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Abstract

We address the problem of network booting: Distributed processes boot at unpredictable times and require to
start some distributed algorithm; we consider clock synchronization algorithms in systems of �������	��
 processes
where at most � exhibit Byzantine behavior. Obviously, assumptions like ”there are always at most one third of the
running processes Byzantine faulty” do not hold during system start-up when processes boot one after the other.
Another peculiarity of network booting is message loss, even if perfect communication is assumed: A message
that is sent by a correct process could be lost because the receiver has not completed booting when the message
arrives.

Using a partially synchronous model where upper and lower bounds upon transmission and computation time
exist but are unknown, we show that a suitable modification of Srikanth & Toueg’s non-authenticated clock syn-
chronization algorithm can handle network booting and guarantees bounded precision both during normal opera-
tion and start-up. Accuracy (in the sense of clocks being within a linear envelope of real-time) is only guaranteed,
however, if sufficiently many correct processes are eventually up and running.
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tems, Byzantine faults

�
This research is part of our W2F-project, which targets a wireline/wireless fieldbus based upon spread-spectrum (CDMA) communi-

cations, see http://www.auto.tuwien.ac.at/Projects/W2F/ for details. W2F is supported by the Austrian START programme Y41-MAT.



1 Introduction

Synchronized clocks are vital to many applications
(see [16] for an overview) and should therefore be pro-
vided as early as possible during system operation.
Algorithms [13, 17, 28] have been proposed that es-
tablish initial synchronization, but their assumptions
cannot always be guaranteed during system start-up:
Often it is assumed that all correct processes are up
and listening to the network when the algorithm is
started [17, 28]. In systems where processes boot at
unpredictable times, this assumption is too strong. We
will see that it can be dropped.

The problem of booting with initially down pro-
cesses has been solved for the special MAFT archi-
tecture [13]. There a priori assumptions on message
transmission delay and local timers are used to con-
struct a sufficiently large listen window. Termination
is achieved by Byzantine Agreement, which, however,
requires � � � 
 correct running processes that cannot
always be guaranteed during start-up. Our goal is min-
imizing the number of a priori assumptions.

Before we turn our attention to initial synchroniza-
tion during system start-up, we shortly revisit the prob-
lem of clock synchronization that we need to achieve
after booting: Every correct process � , which has com-
pleted booting and initial synchronization—we call
such a process active—, maintains a discrete clock�������
	

that can be read at arbitrary real-times
�
. It must

satisfy the following properties:

(P) Precision Requirement. There is some con-
stant precision ����
����� such that � �������
	���������
	 ���������
� for any two active correct pro-
cesses � and � and any real-time

�
.

(A) Accuracy Requirement. There are some con-
stants � �"!#�
$%�
&'��� such that � ���)(*�'�"+,	-� !.��������/(0	1�2�������"+3	 �4$ ���/(5�6�3+3	 � & for any active
correct process � and any two real-times

�3( � �"+
.

The precision requirement (P) states that the dif-
ference of any two correct clocks in the system
must always be bounded, whereas the accuracy re-
quirement (A) guarantees some relation between the
progress of clock-time and progress of real-time; in lit-
erature (A) is also called linear envelope requirement.
It is well known [9] that without authentication1 no

1We do not consider authenticated algorithms. Besides the
disadvantages of computational and communication overhead, it

more than one third of the processes may be Byzan-
tine faulty to ensure (P) and (A). Our goal is to handle
system initialization without increasing the number of
required processes.

Obviously, the problem of startup vanishes if an
a priori bound on the period of time required for
completing the startup of all correct processes can
be guaranteed: An initializing process in a (semi-)
synchronous system can simply setup a suitable local
timeout before it starts sending its first message. How-
ever, many real networks cannot be modeled properly
as synchronous systems, and even a single correct pro-
cess that violates the booting time assumption could
cause the initialization to fail. Consequently, a time(r)-
free initialization, if available, is preferable.

Let us now take a closer look at the problems evolv-
ing in systems of ������� � 
 processes where all cor-
rect processes are initially down. Let us assume that
there is an initialization algorithm 7 that handles ini-
tially down correct processes and Byzantine faults. For
liveness, 7 must eventually initialize all correct pro-
cesses and bring them into a state where they can up-
date their clocks regularly such that each correct clock
always satisfies (P) and (A). 7 must of course also han-
dle the case where Byzantine faulty processes are just
down and never send messages, hence it must reach
initial synchrony when at least �

� � correct processes
are up. Now consider the case where Byzantine faulty
processes behave exactly as correct ones during ini-
tialization. It is obvious that 7 again initializes the
system, but in this case we could have a system of
�98 � � � ��� 
 running processes with up to � faulty
ones among them (more than one third of the processes
would be faulty).

A straightforward approach could be based upon
determining at runtime when sufficiently many (at
least � � � 
 ) correct processes are eventually up. A
process would have to wait until it has received mes-
sages from ��� � 
 processes. To guarantee liveness
in the case of Byzantine processes not sending any
messages, the number of required processes would in-
crease to : � � 
 . The question is: Could this penalty
somehow be avoided?

One possible solution is that the clock synchroniza-
tion algorithm has graceful degradation [19]. This
prevents Byzantine processes from corrupting the sys-

is never guaranteed that malicious processes cannot break the
authentication scheme. Using the algorithm of Srikanth and
Toueg [28], our correctness proofs do not rely on the probability
of the security of authentication services .
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tem state if more than one third of the processes are
faulty. But even with graceful degradation the imple-
mentation is not trivial since it must guarantee that late
starters will be synchronized with the earlier started
processes such that eventually properties (P) and (A)
are achieved.

If, on the other hand, the algorithm has no grace-
ful degradation, Byzantine processes could force the
system into an arbitrary state and the solution of ini-
tialization must be self-stabilizing [7]. Most self-
stabilizing clock synchronization algorithms [2,10,21]
do not stabilize if some processes remain faulty dur-
ing the whole execution. Exceptions are the algo-
rithms by Dolev and Welch [11], which stabilize even
in the presence of Byzantine faults, but they require
synchronous systems (enforced by a common pulse)
or semi-synchronous systems (processes are equipped
with physical clocks). This does not match with our
partially synchronous system model. Stabilizing algo-
rithms, however, cannot guarantee bounded precision
during whole system life-time since the transition from
illegitimate system states to normal operation cannot
always be detected.

Accomplishments: In our paper, we show that the
number of required processes need not be increased for
clock synchronization2 in partially synchronous (and
hence also synchronous) systems: By modifying the
well-known algorithm of Srikanth and Toueg [28], we
provide an algorithm that is complete time- and timer-
free and requires only � ����� � 
 processes even dur-
ing system startup. It guarantees precision � �-�"� dur-
ing whole system operation, whereas progress of the
clocks (linear envelope requirement) can only be guar-
anteed when sufficiently many correct processes are up
and running. Using our clock synchronization service
in conjunction with any higher-level distributed algo-
rithm that requires just � -synchronized clocks hence
guarantees safety also during system startup.

Related Work: Clock synchronization in dis-
tributed systems is a very well-researched field (see [9,
20,23,24,26,27] for an overview). Still, there are only
a few papers [13, 17, 20, 28, 29] known to us that deal
with initial synchronization, mostly in the context of
integrating a new process in an already running sys-
tem. Exceptions are solutions for very specific archi-

2Although this problem is traditionally studied in systems with
known timing behavior where the processes are equipped with lo-
cal hardware clocks, it can also be solved in partially synchronous
systems with software clocks (counters) .

tectures: For the TTP system, the startup—as change
from asynchronous to synchronous operation—has
been investigated [29]. As we have seen above, initial
clock synchronization for the MAFT architecture [13]
has been solved, but under stronger system assump-
tions.

Still we do not know of any approach that could be
compared to ours with respect to partial synchrony in
conjunction with initially down correct processes.

Much research has been conducted on partially syn-
chronous systems [4,8,12,18]. Clock synchronization
is an important issue here as well (see [12, 22]). Our
modifications of Srikanth and Toueg’s algorithm [28]
are in fact based upon ideas from work conducted on
consensus algorithms for partially synchronous sys-
tems [3, 12]. Still, we do not know of any work that
considers system startup. Another system model that
is neither completely synchronous nor asynchronous is
the Timed Asynchronous Model [6] where processes
are equipped with physical clocks, which is not the
case in our system model. Further semi-synchronous
models (see e.g. [22]) assume that processes know a
priori about the timing bounds of the system, which is
not the case in partially synchronous systems.

The results of this paper are related to the crash
recovery model [1], where processes may crash and
recover arbitrarily during the execution of a consen-
sus algorithm. We consider Byzantine faults, though.
Similar work was conducted in the context of clock
synchronization [5]. We, however, consider more than
��� � “crashed” (actually, “initially dead”) processes
during startup. This exceeds the bounds of the pre-
vious work [1, 5]. As mentioned above, there is also
some relation of our algorithm to the synchronous
approximate agreement algorithms by Mahaney and
Schneider [19], which provide graceful degradation
when between 


� � and � � � of the processes are faulty.
We also reach this bound.

Organization of the paper: Section 2 contains our
partially synchronous system model as well as some
additional notation related to the initialization phase.
Our novel algorithm is described in Section 3 and an-
alyzed for degraded mode in Section 4. Advancing
from degraded to normal mode is discussed in Sec-
tion 5. In Section 6 we shortly discuss our algorithms
accuracy properties during normal operation.
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2 System Model

We consider a system of � distributed processes de-
noted as � �
� ������� , which communicate through a re-
liable, error-free and fully connected3 point-to-point
network. We assume that a non-faulty receiver of a
message knows the sender. The communication chan-
nels between processes need not provide FIFO trans-
mission, and there is no authentication service.

Among the � processes there is a maximum of �

faulty ones. Since we examine the starting of a net-
work, correct processes that just have not booted yet
are not counted as faulty. No assumption is made
on the behavior of faulty processes; they may exhibit
Byzantine faults [14].

Our system model is partially synchronous [12].
Rather than the global stabilization time model, where
it is assumed that the system is synchronous from some
unknown point in time on, we use (a slight variant of)
the model where bounds upon transmission and com-
putation delays exist but are unknown. Therefore pro-
cesses have no timing information and can only make
decisions based on received messages. In our analy-
sis we will denote by

�
the end-to-end computational

+ transmission delay of a message sent between two
correct processes;

�
can be different for each message.

We consider a timing model that differs from previ-
ous models [12], since we do not only give an upper
bound ��� for the transmission delay but also a lower
bound ��� such that �	�
��� � � �������� , where
��� and ��� are not known in advance. Since ������� ,
every message sent from a correct process to another
one is eventually received.

The two values � and � describe the timing uncer-
tainty: We will use the transmission delay uncertainty
������� � ��� frequently in our analysis. A second, par-
ticularly important measure of uncertainty is the trans-
mission delay ratio ����� � � � � . All our results will
solely depend on � 4, which has a number of interest-
ing consequences [15], e.g. improved coverage: The
bound on � may hold even in the case when ��� is vi-
olated during periods of high network load, when the
current lower bound also increases.

3Note that even under our perfect communication assumption,
messages that reach a process that is not booted are lost. The trans-
fer of our algorithm into a system model with hybrid node and link
faults is subject to ongoing work .

4In real systems � can be adjusted by introducing a constant
local timeout � as part of the computational delay. This increases
both ��� and ��� and thus decreases � . Since � is only used to slow
down the algorithm, the system remains partially synchronous.

2.1 Model of the Initialization Phase

At the beginning all correct processes are down, i.e.
they do not send or receive messages. Every message
that arrives at a correct process while it is down is
lost. A correct process decides independently when it
wishes to participate in the system (or is just switched
on). Faulty processes may be Byzantine, we can hence
safely assume that faulty processes are always up or at
least booted before the first correct one.

During initialization, correct processes go through
the following modes:

1. down: A process is down when it has not been
started yet or has not completed booting.

2. up: A process is up if it has completed booting.
To get a clean distinction of up and down we
assume that a process flushes the input queues of
its network interface as first action after booting
is completed. Hence it receives messages only
if they have arrived when it was up.

(a) passive: Running processes initially per-
form an initialization algorithm that does
not provide the required service to the ap-
plication. During this phase they are said
to be passive.

(b) active: Processes which have completed
their initialization in passive mode and
provide the required service (in our case
clock synchronization) to the application
are active.

Let � 8 � be the number of processes which are up at
a given time; � 8 � includes at most � faulty processes.

2.2 Messages

There are only two types of messages sent by our al-
gorithm: (init,  ) and (echo,  ), where  is the senders
clock value. We require messages with history: (echo,
 ) implies (echo,  � 
 ) and (echo,  � � ) messages
(the information is transferred implicitly and therefore
requires no additional data). This is necessary since
processes that start late could have missed previous
messages. Going back two rounds with history size
is—as we will see—sufficient for our algorithm.
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3 The Algorithm

The algorithm given in Figure 1 is an extension of
the well known non-authenticated clock synchroniza-
tion algorithm by Srikanth and Toueg [28]. In fact the
first three if clauses (line 4 to line 16) are iden-
tical to their algorithm.

For each correct process

1 VAR k : integer := � ;
2 VAR mode : � passive, active � := passive;
3
4 if received (init, k) from at least ����� distinct processes
5 � send (echo, k) to all [once];
6 fi
7
8 if received (echo, k) from at least ���	� distinct processes
9 � send (echo, k) to all [once];
10 fi
11
12 if received (echo, k) from at least 
��� distinct processes
13 � if mode = active ����� �����	� ; fi /* update clock */
14 ��� ������� ;
15 send (init, k) to all [once]; /* start next round */
16 fi
17
18 /* catch-up rule */
19 if received (echo, l) from at least ���	� distinct processes
20 with ���������
21 � if mode = active ����� ������� ; fi /* update clock */
22 ��� ������� ; /* jump to new round */
23 send (echo, k) to all [once];
24 fi

Additional Code for each passive correct process

25 if received (init, x) from at least ����� distinct processes
26 � �!� ��"�#%$�&'$(�)�+*,�.- ;
27 ��� ��"�#%$�&'$����/*0�1- ;
28 mode := active;
29 send (echo, k) to all [once];
30 fi

Figure 1. Clock Synchronization Algorithm
with Start-up

The algorithm basically implements a nearly simul-
taneous global event in a system of � � ��� � 
 pro-
cesses, which is used to simultaneously increment the
clocks at all processes: When a local clock has made
its  �243 tick, the process sends an (init, k) message to all.
If any correct process receives � � 
 (init, k) messages
it can be sure that at least one was sent by a correct pro-
cess and it therefore sends (echo, k). When � � 
 (echo,

k) messages are received at a process it also sends
(echo, k).5 If a process receives �

� � � � � � 
 (echo,
k) messages it can be sure that among those are at least
� � 
 messages sent by correct processes. These will
be echoed by every other correct process so that within
bounded time every correct process also receives �

� �
(echo, k) messages—this property is called relay. This
only works because �

� � is the minimum number of
correct running processes in the system. Therefore, ev-
ery process that has received �

� � (echo, k) messages
may safely increment its local clock value to  ��
 and
send (init,  � 
 ).

Srikanth and Toueg have shown [28] that the algo-
rithm achieves (P) and (A) for systems with ������� � 


if they are initially synchronized. They give an algo-
rithm for initialization as well, which, however, does
not work in our setting: If � 8 � � � � � it could
be that with the “help” of faulty processes, correct
ones make some progress. Still there are not suffi-
ciently many correct processes up to guarantee relay
and hence progress at every correct process; (P) and
(A) could be violated. In [28] a solution for integra-
tion of late starters is given as well, which relies on
progress. Since there is no progress guarantee for our
reduced �98 � there also is no guarantee for integration.

We reach our goal of bounded precision (P) during
whole system operation based on the following obser-
vation: Progress of clock value at a correct process
requires always at least � � 
 messages from distinct
correct processes. Since correct processes always sent
messages to all, every correct process must receive
those messages. If a process � receives � � 
 (echo)
messages for a future tick, it can conclude that at least
one correct process has such a clock value and � could
update its clock. Therefore we extend Srikanth and
Toueg’s algorithm by (1) the current clock value  in
line 1 (which is not available in the original algo-
rithm [28] since all ticks are observed concurrently)
and (2) the catch-up rule6 in line 19-26 that trig-
gers if � � 
 messages for a future tick are received
such that � can update its clock value.

To overcome the problem of lost messages due to

5Since correct processes send (init,k) and (echo, k) only if at
least one correct clock has made its �.576 tick (set �8� �9� ), we
summarize them as messages for the � 5'6 tick frequently in our
discussion.

6A similar construct is used in a clock synchronization algo-
rithm for partially synchronous systems in [12]. In [3] it is used in
a phase protocol which is part of a consensus algorithm. Booting
is not addressed there.
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initially down processes we add the following protocol
(which is not shown in Figure 1): As first action after
getting up, a correct process sends (echo, � ) to all. If
a correct process � receives (echo, � ) by a process � it
resends the last (echo,  ) message it has sent to � .

It is easy to see that the first � � 
 correct processes
are initially synchronized at clock value � 7, since no
correct process can make any progress before at least
� � 
 correct processes are up. Before discussing the
behavior of correct late starters we give some useful
definitions and lemmas.

Definition 3.1 (Local Clock Value).
�������
	

denotes
the local clock value of a correct process � at real-
time

�
; �
��
, where  � � , is the sequence of real-times

when process � has set its local clock value to  � 
 .

Definition 3.2 (Maximum Local Clock Value).� �-�"� ���)	 denotes the maximum of all local clock val-
ues of correct processes that are up at real-time

�
.

Further, let �
��������
2 �	�

�� � �
be the real-time the

first correct process � has set its local clock value to
 � 
 � � �-�
� ���
	 .

The following Lemma 3.3 shows that progress of� �-�"� ���)	 is only possible via the third if (line 12),
which needs at least � � 
 messages by distinct correct
processes. This fact will be heavily used in our proofs.

Lemma 3.3 (3rd if). In a system of � � ��� � 
 pro-
cesses, every correct process—executing the algorithm
given in Figure 1—that sets its clock to

� ���
� ���
	 by
time

�
must do so by the third if clause in line 12.

Proof. By contradiction. Let a correct process � set its
clock to  � � �-�
� ���
	 at instant

�
by a catch-up rule

(line 19 or line 27). At least one correct process
must have sent a message for a tick 
.�  before

�
.

Since correct processes never send messages for ticks
greater their local clock value, at least one had a clock
value 
 �  at instant

�
. Thus

� �-�"� ���)	 �  which
provides the contradiction.

Lemma 3.4 (Minimal Number of Init Messages).
Given an arbitrary point in time

�
with 
 � � �-�"� ���
	 ,

let
��� � �

be the instant when
� �-�"� further increases.

7In real systems where physical clocks (with different values)
must be synchronized initially, starting with clock value � could be
regarded as unsatisfactory. We do not think, however, that this is
a major drawback since we consider initialization where the pro-
cesses are just booted. In general the initial physical clock values
cannot be trusted directly after booting, especially if only internal
synchronization is considered.

For � � ��� � 
 , at least � � 
 correct processes set
their clocks to

� �-�"� ���)	 by the third if and therefore
send (init, l) before

� �
.

Proof. In order for the first correct process to set its
clocks to 
 � 
 , it must have received at least �

� � �
� ��� 
 (echo, 
 ) messages sent by distinct processes.
At least � � 
 of those must originate from correct
processes, which must have set their local clock to 
 by
the third if (Lemma 3.3) and sent (init, l) earlier.

As we have seen in Lemma 3.4, � � 
 (init,  ) mes-
sages are sent for every tick  . Correct processes never
send (init,  ) messages for arbitrarily small ticks com-
pared to

� ���
� 8. These two facts are used for chang-
ing from passive to active mode. As discussed in the
system model in Section 2.1 processes start in passive
mode. We have already mentioned that each correct
process starts with sending (echo, � ) to all. Then it just
executes the algorithm from Figure 1. When a correct
passive process � eventually receives � � 
 (init,  )
messages for a tick  (see line 25) it can be sure
that at least one correct process has sent one. Because
 cannot be too far apart from

� �-�"� , process � can
conclude that its clock value is within precision and
can hence switch to active. We discuss initialization of
late starters in Section 5. But first we give a precision
������� in the following section.

4 Degraded Mode

In this section we will see that the clocks of all cor-
rect early starters are always within � ����� of each
other. Note that late starters are guaranteed to even-
tually reach this precision as well. For now we as-
sume that there is a fixed number � 8 � � � of pro-
cesses which are initially up and the correct ones (at
least � 8 � � � ) have clock value � . This models ex-
actly our early phase, starting when enough correct
processes are up such that progress is possible but not
guaranteed. In this section’s analysis we assume that
there are no late starters (late starters are incorporated
in Section 5). In the following Theorem 4.1, we will
see that even a reduced number of processes achieves
some weak properties that are sufficient—as we will
see in Theorem 4.5—to guarantee (P) with some pre-
cision ������� 9.

8See Appendix A for details
9Note that we have no progress guarantee in this phase and

hence cannot guarantee (A).
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Theorem 4.1 (Weak Synchronization Properties).
For ������� � 
 with any � 8 � , where � � � 8 � � � , the
algorithm from Figure 1 achieves:

P1W Weak Correctness. If at least � � 
 correct pro-
cesses set their clocks to  by time

�
, then every

correct process sets its clock at least to  � 
 by
time

� � ��� � .

P2 Unforgeability. If no correct process sets its
clock to  by time

�
, then no correct process sets

its clock to  � 
 by time
� � ��� � or earlier.

P3W Weak Relay. If a correct process sets its clock
to  at time

�
, then every correct process sets its

clock at least to  � � by time
� � � .

Proof. Weak Correctness. If  �� � ���
� ���
	 all � � 


correct processes must have set their clocks to  using
the third if (line 12), and therefore have sent (init,
 ) by time

�
(see Lemma 3.3). These correct processes

receive the (init,  ) messages by time
� � ��� and there-

fore send (echo, k) to all. All correct processes must
receive those � � 
 (echo,  ) messages by time

� � �����
and therefore set their clocks to  � 
 by the fourth
if (line 19), if they have not already done so.
If  � � �-�"� ���)	 at least � � 
 correct processes have set
their clocks to  by time

� � � �
using the third if from

line 12 (otherwise no correct process may have set
its clock to a value greater than  —see Lemma 3.3)
and therefore all correct processes set their clocks by
time

��� � ����� � � � ����� (see previous paragraph).

Unforgeability. Setting the clock value can be done
at correct processes by three rules. The proof for all is
by contradiction.
Assume there is a process � that sets its clock to  ��

before instant

� � ����� by the third if (line 12). It
does so because it has received �

� � � � � � 
 (echo,
k) messages by distinct processes. There are at least
��� 
 (echo, k) messages sent by correct processes
among those, which must have been sent before

� � � � .
Correct processes only send (echo, k) when they have
received � � 
 (init, k) or (echo, l) messages for a 
 �  
from distinct processes. At least one correct process
must have sent a message for tick 
 �  before

�
. By

assumption no tick  messages are sent before
�
. Since

all tick 
 �  messages are sent after tick  messages
by a correct process no such message has been sent by
time

�
, which provides the required contradiction.

Assume that there is a process � that sets its clock to
 � 
 before instant

� � ����� using the fourth if (line

19). Process � does so because it has received � � 


(echo, l) messages by distinct processes for some 
 �
 ��
 . That is, at least one (echo, l) message must have
been sent by a correct process � before

� � � � . Pro-
cess � has sent it, because it has received at least � � 


messages for tick  � 
 . At least one of these mes-
sages must have been sent by a correct process before
time

�
, since messages for tick  �  are sent by a

correct process only after tick  messages. But by P2s
assumption no tick  message was sent before

�
, which

again provides the contradiction.
Assume finally that there is a correct process � that
sets its clock to  � 
 before instant

� � ��� � using the
fifth if (line 27). Process � does so because it has
received at least � � 
 (init,  � � ) messages by time� � ����� . At least one of these (init,  � � ) message must
have been sent by an correct process � before

� � � � .
Process � has sent it, because it has received at least
� � � � � � � 
 (echo,  � 
 ) messages by time� � � � , such that at least one (in fact ��� 
 ) correct
process must have sent (echo,  � 
 ) before time

�
. A

correct process never sends any  � 
 messages before
it has send a message for tick  . By assumption no tick
 message was sent by time

�
which again provides the

contradiction.

Weak Relay. Assume  � � �-�"� ���)	 . A correct pro-
cess must set its clock to  using the third if from
line 12 (recall Lemma 3.3), when it has received at
least �

� � � � � � 
 (echo,  � 
 ) messages. Among
those are at least � � 
 messages sent by distinct cor-
rect processes. These messages must be received by
all correct processes by time

� � � and therefore they
set their clocks to  � � (using the fourth if ).
If  �� � ���
� ���
	 then at least one correct process has
already set its clock to  � �  at time

��� � �
using

the third if (line 12). We have shown in the previ-
ous paragraph that all correct processes must set their
clocks to  � � � by time

��� � � so all correct processes
must also set their clocks to  � � by time

� � � .
Note that P1W and P3W are directed to past ticks:

Progress is not guaranteed because the properties only
ensure that processes reach prior clock values. Still
there are time bounds in P1W, P2 and P3W which are
sufficient to satisfy the precision requirement (P), as
we will show in Theorem 4.5. We require some prepar-
ative lemmas for this purpose. The following simple
Lemma 4.2 follows immediately from P2 and is hence
true for any algorithm that respects unforgeability. It
will be used frequently in our proofs.
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Lemma 4.2 (Fastest Progress). Let � be the first cor-
rect process that sets its clock to  at time

�
. Then no

correct process can reach a larger clock value  � �  
before

� � ����� �  � �  	 .
Proof. By induction on 
 �  � �  . For 
 � 


Lemma 4.2 is identical to unforgeability and there-
fore true. Assume that no correct process has set its
clock to  � 
 before

� � ��� � 
 for some 
 . Thus no
processes may set their clocks to  � 
 � 
 before� � ����� 
 � ����� � � � ����� � 
 � 
 	 following unforge-
ability. Hence Lemma 4.2 is true for 
 � 
 as well.

In our analysis we will frequently require to bound
the increase of

� �-�
� during a given real-time interval� �3+ � � (�� . Lemma 4.2 can be applied for this purpose if�3+ � �
��������
2 but not for arbitrary times

� +
. As in [25] we

will provide a general solution based on the following
Definition 4.3.

Definition 4.3 (Synchrony). Real-time
�

is in syn-
chrony with

� �-�"� ���)	 iff
� � �

��������
2 for some real-

time �
������ �
2 (for some arbitrary  ) as defined in Defi-

nition 3.2. Let the indicator function of non-synchrony
be defined as

�
2���	� � � � ���
	 � 
 � if

�
is in synchrony with

� ���
� ���
	 �

 otherwise �

Lemma 4.4 (Maximum Increase of
� �-�
� within

Time Interval). Given any two real-times
�"( � �"+

.� �-�"� ��� ( 	��'� �-�
� ���3+3	 ��� 2� � 2��(��
��� � � � ���"+,	 .

Proof. Let  � � �-�"� ���"+3	�� 
 . We have to distinguish
the two cases �

��������
2 �

� +
and �

�� � ���
2 �

� +
.

Let �
�� � ���
2 �

�3+
such that

� � ���3+,	 � � . From
Lemma 4.2 follows that

� �-�"� may increase every
����� time-units, hence � 2  � 2 �(��

��� times before
�/(

. Since� � ��� + 	 � � , Lemma 4.4 is true for this case.
Now let �

��������
2 �

�3+
, such that

� � ���3+3	 � 
 , and

let the real-time
� � � �

�
�
+

�������
2 �

� +
. We can now apply

Lemma 4.2 starting from time
� �

. Since
�/( �*�"+ � � ( ��� �

it follows from Lemma 4.2 that
� ���
� cannot increase

more often than � 2� � 2��(��
��� times between

� �
and

�/(
. At

instant
� �

,
� �-�"� has already increased once such that� �-�"� ��� ( 	#� � �-�"� ��� + 	 ��� 2� � 2��(��

� � � 
 . Since
� � ��� + 	 � 


Lemma 4.4 is also true for this case.

In the following major Theorem 4.5 we give a
bound for the precision requirement (P). We assume
an instant

�
such that

� � �
��

for a correct process � .
From weak relay we can derive a bound for �

�
�
(�

for

any other correct process � , such that �
�
�
(� � �

�
�
(

�������
2 .

Using Lemma 4.4 we can give a bound for
� �-�
� ���
	

and hence bound the achievable precision � ����� .

Theorem 4.5 (Precision in Degraded Mode). Given
a system of � � ��� � 
 processes with � 8 � processes
being up, where �'� � 8 � � � . Let the correct ones
among them be initially synchronized to � . Then the
algorithm of Figure 1 satisfies the precision require-
ment (P) with � ����� ��� +( � ���( � .
Proof. If no correct process advances its clock beyond
 �� � , precision � ����� � � is automatically main-
tained since all clocks are initially synchronized to
 � � .

Assume that a correct process � has a local clock
value  � � within a still unknown precision � �����
with respect to all other correct processes—and there-
fore also to

� �-�"� ��� � 	 —at real-time
� �

. We now use
weak relay (P3W), Definition 4.3 and Lemma 4.4 to
reason about � ����� by calculating

� �-�
� ���
	 for some
time

� � � �
.

Let process � advance its clock to  � 
 such that
�
�� � � � � �

. Since � has not done so before
�
, no

other correct process has set its clock to  � � before� �
� , following directly from weak relay (P3W), thus

�
�
�
(

����� �
2
� ���

� .
From Lemma 4.4 follows that

� ���
� ���
	 �� 2 ��� 2 �����(��
��� � � � ���9� � 	 � � ���
� ��� � � 	 . Let us now take

a closer look at the term
� � ���5� � 	 � � �-�"� ��� � � 	 : If

�
�
�
(

����� �
2 �

� �
� and therefore

� �
� is synchronized with� ���
� ,

� �-�
� ��� � � 	 �  � � and
� � ��� � � 	 � � (follow-

ing Definition 4.3). If on the other hand �
�
�
(

����� �
2 �

� �
� ,� ���
� ���1� � 	 �  � � and

� � ���1� � 	 � 
 . In both cases� � ��� � � 	 � � ���
� ��� � � 	 �  � � such that
� ���
� ���
	 �� �(�� � � �  � � thus

� �-�
� ���
	 ��� +( � � �( � �  .
Process � has clock value

� � ��� � 	 �  at time��� � �
which is by assumption within precision. Since� � ����� 	 � � � ���
	

and
� �-�"� ��� � 	 � � �-�"� ���)	 , we get a

bound for our precision � ����� from the difference� ���
� ���
	�� ��� ��� � 	 � � ���
� ���
	��  ��� +( � � � ( � .
5 Integration

In the previous section, we discussed the behavior
of the early starters. We now turn our attention to cor-
rect late starters which get up after there was possibly
some progress of

� ���
� . The bound for the resulting
precision is a worst case analysis, where it is assumed
that a correct process changes to active mode (and
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hence must satisfy precision) right after booting based
on the worst possible messages. Due to space restric-
tions, this section just provides a proof sketch10 . When
considering integration we must of course guarantee
that the required clock synchronization conditions (P)
and (A) are satisfied after enough correct processes are
up. We do so later in this section in Theorem 5.3.

Theorem 5.1 (Precision). For the described system
with � � ����� 
 , there exists a constant � ���
� such
that � ��� ���
	 � ���%���
	 � � ���-�"� for all active correct
processes � and � at every time

�
. � �-�"� ��� � � � +)+( � .

Proof Sketch. Since (init) messages are used for the
change from passive to active mode we must first con-
firm that no (init,  ) messages for arbitrarily small  
are sent by correct processes, i.e.

� ���
� �  is bounded.
This is true since every correct process requires �

� �
(echo) messages in order to send (init), such that there
must be at least one correct process whose message is
used to both increase

� �-�
� and send (init,  ).
For the worst case precision, we must consider a newly
started process � that receives � � 
 (init, k) messages
with  as small as possible compared to

� �-�
� . Then
we give a bound on how much

� ���
� can increase be-
fore � must change to active at time

�
, with clock value

 � 
 . After time
�
, process � ’s clock value becomes

and stays better, thus
� �-�"� ���)	5� �  � 
 	 is our bound

for precision ��-�"� .

Theorem 5.1 shows that (P) is always maintained.
In order to show that our algorithm also satisfies (A)
when sufficiently many correct processes are up, we
give a bound on the maximum time interval it takes
to get progress into the system after the �

� � 243 cor-
rect processes got up at time

�
. Since at time

�
at least

one correct process has a clock value of
� �-�"� ���)	 , (init,� �-�"� ���)	 ) messages may have been missed by the ini-

tializing process. The first tick, for which it is guar-
anteed that all correct processes receive at least � � 


(init) messages, is
� �-�
� ���
	 � 
 . The following The-

orem 5.3 gives the latest possible instant when those
(init,

� �-�"� ���)	 � 
 ) messages are received by all cor-
rect processes.

Remark The necessity of �
� � messages by distinct

processes instead of � ��� 
 is a drawback of our so-
lution that cannot be avoided in partially synchronous
systems, however: Assume a system of � ��� � � � ,
thus : � � � correct processes. Assume further that

10Detailed analysis can be found in Appendix A

� � � 
 correct processes start early and reach some ar-
bitrary clock value. Then there could be � � � 
 correct
late starters which could learn about the early starters
after they reached a smaller common clock value. Dur-
ing this interval, (P) could be violated.

Lemma 5.2. For the algorithm given in Figure 1 for
������� � 
 and � 8 � � � � � , there are at least � � 


correct processes with local clock values
� ���
� ���
	 or� ���
� ���
	�� 
 at any time

�
.

Proof. If no correct process advances its clock beyond

 the lemma is true. Let � be the first correct process
that sets its clock to

� ���
� ���
	 �4� at instant
�

such that�������
	 � � ���
� ���)	 . It does so because it has received at
least �

� � � � � � 
 (echo,
� � ���)	 � 
 ) messages, i.e. at

least � � 
 sent by distinct correct processes. Correct
processes never send (echo) messages for ticks larger
than their local ones. Therefore at least � � 
 correct
processes must have a clock value of

�5�����
	
or
�������)	 � 


at time
�
.

Theorem 5.3 (Initialization Time). Let
�

be the time
the �

� � 243 correct process � gets up. By time
� ��� ��� �

2 ,
at least �

� � correct processes are running in active
mode, where � ��� � 2 ������� .

Proof. Process � sends its first (echo, 0) message at
time

�
. If there is already progress in the system, �

will be initialized very quickly because it receives the
necessary (init) messages � � after they were sent.

If the processes in front are not making progress,
the clock value of � at time

� � ��� � is
������� � ��� � 	 �� ���
� ���
	*� � and is reached using the catch-up rule

(line 19) as the answers from the ��� 
 most ad-
vanced processes (recall Lemma 5.2 and the fact that
(echo,  ) messages have a history, as described in Sec-
tion 2.2) must be received by then. Process � then
sends (echo,

� �-�"� ���)	�� � ), such that by time
� � � � �

every running correct process must have received �
� �

(echo,
� ���
� ���
	�� � ) messages.

Every running correct process now sets its clock to� ���
� ���
	 � 
 (if it has not yet done so) and sends an
(init,

� ���
� ���
	 � 
 ) message. It could be that � does
not receive � � 
 (init,

� ���
� ���
	 � 
 ) messages, be-
cause there were to many processes that already had
the clock value

� �-�"� ���)	5� 
 . So � does not necessar-
ily switch to active mode.

By time
� � ����� , however, all running correct pro-

cesses set their clocks to
� �-�"� ���)	 and by time

� �
	 � �
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to
� ���
� ���
	 � 
 . Therefore � and all other running cor-

rect processes receive at least � ��
 (init,
� ���
� ���
	 � 
 )

messages by time
� � ��� � or earlier. Then, at least

� � � correct processes run in active mode.

6 Envelope Synchronization

With �
� � correct processes being active we can

give stronger properties than the ones following from
P1W, P2 and P3W in Theorem 4.1. The following en-
velope condition can be derived from these stronger
properties, which assure progress. The analysis has
been omitted due to space restrictions11 .

Theorem 6.1 (Envelope Condition). The described
system, with ������� � 
 , where at least �

� � processes
are correct and active, satisfies the following envelope
condition

2  � 2 �(��
�
� : �

+
� � ������� ( 	 �.��� ���"+3	 � 2  � 2 �(��

�
� ���-�
� � 


for every correct active process � and all times
� ( � � +

.
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Appendix

A Analysis of Integration

This section contains a detailed analysis of the over-
all precision � �-�
� , which holds during whole system
operation for all active processes. Precision �.�-�"� is
based upon very little information on the system state,
that is only a few messages arriving at a process that
just got up: The presented solution for the change from
passive to active mode12 allows a correct passive pro-
cess � to change to active mode based on only one (init,
 ) message sent by a correct process (and the “help” of
faulty processes). Since process � computes its clock
value based on  , we get a bound for precision from
the maximum difference of

� ���
� ���
	 and  at instant
�
,

being
�

the time when � changes to active. We start the
analysis with the following Lemma A.1, which tells us
that there is at least one correct process whose mes-
sages are required both for increasing

� ���
� and send-
ing (init,  ) with the smallest possible  .

Lemma A.1. Any two correct processes � and � that
decide to send (init, x) and (init, y), respectively, must
use at least one message for this decision sent by a
common correct process.

Proof. Both processes � and � must have received at
least �

� � � � � (echo) messages from distinct pro-
cesses in order to send (init). Among those could
be � messages sent by Byzantine processes such that
� ���

� � � is the minimal number of messages sent
by correct processes. The total number of correct pro-
cesses in the system is �

� � . We now show that
����� � � � and that therefore at least one of � and � ’s
(echo) messages are sent by the same correct process.
Since � � ��� � 
 , we have � � � : � � � � � � � as
asserted.

For our worst case analysis, we require some infor-
mation on what can happen near the special time

� 8 �
when a late starter � gets up. Of special interest is the
instant

� ��� ��� from when on � is synchronized within
������� . The following Lemma A.2 shows how often� �-�"� could increase from the time

� 8 � to
� ��� ��� .

Lemma A.2 (First Synchronization). Let � be a late
starting correct process that gets up at instant

� 8 � and
 � � ���
� ��� 8 � � ��� 	 � 
 . Assume that

� ���
� increases

12Another solution with better precision but possibly later ini-
tialization is subject of ongoing work.

to  ��
 at time
� � � �

�� � ���
2 . Then

��� ���)	 � � �-�
� ���
	 �
������� for all times

� � � ��� ��� � ��� � � . Moreover,� ���
� ��� ��� ��� 	 � � ���
� ��� 8 � � � � 	 � � +( � �	�( � .
Proof. Let � be the first correct process that sets its
clock to  � 
 � � �-�"� ��� 8 �9� ��� 	 � � at time

��� � �
�� �

�
������ �
2 . It does so because, by time

� �
, it has received at

least �
� � � � � ��
 (echo,  ) messages. Thus at least

�	� 
 correct process have sent (echo,  ) after
� 8 � � ��� ,

because all correct processes set their clocks to  after
that and do not send messages for greater ticks than
their clock value. Therefore � receives all messages
sent by correct processes for all ticks 
 �  , such that
P1W, P2 and P3W can be applied to � starting from
time

���
(tick  � 
 ) on. Therefore—caused by weak

relay (P3W)—process � catches up by time
� ��� ��� �� � � � , and

�������
	 � � �-�"� ���)	�� ������� for all times� � � ��� ��� . Hence the first part of Lemma A.2 is true.
By assumption

� �-�"� ��� � 	 � � ���
� ��� 8 � � � � 	 � � �
 � 
 and

��� � �
��������
2 such that

� � ����� 	 � � accord-
ing to Definition 4.3. From Lemma 4.4, we know
that

� �-�"� ��� � � � 	 � � �-�
� ��� � 	 � � 2 
 � � � 2 
(��
� � � � � ��� � 	 �� ���
� ��� 8 � � ��� 	 � � � � +( � � +( � � � ���
� ��� 8 � � ��� 	 �� +( � �	�( � . Since

� ��� ��� � � � � � , the second statement
of Lemma A.2 follows.

Since (init, k) messages are used by passive pro-
cesses to switch to active mode, we must bound the
difference of  and

� ���
� . In the worst case some cor-
rect process � sends the worst possible (init, k) mes-
sage based on messages from Byzantine processes or
processes that are passive and therefore may send ar-
bitrarily small (echo) messages. Still, one message
that � uses must also be sent by a correct processes,
whose messages are also used to increase

� �-�
� by
Lemma A.1.

Remark The following two proofs of Lemma A.3 and
Theorem 5.1 are very similar. Both investigate the case
of a process � that decides upon actions (sending (init,
 ) in Lemma A.3 or changing to active in Theorem 5.1
respectively) after getting up at time

� 8 � but before� ��� ��� , the time � ’s clock is within precision � ����� .
Before

� ��� ��� , � ’s clock value may be worse than the
clock values of early starters. Nevertheless process �
requires messages from correct processes, and we will
show that our algorithm guarantees that the clock value
� decides on is bounded in its difference to

� �-�"� .
This is sufficient to ensure a precision �.�-�
� for late
starters when changing to active. We do this by using
Lemma A.2, which provides a bound on the increase of
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� �-�"� in the real-time interval
� � 8 � � � � � � ��� ��� � . We just

have to give a bound on
� �-�"� ��� 8 � � ��� 	 with respect to

� ’s clock value  when performing its action. The two
proofs differ in the derived value of

� �-�"� ��� 8 � � ��� 	 ,
which depends on what messages are required for the
actions of process � , and when they were sent in worst
case.

Lemma A.3. Every correct process � that sends (init,
k) at instant

�
does so with  � � ���
� ���
	�� � � � �( � .

Proof. We have to assume that � sends (init,  ) on
possibly few and bad information on the system state.
Still, Lemma A.1 ensures that at least one message �
used is sent by another correct process � whose mes-
sages contribute to increasing

� �-�"� as well.
Let

� 8 � be the time when process � changes to up.
Process � sends the worst possible (init,  ) message
at instant

� � � 8 � based on an (echo,  � 
 ) message
(which implies—as defined in Section 2.2—also the
messages (echo,  � 
 ) and (echo,  )) sent by a correct
process � that is received at � at time

� + � � 8 � . We
assume � to be the common process whose message
was used to increase

� �-�
� at instant
�)( � �

�
�
+

�������
2
�� + �

� .
The worst case is that � has sent this messages as

far as possible in the past, such that
� ���
� could have

increased as much as possible before � got up (in fact
the interesting instant is

� 8 � � ��� since messages sent
after this time must be received by � ; faults excluded).
Thus we must assume

�,+ � � 8 � and
�/( � � 8 � � � . Since�/( � �

�
�
+

� � ���
2 ,
� (

is synchronized with
� ���
� and hence� � ���/( 	 � � according to Definition 4.3. It follows

from Lemma 4.4 that
� �-�"� ��� 8 � � ��� 	 � � ���
� ���/( 	 �� � 2���� � � � � ��� 2� �(��

� � � � � ���/( 	 �  � � � � � � � �(��
� � ��� +( � �


 � �  .
Now we have a bound for

� �-�"� ��� 8 � � � � 	 . For our
worst case setting, we must further assume that � sends
(init,  ) as late as possible, before it will be forced to
catch up at time

� ��� ��� , while
� ���
� increases at maxi-

mum speed. Lemma A.2 provides us with a bound for� �-�"� ��� ��� ��� 	 with respect to
� �-�
� ��� 8 �1� � � 	 . We must

just consider that � sends (init,  )—based on messages
with malign origin or sent by passive processes—
shortly before

� ��� ��� . From Lemma A.2, it follows
that

� ���
� ��� ��� ��� 	 � � �-�"� ��� 8 � � � � 	 � � +( � � �( � �� +( � � 
 � �  � � +( � � �( � � � � ���( � �  such that
 � � ���
� ��� ��� ��� 	�� � � � �( � as asserted.

Since we succeeded with bounding the quality of
(init) messages (which are used to change from pas-

sive to active mode), we can now go on with finding a
bound for the precision � ���
� . In the following proof
of Theorem 5.1, we start with giving a bound for the
first clock value a correct process sets in relation to� ���
� ���
	 : We assume that a process sends a worst pos-
sible (init, k) message to the initializing correct process
� . Byzantine processes then send (init, k) shortly be-
fore � receives other messages from good ones (which
would lead to a better clock value). Hence changing
to active mode could be based on only one message
by a correct process. Still, we can bound the quality
of this first clock value. Since process � catches up
immediately thereafter, we have found the worst-case
precision bound.

Proof of Theorem 5.1. We have to assume that �
changes to active on possibly few and bad information
on the system state. Still Lemma A.3 provides us with
the worst possible (init,  ) message correct processes
may send with respect to

� �-�
� .
Let

� 8 � be the time when process � gets up. Process
� changes to active based on at least one (init,  ) mes-
sage sent by a correct process � that is received at � at
time

�3+ � � 8 � .
The worst case is that � has sent this messages as

far as possible in the past at instant
�"(

, such that
� ���
�

could have increased as much as possible before � got
up (in fact the interesting instant is

� 8 �6� � � since
messages sent after this time must be received by � ;
faults excluded). Thus we must assume

� + � � 8 �
and

�/( � � 8 � � � � . From Lemma 4.4 follows that� ���
� ��� 8 �6� � � 	 � � �-�
� ���/(0	 � � � 2���� � � � � ��� 2� �(��
� � �� � ��� (0	 . Since

�/(
is not synchronized with

� �-�"� ,� � ��� (0	 � 
 by Definition 4.3. A bound for
� �-�
� ���/(0	

with respect to  is given by Lemma A.3, which states
that

� ���
� ��� ( 	 �  � � � � �( � . Thus
� �-�
� ��� 8 � � ��� 	 �

 � � � � �( � � � �(�� � � � 
 �  � � �( � � � � .
Now we have a bound for

� �-�"� ��� 8 � � ��� 	 . We must
further assume that � changes to up as late as possi-
ble before it must catch up at time

� ��� ��� . Lemma A.2
provides us with a bound for

� �-�
� ��� ��� ��� 	 with re-
spect to

� ���
� ��� 8 � � � � 	 . We must just consider
that � changes to active—based on messages with ma-
lign origin—at time

� � � 2 shortly before
� ��� ��� in or-

der to proof our lemma. From Lemma A.2 follows
that

� �-�"� ��� ��� ��� 	 � � ���
� ��� 8 � � � � 	 � � +( � � �( � �
 � � �( � � � � � � +( � � �( � ��� � � ���( � �  such that� ���
� ��� � � 2

	 � � �-�"� ��� ��� ��� 	 �  � � � � � �( � . Since������� � � 2
	 �  � 
 , the value of ��-�"� given in our the-

orem follows.
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B Analysis of Envelope Synchronization

We now consider a system with � � ��� � 
 , where
at least �

� � correct processes are active. The follow-
ing two properties from Theorem B.1 are required in
order to establish the lower bounds from Lemma B.4.
Note that the properties P1W, P2 and P3W from The-
orem 4.1 are implied by P1F and P3.

Theorem B.1 (Clock Synchronization Properties).
The described system with � ����� � 
 , where at least
� � � processes are correct and active, satisfies the
following properties:

P1F Full Correctness. If all correct processes set
their clocks to  by time

�
, then every correct

process sets its clock at least to  � 
 by time� � ����� .

P3 Relay. If a correct process sets its clock to  at
time

�
, then every correct process sets its clock

at least to  by time
� � ��� � � � .

Proof. Full Correctness. If  � � ���
� ���
	 all correct
processes must have sent (init, k) by time

�
, which will

be received by every correct process by time
� � ��� .

Because all correct processes have clock values  by
time

� � ��� by assumption of full correctness, they all
send (echo, k). These messages will be received by
time

� � ��� � by every correct process, which then sets
its clock to  � 
 .
If  � � ���
� ���
	 at least � � 
 correct processes must
have sent (echo, k) by time

� � � � . All correct pro-
cesses set their clocks to  by time

�
(by assumption).

On the reception of the ��� 
 (echo, k) messages by
time

� � � all correct processes send (echo, k). These
messages are received by all correct processes by time� � ��� � � , which then set their clocks to  � 
 .

Relay. Assume  � � �-�
� ���
	 . From Weak Re-
lay (see Theorem 4.1) follows that every correct pro-
cess sets its clock to  � � by time

� � � caused by
� � 
 (echo,  � 
 ) messages sent by correct pro-
cesses. These messages force all correct processes to
send (echo,  � � ) by time

� � � which must be received
by time

� � ��� � � , by all correct processes which set
their clocks to  � 
 . The � ��
 (echo,  � 
 ) messages
now force all correct processes to send (echo,  � 
 )
such that by time

� � ��� � � � all correct processes set
their clocks to  .
If  � � �-�"� ���)	 at least one correct process has already

set its clock to 
 �  at time
� � � �

. In the previous
paragraph we have seen that all correct processes must
set their clocks to 
 by time

� � � ��� � � � so all cor-
rect processes must also set their clocks to  by time� � ����� � � .

The following two preparative lemmas are building
blocks for the lower envelope bound from Lemma B.4.

Lemma B.2. For the described system with � ����� �

 , where at least �

� � processes are correct and active,
let � be an active correct process that sets its clock to
 at instant

�
. Then, � sets its clock to  � 
 by time� � : ��� � � .

Proof. The proof uses the properties P1F and P3 from
Theorem B.1. P3 (relay) guarantees that all correct
processes set their local clocks to  by time

� � �� � ����� � � . P1F (full correctness) guarantees that
all correct processes, including � , must set their clocks
to  � 
 by time

��� � ����� . Hence � sets its clock by
time

� � : ��� � �
Lemma B.3 (Slowest Progress). Let � be the last cor-
rect process that sets its clock to  at time

�
. Then no

correct process can have a smaller clock value than
 � �  at time

� � ����� �  � �  	 .
Proof. By induction on 
��  � �  . For 
 � 


Lemma B.3 is identical to full correctness and there-
fore true. Assume that the last correct process sets
its clock to  � 
 at time

� � ��� � 
 for some 
 . Ev-
ery correct process must set its clock to 
 � 
 by time� � ��� � 
 � ��� � � � � ��� � � 
 � 
 	 according to full
correctness. Hence Lemma B.3 is true for 
 � 
 as
well.

Lemma B.4 (Lower Envelope Bound). For the de-
scribed system with � � ��� � 
 where at least �

� �
processes are correct and active, 2� � 2��(��

�
� : �

+
� ��������/(0	 � �������"+,	

for every correct active process � and
all times

�)( � �"+
.

Proof. Let
�������"+,	 �� � 
 and

��� ���/(0	 �� � 
 � 
 .
� has set its clock to  � 
 at instant �

�� � �3+
and

to  � 
 � 
 at instant �
�
�

�� � � (
. Hence

�)( � �"+ �
�
�
�

�

�
+� � �

�� � �
�
�

�� � �
�� � : ��� � � according to

Lemma B.2. Thus
�)( � �"+ � : ��� � � � � � � �� � �

��
.

Using relay in conjunction with Lemma B.3 it fol-
lows that �

�
�

�� � �
�� � � 
 � � � ��� � � � .

Bringing our bounds on �
�
�

�� � �
��

together we get�/( � �"+ � : � � �
� � � 
 � � � ��� � � � . Since 
 �
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�������/( 	 � �������"+,	
our lower envelope bound is 2� � 2��(��

�
�

: �
+

� � ��� ���/(0	�� �������3+,	
.

A straightforward approach for giving the upper
bound for the envelope condition would be to give
the shortest possible interval between clock updates
as in Lemma 4.2. Lemma 4.2, however, only refers
to

� �-�"� . Due to the catch-up rule, no shortest pos-
sible interval between consecutive clock updates can
be given for clocks that are behind. In Lemma B.5,
we use the precision of the clocks in conjunction with
Lemma 4.2 to get an upper envelope bound.

Lemma B.5 (Upper Envelope Bound). For the de-
scribed system with � � ��� � 
 where at least �

� �
processes are correct and active,

�5� ���/(0	�� �������"+3	 �
2� � 2��(��
�
� ���-�"� � 
 for every correct active process �

and all times
�)( � �3+

.

Proof. From Theorem 5.1 (precision) follows that� �-�"� ���)	�� �����
� � �������
	 � � �-�"� ���)	 at all times�
for all correct processes � . Specifically, at instant

� +
the clock value of any correct process � is bounded
by

� ���
� ���3+"	 � ���-�"� � �������"+3	
, and at instant

�)(
there is an upper bound of

� ����� ( 	 � � �-�"� ��� (0	 . Thus�������/( 	 � ��� ���"+,	 � � �-�
� ���/(0	�� � �-�"� ���"+,	 � ���-�
� .� �-�"� ��� (0	 ��� �-�"� ���"+,	 needs to be bounded: Let� �-�"� ���"+3	 �  � 
 and
� ���
� ���/(0	 �  � 
 � 
 .� �-�"� is set by any correct process to  at instant

�
�� � ���
2 �

�3+
and to  � 
 at instant �

�
�

������ �
2 �

�/(
. Hence�/( � �3+ � �

�
�

�� � ���
2
� � � �

+
�������
2
� �

�
�

��������
2
� � �� � ��� 2

� ����� (by un-

forgeability), such that
� ( � � + � ����� � �

�
�

��������
2
� � �������� 2 .� �-�"� ���"+,	 � � �-�"� � � �������� 2

	
and

� �-�
� ���/(0	 �� �-�"� � � � � ��������
2
	

such that the number of steps 
 �� �-�"� � � � � ��������
2
	 � � ���
� � � ������ � 2

	
. 
 is always smaller than

the largest possible number of steps within any time
interval of the size

� ( �'� + � ����� . Using Lemma 4.4
we get

� �-�"� ��� (0	 � � ���
� ���3+"	 � 2� � 2��(��
�
� 
 . Thus�������/( 	 � ��� ���"+,	 � 2� � 2��(��

�
� ���-�"� � 
 .

Proof of Theorem 6.1. See Lemma B.4 and
Lemma B.5.
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