed to be non-faulty here.

View X

Fig. 7. Topology used for proving the violation of agreement in a 4-process system. 8 non-
faulty processes with perfect links are arranged in a cube in a neighborhood-preserving way. The
assignment of initial values ensures that all processes in view 0 resp. view 1 decide 0 resp. 1, but
this violates agreement in view X.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 . U. Schmid and B. Weiss

Of course, dealing with a solution for a 4-process system, we cannot expect to
achieve consensus in the 8-process system of Figure 7. However, due to the special
assignment of programs to processes, each process observes a neighborhood as in
a 4-process system. More specifically, the 4 processes at any side of the cube (we
call it a wiew) can be interpreted as an instance of a legitimate 4-process system.
In fact, as can be checked easily, our assignment ensures that any process in a
view is connected to exactly one process outside this view. Since we assumed that
every process may see an arbitrary faulty input from at most one neighbor, the
input from the process outside the view may be arbitrary—it just appears like an
arbitrary faulty process.

Now consider the processes in view 0, which all have initial value 0. By the
validity property for consensus, all processes must decide 0 here (the initial value 1
of the processes outside view 0 do not matter, as they are considered arbitrary
faulty w.r.t. view 0). Similarly, in view 1, all processes must decide 1 since they
have initial value 1. But now the processes in view X face a problem: Since e.g. the
lower leftmost process A[0] observes exactly the same messages in view X as in
view 0, it must decide O as observed above. Similarly, as the lower rightmost
process D[1] observes exactly the same messages in view X as in view 1, it must
decide 1—but this would violate agreement in the 4-process system corresponding
to view X. We hence established the required contradiction, thereby completing
the proof of Theorem 4.6. O

Using Theorem 4.6, a similar simulation-type argument as in the pure omission
failure case can be used to show the lower bound n > 4f, for f} = fi* = f; =
7% = f¢ > 0 arbitrary link failures. Note that this lower bound is also tight, since
it is matched by the non-authenticated algorithm OMH analyzed in Section 5.1, cf.
Theorem 5.4.

THEOREM 4.7 LOWER BOUND PROCESSES 2. Any deterministic algorithm that
solves consensus under the system model of Definition 3.1 with f; = f; = f;* =
74 =1>0 needsn > 4f,.

Proof: Assume that there is a deterministic algorithm C that solves consensus
for n = 4f; in our model. We use C to construct a solution for a 4-process system
of Theorem 4.6, which provides the required contradiction.

We partition the set of all processes P into 4 subsets P4, Pg, P, Pp of the same
cardinality fy, and let each super-process A, B, C, D simulate all the instances of
the algorithm in the respective subset. For the super-process’ decision value, any
simulated process’ decision value can be taken. In order to ensure that C achieves
consensus among all (simulated) processes, we must show that Definition 3.1 is not
violated for any process in any super-process if at most one super-link per process
may experience an arbitrary link failure. Since any super-link hosts the links to and
from exactly f, processes, this is trivially fulfilled, however: In case of a super-link
failure, every sender process commits at most f; send link failures (affecting the f,
processes in the receiving super-process), and every receiver process experiences at
most f; receive link failures (from the f, processes in the sending super process).

Therefore, we have constructed an implementation of a consensus algorithm for
a 4-process system, which can withstand a single arbitrary link failure. Since this

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 23

is impossible by Theorem 4.6, the proof of Theorem 4.7 is completed. O

Unfortunately, we did not find an easy way to generalize the above simulation-
type argument for an arbitrary number f7, f7¢, f7, f{* > 0 of link failures. In order
to derive a lower bound for n for this general case, we must hence resort to our key
Lemma 4.4 again. What needs to be shown here, however, is that every process p
could withold its information from at least one other process ¢(p) arbitrary long:
Lemma 4.9 below will prove that as much as f; + f;* processes could withold their
information from as much as f§ + f7* processes in case of n = f; + f;*+ f7 + f£%,
provided that

L= @)
o
Hence, by Lemma 4.4, n > f;+ f;*+ f7 + f;® is a lower bound for solving consensus
if (2) holds. If (2) does not hold, consensus can be solved for n = f; + f;*+ f; + f;°.
The lower bound in this case is n > 7; + 77 + 7; + ﬁa, however, where f; < fi,
7;(1 < fre, 7; < f?, ?ja < f§® are such that (2) holds and n is maximal.

Diving into the details of our lower bound proof, we start with a simple “balls
and boxes” technical lemma. It shows that it is possible to drop white, orange
and purple balls into a matrix such that each row and each column contains some
specific numbers of balls of each color. This result will be used subsequently to
assert the existence of a certain mapping of send and receive link failures, by inter-
preting a white, orange, and purple ball as a correct, omission faulty, and arbitrary
faulty transmission between a particular sender process (column index) and receiver
process (row index).

LEMMA 4.8 BALLS AND BOXES. Consider a matriz with s + s* rows and r +r®
columns, where s > s* >0 andr > r* >0 and

r/r® = s/s°. (3)

Then it is possible to drop white, orange, and purple balls into the matriz (one ball
per entry), such that any single row contains exactly r® white, r — r® orange, and
r® purple balls, whereas any single column contains exactly s® white, s — s® orange,
and s* purple balls.

Proof: First, we note that such an assignment could indeed exist, since summing
up the number of balls of the same color by rows and columns, respectively, yields
the same result. For example, we need w, = (s + s*)r?® white balls when summing
over rows, and w, = s*(r + r®) white balls when summing over columns. Since
(3) implies sr® = s%r, it follows that w, = w.. We will now construct such an
assignment explicitly.

Consider the first row in our matrix, and let

TO, Ly« -+ MTp4ra—1
with m; € {white, orange, purple} be its assignment of balls to places according to
the following rule: For any integer z > 0,

orange V purple if x = c¢(i) for some integer i > 0,
7p = & purple if z = c(a(j)) for some integer j > 0,
white otherwise,

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 . U. Schmid and B. Weiss

where
0 = [o
aG) = | -]
) = elali)) = |5 [2]

This assignment distributes colored (orange or purple), as well as purple balls alone,
as regularly as possible over the r+r® available places in the first row. The following
periodicity properties are immediately apparent from the above definitions: For
0<i<r—-1,0<j<r%—-1, and any integer y > 0,

0<c@i) <r+r®*—=1 and c(i+r)=c()+r+r° 4)
0<p@h) <r+r*—1 and p(j+r)=p(F)+r+r° (5)
Tyt+r+re = Ty. (6)
From the properties of ¢(i) and p(j), it follows immediately that 7o, 71, . .., Tpypre—_1
contains exactly r colored balls and r* white ones. Clearly, every cyclic permuta-
tion (rotation) 7y, Tyy1,. .., Tyqrire—1 Of the original mo,my,. .., mpyra—y has this

property as well. Note that index addition in this cyclic permutation should actu-
ally be modulo r +7%; (6) reveals that this is automatically taken care of, however.
Below, we will assign my, Ty41,. .., Ty4rtre—1 to row y of our matrix to prove our
lemma.

By using the equivalences (r + r%)/r = (s + s*)/s and r/r® = s/s*, which
follow immediately from (3), in the definitions of ¢(7) and p(7), we obtain similar
periodicity properties for 0 <i<s—1,0<j < s% —1 and any integer z > 0:

0<c(i) < s+s*—1 and c(i+s)=c()+s+s" (7)
0§p(j)§3+3“_1 and p(j+3)=p(j)+s+sa (8)
Txt+rt4se — Tg- (9)

As before, this implies that mg,m1,...,7sysa—1 contains exactly s colored balls
and s white ones. Even more, the periodicity properties (7) and (8) imply that
every cyclic permutation (rotation) @y, Ty41,-- -, Tgtstsa—1 Of T, T1,- -, Tspsa_1
has this property as well; again, (9) takes care of index addition modulo s + s®.

Hence, we just have to assign my,my41,..., Tytrtra—1 to row y of our matrix,
meaning that the entry in column 0 of row y contains the same ball as the entry
in column y of row 0, for example. Our findings on the number of balls in cyclic
permutations of mg,...,Tr4ra—1 shows that this assignment respects our lemma’s
requirement on rows. Similarly, the inspection of the resulting matrix shows that
column z contains the pattern 7, 7441, .., Tptst+sa—1, Which respects our require-
ment on the number of balls in columns as well. This completes the proof of
Lemma 4.8. O

Now we are ready for proving our major Lemma 4.9, which shows that, in case
of n = f] + f;*+ f; + f7* processes satisfying (2), any two executions that lead
to two sufficiently “similar” configurations, in the sense that at least f; + f7¢
processes have identical state in both, can be extended by one round in a way that

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 25

again yields two “similar” configurations. This implies that as much as f; + f;°
processes can withold their information from as much as f; + f;* processes, which
is amply sufficient to finally apply Lemma 4.4 for establishing our general lower
bound result.

LEMMA 4.9 SIMILARITY. Consider two configurations C = (c1,...,¢,) and C' =
(ch,-..,cl,) generated by executions E and E' in a system of n = fe +fle+ i+
processes according to Deﬁmtzon 3.1 satisfying fz/ 7% = fi/f}*, where the states
¢ =cl,.. S Cfptfee = Cfe +fre of at least f; + f;* processes are the same. Then,
E and E' can be feasibly extended by one round, such that all those f; + f;* pro-
cesses have again the same states d; = dj,.. Sdppypee = dfs 4 fe in the resulting

successor configurations D = (dy,...,d,) and D' = (dy,...,d}).

Proof: Let S = {so,...,sf;+f;a,1} be the set of processes with equal states,
and R = {ro,... ST+ flra,l} be the set of the remaining processes with possibly
different states in C' and C’. We claim that there is a feasible link failure pattern L
extending F by one round, such that every process in S gets exactly f;® arbitrary
link failures from some processes in R, delivering the message that would have
been sent in the absence of link failures in E'. In addition, every process in S
also experiences exactly f; — f;/* omission link failures from some processes in R,
whereas the messages from the remaining f;® processes in R are received correctly.
All message transmissions from processes in S to processes in S, as well as all
transmissions to processes in R are failure-free.

Not surprisingly, the required link failure pattern has already been established
in Lemma 4.8: We just have to map r = f;, r* = f;*, s = f; and s° = f}* and
interpret white, orange, and purple balls as correct, omission faulty, and arbitrary
faulty transmissions from the f; + f;® processes in R (columns) to the f7 + f;¢
processes in S (rows). The results of Lemma 4.8 reveals that the corresponding
link failure pattern respects both the maximum number of send and receive link
failures.

Knowing that L exists, our lemma follows immediately by extending E’' with the
pattern L', which is exactly L except that a process that commited an arbitrary
send link failure in L transmits correctly in L', whereas a process that transmit-
ted correctly in L commits an arbitrary send link failure in L', which erroneously
generates the message that would have been transmitted in E. Obviously, every
process in S has the same view of the execution both in U L and E' U L' and
hence reaches the same configuration as asserted. O

Now it is not difficult to prove our general lower bound result as given by The-
orem 4.7. Although none of the algorithms presented in this paper matches this
bound, we are reasonably convinced that it is tight. In fact, it is not difficult to
verify that an exponential algorithm like OMH that is allowed to execute more than
2 rounds solves consensus for n = f; + f;* + f7 + f;* if (2) is violated.

THEOREM 4.10 LOWER BOUND PROCESSES 3. Any deterministic algorzthm that
Ta
solves consensus under the system model of Deﬁmtwn 3.1 needs n > fe +f¢ +f4 +

fi, where f; < f7, f[<f£ , fl <f€, fo < f2o are such that T/ = To/fe
holds and the sum fy + f," + fo + fo 4s mazimal.

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 . U. Schmid and B. Weiss

Proof: Due to Theorem 4.5, it only remains to provide an impossibility proof
for f7¢, f;® > 0. According to Lemma 4.4, we just have to show that, for every
process p, it could happen that p witholds its information from at least one process
q(p) arbitrary long under the conditions of our theorem: More specifically, we need
a failure pattern for rounds R+1, R+2, ... such that ¢(p) has the same view of the
resulting execution after round R, independent of the information p has gathered
in round R.

This follows easily from inductively applying Lemma 4.9, however: If we assume
that p is just one of the f; + f; processes that may have different state in two R-
round executions E resp. E’ leading to configurations C resp. C’, we are guaranteed
that the remaining f; + fJ* processes that had identical state in E and E' have
identical state in some suitable 1-round extension E U L and E' UL’ of E and E'
again. Hence, no such process ever gets information from p. Since this can go on
arbitrarily often, we can choose g(p) to be any of these f; + f;* processes. O

4.3 Number of Rounds

In this subsection, we will show that being able to handle link failures comes at the
price of additional running time. More specifically, compared to the case without
link failures, solving consensus in case of f7, f;/ > 0 requires one additional round.
Our proofs will again be based upon bivalency arguments and re-use some of the
results developed in the previous subsections.

THEOREM 4.11 LOWER BOUND ROUNDS 1. Any deterministic algorithm that
solves consensus under the system model of Definition 3.1 for f;,f; > 0 needs
at least 2 rounds.

Proof: Assume that there is a 1-round algorithm that solves consensus in pres-
ence of link failures. Obviously, since any process p may suffer from a send link
failure to any receiver process ¢, any p could withold its information from at least
one ¢q(p) here. Note carefully that the 1-round assumption does not allow other pro-
cesses to learn about p’s information in some later round. Therefore, Lemma 4.4
reveals that solving consensus is impossible here. O

The above result can be extended to the case where both link and process failures
may occur. Using our ideas in the simple bivalency proof of the well-known f + 1
lower bound for the number of rounds required for solving consensus in presence
of f process crashes (omission failures in our model) developed in [Aguilera and
Toueg 1998], it is possible to show that f + 2 is a tight lower bound (matched e.g.
by our OMH in Section 5.1) for the required number of rounds.

THEOREM 4.12 LOWER BOUND ROUNDS 2. Any deterministic algorithm that
solves consensus under the system model of Definition 3.1 with n > f + f; + f[,
where f denotes the mazimum number of process crash failures and f7, f; > 0,
needs at least f + 2 rounds.

Proof: In [Aguilera and Toueg 1998], a simple forward induction based upon
a bivalency argument involving message losses due to process crashes is used to
show that any consensus algorithm has executions that lead to at least one bivalent
configuration at the end of round f — 1. The executions considered in this proof

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 27

are such that at most one process may crash in every round; clearly, no link failures
are assumed to occur here. The impossibility of consensus within f follows by
contradiction: It is shown in [Aguilera and Toueg 1998, Lemma 1] that the existence
of such a solution would imply that all configurations reached after f — 1 rounds
must be univalent.

In order to prove Theorem 4.12, we only have to provide an analogon to [Aguilera
and Toueg 1998, Lemma 1]: That the existence of a consensus algorithm that
decides after f + 1 rounds in our failure model would imply that all configurations
reached after f — 1 rounds are univalent. Assuming the contrary, there must be
a bivalent configuration Cf~1 after round f — 1. Note carefully that, unlike in
Section 4.2, the message losses—with respect to bivalence—considered here are
only due to process crashes, not link failures. Since at most one process may have
crashed during each of the first f — 1 rounds, there is still one process p that may
crash in round f or f + 1, which is required for C7~! to be bivalent.

Let v be the algorithm’s decision in the execution E, where p does not crash in
the two rounds following C/~'. Due to the bivalence of C/~1, there must be a
different execution E also starting from C/~!, where p crashes in either round f or
f +1 and the decision is 1 —v. Assume first that p crashes in round f in E. Then,
there must be two executions EY leading to the decision value v, and E leading to
1 — v, which differ only in that the (crashing) p sends its round f message to ¢ in
E? but not in E°. For, starting from E where p sends all its messages, we remove
the messages p succeeds to send one by one until the decision value changes; this
happens at latest when we arrived at the execution E.

By construction, q is the only process that can differentiate between E? and E’
after round f. If we allow ¢ to produce a send link failure to some other correct
process 7 (this process must exist since n > f + 2) in the final round f + 1, then 7
has the same view at the end of B4 and E. Hence, the resulting decisions cannot
be different.

We still have to deal with the second case, where p is failure-free in round f but
crashes in round f+1 in E. In that case, the configuration C/ obtained from C/~!
in the failure-free execution E must be bivalent as well. After all, E and E are
the same up to and including round f. In that case, however, the original proof
of [Aguilera and Toueg 1998, Lemma 1] applies, thereby providing the required
contradiction also in this case. O

4.4 Characterization of Process Failures

There are some consequences of the results of the previous sections related to process
failures, which are also interesting from a theoretical point of view: The effect of
an omission resp. arbitrary faulty process on its peers is principally the same as the
effect of an omission resp. arbitrary link failure committed by a non-faulty process.
Hence, the question arises why f omission faulty processes require at least f + 1
rounds of execution (Theorem 4.12), whereas an arbitrary number of link failures
can be handled in just 2 rounds (Theorem 4.11). We will address this question in
this subsection.

From the failure model in Definition 3.1, it is apparent that an arbitrary broad-
cast failure (A1°) can also be viewed as the consequence of a restricted process

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 . U. Schmid and B. Weiss

failure with inconsistency limited to f;. Since f; < n, the inconsistency caused
by such a broadcast failure is strictly less than that of an arbitrary faulty process,
however, since the latter is not restricted in the number of recipients that may get
a faulty message. If at most f; = f;* processes suffer from restricted process fail-
ures with inconsistency limited to fj = f7® (f; > f;, as mentioned in Remark 2 on
Definition 3.1, need not hold here), both (A1%) and (A1") are satisfied, which shows
that Definition 3.1 indeed allows this alternative interpretation as well. Neverthe-
less, (A1%) and (A1") admit more general failure patterns than restricted process
failures: A receive failure may hit any incoming link in the former, but is restricted
to one of the links from the f; restricted faulty processes in the latter.

Anyway, using the alternative interpretation of arbitrary link failures as restricted
arbitrary process failures, the result of Theorem 4.10 allows us to characterize what
makes a process failure a truly arbitrary (Byzantine) one: Setting f, = fs = f, =
fm =0, f{ = f/* > 0 arbitrary and fixing n > 2f;, the optimal consensus
algorithm can tolerate f;® restricted arbitrary process failures with inconsistency
limited to

2 < L - 1)/2) - f7° (10)
since n > 2f}* + 2f;* + 1 here. For example, n = 10 processes are required
for tolerating one restricted arbitrary failure with inconsistency f/* = 3. Due
o (10), at least [(n — 1)/2] + f7* processes, i.e., a majority!? of the non-faulty
processes, get the correct message even in the broadcast of a restricted arbitrary
faulty process. Provided that n is chosen appropriately, any number f;® of process
failures with inconsistency limited to fj® can be tolerated in two rounds here, i.e., in
a number of rounds that does not depend upon the number of failures f;¢. If, on the
other hand, more than f7?, i.e., more than a minority of the non-faulty processes,
can get a faulty message in the broadcast of a process, then the sender must be
considered arbitrary faulty and thus increases the number of rounds required for
solving consensus.

A similar observation can be made for omission failures. Again setting f, =
fo = fo=fm=f*=f{*=0, f{ >0 arbitrary and fixing n > f;, the opti-
mal consensus algorithm can tolerate f; restricted omission process failures with
inconsistency

fi<n-1-ff (11)
according to Theorem 4.5. It follows from (11) that at least f; + 1 processes, i.e.,
at least one non-faulty process, must get the correct message even in the broadcast
of a restricted omission faulty process. If this is warranted, any number f; of such
restricted process failures can be tolerated within 2 rounds.

It hence follows that a process that disseminates inconsistent information cannot
do much harm—in the sense of requiring additional rounds for solving consensus—if
at most a certain number of recipients can get inconsistent information:

—A process must be considered arbitrary faulty and hence accounted for in f, if it
can supply wrong information to a majority of the non-faulty processes.

10For a sub-optimal algorithm, even more than a majority of the non-faulty processes must get

the correct message here.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 29

—A process must be considered omission faulty and hence accounted for in f, if it
can fail to provide information to any and all non-faulty processes.

For sub-optimal algorithms, the thresholds (numbers of affected receivers) are of
course smaller.

Note finally that our observations do not contradict the lower-bound f+1 for the
number of rounds required for consensus in presence of f faulty processes, recall
Theorem 4.12 or [Attiya and Welch 1998, Sec. 5.1.4], since this result relies heavily
upon the fact that a faulty process can disseminate inconsistent information to as
many processes as desired.

5. HYBRID ORAL MESSAGES ALGORITHMS

In this section, we will show that the Hybrid Oral Messages algorithm OMH derived
from [Lamport et al. 1982] in [Lincoln and Rushby 1993], as well as its uniform
variant OMHU, solves Byzantine agreement under the system model of Section 3.
In this and the following sections, we will assume that f,, fs, f, and f,, specify
the maximum number of faulty processes of the appropriate type during the entire
execution. Moreover, we assume that link failures do not hit the message sent by
a process to itself. Still, strong manifest faulty processes deliver @) also to itself, as
may omission faulty processes.

5.1 Algorithm OMH

OMH is a “Byzantine generals” algorithm, where the value v of a dedicated trans-
mitter is to be disseminated to the remaining n — 1 receivers; the transmitter
already knows its value. Eventually, every non-faulty process p—including the
transmitter—must deliver a value v, ascribed to the transmitter that satisfies the
following properties:

(B1) (Agreement): If processes p and ¢ are both non-faulty, then both deliver the
same vp = vg.

(B2) (Validity): If process p is non-faulty, the value v, delivered by p is
—, if the transmitter is non-faulty,
—), if the transmitter is manifest faulty,
—u or @, if the transmitter is omission faulty,
—the value actually sent, if the transmitter is symmetric faulty,
—unspecified, if the transmitter is arbitrary faulty.

A fully-fledged consensus algorithm is obtained by using a separate instance of
Byzantine agreement for disseminating any process’s local value and using a suitable
choice function (majority) for the consensus result.

The algorithm OMH as specified in Definition 5.1 below uses two primitives:

—The wrapper function R(v) encodes a statement “I am reporting v” as a unique
value. Reporting is undone by means of the inverse function R~!(v), which must
guarantee R~1(R(v)) = v. Note that only 0, R(0), R(R(0)), R(R(R(D))), ...
must actually be distinguishable here; for each legitimate value v, we can allow
R(v) =R (v) = w.

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 . U. Schmid and B. Weiss

—The hybrid-majority of a set V of values provides the majority of all non-§) values
in V. If no majority exists, the default value R() is returned. Note that this
particular default value is required for securing validity in presence of an omission
faulty transmitter, see the proof of Lemma 5.3.

Consult [Lincoln and Rushby 1993] for a detailed discussion of the above primitives
and the operation of OMH in general.

DEFINITION 5.1 ALGORITHM OMH [LINCOLN AND RUSHBY 1993]. The Hybrid
Oral Message algorithm OMH is defined recursively as follows:

OMH(0):

(1) The transmitter t sends its value v to every receiver and delivers vy = v.

(2) Every receiver p delivers the value vy, received from the transmitter, or the value
0 if a missing or manifestly erroneous value was received.

OMH(m), m > 0:

(1) The transmitter t sends its value v to every receiwer and delivers v, = v.

(2) For every p, let w, be the value receiver p receives from the transmitter, or ()
if no value or a manifestly bad value was received.
Every receiver p acts as the transmitter in algorithm OMH(m — 1) to commu-
nicate the value R(w,) to all receivers.

(3) For every p and q # p, let w} be the value receiver p delivers as the result of
OMH(m — 1) initiated by receiver q in step 2 above. Every receiver p calculates
the hybrid-magority value of all values wi and its own value wh = R(wy), and
applies R~ to that value. This result is delivered as v,.

Remarks:

(1) There are n — 1 receivers in the first instance OMH(m) of the algorithm; the
transmitter does not participate in any way in further recursive instances. Our
n-process, m + l-round Byzantine agreement algorithm OMH(m) can hence
be viewed as an initial broadcast of the transmitter’s value to all receivers
combined with an n — 1-process, m-round consensus algorithm.!!

(2) In our failure model, the transmitter’s delivery v; = v can be considered as the
result of sending its value to itself. Hence, there is no need to treat the case
q # p and ¢ = p differently in step 3 in OMH(1). We will use this fact in order
to immediately apply Lemma, 5.2 given below in OMH’s analysis.

(3) During the recursive execution of OMH, multiple (in fact, quite many, see Ta-
ble I in Section 8) instances of OMH are concurrently active!? in each round.
In OMH’s description, we did not explicitly address the question of how re-
ceived messages are assigned to the unique recursive instance they belong to.

1171t is interesting to note that this requires only a “weak” consensus algorithm in case of I <fy
(and no process failures). In this case, a majority of the receivers of the initial broadcast already
get the correct value, which makes the job of the consensus algorithm much easier.

12Note that all the peer processes belonging to a single concurrent instance are considered a
separate system of n processes.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 31

The unique id of the transmitter process is appended to each message for this
purpose, which produces a string of ids p1pa . . . pr that uniquely determines the
particular recursive instance (and, by its complement, the set of participating
receivers). Note carefully that this string must be reconstructed upon reception
of a P-value and included in the R())-message prior to submitting it to further
recursive instances.

(4) By expanding OMH’s recursive description, it is easy to see that the execution
of OMH(m) consists of m+1 rounds where messages are wrapped and forwarded
only, followed by the backwards-recursive computation (hybrid-majority + un-
wrapping) in step 3 of all instances, cp. the EIG-tree representation in [Attiya
and Welch 1998, p. 105]. Consequently, not only non-faulty but also obedient
processes can always compute the correct value to be forwarded in each partic-
ular instance—and hence in every round—independently of their past behavior,
cp. Remark 8 on Definition 3.1.

By adopting and extending the analysis of [Lincoln and Rushby 1993] to our
perception-based failure model, we will now show that OMH satisfies (B1) and
(B2).

We start our derivations with a widely applicable technical Lemma 5.2, which
shows that a common decision value is reached among all obedient processes if
sufficiently many processes have sent the same value. More specifically, let us
assume that all processes p € § of some set of processes S convey their local
values w,, to an arbitrary obedient receiver g (possibly ¢ € S) in some round of the
execution of a certain (multi-round) algorithm. Conveying means that all p € S
send R(wp) to g, which computes R~' of the hybrid-majority among the set of
received values as its result v,. Conveying occurs in steps 2 and 3 of OMH(1), for
example, recall Remark 2 on Definition 5.1. Note carefully that a process p,, on a
manifest faulty sender node may very well send its R(wp,,) in the conveying round,
since the manifest fault may occur in some other round or process.

LEMMA 5.2. For any f, fa, fo, fs, fm, f, f0, fi® = 0, let some set of processes
S with

(a') |S| >2f + f; + f;'a + 2(fa + fs) +2fo + fm Tesp.
(0) S| >2f + fi + fi* + 2(fa + f5) + fo + fm
be given. All processes in S are assumed to convey their values to an obedient

receiver q in some round of the execution of a distributed algorithm. If all but at
most f of the (a) non-faulty or manifest faulty resp. (b) obedient processes p € S

(1) own the same value w, = v, then ¢ computes vy = v,
(2) own values taken from a set W with |W| > 2, then v, € WU {0}.

Proof: Let n' = |S|, S C S be the set of the at most f exempted processes,
and f! resp. f! be the actual number!® of omission resp. manifest failures in S

that affect our receiver ¢ in the conveying round by a (-value (or, in case of an
additional arbitrary link failure, even a faulty value).

131n this and subsequent proofs, we often need the actual number of failures of a given type. It
will be denoted by priming the bound on the maximum number of failures: 0 < f} < f, etc.

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 . U. Schmid and B. Weiss

In addition, let f[n' < f{ be the number of actual receive link failures at g that
hit non-faulty senders € S\Sy, 72’ resp. f7*' be the actual number of arbitrary
receive link failures at ¢ hitting manifest resp. omission faulty senders, and f;°"
be the number of actual receive link omission failures at ¢ hitting all but actually

manifest or omission faulty senders. Clearly, we have fro+ fr°" > fr '+ fro' + fra',
since we can split f}' into its arbitrary and omissive components fen = T“' + fro!

and fé“a > fTa’ fra’ fra’ and fro” > fro"

We start with proving item (1) of the statements-part of our lemma. In case (a),
where all non-faulty and manifest faulty processes € S\Sy own the same value
R(v), our obedient receiver ¢ will obtain at least

np=n'—f—fo=fo=fo = fin
identical values R(v). It will also get at most
TLZ — nl _ fé _ fyln roll fral fral
non-{) values. Since n' > 2f + f7 + f/* + 2(fa + fs) + 2fo + fm here, we have
2ng —ng = n' =2f =2(fa + fs) = 2fo — frn — 2fin +f'+f”’" 1o = fim'
(fm = fra) + fo + (FF = fiu) + (FE* + £ = [= f85" = fim)
0. (12)

Therefore, R(v) will indeed win the hybrid majority at process q.
In case (b), where all obedient processes € S\Sy own the same value R(v), ¢ will
obtain at least

v Vv

fg=n'~f—fo—fs—fo— fm—
identical values R(v) and will get at most
ﬁ;l — ’I'LI _ fé _ f?ln TO” + fTal + fral
non-{) values. Since n' > 2f + f7 + fi* + 2(fo + fs) + fo + fm here, we get
oMy =Ty = 0 = 2f = 2fa=2fs— fo = fr, = 200+ 7" = 11 - z;z'
> (fo = fo) + (fm = fu) + (FE = fi') + (F04 + £ = fi' = [= fim))
> 0, (13)

by the same reasoning as above, so R(v) will again win the hybrid-majority at g.

As far as part (2) of the statements of Lemma 5.2 is concerned, if the appropriate
processes € S\Sy did not all send the same value but rather values from a set W,
then we cannot always guarantee that receiver g obtains a majority for any of these
values (although this could happen). However, since (12) resp. (13) holds if we
temporally consider each value from W a single legitimate value X, it turns out
that there cannot be a majority for any value ¢ W. Therefore, only the default
value R(0) can be returned by the hybrid-majority primitive here, which leads to
the alternative return value v, = (). O

Now we are ready for proving that OMH satisfies the validity property (B2).
Note that Lemma 5.3 is void in case of an arbitrary faulty transmitter, since (B2)
does not say anything about the value a receiver ascribes to the transmitter in this
case.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 33

LEMMA 5.3 VALIDITY OMH. For any m > min{l, f;} and any fa, fs, fo, fm,
fi, fi, fi® > 0, the algorithm OMH(m) satisfies the validity property (B2) if there
are strictly more than 2f; + f; + f;* + 2(fa + fs) + fo + fm + m participating
processes.

t14

Proof: Proving (B2) amounts to showing that any obedient'* process p, includ-

ing the transmitter, delivers

(1) vp = v = v, if the transmitter is non-faulty,
(2) v, = v =0, if the transmitter is manifest faulty,
(3) v, =wv or v, =0, if the transmitter is omission faulty,

(4) v, = v, if the transmitter is symmetric faulty.

The actual proof is by induction on m.

If there are no link failures, i.e., if f; = 0, induction will start at m = 0: In
OMH(0), the transmitter sends its value v (v = v if the transmitter is non-faulty)
to all receivers and itself; the received values are simply delivered as v,. Properties
(1)—(4) follow immediately from the definition of process failures in Definition 3.1.

If f; > 0, however, induction must start at m = 1 as the base case: According
to the definition of OMH(1), every receiver g of step 1 of OMH(1) uses OMH(0)
to disseminate its w, to all receivers p (including link-failure-free transmission to
itself, according to our additional assumption regarding self-transmission), which
in turn compute the majority of the non-§ values delivered in OMH(0) to obtain
the result v, of OMH(1). Let us first consider the cases where the transmitter
is consistent, i.e., (1), (2) and (4) above: Abbreviating the number of initially
participating receivers by

n>2f + fl+ 0+ 2fa+2fs+ fot fn+1,

all but at most f; of the obedient receivers p of step 1 of OMH(1) get the same
wp, = v (we can simply assume v = () in case of a manifest faulty transmitter)
due to the transmitter’s at most f; link failures according to (A1°®). Therefore,
we can apply item (1), case (b) of Lemma 5.2 with f = f; to conclude that every
obedient receiver will deliver the same value w, = v as the result of OMH(1). In the
remaining case (3), where the transmitter is omission faulty, all obedient receivers
get either w, = v or w, = 0. In this case, item (2), case (b) of Lemma 5.2 with
f = f; and W = {v, 0} shows that every obedient receiver ¢ must deliver either v
or () as required.

Assuming now that the lemma is already true for m — 1 > min{1, f;}, we will
show that it is also true for m: For a consistent transmitter, we have at least
n' — f§ — fo — fs obedient receivers g of step 1 of OMH(im) that apply OMH(m —1)
to disseminate their R(w,;) = R(v). Since both m and the number of partici-
pants decreased by one, we can apply the induction hypothesis to OMH(m — 1) to
conclude that every obedient receiver p actually delivers R(v) in this step for every

41n order to show (B2), it would be sufficient to replace obedient by non-faulty. However, our
proof shows an even stronger result: OMH actually satisfies uniform validity (UB2) as introduced
in Section 5.2.

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 . U. Schmid and B. Weiss

non-faulty transmitter q. Consequently, any obedient receiver p must have at least
y=n'—fi —fo—fs—fo— I

values equal to R(v) among the at most 7, = n' — f, — f, — f;, non-{ values it may

have got at all. Herein, f! < fm, fi < fo, and f. < f, gives the number of (-values

delivered to receiver p by OMH(m — 1) for manifest, omission, and arbitrary faulty
transmitters g, respectively. Since m > 0,

2, —my = ' =2f] =2fa+ fo—2fs = fo— fu
> fi+ 1t fot fo= 1)+ (fm — fr) +m
> 0, (14)

so R(v) wins the hybrid-majority at any obedient process p and the final delivery
value v, = v = R~ 1(R(v)) follows.

For the remaining case (3), exactly the same reasoning as in the proof of item (2)
of Lemma 5.2 reveals that only the default value R()) can be returned by hybrid-
majority if no majority of either R(v) or R(()) exists. This eventually completes
the proof of Lemma 5.3. O

With the help of Lemma 5.3, it is not too difficult to show the major Theorem 5.4.

THEOREM 5.4 AGREEMENT & VALIDITY OMH. For anym > f,+ f,+min{1, f;}
and fo, fo, fs; fm, f5, F1, f{® > 0, the algorithm OMH(m) satisfies agreement (B1)
and validity (B2) if there are strictly more than 2f§+ f;+ f;*+2(fo+ fs)+ fot fm+m
participating processes.

Proof: Since Lemma 5.3 is applicable under the conditions of Theorem 5.4,
validity (B2) is evident. Hence, we need to show agreement (B1) only.

The proof is by induction on m and is an extension of the one of [Lincoln and
Rushby 1993]. In the base case m = min{l, f;}, we must have f, = f, = 0 since
m > f, + fo + min{l, f/} by assumption. Hence, the transmitter must not be
arbitrary or omission faulty here, such that Lemma 5.3 also implies (B1).

We can therefore assume that (Bl) is satisfied by OMH(m — 1) with m — 1 >
min{1, f{}, and have to prove this for OMH(m). Again, it suffices to consider
the case where the transmitter is arbitrary or omission faulty, since Lemma 5.3 also
implies (B1) in the other cases. Since we have at most f,+ f, <m—min{l, f/} > 1
arbitrary or omission faulty processes and the transmitter is one of those, either (1)
at most f, — 1 arbitrary faulty processes or (2) at most f, — 1 omission faulty ones
remain among the strictly more than 2f7 + f; + f7*+2(fo+ fs) + fo+ fm+m—1
processes. Since obviously

2ff +fi+fi+2(fat f)+ fot fm+m—1 >
2+ fi+ i+ 2(fa— 1+ fo) + fot fm +[m—1]
as well as
2fi + fi + it +2(fa+ fo) + fot fmn+m—1 >
2ff + fi + f+2(fa+ f5) + [fo = U+ fru +[m —1],

we can apply the induction hypothesis and conclude that any OMH (m — 1) satisfies
(B1). Hence, for any ¢, any two non-faulty processes deliver the same value for wh

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 35

in step (3). Note carefully that this actually follows from (B2) if one of the two
receivers is process ¢, and from (B1) otherwise. Consequently, any two non-faulty
receivers get the same vector of values and hence the same hybrid-majority, which
eventually proves (B1) for OMH(m). O

Remarks:

1)

Note that the proof for agreement uses only the validity property and the fact
that f, and f, are added to the number of rounds required by validity. Hence,
every consensus algorithm of this type that achieves validity for a given m will
also achieve agreement for m' =m + f, + f,-

Lemma 5.3 and Theorem 5.4 and their proofs are also valid if the at most f,
manifest faults were not strong but rather weak manifest faults, cf. Remark 6
on Definition 3.1. Since a weak manifest fault allows the manifest faulty sender
process to receive the correct value instead of (, it is usually harder to tolerate
than a strong manifest one. This is not the case here, however, since proper-
ties (B1) and (B2) need only hold for non-faulty but not for manifest faulty
processes — self-delivery at non-faulty processes is always correct since it may
not even be hit by a link failure, by assumption.

The proof of Lemma 5.3 revealed that OMH satisfies uniform validity (UB2)
as introduced in Section 5.2, recall Footnote 14: Uniform validity holds not
only at non-faulty but also at (alive) manifest and omission faulty processes.
By using this fact in the proof of Theorem 5.4, it is easy to show that OMH
provides agreement not only at non-faulty but also at strong manifest faulty
processes: The induction step (last paragraph in the proof of Theorem 5.4) is
valid when one of the two receivers is the manifest faulty transmitter process g
here as well.

It is apparent from Theorem 5.4 that 2 f, processes are required by OMH to tol-
erate f, omission faulty processes, which is definitely sub-optimal: Algorithms
like the one of [Perry and Toueg 1986] require only f, < n — 1. This is not due
to an overly conservative analysis, but rather the price paid for OMH’s ability
to mask additional symmetric and arbitrary failures.

From the proof of Lemma 5.3, it is apparent that (A1")—and one additional
round—is only required to eventually rule out the inconsistencies caused by
(A1%). This is solely done in the base case m = 1 of the induction, which
implies that limiting the number of link failures for a single receiver by f;
according to (A1") is only required in the last round, where in turn (A1%) is
not explicitly used. This supports our approach of considering both types of
failures independently from each other, recall Remark 2 on Definition 3.1.

For OMH, receive link failures (A1") resulting in an omission are easier to
tolerate than those that produce a value failure, cf. Theorem 5.4, since f; +

7% = fi°+2f7* with f;° bounding the number of “pure” omission failures.
This is not the case for broadcast link failures (A1?), since an omission failure
appears like a value failure in all but the last round (where send link failures

do not matter, recall Remark 5 above) due to wrapping all @-values with R().

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 . U. Schmid and B. Weiss

5.2 Uniform Byzantine Agreement

Properties (B1) and (B2) in Section 5.1 require agreement and validity to hold
only on non-faulty processes. Since there are applications where the behavior of
benign faulty processes also matters, cp. [Schmid et al. 2002, Sec. 4], one could
ask whether it is possible to extend those properties to obedient processes. In this
subsection, we will hence consider the following uniform properties [Hadzilacos and
Toueg 1993]:

(UB1) (Uniform Agreement): If processes p and g are both obedient, then both
deliver the same v, = vy.

(UB2) (Uniform Validity): If process p is obedient, the value v, delivered by p is
—u, if the transmitter is non-faulty,
—@, if the transmitter is manifest faulty,
—uv or (), if the transmitter is omission faulty,
—the value actually sent, if the transmitter is symmetric faulty,
—unspecified, if the transmitter is arbitrary faulty.

Note that this definition does not extend (B1) and (B2) to symmetric and arbitrary
faulty processes, since this would contradict the impossibility of uniform consensus
in presence of Byzantine failures postulated in [Charron-Bost and Schiper 2000].
Nevertheless, if symmetric and arbitrary faulty processes would faithfully execute
the algorithm, i.e., would produce their faults only when emitting messages, then
our algorithm below would achieve uniform consensus for them as well.

Originally, we (erroneously) conjectured that the proofs of Lemma 5.3 and Theo-
rem 5.4 carry over literally to uniform validity (UB2) and uniform agreement (UB1).
Formal verification in [Rushby 2001] showed that this is indeed true!® for (UB2),
but fails in case of (UB1): OMH does not satisfy (UB1) due to the “asymmetry” of
transmitter and receivers in conjunction with the ambiguity of (UB2) for omission
faulty transmitters. A simple counterexample is an omission faulty transmitter that
sends v to itself but) to all other processes. The receivers will all agree on) but
the transmitter will deliver v. This problem causes the induction step in the proof
of Theorem 5.4 (last paragraph) to fail in the case where one of the two receivers is
the transmitter process g, since (B2) does not guarantee agreement if ¢ is omission
faulty. To guarantee (UB1), OMH must hence be modified.

In [Rushby 2001], a symmetric version of OMH was proposed, where the transmit-
ter participates in recursive instances as well. This algorithm guarantees uniform
validity and agreement for weak manifest faulty processes, but not for omission
faulty processes.

A straightforward algorithm, which guarantees (UB1) and (UB2) without restric-
tions, could be built atop of OMH by letting all receivers convey their delivered
value back to the transmitter of each recursive instance; the transmitter would then
deliver the unwrapped result of the hybrid majority among the received values and
its own value. However, this variant would almost double the number of rounds
and messages required.

15We mentioned already in Remark 3 on Theorem 5.4 that the proof of Lemma, 5.3 actually shows
(UB2).

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 37

This overhead is avoided by the following simple uniform algorithm OMHU, which
employs just a single additional round with a full message exchange: In the final
round, all processes (including the transmitter) convey the wrapped value delivered
locally by the original OMH to each other. The final decision value is then computed
by unwrapping the result of a hybrid majority vote applied to the received values.
Lemma 5.5 and Theorem 5.6 below show that OMHU satisfy uniform agreement
(UB1) and uniform validity (UB2).

LEMMA 5.5 VALIDITY OMHU. For any m > min{l, f;'} and any fo, fo, fs,
fms> £ f0 J7® > 0, the uniform algorithm OMHU(m) satisfies uniform validity
(UB2) if there are strictly more than 2f; + f; + f{* +2(fa + fs) + fo + fm +m
participating processes.

Proof: From the proof of Lemma 5.3, we know that, in case of a consistent
transmitter, all obedient processes in OMH deliver the same value v that is conveyed
to all processes in the additional round of OMHU. Since at least 2f7 + f; + f/* +
2fa + 2fs + fo + fm + min{1, f§} + 1 processes participate here, we can apply
item (1), case (a) of Lemma 5.2 with f = 0 to conclude that every obedient process
will receive enough values to eventually deliver v.

In case of an omission faulty transmitter, the obedient processes in OMH need
not agree upon the same value at the end of OMH but may deliver either v or §.
However, item (2), case (a) of Lemma 5.2 with f =0 and W = {v, 0} applies here.
Since WU {@} = W, any obedient process can deliver v or () only. O

THEOREM 5.6 VALIDITY & AGREEMENT OMHU. For anym > fo+ f,4+min{l, f7}
and any fa, fo, fs, fm, 7, £, F7® > 0, the uniform algorithm OMHU(m) satisfies
uniform agreement (UB1) and uniform validity (UB2) if there are strictly more
than 2f; + f7 + f7® + 2(fo + fs) + fo + fm + m participating processes.

Proof: Due to Lemma, 5.5, it only remains to prove (UB1). First of all, as noted
in Remark 3 on Theorem 5.4, the original OMH satisfies agreement (B1) not only on
non-faulty, but also on (strong) manifest faulty processes. Hence, both non-faulty
and (alive) manifest faulty processes in OMH deliver the same value v. Since there
are at least 2f] + f; + f;* + 3fa +2fs + 2f, + fm + min{1, f/} + 1 participating
processes here, item (1), case (a) of Lemma 5.2 for f = 0 amply ensures that all
obedient processes will deliver v as the result of the full message exchange in the
final round. O

Comparison with OMH shows that OMHU achieves uniform agreement and va-
lidity with the same number of processes but one additional round, where n(n — 1)
messages are exchanged.

6. AUTHENTICATION

Written messages [Lamport et al. 1982] extend oral messages by assuming that (1)
it is impossible to alter a message without being detected at the receiver, and (2)
that the originator of a message’s content can always be determined, even if the
message comes from an intermediate process. It is generally agreed that electronic
signatures can be used to achieve these goals (although there are some pitfalls [Gong
et al. 1995]). With electronic signatures, each process p uses its private signature

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 . U. Schmid and B. Weiss

op to sign some piece of information v, thereby generating the corresponding signed
information'® o,(v). Without knowing o,, it is computationally infeasible (ideally
impossible) to compute o, (v) from v. Recovering the content v of some valid signed
information o, (v) is easily done, however, by applying the (usually public) inverse
signature o'

We will place the following specific assumptions on the signature scheme:

(SA1) Only process p can be the originator of o, (v).

(SA2) Only process p can change the content v of o, (v).

(SA3) The content of any signed information can be extracted at any process in the
system. More specifically, we assume that any process can compute o, LSI1) =
v iff ST = o,(v), whereas o, (SI) = ERROR for some distinguished value
ERROR otherwise.

Note carefully that (SA1) implicitly requires countermeasures against replay at-
tacks, since an eavesdropping process could otherwise inject pre-recorded messages
from an earlier execution run. This could be avoided by incorporating unique
execution sequence numbers in messages, for example. (SA2) implies that forward-
ing processes cannot manipulate signed messages without being detected at the
receiver. (SA3) secures that authentication does not introduce new errors (inter-
preting a valid signature for an invalid one) or mask present ones (generating an
apparently valid v out of an incorrect SI), cf. [Gong et al. 1995].

Clearly, the above requirements hold only for unbroken signatures. If process p’s
signature has been disclosed (deliberately or not), (SA1) and (SA2) do not hold
anymore. More specifically, some other process ¢ # p could then manufacture
signed messages o,(v) as if they originated from process p.

In the subsequent sections, we will investigate authenticated Byzantine agreement
algorithms that disseminate the transmitter ¢’s value v by forwarding signed mes-
sages via paths of distinct nodes, one hop per round, as does the non-authenticated
algorithm OMH of Section 5.1: In round k&, a value v that is sent from process p; =t
along the chain of distinct processes ps ... py usually arrives at some receiver ¢ as
a multiply signed message M = op, ---0p, (v). Due to an omission/value failure,
however, it might happen that process per1 € {p2,---, Pk, Pr+1} With pry1 = ¢
does not receive a valid round ¢ message op, - - - 0p, (v) but rather §§ (we assume
that manifest faults of messages, like invalid signatures, reception of multiple mes-
sages in the same round etc. are mapped to () as usual). The algorithm ZAr (see
Section 7.3) simply stops forwarding in this case, so that no message M will arrive
at g in this case. Other algorithms like OMHA (Section 7.1) and ZA (Section 7.2)
cause pyy1 to generate a message oy, (Rp) containing a specific value Ry meaning
“I am reporting ()" in this case, which is forwarded along the remaining path as
usual. Consequently, the final receiver ¢ could get a signed message oy, - - - 0y, , (Rp)
instead of M = oy, - -- 0}, (v) here as well.

All our algorithms explicitly need the string of forwarding process id’s pg,...,p1
of any round k message, both for assigning an arriving message to the appropriate

16We will call the process that generated some signed information its originator. A signed message
denotes a message that contains some signed information. Note carefully that the sender of a
signed message may be different from the originator of the signed information it contains.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 39

concurrent instance of the algorithm (recall Remark 3 on Definition 5.1) and for
applying the appropriate inverse signature when successively recovering the trans-
mitter’s value v. Consequently, in a real implementation, py, ..., p1 must somehow
be incorporated in signed messages. Moreover, any process pg+1 generating a mes-
sage containing Ry must encode py,...,p; in Ry = Rg““’p *. We usually prefer the
shorthand notation Ry, however, to keep the notation simple.

The following Definition 6.1 summarizes the properties of valid forwarded mes-
sages. A message that is not valid is called manifest faulty.

DEFINITION 6.1 VALID MESSAGES. For k > 1, a message M arriving at some
process p via a forwarding path of length k is valid iff it satisfies the following
properties:

(0) M = op, -+-0p,,,(v) for some £ with k > £ > 0, where all p;, k > i > {+1,
are different and all signatures in M are valid.

(1) If M arrived at p via the link from process q, then p, = q.

(2) If £ =0, i.e., M = op, ---0p, (v), then p1 =t and v is a legitimate transmitter
value.

(8) If £ > 0, then the transmitter has not signed the message and v = Rp* "
(only for some forwarding schemes).

Although faulty processes and links can of course generate non-valid messages,
their capabilities in doing so are considerably limited due to authentication. To
prove this fact, we first summarize the extensions of our system/failure model due
to to authentication:

—Any obedient process adheres to the particular algorithm at all times. Note that
manifest faulty messages will usually be discarded at some point'” and @) be used
instead (recall hybrid majority in Section 5.1, for example).

—A symmetric faulty process may in principle perform arbitrarily internally and
may sign and broadcast even a faulty message to all receivers consistently. How-
ever, it may neither disclose its signature nor sign and forward (or disseminate
otherwise) multiple messages that arrive in the same round.

—An arbitrary faulty process may perform arbitrarily. In particular, it may for-
ward multiple messages in the same round, collude with other arbitrary faulty
processes, disclose its signature, etc.

—Links are incapable of generating valid signatures. However, an arbitrary faulty
link could inject signed messages generated elsewhere in the system.

As an immediate corollary, Definition 6.1 in conjunction with (SA1)—(SA3) im-
plies that neither faulty forwarding processes nor faulty links can introduce any
v' (except v' € {0, Ry}) different from the value v sent by a not arbitrary faulty
transmitter p; with unbroken signature: Any valid signed message conveying such
a v' must carry p;’s signature, which cannot happen if v’ has not been sent by p;.

Authentication thus allows us to set f;* = f;* = 0 in our system model, that is,
arbitrary link failures need only be counted as omissive ones anymore. In addition,

7Note that this does not necessarily occur during forwarding, since checking all signatures is a
time-consuming task.

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 . U. Schmid and B. Weiss

the value X, actually sent by a symmetric faulty process p should be a valid message
(typically with incorrect content v), otherwise p would actually exhibit a manifest
fault only. The same is true for arbitrary faulty processes, which would otherwise
appear as omission faulty only.

In the remainder of this section, we will establish some general results that greatly
simplify the analysis of the authenticated algorithms in the subsequent section. The
first Lemma 6.2 shows that any information forwarded via paths with a common
prefix that includes at least one not arbitrary faulty process with an unbroken
signature is unique.

LEMMA 6.2 UNIQUENESS. Consider any Byzantine agreement algorithm that for-
wards the transmitter t’s value along paths of different processes, one hop per round.
Let M = oy, ...0p, (V) resp. M' = Oy, - Op, (v") be two valid messages containing
v resp. v', which arrive at two obedient processes p resp. p' (possibly p = p') along
forwarding paths of length k > c resp. k' > ¢ with a common prefiz of length ¢ > 1,
i.e., p1 = py =t,p2 = Dhy...,pc = Ph. If at least one of those ¢ processes is not
arbitrary faulty and has an unbroken signature, then v = v'.

Proof: Assuming the contrary, some obedient or symmetric faulty process p,,
1 < z < ¢, must have forwarded two different signed messages, namely, M, =
Op, ---0p, (v) and My = oy ..oy (v'), to its successor(s) on each path in the same
round. Since both obedient and symmetric faulty processes may broadcast at most
a single message per round according to Definition 3.1, p, cannot have generated
and sent both M, and M/ but at most one of those, say, M,. Still, M could have
been generated out of thin air by an arbitrary link failure hitting the link from
Pe = Pl to plyy (with pj ., =p'). This is impossible according to (SA1), however,
since M, can only be generated by process p, as it involves op, . O

Of course, Lemma 6.2 does not rule out the possibility of receiving inconsistent
information: Apart from different values disseminated by a Byzantine transmitter,
processes p and/or p' might get (’s due to omissions or valid messages containing
Ry’s (in case of algorithms like OMHA and ZA). Our lemma does not apply here,
since M and M' must have a common prefix, which is impossible if either one
(but not both) contains Ry. What is ensured by Lemma 6.2, however, is that the
information routed via any two paths with a common prefix incorporating a single
not arbitrary faulty process with an unbroken signature is the same. Consequently,
if the common prefix of the forwarding path is long enough, i.e., k > f, + 1, all
receivers that obtain a valid non-Ry message agree on the transmitter’s value. We
can prove an even stronger result, however:

LEMMA 6.3 IDENTITY. Consider a Byzantine agreement algorithm with n >
SE 4L+ fat fo + fo+ fu+ 1 processes, f2, f7, fas for for fm > O, which for-
wards the transmitter’s value along all possible paths of different processes. If an
obedient process p receives some v in a valid message M = oy, . ..0p, (v), where at
least one of the processes in the set {p1, ... 7Pk—min{1,f;}} is consistent with unbro-
ken signature, then every other non-faulty process q also gets a valid message with
at most k signatures that contains v.

Proof: Assume that p,, 1 < 2 < k — min{l, fJ} being the smallest index, is

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 41

consistent and thus sends M, = oy, ...0p, (v). Note that p, cannot be manifest
faulty here, since M would not carry o, in this case. Since p, must have received v
from itself in this case, we can restrict our attention to obedient processes ¢ which
are not on the path pi,...,p,. If there are no link failures, i.e., f; = f; = 0,
all those obedient processes get M' = M, and we are done. If fj > 0, at least
n''>n—1-f,— fs— fo— fm — f§ > f{ + 1 non-faulty processes get M, and
forward it. Every obedient process g thus receives at least one of those forwarded
messages, despite of the at most f; receive link failures it might experience. O

Note carefully that Lemma 6.3 cannot be extended to obedient instead of non-
faulty processes ¢, i.e., our lemma does not ensure uniform agreement on non-{)
values. More specifically, it could be extended to (strong) manifest processes but
not to omission faulty ones: If there is some omission faulty process p, in M’s path
prefix p1,...,ps—1, M, and hence v is not forwarded to p, by p,. Unlike in case of
a consistent p,, it cannot be guaranteed that the value contained in M, has already
been self-delivered to p, either, since () might have been received instead. Hence,
Po could fail to get some value v present at other obedient processes.

It only remains to address the question of how to model broken signatures. More
specifically, since arbitrary faulty processes might already know all their signatures,
we now assume that the signatures of at most f; not arbitrary faulty processes are
also “common knowledge”.

Knowing a signature allows some malicious process to generate a signed message
on behalf of any of the f, processes, say, process p, even during forwarding. An
attacker, sitting either on p or on an arbitrary faulty forwarding process ¢, could
hence make p appear arbitrary faulty. However, Lemma 6.2 and 6.3 revealed that it
cannot do more. Consequently, the problem of incorporating f, additional broken
signatures can be solved by simply increasing f, to f, + f5.

7. HYBRID WRITTEN MESSAGES ALGORITHMS

Since the power of faulty processes is considerably restricted when using written
messages, authenticated Byzantine agreement algorithms should have much better
fault-tolerance capabilities than non-authenticated algorithms. For example, it fol-
lows immediately from Lemma 6.3 that all non-faulty processes get the same set
of values & {0, Ry} if the transmitter’s value is forwarded via all paths of length
k> fo + fo +min{1, f/}. This reveals, for example, that the simple authenticated
algorithm SMH of [Lamport et al. 1982], which just forwards the transmitter’s value
for sufficiently many rounds and then takes the hybrid-majority of all received val-
ues, achieves agreement and validity with as few asn > f7+f;+ fo+ fo+ fo+ fm+1
processes.

In the following subsections, we will provide a detailed analysis of a few alterna-
tive Hybrid Written Messages Algorithms.

7.1 Algorithm OMHA

In this section, we will analyze a variant of the algorithm OMHA developed in [Gong
et al. 1995] under the system model of Sections 3 and 6. The original algorithm of
[Gong et al. 1995] is the same as OMH except that every message sent in OMHA (m)
with m > 0 must be signed. In our variant, messages must be signed in OMHA(0)

Journal of the ACM, Vol. V, No. N, Month 20YY.

42 . U. Schmid and B. Weiss

as well. Moreover, we utilize the signature as the wrapper function R and report
missing and manifest faulty messages by a distinguished value Ry # 0. Note that
Ry is also the default value returned by hybrid-majority (see Section 5.1) if no
majority exists.

DEFINITION 7.1 ALGORITHM OMHA [GONG ET AL. 1995]. The Authenticated
Hybrid Oral Message algorithm OMHA is defined recursively as follows:

OMHA (0):

(1) The transmitter t sends its signed value wy = o(v) to every receiver and de-
livers vy = oy Ywy) = v, or vy = 0 if no or a manifest faulty w; results from
self-reception, recall Remark 2 on OMH’s Definition 5.1.

(2) Every receiver p delivers vy, = oy 1(wp) if wp was recetved from the transmitter,
or v, =0 if no or a manifest faulty message was received.

OMHA (m), m > 0:

(1) The transmitter t sends its signed value wy = o4(v) to every receiver and de-
livers vy = at_l(wt) =, or vy = () in case of no or a manifest faulty w;.

(2) For every receiver p, let wy, be the value (= signed message) it obtains from the
transmitter, or Ry if no or a manifest faulty message was received.
Every receiver p acts as the transmitter in algorithm OMHA(m — 1) to com-
municate wy to all receivers.

(8) For every p and q # p, let w} be the value receiver p delivers as the result of
OMHA (m—1) initiated by receiver q in step 2 above. Every receiver p calculates
the hybrid-magjority Hy of all values w} and its own value wh = wy. If Hy # Ry,
then o; ' (Hy) is delivered as vy, else) is delivered.

As shown in the previous section, neither faulty processes nor links can generate
new values, so the only values that may occur during the execution of OMHA are
those originally sent by the transmitter, §, and Ry. Unfortunately, the existence of
inconsistent values from arbitrary faulty transmitters in conjunction with Ry values
caused by arbitrary/omission faulty forwarding processes and links is enough to
make the performance of OMHA no better than that of OMH — except that link
failure tolerance is slightly improved.

LEMMA 7.2 VALIDITY OMHA. For any m > min{l, f§} and any fa, fs, fo,
fm, f8, 7 > 0, our algorithm OMHA(m) satisfies the validity property (B2) if
there are strictly more than 2f; + f; + 2(fa + fs) + fo + fm + m participating
processes.

THEOREM 7.3 VALIDITY & AGREEMENT OMHA. For anym > fo+ fo+min{1, fi}
and any fo, fs, fo, fm, f§, I > 0, our algorithm OMHA(m) satisfies agreement
(B1) and validity (B2) if there are strictly more than 2ff + f7 4+ 2(fo + fs) + fo +
fm + m participating processes.

Proof: We showed in Section 6 that adding authentication amounts to restricting
the behavior of faulty processes and links. Since OMHA can be mapped one-to-
one to OMH with restricted failures, we can immediately re-use Lemma 5.3 and

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 43

Theorem 5.4 by plugging in modified parameter values. However, whereas ruling
out arbitrary link failures yields some improvement over the non-authenticated case,
there is no real gain with respect to process-failures: Arbitrary faulty transmitters
may still send inconsistent information, and arbitrary faulty forwarding processes
may inconsistently send (faulty) information and Ry. Hence, we cannot improve
the numbers f,, fs etc. of process failures in the authenticated case.

Consequently, we only have to plug in f/* = f;/* = 0 in Lemma 5.3 and Theo-
rem 5.4 to obtain our results. O

Remarks:

(1) Note that OMHA does not depend critically upon authentication. In fact, it
just degrades to OMH even if all signatures are broken, provided we spend f;°
additional processes.

(2) We already mentioned that the original OMHA in [Gong et al. 1995] did not
sign messages sent in OMHA(0). Recall that (A2) in Definition 3.1 assumes
a point-to-point network where the transmitter of a message can be uniquely
identified. If a link failure could only cause an omission or a manifest failure,
Theorem 7.3 would remain valid for the original algorithm as well. However, if
a link failure can substitute an Ry value for the real message, then the original
algorithm performs no better than OMH. Hence, by Theorem 5.4, we would
need strictly more than 2f7 + f; + f7® + 2(fa + fs) + fo + fm + m processes
for the original version of OMHA.

Since OMHA just adds signatures to OMH, both algorithms send and receive the
same messages. Therefore, the results of OMH’s assumption coverage analysis in
Section 8, namely, Theorem 8.3 and 8.4, will remain valid for OMHA as well. Note
carefully, however, that the numerical results in Tables ITI-VIII will not apply since
they assume n = 4f, + 3m + 1 and not OMHA’s setting n = 3f, + 3m + 1.

7.2 Algorithm ZA

In this section, we will analyze the authenticated algorithm ZA of [Gong et al.
1995] under the failure model of Definition 3.1. ZA has been derived from the
flawed algorithm Z of [Thambidurai and Park 1988] and provides a much better
resilience than OMHA. However, its correctness depends critically upon unbroken
signatures of not arbitrary faulty processes (but recall the end of Section 6 for how
to incorporate this).

DEFINITION 7.4 ALGORITHM ZA [GONG ET AL. 1995]. Let val(M) be a func-
tion that extracts the value v contained in o valid signed message M = op, .. .0p, (v),
k > 08, by removing all signatures, or returns val(M) = 0 if M is manifest faulty
or M = (. The algorithm ZA is defined recursively as follows:

ZA(0):
(1) The transmitter t signs its value v and sends the resulting wy = o(v) to every

receiver. The transmitter delivers v; = val(wy) = v, or vy = 0 if no or a
manifest faulty w; was (self-)received, recall Remark 2 on OMH’s Definition 5.1.

8For k = 0, this means val(v) = v.

Journal of the ACM, Vol. V, No. N, Month 20YY.

44 . U. Schmid and B. Weiss

(2) Every receiver p delivers v, = val(w,), where w, is the signed message received
from the transmitter.

ZA(m), m > 0:

(1) The transmitter t sends its signed value wy = o4(v) to every receiver and de-
livers vy = val(wy).

(2) For every process p, let wy, be the value p has obtained from the transmitter, or
0 if no or a manifest faulty message has been received. Every receiver p acts as
the transmitter in algorithm ZA(m —1) to send wy to all receivers.

(3) For every process p and q # p, let w] be the (unsigned) value process p obtained
from receiver q in step (2) using algorithm ZA(m—1). Every receiver p delivers
the hybrid-majority of all w} and its own unsigned value wj = val(wp); if no
magjority exists, O is delivered.

Unlike OMHA, which uses a distinguished reporting value Ry, ZA just uses Ry =
(. Note that 0 is also the default value returned by hybrid-majority in the absence
of a majority. This implies that the only values that may occur during the execution
of ZA are the value(s) sent by the transmitter and §. Consequently, there is no
need for an “overwhelming” number of non-faulty values in order to compensate
Ry values. In fact, even a single non-@-value is sufficient here. The following
Lemma 7.5 and Theorem 7.6 show that ZA satisfies validity (B2) and agreement
(B1) with optimal resilience.

LEMMA 7.5 VALIDITY ZA. For any m > min{l, f{} and any fo, fs, fo, fm,
fi, fi >0, algorithm ZA(m) satisfies the validity property (B2) if there are strictly
more than f; + f; + fo + fs + fo + fm + 1 participating processes.

Proof: Using induction, we show that every non-faulty process delivers the value
sent by a consistent transmitter, and/or (-values in case of a manifest/omission
faulty transmitter. Recall that considering those cases is sufficient for validity
(B2). Lemma, 6.2 ensures that no other value can be delivered; for brevity, we will
not mention this explicitly in every step of our proof.

Induction starts at m = 0 in the absence of link failures, i.e., ff = f; = 0. In
case of a consistent transmitter ¢ sending v, every non-faulty receiver will obtain
o¢(v) in ZA(0) and will hence deliver v (and so does the transmitter); a manifest
faulty transmitter causes all receivers and itself to deliver (). In case of an omision
faulty transmitter that sends either v or causes §) to be delivered, every process will
deliver either v or {§ in ZA(0) as required.

In case of f; > 0, induction starts at m = 1. In ZA(1), a non-faulty or symmetric
faulty transmitter signs and sends its value v to all n — 1 receivers,n’ > n —1 —
fo—fs— fo— fm = fJ + f{ + 1 of which are non-faulty. In addition, the (non-
faulty) transmitter delivers v. At least n' — f; of the receivers will hence receive and
broadcast v in step 1 of ZA(0). Therefore, by the end of ZA(0), every non-faulty
receiver gets v from at least n' — f7 — f > 1 processes and will hence deliver it.
Recall that any transmitter also uses its own value in step 3 of ZA(0), cf. Remark 2
on Definition 5.1. As soon as a process has obtained at least one v as the result of
ZA(0), however, it will deliver it as the result of ZA(1) as well.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 45

If the transmitter in ZA(1) is manifest faulty, no receiver can get a valid w, since
such a message must contain #’s signature. Hence, only (-values can be forwarded
and delivered in ZA(0), and ZA(1) must return () here as required. Finally, if the
transmitter is omission faulty, any non-faulty process can only deliver v or §) since
these are the only possible values. Validity is hence fulfilled in this case as well.

For the induction step, we assume that our lemma holds for ZA(m — 1) with
m — 1 > min{l, f} and show that it also holds for ZA(m). Using the same
argument as above, a non-faulty or symmetric faulty transmitter signs and sends
its value v to all n — 1 receivers, n' > n—1— fo — fo— fo— fm > i+ f] +1
of which are non-faulty. In addition, a (non-faulty) transmitter also delivers ». In
case of a manifest faulty transmitter, no receiver can get a valid w,; so any receiver
could forward only v = (. By the induction hypothesis, all non-faulty receivers will
therefore deliver v as the result of ZA(m — 1) and hence, due to hybrid-majority in
conjunction with Lemma 6.2, as the result of ZA(m) as well. If the transmitter is
omission faulty, any non-faulty process can only deliver v or §) since these are the
only valid values, so validity is fulfilled in this case as well. O

THEOREM 7.6 AGREEMENT AND VALIDITY ZA. For anym > fo+ fo+min{1, 7}
and any fa, fs, fo, fm, f{, f7 >0, algorithm ZA(m) satisfies agreement (B1) and
validity (B2) if there are strictly more than f;+ f; + fa+ fs+ fo+ fm+1 participating
processes.

Proof: As argued in Remark 1 on Theorem 5.4, the proof is the same as that
for agreement in OMH. O

Remarks:

(1) We slightly modified the original definition of ZA in [Gong et al. 1995], which
lacked a few details. First, every transmitter in recursive instances must send
its value to itself and use it as additional input to hybrid-majority; it does of
course not further participate in the recursion. Secondly, our algorithm removes
the whole signature chain in ZA(0) at once before delivery.

(2) Unlike OMHA, which requires signatures also in the final instance OMHA (0)
to cope with link failures in the last round, ZA would work without it. In
fact, in case of f§ > 0, any non-@ signed message submitted to ZA(0) in ZA’s
execution bears already m > f, + f, + 1 signatures, i.e., at least one from a
consistent process. By Lemma 6.2, this is sufficient to ensure agreement —
adding another signature within ZA(0) is hence not required.

(3) Although ZA is defined recursively like OMHA, its execution develops quite
differently: According to Lemma 6.3, every process gets sufficient information
to achieve validity within the first two rounds of ZA(m) in case of a not arbi-
trary faulty transmitter, regardless of the number of rounds actually employed.
Validity of OMHA (m), however, is achieved only after its full number of m +1
rounds. Moreover, m needs to be included into n for OMHA, since faulty trans-
mitters can inject Ry’s in additional rounds that must be balanced. This is not
true for ZA, since the latter faces valid signed messages containing v and
only.

Journal of the ACM, Vol. V, No. N, Month 20YY.

46 . U. Schmid and B. Weiss

Obviously, apart from signatures, ZA sends and receives the same messages as
OMH. The results of OMH’s assumption coverage analysis in Section 8, namely,
Theorem 8.3 and 8.4, will hence remain valid for ZA as well. Note carefully, however,
that the numerical results in Tables ITI-VIII will not apply since they assume
n=4f;+3m+ 1 and not ZA’s minimum setting n = 2f, + m + 1.

7.3 Algorithm ZAr

Even though ZA has a much better resilience than OMHA, it does not fully exploit
the benefits of authenticated messages. More specifically, we know from Lemma 6.3
that every non-faulty receiver obtains the same set of distinct (unsigned) values # (
at the end of ZA(0). There is no need, however, to receive (and hence forward)
multiple signed messages containing a specific value v. Moreover, there is no use in
forwarding (-values, since they are discarded at the end anyway. Note that item (3)
in Definition 6.1 is hence void here.

The algorithm ZAr given in Definition 7.7 below is based upon those observations.
It dramatically reduces both message and computational complexity of ZA, from
exponential to polynomial.

DEFINITION 7.7 ALGORITHM ZAR. Let W,, initially W, = {}, be the set of
legitimate unsigned values already seen by process p during the execution. Moreover,
let val(M) be the value v contained in a valid signed message after removing all
signatures, and val(M) = 0 otherwise.

ZAr(0):

(1) The transmitter t sends the signed message wy = o+(v) to every receiver, and
adds val(wg) to Wy if val(wy) # 0.

(2) For every receiver p, if p has received a valid message wy containing a value
0 # val(wy) € Wy, then p adds val(wp) to Wp.

ZAr(k), m >k > 0:

(1) The transmitter t sends the signed message wy = o¢(v) to every receiver, and
adds val(wg) to Wy if val(wy) # 0.

(2) For every receiver p, if p has received a valid message w, that satisfies () #
val(wp) & Wy, then p acts as the transmitter in algorithm ZAr(k — 1) to dis-
seminate wy, to all receivers.

(8) End of ZAr(m) only: For every process q, if W, contains a single legitimate
value vy, then q delivers vy, otherwise it delivers .

Using Lemma, 6.3, it is not difficult to show that ZAr satisfies validity and agree-
ment:

LEMMA 7.8 VALIDITY ZAR. For any m > min{l, f7} and any fa, fs, fo, fm,
i, i >0, algorithm ZAr(m) satisfies validity (B2) if there are strictly more than
£+ fi + fa+ fs + fo+ fm + 1 participating processes.

Proof: By Lemma 6.3, we know that min{1, f}+1 < 2 rounds suffice to ensure
that every obedient process gets the transmitter’s value v if the transmitter is non-
faulty or symmetric faulty. If the transmitter is manifest faulty, no receiver ever

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 47

gets a non-@ value. In case of an omission faulty transmitter, Lemma 6.2 ensures
that) and v are the only possible values. Hence, validity is always fulfilled. O

THEOREM 7.9 VALIDITY & AGREEMENT ZAR. For anym > fo+ fo+min{1, f;}
and any fo, fs, fo, fm, f&, J7 >0, algorithm ZAr(m) satisfies validity (B2) and
agreement (B1) if there are strictly more than f; + f; + fa + fo + fo + fm + 1
participating processes.

Proof: Due to Lemma 7.8, it only remains to show agreement. In our proof,
we use the fact that every non-faulty process obtains the same set of values at the
end of round m + 1 by Lemma 6.3. Note carefully that we only have to look at
values that “survive” forwarding until ZAr(0), because forwarding stops only if a
particular value is already contained in some process’s YW, — but in that case, the
earlier message must have already been forwarded. Note carefully that it does not
matter here that any two signed message containing the same v are forwarded along
different paths: Although the sets of receivers are different, they differ only in the
processes on the already taken paths. All non-faulty ones among those, however,
must have received v by self-reception and, consequently, do not need forwarding.

The signature chains in the final round have length m +1 > f, + fo + 1 +
min{l, f;}. Consequently, there must be at least one consistent process p, in each
such chain py,...,pm41 with 1 < 2 < m + 1 —min{l, f;}. If p, is non-faulty or
symmetric faulty, Lemma 6.3 guarantees agreement. If p, is manifest faulty, no
signed message with m + 1 signatures incorporating op, can be received at any
process. Hence, every non-faulty process obtains the same set of non-§) values. O

Remarks:

(1) During the first two rounds, ZAr sends the same number of non-{) messages
as ZA. In subsequent rounds, however, ZAr is clearly superior with respect
to communication complexity: From Definition 7.7, it is obvious that every
value v sent by the transmitter is forwarded by any process at most once to
all n — 1 receivers. Hence, every v causes at most (n — 1)? messages during
forwarding, so the worst case occurs if the transmitter sends a different value to
each of its n — 1 receivers; recall that no other value except () can be generated
in the system. Consequently, at most n — 1 + (n — 1)® messages can be sent
system-wide.

(2) If the initial transmitter is arbitrary faulty and sends multiple values, then ZAr
will always deliver (). However, ZA might deliver one of the sent values v #
in this case, if v has been received by a majority of processes.

As a final remark, we note that ZAr is in fact the same as the authenticated
algorithm for atomic broadcasting under Byzantine failures proposed in [Cristian
et al. 1985]. The latter was analyzed in a more abstract failure model, however,
where the only requirement is that the removal of faulty processes and links does not
partition the network. For example, non-faulty processes might even be connected
in a chain there, in which case the atomic broadcast algorithm would need n — 1
rounds. By contrast, we showed in Theorem 3.2 that our link failure model ensures
that any two non-faulty processes are connected to each other by at least one non-
faulty path of length min{1, f/} + 1 < 2, which explains the comparatively small
number of rounds required by ZAr.

Journal of the ACM, Vol. V, No. N, Month 20YY.

48 . U. Schmid and B. Weiss

Generally, our approach has the advantage over [Cristian et al. 1985] that it
models link failures explicitly on a per-process-basis, rather than by their effect
on the communication graph. In addition, whereas [Cristian et al. 1985] provides
a suite of algorithms each targeted to a specific class of failures, our algorithms
have been developed for a comprehensive hybrid failure model. As already noted
in Remark 4 on Theorem 5.4, however, this comes at the price of a suboptimal
resilience with respect to benign failures: ZAr needs n > 2f, + 1 instead of the
n > fo + 1 processes of the omission-tolerant algorithm in [Cristian et al. 1985] for
tolerating f, omission failures.

7.4 Broadcast Networks

Our system model in Definition 3.1 assumes a point-to-point network, which im-
plies that the sender of a message is known even without authentication. This
assumption (A2) is obviously not justified if oral messages algorithms like OMH
were employed in systems with a broadcast network. Since faulty processes could
impersonate non-faulty ones here, OMH would not work in this case. On the other
hand, written messages algorithms should reasonably!? work in broadcast networks
because they prevent impersonation. In fact, even oral messages algorithm that
achieve consensus under the system model of Definition 3.1 will achieve consensus
in a broadcast network if authentication is added. After all, authentication ensures
assumption (A2) even in such systems.

In fact, in the absence of link failures, written messages algorithms would benefit
from a broadcast network, because neither arbitrary nor omission faulty processes
are possible anymore. Since every process sends only one message, which is auto-
matically broadcast to all processes, every receiver must get the same value. So we
could in fact set f, = f, = 0 and count all arbitrary failures as symmetric failures
and all omission failures as manifest failures for any written messages algorithm
analyzed under the hybrid failure model.

If link failures are possible, however, we find that they have a lot more power
in broadcast networks than before. Whereas they can simply be caught by adding
an appropriate multiple of f; and f; to the number of processes in the point-
to-point case, we experience the unpleasant effect that they make arbitrary (but
not omission) failures possible in the broadcast case [Schmid 1995]. However, the
behavior of arbitrary processes is restricted:

Consider a message from an arbitrary faulty process which is not received by
f; receivers. If that process sends a second message containing a different value,
which is not received by another f; receivers, then at most 2f; receivers will only
get one message and will assume that the message is valid. The other processes do
detect the second message from the same sender and will use the value () due to the
manifest failure. So the obvious solution is either to count arbitrary failures again,
or to count sender link failures twice, i.e., require 4f; instead of 2f; additional
processes.

When analyzing OMHA in broadcast networks, we can exploit the restricted
behavior of arbitrary processes. First, it is easily seen that the validity proof can

19Besides of the problem of jamming.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 49

be taken over unchanged: Since the transmitter is not arbitrary faulty, and since
arbitrary faulty processes do not occur in the last but one line of equations (13)
and (14) in the proofs of Lemma 5.2 and Lemma 5.3, their different behavior in the
broadcast network has no impact on validity and the proof of Lemma 5.3 still holds.
As far as omission faulty processes are concerned, they either behave non-faulty or
like manifest failures. In any case, all obedient receivers will deliver the same value
for them.

THEOREM 7.10 VALIDITY & AGREEMENT. For any fa, fs, fo, fm, f, f{ and
any m > min{l, f§}, OMHA (m) satisfies agreement (B1) and validity (B2) if there
are strictly more than 4f; + 7 + 2(fo + fs) + fo + fm + m participating processes.

Proof: Again, we only look at the case where the transmitter behaves arbitrary
faulty as described above.

Let m = 1. Abbreviating the number of initially participating receivers with
n' > A4fF + [T +2(fo + fs) + fo + fm + m, the transmitter sends both v and v/,
which are received and turned into () by at least n' —2ff — (fo —1)— fs — fL — [,
non-faulty receivers, whereas at most f; processes receive only v and f; only v'.
Here, f! < f, is the number of omission faulty receivers that will commit a manifest
failure in OMHA(0) (all others will appear like non-faulty processes) and f;, < fn
is the actual number of manifest faulty processes.

In OMHA(0), a non-faulty receiver gets R(0)) from at least n;, = n' —2f7 — (fu —
1) — fs— fi— fl,— f" processes, with f;' < fJ link failures according to (A1"), and
it receives at most ny =n' — f; "— f!' — f! values different from R(()). Therefore,
we have

g —ng = 0 —Aff = 2fa+2-2fs~ fo — .~ 7’

el (f[_ Z’)+(f0_fé)+(fm_frln)+m+2
>0

\Y

and R(() will win the hybrid-majority on every non-faulty process.

Let us now consider m > min{1, f7}. Atleastn, = n'—2f;—(fo—1)—fs—fo—f},
non-faulty receivers will get § in OMHA(m) and thus will disseminate R(() in
OMHA (m — 1). Validity ensures that every obedient process will deliver R(() for
them. The f! omission faulty processes will appear crashed in OMHA(m — 1) and
cause (). Therefore, every obedient process will deliver at most 7; = n' — f; — f,,
values different from R((). Since

2m, —my, = n' —4f] —2fa—2fs — fo— I
> (fo—fo)+ (fm—fr)+ T +m
> 0,

R(0) will again win the hybrid-majority on all obedient processes, hence all obe-
dient processes will deliver (). O

The algorithm ZA, however, cannot exploit the different behavior of arbitrary
failures so easily. Here, arbitrary faulty processes must still be counted in m. The
reason is obvious from the proof of Theorem 7.10: We have utilized the fact that
every non-faulty process receives enough R(0)) values to win the hybrid-majority.

Journal of the ACM, Vol. V, No. N, Month 20YY.

50 . U. Schmid and B. Weiss

This has saved us from using enough rounds to ensure that all processes get exactly
the same input set for the hybrid-majority. In ZA, however, only § does exist,
which is not considered in hybrid-majority. Therefore, we will again have to ensure
that all processes work with the same input set in ZA(0), effectively requiring
m > fo +min{L, f}.

Remarks:

(1) Note that an arbitrary faulty process can do the worst damage by sending two
messages. With a third message, again only f; receivers might not detect a
manifest failure.

(2) When executing OMHA on a broadcast network, the tradeoff between the point-
to-point algorithm of Theorem 7.3 and the broadcast version of Theorem 7.10
is fo + fo vs. 2f; additional processes and f, + f, + 2 vs. 2 rounds.

(3) Since ZA is already optimal and treats arbitrary failures like symmetric failures
anyway, it will not really benefit from the broadcast network. There is, however,
the slight tradeoff between the original version and the broadcast version with
2f; more processes and f, less rounds.

8. ASSUMPTION COVERAGE

To apply a deterministic failure model like the one of Definition 3.1 in practice,
one has to address the question of assumption coverage: Given some particular
implementation, what is the probability @ that the failure assumptions (f,, fs,
fos fm» f7, f7) are violated at runtime? In case of f, = 6 and all other model
parameters 0, for example,) is the probability that more than 6 processes are
faulty. Computing this probability of failure is a mandatory step for any algorithm
where safety depends upon compliance to the failure model and is reasonably simple
for process-centric failure models: Since the probability of a component failure is
usually independent of the particular execution (except of its duration), it is not
difficult to compute () in this case.

Unfortunately, this is not true for our link failure assumptions. If individual
link failures are independent, @) increases with every message broadcast during the
execution of a distributed algorithm: According to (A1%) resp. (A1"), no message
broadcast resp. reception may suffer from more than f; resp. f; link failures. Given
the fact that typical consensus algorithms send many messages, the question arises
whether @) can eventually be made as small as desired—Dby choosing suitable values
of f; and f;—at all.

In this section, we will derive a bound on the probability of failure),, of the
algorithm OMH (m)?° of Section 5.1 in case of independent link failures. Since OMH
has exponential message complexity, this may be seen as a worst case scenario for
assumption coverage; polynomial algorithms like ZAr and the ones analyzed in
[Biely and Schmid 2001] guarantee a considerably smaller probability of failure.

20Since OMH uses the same communications pattern as the authenticated algorithms OMHA of
Section 7.1 and ZA of Section 7.2, @, is also valid for the latter exponential algorithms. The
value of @, for the polynomial algorithm ZAr could be computed from the results developed in
[Biely and Schmid 2001].

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 51

The expression for @, (see Theorem 8.3) will reveal that the probability of failure
usually shrinks when f7, f; is increased, despite of the fact that n must be increased
to maintain the required number of processes. Numerical results for a few parameter
settings will show that @),, can indeed be made arbitrarily small by sufficiently
increasing n.

Our analysis is based upon a very simple probabilistic model of link failures,
which assumes that the probability of losing or corrupting a single message on a
single link or network interface is 0 < p < 1, and that individual link failures
occur independently of each other and of process failures. Note carefully, however,
that we consider the assumption coverage with respect to link failures only: We do
not consider possible violations of process failure assumptions in our analysis, i.e.,
we assume that the actual number of arbitrary, symmetric, omission and manifest
faulty processes is always at most f,, fs, fo and f,,, respectively. Link failures are
hence viewed as additional incidents that happen to the messages sent on a link,
irrespectively of whether they are correct messages from a non-faulty process or
incorrect/missing ones from a faulty process.

Despite of its simplicity, this model is commonly used in practice, see e.g. [Eugster
et al. 2001; Nikoletseas and Spirakis 1995], since it is analytically tractable and
facilitates easy comparison of results. It is in fact a quite accurate and realistic
model for uncorrelated transient channel /network interface failures in homogeneous
system architectures. Persistent and, in particular, correlated failures are of course
beyond its scope.

Our detailed analysis computes a bound on the probability of success P,, =
1 — @, of the system during a single execution of OMH(m) as follows: We start
with computing the binomial probability p, j of a successul (= model-conform)
broadcast transmission/reception to/from n — k peer processes. Next, we analyze
the (exponential) communications requirements of OMH and compute the joint
probability that all broadcasts/receptions during an execution are successful. This
gives an expression for @), consisting of two sums involving p,,_, which are eval-
uated in Lemma 8.1 and 8.2. This finally leads to the expression of @,, given by
Theorem 8.3.

Since f; = f; = f¢ is the only reasonable choice in presence of independent link
failures, recall Remark 2 on Definition 3.1, the success probabilities for a single
message broadcast/reception, namely,

Dy = Prob{< f; failures in a single broadcast to
n — k receivers}

Py = Prob{< f; failures in a single reception from
n — k senders}

for 0 < k < n—1 are the same p}_, = pl_;, = pn—i and follow a binomial
distribution:

fe
n—=k ke
Pnk= (l)pl(l —p) ! (15)
=0
The total probability of success P, = 1 — @Q,, that there is no violation of our
assumption of at most f, link failures in any message broadcast/reception during

Journal of the ACM, Vol. V, No. N, Month 20YY.

52 . U. Schmid and B. Weiss

the execution of OMH(m) is given by

P,, = Prob{All broadcasts in OMH(m),...,OMH(1) have < f, link failures
A all receptions in OMH(0) have < f; link failures each}. (16)

Recall from the proof of Lemma 5.3 that (A1") in Definition 3.1 is required in the
base case of the induction only, i.e., in OMH(0).

It is immediately apparent from step 1 of Definition 5.1 that the execution of
OMH(m) evolves as shown in Table I.

OMH(m) | # concurrent instances # receivers

m 1 n—1

m—1 n—1 n—2

m—2 (n—1)(n—2) n—3

1 (n—-1)---(n—m+1) n—m
(n—1)(n—-2)-(n—m) n—m-—1

Table I. Recursive instances in the execution of algorithm OMH.

With the notation

[n], = nn—-1)...(n —k+1) for k>0
[n]y = 1

it is apparent that, for ¥ < m, there are [n — 1], instances of OMH(m — k) that each
issue a single broadcast [where (A1%) applies] to n — k — 1 receivers. For k = m,
on the other hand, we have to consider message receptions [where (A1") applies]
only: There are [n — 1],,, instances of OMH(0), and every receiver of a particular
instance of OMH(0) should receive a message from all n — m recipients in the
prior instance OMH(1). Assuming that the “self-reception” by the transmitter of
OMH(0) is always failure-free, there remain n — m — 1 “true” message receptions
by any receiver of OMH(0).
Abbreviating ny = [n — 1], (16) translates to

m—1
— Nk Tom,
P, = H Pp_f—1 " Ppn—m-1= Hpn k—1
k=0

m
= H(l —Gn-k-1)" With ¢k =1 —pp_p
k=0

m
_ H(NEqn—k— 1)
k=0
e—];nkanl ﬁ(l_ (nkq7;L_k_1)2)’
k

k=0

v

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 53

where we used the relation [Whittaker and Watson 1927, p. 242]
E> (1 —t/n)" > e (1 —1%/n) (18)

valid for t < m; since ¢, 1 is some probability < 1, this condition is of course
satisfied. Assuming

m
anQn—k—l <1, (19)
k=0

the application of the well-known facts (1) log(1 —z) = =35, zi/j for |z| < 1,

©2) Yicrdl < (Tier a,-)j for a; > 0 and integer 5 > 1, and (3) e™® > 1 — z for
0 <z <1 yields

2
_anqn . 1+210g(M)

Pm Z e nk
_anqn k— 1—22 \/_qn k— 1
> e k=0 j>1
- anqn—k—l - Z (Ek:() mqn—k_l)
>e =0 i>1 J
> .) |
> (1 - znanfkfl) (1 - (Z VIkdn—k—1))
k=0 i—o

m

m
2
1- Z NEQn—k—1 — (Z \/nanfk—l) (20)
k=0 k=0
m m 2
1- anQn—k—l - (Z nkqn—k—1) . (21)
k=0 k=0

To obtain an upper bound on the overall probability of failure @, =1 — P,,, we
hence need an upper bound on

vV

v

m

Y In=1kgn-p-1=mn—-1)Y % (22)

k=0 k=0

and, if the more accurate lower bound (20) is addressed,

Z 2~ Uigns1 = Vi = 1)1 Z\/Z"_kiil (23)

The required bound for the dominating term (22) follows from the following
Lemma 8.1.

LeEmMmA 8.1 UPPER BOUND. Forn—m— fi—22>1,
S
—k—1
G = 5 _In—k-t
" Z (n—k—1)!
k=0
Journal of the ACM, Vol. V, No. N, Month 20YY.

54 . U. Schmid and B. Weiss

1 An—m—1
S(1_+_n—m—fg—2)'(n—m—l)! 24)

1 1 pfz+1
S(1+n—m—fz—2)'(n—m—fz—z)!‘(fe-kl)!. (25)

Proof: According to [Abramowitz and Stegun 1970, Eq. 26.5.24], ¢,_r equals
the incomplete Beta function I,(f, + 1,n — k — f,), L.e.,

n—k
n-k = Z (n ? k>pl(1 _p)nh 26)
I=fe+1
B (fo)! (n(i;ﬁ)‘fe - /Op (1 —onh et (27)

Hence,
m l_tn k—fo—2

D
fe
G fz‘/ot Z"—k fe—=2)! . (28)

which involves
(1 _ t)n—k—f¢—2

S = k=)

k=0

(= pynmmefe 1—t
- (”—m—f£—2)!(T m—f-1

+

a—um)
(mn—m—fe=1)---(n—fe—2)
< (1—tV*m*ﬁ*25§(1—t)j
-~ (n—m-— l—2)!j:0 n—m-—fi—1
(1—g)nmfe2 1
= —m—f, —9) 11—t
(n—m-—fi—2)! 1 P
(1—t)nm—fe=2 p_m—f—1
“m—-m—f—2) n—m-—fi—2+t
(1 _ t)nfmff472) 1
- (n—m—fg—2)!-(+n—m—fg—)
since 0 < ¢ < p. Plugging the above expression into (28), we obtain

G < — T / " (1 = pyn-m—i=2 gy (29)
" (f)l(n—m— fz—2)! 0
from where the major result (24) of our theorem follows by recalling (27).
To establish (25), we use the definition (26) of g, 1 to find
_ dn—m-1
9= (n—m—1)!
n

)nfmflfl

—m—1 1
p (1-p
= Z A S (30)
M) N (n—m-1-1)!

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 55

n—m—f;—2 pj+f£+1 (1 _p)n—m—fg—Z—j
= G+fe+D (n=m—fr—2-7j)!

< pletl "_m_fl_2p_7" (1 —pyn—m—fe—2-J -
< o) A m—m=f 2=

=0
Applying the binomial theorem (p + 1 — p)" ™ f:=2 = 1, we finally get

dn—m—1 < 1 . pfz-i-l
m=—m-=-1)!"" (n—m-—fi—=2)! (fr+1)!

which completes the proof of our lemma. O

Remarks:

(1) Lemma 8.1 reveals that the sum (22) is dominated by the term k£ = m, which
just reflects the intuitively clear fact that the many messages from OMH(0) in
the last round determine OMH(m)’s overall probability of failure.

(2) By subtracting g, —m—1/(n—m—1)! from both sides of (24), and multiplying by
(n — 1)! according to (22), it is easy to see that (24) also implies monotonicity
of

dn—k—1 dn—m—1
<
m=—k-=1! = (n—m-=1)! (32)
[n -]-]kQH—k:—l < [n - 1]an—m—1 (33)

for any 0 < k < m.

(3) The bound given by (25) is reasonably small—and also accurate, cp. the deriva-
tion starting with (30)— only if np < 1 is sufficiently small, since the ultimately
required quantity (n — 1)!G,, that must be < 1 according to (19) has order
O(n™(np) e /(fe + 1)Y).

By a very similar proof, it is not difficult to prove a similar Lemma 8.2 related to
the square-rooted sum (23). Since it is only used to improve the remainder O-term
in Theorem 8.3 below, its proof will be left as an exercise to the reader.

LEmMMA 8.2 UPPER BOUND /. Forn—m— fi—22>1,
m
H, — Z Qn k—1 .

k=0 -

[TL - 1]fz+1 . dn—m—1

vn—m— f;— 2). [n—m—=1s41 /(n—m—1)!

IA

14

[n—1pn pit!

w:%fﬁ—ﬁ'¢m—m—n—w (Fo 4 1T

IA

1+

(
(

By virtue of those results, we can establish the following Theorem 8.3.

Journal of the ACM, Vol. V, No. N, Month 20YY.

56 . U. Schmid and B. Weiss

THEOREM 8.3 ASSUMPTION COVERAGE OMH. Forn —m — f; —2 > 1 and
np < 1 sufficiently small, the probability of failure Q.,, of OMH(m) satisfies

' (@Qr.)* _ i fm (nR) T
n <@+ 0(Ggiyy) =00 o) (34
where
. 1 pf£+1
Qm = (1 + m)[n - 1]m+fz+1m‘

Proof: Recalling (22) resp. (23), the result of Lemma 8.1 resp. 8.2 immediately
yields (n — 1)!IG,, < @, resp.

R! = (n—1)H2

< (1+ W)Q = s In = e (%)2
< O(p 7o))

where the last bound is easily confirmed by comparing R}, with (Q!,)?. Recalling
the lower bound (20) on the probability of success, (34) is established by straightfor-
ward upper bounding. Note that (20) is only guaranteed to hold when (19) holds,
which is secured by np < 1 sufficiently small according to Remark 3 on Lemma 8.1.
O

In order to assess the dependency of the probability of failure (),,, upon the model
parameters n,m, fg, we substitute n = ng + ¢f in (34), where ¢ - £ gives the number
of processes that must be added to cope with a (sufficiently small) number £ of
additional link failures per process:

Q — O(m (TLOp)fZ-HH_l g)m+fe+f+1>
" O+ +1)IV T g
— 0(m (nop)fz"rl (nop . ec)

¢
"o (fe+1)! .[fe+ﬁ+1]e)

(36)

In the last step, we employed the well-known relation (1 + t/(k + J))k < et for
t >0, 7 > 0: Since we must have ng — m — f; — 2 > 1 for Theorem 8.3, it follows
that k+j=no>m+ fe+l+1=k.

It is hence apparent from (36) that, as long as np < 1 sufficiently small, the
probability of failure @,

—rapidly grows with m and hence with the number f,+ f, of arbitrary and omission
failures,

—marginally grows with n and hence with the number of any kind of failures,

—decreases with the number of tolerated link failures f, (and with decreasing p, of
course), since the last factor in (36) is < 1 for any suitably chosen £.

Note carefully that the latter implies that increasing f, is always beneficial for

reasonable parameter settings, which actually justifies our whole approach.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 57

In Tables III-VI, we give numerical values for @}, for different values of m and
fe in case of n = 4f; + 3m + 1, which allows e.g. f; = f; = fe, fa=m—1, f, =0,
and f; = f,, =1 by Theorem 5.4.

felm=1 m=2 m=3 m=4 m=5 m==6
1 |8 11 14 17 20 23
2 [12 15 18 21 24 27
3 |16 19 22 25 28 31
5 (24 27 30 33 36 39
7 |32 35 38 41 44 47
10|44 47 50 53 56 59
15|64 67 70 73 76 79
20|84 87 90 93 96 99

Table II. Value of n = 4fy + 3m + 1 for different m, f;.

felm=1 m=2 m=3 m=4 m=5 m=26
1 |0.64 1. 1. 1. 1. 1.
2 (0.59 1. 1. 1. 1. 1.
3]0.52 1. 1. 1. 1. 1.
5 |0.36 1. 1. 1. 1. 1.
7 10.22 1. 1. 1. 1. 1.
10(0.095 1.0 1. 1. 1. 1.
15|0.019 0.86 1. 1. 1. 1.
20|0.0036 0.37 1. 1. 1. 1.

Table III. Value of (exact) probability of failure Qm for p = 0.1.

felm=1 m=2 m=3 m=4 m=5 m=26
1 [0.01 0.3 1 1 1 1
2 [0.002 0.04 1 1 1 1
3 [0.0002 0.006 0.3 1 1 1
5 [2.10~% 0.00009 0.005 0.3 1 1
7 (2.10% 1.10=% 0.00009 0.007 0.6 1
10(2.107 1 2,102 2.10~7 0.00002 0.002 0.2
15(2.10716 2,104 3.10712 4.10719 5.10-8 8.10°¢
20(2.10721 2,10~19 4.10-17 7.10-15 1.10-12 2,10-10

Table IV. Value of (approzimate) probability of failure Q' for p = 0.01.

Whereas the probability of failure of OMH(m) given in Tables III-VT is not bad,
even in case of a typical “wireless” loss probability p = 0.01, it is nevertheless clear
that an algorithm that uses less messages is preferable with respect to our failure
model. As an example, we consider the algorithm OMH that results from combining
all messages that a process sends during OMH in a round into a single message.
According to Table I, such a combined message consists of exactly [n — 1], /(n—k) =

Journal of the ACM, Vol. V, No. N, Month 20YY.

58 . U. Schmid and B. Weiss

felm=1 m=2 m=3 m=4 m=5 m=2=6
1 [1.10-% 0.00003 0.0009 0.03 1 1

2 [2.1079 4.10—8 2.10=% 0.00007 0.004 0.2

3 |2.107'2 6.10~ ' 3.1079? 1.1077 7.10~% 0.0004
5 [2.10-18 9.10—17 5.10—15 3.10-13 2.10-11 2.10-°
7 (2.1072% 1.1022 9.10-2! 7.10~'9 6.10~17 5.10~15
10(2.1073% 2.1073! 2.10729 2.10727 2.10-25 2.10-23
15(2.1048% 2.10746 3.107%* 4.10742 5.10~40 g8.1038
20(2.10763 2.10761 4.1075% 7.1057 1.1075% 2.10752

Table V. Value of (approzimate) probability of failure QY, for p = 0.0001.

felm=1 m=2 m=3 m=4 m=5 m==6
1 [1.10710 3,109 9.107% 3.10-% 0.0001 0.007

2 (2.10715 4.1071¢ 2.10712 7.10711 4.107% 2.10°7
3 (210720 6.10719 3.10717 1.1071% 7.10714 5.10-12
5 [2.10739 9.,1072° 5.10727 3.10725 2,10723 2.10~21
7 (2.107%0 1.10738 9.10737 7.10735 6.10733 5.1073!
10[2.107% 2,10753 2.1075' 2.107%9 2.10747 2.10745
15(2.1080 2.10-7®% 3.10~7 4.10-74 5.10~72 8.10~ 70
20(2.10-105 2,10-103 4, 10-101 7,10-99 1,10-96 2,109

Table VI. Value of (approzimate) probability of failure Q', for p = 0.000001.

[n — 1]k—1 single messages—corresponding to the instances of OMH(m — k) at any
of the n—k originating processes—that are broadcast to n —k —1 receivers. Clearly,
during the whole execution of OMH(m), any process broadcasts only m messages,
except for the initial transmitter, which broadcasts only one message.

It is not difficult to show that the proofs of correctness for OMH are also valid
for OMH. In fact, the only difference lies in the fact that the receivers in OMH
experience a link failure in a correlated fashion: If f; of the combined messages are
lost in the broadcast of a single sender, any affected receiver loses the message for
all instances of OMH(m — k). This situation, however, could also occur when link
failures are independent for all instances of OMH(m — k).

By the same devices as used before, the probability of success P,, for OMH(m)
evaluates to

P, = po szzlg—l 2 H (1 - %)n_k
k=1 k=0

where the bound is even valid if all processes (and not only the initial transmitter)
send an initial message in OMH(m). Due to that simplification, we just have to
substitute ny = n — k in (21) and use the same line of reasoning as before to show
the following Theorem 8.4.

THEOREM 8.4 ASSUMPTION COVERAGE OMH._For n—m-—fi—22>1 and
np < 1 sufficiently small, the probability of failure Q,,, of OMH(m) satisfies

_ — . fe+1
@ < T+ 0(@,7) =01y - P20, €

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 59

where

Q0 = [+ 1]grs — [n—mls4s plet
" fe+3 (fe+1)!

Proof: Applying (20) with ny = n—k reveals that P,, and hence the probability
of failure @,, is dominated by

(38)

m m

@ =3 (= K)npo1 = > (0 — k)!%a (39)

k=0 k=0

Using the upper bound (31) with m = k established in the proof of Lemma 8.1,
we find

—! a (n—k)' A
“m = Z:;)(fwl)!(n—k—fe—?)! L

k

" n—k
(e + 2! HkZ:; (fe+2>

(fe+2)p7 ! i (fel_c”)

k=n—m

o ()= (')

< [+ pis —[n—mls4s p/t!
- fe+3 (fe+ 1)V

where we employed the well-known identity [Knuth 1973, p.54.(11)] S5_, (¥) =
(::_11) Recalling (21), which is again valid for np < 1 sufficiently small, and apply-
ing some simple majorizations on (38) that consider the fact that the coefficient of
nft*3 in both [n + 14,43 and [n — m]y,+3 is 1 and hence cancels out, (37) follows.
O

IA

IA

IA

Comparing (34) and (37) clearly shows that the probability of failure @,, no
longer grows with m. Tables VII and VIII contain a few numerical values for @Im
for different values of m and f; and the same n = 4f, + 3m + 1 used before, which
ensures compatibility with Tables IIT and IV. We should note, however, that the
messages sent by OMH are much larger than the ones of OMH—it is not really fair
to consider the same values for the loss probability p here.

9. CONCLUSIONS
9.1 Accomplishments

In this paper, we showed that deterministic consensus in presence of link failures
is possible—despite the impossibility result of [Gray 1978]—if the number of link
failures in a broadcast resp. reception of any process is moderately restricted. We
introduced a novel perception-based hybrid failure model for this purpose, which
grants every process at most f; independent receive link failures (with at most

7% non-omission failures among those) and f; send link failures in each round,

Journal of the ACM, Vol. V, No. N, Month 20YY.

60 . U. Schmid and B. Weiss

felm=1 m=2 m=3 m=4 m=5 m==6
1 |0.88 1. 1. 1. 1. 1.

2 [0.85 1. 1 1. 1. 1.

3 |0.80 0.99 1 1. 1. 1.

5 [0.62 0.93 1. 1. 1. 1.

7 [0.42 0.77 0.96 1. 1. 1.
10(0.20 0.43 0.71 0.91 0.99 1.
15(0.041 0.10 0.21 0.37 0.58 0.78
20(0.0078 0.019 0.041 0.08 0.14 0.24

Table VII. Value of (ezact) probability of failure Q,, for p = 0.1.

felm=1 m=2 m=3 m=4 m=5 m=2=6
1 [0.04 0.1 0.4 0.9 1. 1.

2 |0.004 0.02 0.04 0.1 0.2 0.4

3 |0.0004 0.002 0.004 0.01 0.02 0.04

5 |5.107% 0.00002 0.00005 0.0001 0.0002 0.0005
7 |5.107% 2.10=7 5.10-7 1.10~% 3.10% 5.10°6
10|5.1071 2,10710 4,10-1° 1,109 3.107% 6.107°
15(4.10716 1.10-1% 4.1015 1.10714 2.1014 5.10- 14
20(4.10~21 1.1020 3.10-20 9.10-20 2.10-19 5.10-1°

Table VIII. Value of (approzimate) probability of failure alm for p =0.01.

in addition to at most f,, fs, fo, fm arbitrary, symmetric, omission, and manifest
process failures. Apart from dynamic link failures, our model can also be applied
to incomplete communication graphs.

For m > f,+ f,+1, we analyzed three existing m+ 1-round Byzantine agreement
algorithms under our failure model, namely, the non-authenticated OMH as well
as its authenticated variants OMHA and ZA, ZAr. Their respective number of
processes was shown to be

n > 2f£s+fz+fz‘a+2(fa+fs)+fo+fm+m7
n>2fes+fz+2(fa+fs)+fo+fm+ma
n> fi+fi+fatfstfm+l

We also proposed and analyzed a slightly modified uniform variant of OMH, which
achieves agreement and validity even at obedient processes, at the cost of one
additional round.

Algorithms specifically designed for written messages are hence clearly superior
over algorithms adapted from an oral messages solution: Whereas OMHA did not
profit much from authentication, ZA and ZAr benefit considerably — but also de-
pend critically upon its strength. It turned out, however, that both algorithms can
withstand intrusions to some extent: In case of broken signatures, OMHA degrades
to OMH and hence requires an additional f;* in the number of processes. For ZA,
a process with a compromised signature must be considered as arbitrary faulty and
therefore counted in f,. As far as link failures are concerned, authentication effec-
tively prohibits arbitrary failures. Moreover, authentication is the only means to

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 61

(more or less) safely employ algorithms like OMHA on top of broadcast networks.

We also provided a reasonably complete framework of impossibility results and
lower bounds, which rests upon the necessity of unimpaired bidirectional communi-
cation for solving consensus. The number of required processes n and rounds m + 1
in presence of both omission and arbitrary link failures were found to be

n> fi+f0+ 0+
m+1> f+2

(40)

where f = f, is the number of processes exhibiting crash failures. Our results
also imply that a process must be counted as arbitrary (resp. omission) faulty only
if it can disseminate incorrect information to a majority (resp. all) of the correct
processes in the system.

Last but not least, we conducted an analysis of the assumption coverage of OMH,
OMHA and ZA under a simple probabilistic model, where link failures occur with
a fixed probability p independently of each other. We computed the probability
@ of violating the link failure assumption f; = f; = f¢, which shows that our
approach of adding processes in order to tolerate additional link failures per pro-
cess always decreases () as long as np < 1 sufficiently small. Consequently, for
reasonably small m, our algorithms can be used even in wireless systems, where
link failures with loss probabilities up to p = 102 are the dominating source of
errors. Given the limited bandwidth usually available in wireless systems, the ex-
cessive communication requirements of exponential algorithms may be prohibitive,
though.

9.2 Costs of Tolerating Link Failures

Our results allow a comparison of the costs for tolerating link failures of our algo-
rithms. Table IX summarizes the relevant figures for f; = f; = fi: The second
resp. third column gives the number of processes required for tolerating f, omission
resp. f¢ arbitrary link failures; no denotes the number of processes required for
fe = 0, where only process failures are present. The last column gives the number
of rounds for either type of link failure; myq is the number of rounds for f, = 0.

| Algorithm omissions arbitrary # rounds |

OMH no + 3f¢ no + 4fg mo + 1
OMHA no + 3fe no + 3f; mo+1
ZA, ZAr no + 2f; no + 2f, mo + 1

Table IX. Additional costs of tolerating f; = f; = fr omission resp. arbitrary link failures in
terms of number of processes and number of rounds.

All our algorithms match the lower bound for the required number of rounds
and are hence optimal in this respect. As far as the required number of processes
is concerned, the best algorithms ZA and ZArneed only 2f, additional processes
to cope with f; - n link failures per process in each round; for f; = 1, only n =
4 processes are required in the absence of process failures, for example. Both

Journal of the ACM, Vol. V, No. N, Month 20YY.

62 . U. Schmid and B. Weiss

algorithms thus match the lower bound n > 2f, for omission link failures?* and are
hence optimal. In the case where all f; link failures are arbitrary ones, OMH also
matches the appropriate lower bound. OMH is hence optimal for f§ = f;, but not
for f7* < f7, cf. Remark 6 on Theorem 5.4.

Since f; could be as much as O(n), our algorithms tolerate up to O((m + 1)n?)
link failures during the whole execution. This dramatically outperforms the |(n —
2)/2] = O(n) resilience of previous work on Byzantine agreement under link failures
(see Section 2). It is important to note, though, that this does not mean that our
algorithms are resilient to link failures per se. After all, we had to add O(f,)
processes to ng in order to mask f, link failures per process, which means that we
added O(n?) links. What we really gained, however, is that any link—and not just
the ones added—may experience a failure.

Moreover, the bound (36) on the probability @,, of violating the failure model
reveals that adding sufficiently many processes is always beneficial as long as np < 1
is sufficiently small. In this case, the disadvantage of increasing the number of links
that could be faulty is more than compensated by the ability to mask additional
link failures per process. This ultimately confirms that

(1) limiting the power of link failures according to our failure model is not an undue
restriction,

(2) our algorithms can even be employed in wireless systems, where link failure
probabilities p up to 10~2 are common,

which was the ultimate goal for starting this research at all.

9.3 Further Research

There are several directions of current/future research in this area: For example,
we analyzed several less message-costly consensus algorithms under our perception-
based hybrid failure model in [Biely and Schmid 2001]. Since those provide sub-
optimal link failure tolerance, we are currently working on a polynomial algorithm
that is optimal in this respect. A more theoretical direction of future work would
be an extension of our lower bound results to both process and link failures. An-
other important part of our current research, where we already made some progress
[Schmid and Fetzer 2002], are consensus algorithms for asynchronous systems in
presence of link failures. Last but not least, there are many applications like
intrusion-tolerant admission control, on-line diagnosis, distributed database com-
mitment, etc. that could benefit from the possibility to achieve consensus in systems
with link failures. Part of our future research will hence be devoted to the explo-
ration of such applications.

ACKNOWLEDGMENTS
We are grateful to Martin Biely for his comments on an earlier version of this paper.

21 Note that the transmitter in a Byzantine agreement algorithm should be neglected when com-
paring the number of processes with the consensus lower bound, cf. Remark 1 on Definition 5.1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 63

REFERENCES

ABRAMOWITZ, M. AND STEGUN, I. A. 1970. Handbook of Mathematical Functions. Dover Publi-
cations, Inc., New York.

ABU-AMARA, H. AND LOKRE, J. 1994. Election in asynchronous complete networks with inter-
mittent link failures. IEEE Transactions on Computers 43, 7 (July), 778-788.

AFEK, Y., ATrTivA, H., FEKETE, A., FISCHER, M., LyNCH, N., MANSOUR, Y., WANG, D.-W .,
AND ZUCK, L. 1994. Reliable communication over unreliable channels. Journal of the ACM
(JACM) 41, 6, 1267-1297.

AGUILERA, M. K., CHEN, W., AND TOUEG, S. 2000. Failure detection and consensus in the
crash-recovery model. Distributed Computing 13, 2 (Apr.), 99-125.

AGUILERA, M. K. AND TOUEG, S. 1998. A simple bivalency proof that t-resilient consensus requires
t+1 rounds. Tech. Rep. TR98-1701, Department of Computer Science, Cornell University.
September.

ATTIYA, H. AND WELCH, J. 1998. Distributed Computing. McGraw-Hill.

AZADMANESH, M. AND KIECKHAFER, R. M. 2000. Exploiting omissive faults in synchronous
approximate agreement. IEEE Transactions on Computers 49, 10 (Oct.), 1031-1042.

AZADMANESH, M. H. AND KIECKHAFER, R. M. 1996. New hybrid fault models for asynchronous
approximate agreement. IEEE Transactions on Computers 45, 4, 439-449.

Basu, A., CHARRON-BOST, B., AND TOUEG, S. 1996. Crash failures vs. crash + link failures. In
Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing.
ACM Press, 246.

BieLy, M. AND ScHMID, U. 2001. Message-efficient consensus in presence of hybrid node and
link faults. Tech. Rep. 183/1-116, Department of Automation, Technische Universitit Wien.
August. (submitted).

CHARRON-BOST, B. AND SCHIPER, A. 2000. Uniform consensus harder than consensus. Tech. Rep.
DSC/2000/028, Ecole Polytechnique Fédérale de Lausanne, Switzerland. May.

CRISTIAN, F., AgHILl, H., STRONG, R., AND DOLEV, D. 1985. Atomic broadcast: From simple
message diffusion to byzantine agreement. In Proceedings 15th Int. Conf. on Fault-Tolerant
Computing (FTCS-15). Ann Arbor, Michigan, USA, 200-206.

CRISTIAN, F. AND FETZER, C. 1994. Fault-tolerant internal clock synchronization. In Proceedings
of the Thirteenth Symposium on Reliable Distributed Systems. Dana Point, Ca., 22-31.

EUGSTER, P. T., GUERRAOUI, R., HANDURUKANDE, S., KERMARREC, A.-M., AND KOUZNETSOV,
P. 2001. Lightweight probabilistic broadcast. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN’01). Goteborg, Sweden, 443-452.

Fi1sCHER, M., LynCH, N., AND MERRITT, M. 1986. Easy impossibility proofs for the distributed
consensus problem. Distributed Computing 1, 1, 26-39.

FIscHER, M. J., LyNCH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed consensus
with one faulty processor. Journal of the ACM 82, 2 (Apr.), 374-382.

GAFNI, E. 1998. Round-by-round fault detectors (extended abstract): unifying synchrony and
asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing. ACM Press, 143-152.

GONG, L., LINCOLN, P., AND RUSHBY, J. 1995. Byzantine agreement with authentication: Ob-
servations and applications in tolerating hybrid and link faults. In Proceedings Dependable
Computing for Critical Applications-5. Champaign, IL, 139-157.

GRAY, J. N. 1978. Notes on data base operating systems. In Operating Systems: An Advanced
Course, G. S. R. Bayer, R.M. Graham, Ed. Lecture Notes in Computer Science, vol. 60. Springer,
New York, Chapter 3.F, 465.

GRIDLING, G. 2002. An algorithm for three-process consensus under restricted link failures. Tech.
Rep. 183/1-123, Department of Automation, Technische Universitdt Wien. Oct.

HADZILACOS, V. 1987. Connectivity requirements for Byzantine agreement under restricted types
of failures. Distributed Computing 2, 95-103.

HADZILACOS, V. AND TOUEG, S. 1993. Fault-tolerant broadcasts and related problems. In Dis-
tributed Systems, 2nd ed., S. Mullender, Ed. Addison-Wesley, Chapter 5, 97-145.

Journal of the ACM, Vol. V, No. N, Month 20YY.

64 . U. Schmid and B. Weiss

KnuTH, D. E. 1973. Fundamental Algorithms, 2nd ed. The Art of Computer Programming, vol. 1.
Addison-Wesley, Reading, Massachusetts.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4, 3 (July), 382-401.

LincoLN, P. AND RuUsHBY, J. 1993. A formally verified algorithm for interactive consistency
under a hybrid fault model. In Proceedings Fault Tolerant Computing Symposium 23. Toulouse,
France, 402-411.

LyncH, N. 1996. Distributed Algorithms. Morgan Kaufman.

MEYER, F. J. AND PrADHAN, D. K. 1987. Consensus with dual failure modes. In In Digest of
Papers of the 17th International Symposium on Fault- Tolerant Computing. Pittsburgh, 48-54.

NIKOLETSEAS, S. E. AND SPIRAKIS, P. G. 1995. Expander properties in random regular graphs
with edge faults. In 12th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’95). Munich, Germany, 421 — 432.

PERRY, K. J. AND TOUEG, S. 1986. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering SE-12, 3 (March), 477—
482.

PINTER, S. S. AND SHINAHR, I. 1985. Distributed agreement in the presence of communication
and process failures. In Proceedings of the 14th IEEE Convention of Electrical € Electronics
Engineers in Israel. IEEE.

PoweLL, D. 1992. Failure mode assumptions and assumption coverage. In Proc. 22nd IEEE Int.
Symp. on Fault-Tolerant Computing (FTCS-22). Boston, MA, USA, 386-395. (Revised version
available as LAAS-CNRS Research Report 91462, 1995).

REISCHUK, R. 1985. A new solution for the Byzantine generals problem. Information and Con-
trol 64, 1-3 (January—March), 23-42.

RusHBY, J. 1994. A formally verified algorithm for clock sychronization under a hybrid fault
model. In Proceedings ACM Principles of Distributed Computing (PODC’94). Los Angeles,
CA, 304-313.

RusHBY, J. 2001. Formal verification of hybrid Byzantine agreement under link faults. Tech.
rep., Computer Science Laboratory, SRI International, Menlo Park, CA. Available at
http://www.csl.sri.com/ rushby /abstracts/byzlinks01.html.

SANTORO, N. AND WIDMAYER, P. 1989. Time is not a healer. In Proc. 6th Annual Symposium
on Theor. Aspects of Computer Science (STACS’89). LNCS 349. Springer-Verlag, Paderborn,
Germany, 304-313.

SAYEED, H. M., ABU-AMARA, M., AND ABU-AMARA, H. 1995. Optimal asynchronous agreement
and leader election algorithm for complete networks with Byzantine faulty links. Distributed
Computing 9, 3, 147-156.

ScHMID, U. 1994. Synchronized UTC for distributed real-time systems. In Proceedings 19th
IFAC/IFIP Workshop on Real-Time Programming (WRTP’94). Lake Reichenau, Germany,
101-107.

ScHMID, U. 1995. Synchronized Universal Time Coordinated for distributed real-time systems.
Control Engineering Practice 3, 6, 877-884. (Reprint from [Schmid 1994]).

ScHMID, U. 2000. Orthogonal accuracy clock synchronization. Chicago Journal of Theoretical
Computer Science 2000, 3, 3-77.

ScHMID, U. 2001. How to model link failures: A perception-based fault model. In Proceedings
of the International Conference on Dependable Systems and Networks (DSN’01). Goteborg,
Sweden, 57—66.

ScHMID, U. AND FETZER, C. 2002. Randomized asynchronous consensus with imperfect com-
munications. Tech. Rep. 183/1-120, Department of Automation, Technische Universitdt Wien.
January. (submitted).

ScHMID, U. AND SCHOSSMAIER, K. 2001. How to reconcile fault-tolerant interval intersection with
the Lipschitz condition. Distributed Computing 14, 2 (May), 101 — 111.

ScHMID, U. AND WEISs, B. 2001. Consensus with oral/written messages: Link faults revisited.
Tech. Rep. 183/1-110, Department of Automation, Technische Universitidt Wien. Feb. (obsolete,
replaced by TR 183/1-124).

Journal of the ACM, Vol. V, No. N, Month 20YY.

Synchronous Byzantine Agreement under Hybrid Process and Link Failures . 65

ScHMID, U., WEIsS, B., AND RUSHBY, J. 2002. Formally verified byzantine agreement in presence of
link faults. In 22nd International Conference on Distributed Computing Systems (ICDCS’02).
608—616.

SINGH, G. 1996. Leader election in the presence of link failures. IEEE Transactions on Parallel
and Distributed Systems 7, 3 (Mar.), 231-236.

S1u, H.-S., CHIN, Y.-H., AND YANG, W.-P. 1998. Byzantine agreement in the presence of mixed
faults on processors and links. IEEE Transactions on Parallel and Distributed Systems 9, 4
(Apr.), 335-345.

SRIKANTH, T. K. AND TOUEG, S. 1987. Optimal clock synchronization. Journal of the ACM 34, 3
(July), 626-645.

TEL, G. 1994. Introduction to Distributed Algorithms. Cambridge University Press.

THAMBIDURAIL P. M. AND PARK, Y. K. 1988. Interactive consistency with multiple failure modes.
In Proceedings 7th Reliable Distributed Systems Symposium.

VARGHESE, G. AND LYNCH, N. A. 1992. A tradeoff between safety and liveness for randomized co-
ordinated attack protocols. In Proceedings of the 11th Annual ACM Symposium on Pprinciples
of Distributed Computing. Vancouver, British Columbia, Canada, 241-250.

WALTER, C. J., LINCOLN, P., AND Suri, N. 1997. Formally verified on-line diagnosis. IEEE
Transactions on Software Engineering 23, 11 (Nov.), 684-721.

WALTER, C. J. AND SURI, N. 2002. The customizable fault/error model for dependable distributed
systems. Theoretical Computer Science 290, 1223-1251.

WALTER, C. J., SURI, N., AND HUGUE, M. M. 1994. Continual on-line diagnosis of hybrid faults.
In Proceedings DCCA-J.

WEIss, B. AND ScHMID, U. 2001. Consensus with written messages under link faults. In 20th
Symposium on Reliable Distributed Systems (SRDS’01). 194-197.

WHITTAKER, E. AND WATSON, G. 1927. A Course of Modern Analysis. Cambridge University
Press, Cambridge.

Submitted November 2002

Journal of the ACM, Vol. V, No. N, Month 20YY.

