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Abstract

This paper provides description and analysis a new clock synchronization algorithm for partially synchronous systems with
unknown upper and lower bounds on delays. Unlike existing solutions, it relies upon a hybrid failure model incorporating
both process and link failures, in both time and value domain, and works during both system startup and normal operation:
Whereas bounded precision (= mutual deviation of any two clocks) can always be guaranteed, accuracy (= clocks being
within a linear envelope of real-time) and hence progress is only guaranteed when sufficiently many correct processes are
eventually up and running.

1 Introduction

Clock synchronization is an important service in distributed systems, see [11] for several application examples. It assumes
that every process � owns a discrete clock �����
	�� , which is periodically adjusted by a fault-tolerant clock synchronization
algorithm. Clock synchronization guarantees that (P) any two correct clocks deviate at most by some ������ (precision
requirement), and (A) that any correct clock remains within a linear envelope of real-time (accuracy requirement). Many
different clock synchronization algorithms have been proposed in the literature, see e.g. [16, 19, 28] for an overview.

Most of these algorithms assume a synchronous system and cannot handle system startup. In real systems, however, pro-
cesses start one after the other at unpredictable times, and may not have completed booting when some earlier process starts
sending messages. Consequently, during startup, even messages from correct nodes may be lost, and failure assumptions like
the one that at most � out of ����������� processes are Byzantine faulty do not hold. Moreover, many real networks (like
the Internet) cannot be modeled properly as synchronous systems [2, 8, 32]. To implement clock synchronization1 in such
systems, a time(r)-free startup mechanism is required.

In [34], we provided a solution to this problem that—unlike naive startup algorithms—avoids an increase of the required
number of processes: By modifying the clock synchronization algorithm of Srikanth and Toueg [29], which is based upon
the well-known consistent broadcast primitive, we provided an algorithm that is complete time- and timer-free and needs
only ��� �!�"�#� processes for coping with � Byzantine faulty processes, both during normal operation and system startup.
Designed for a partially synchronous system with unknown lower and upper bounds upon delays, it guarantees some precision
$����� —that depends upon these bounds—during the whole lifetime of the system. Progress of the clocks (linear envelope
requirement), however, is only guaranteed when sufficiently many correct nodes are up and running.

Accomplishments: In this paper, we will present and analyze a variant of the algorithm of [34] under (an appropriate
extension of) the hybrid perception-based failure model introduced in [22]. Making this transition not only provides con-
%
This research is part of our W2F-project, which targets a wireline/wireless fieldbus based upon spread-spectrum (CDMA) communications, see

http://www.auto.tuwien.ac.at/Projects/W2F/ for details. W2F is supported by the Austrian START programme Y41-MAT.
1Although clock synchronization is traditionally studied in synchronous systems with hardware clocks, it is a useful service in partially synchronous

systems with software clocks (counters) as well; see Section 3 for details.
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siderably improved fault-tolerance with respect to process failures, but shows that a large number of link failures can be
tolerated as well. Our algorithm can therefore be applied even in typical wireless settings, where link failure rates up to �������
are common. Clock synchronization and, in turn, all algorithms that depend upon synchronized clocks can hence safely be
implemented in such loosely coupled systems, despite of unpredictable startup times and communication failures.

Related Work: Although clock synchronization in synchronous systems [3, 14, 16, 19, 27, 28], as well as in partially
synchronous systems [4, 15], is a very well-researched field, there are only a few papers [9, 12, 14, 29, 31, 31] that deal with
initial synchronization. Rather than considering a full system startup, however, most of those papers are devoted to integrating
a new process into an already running system. The only exceptions known to us are [31], which deals with a specific solution
to the startup problem in the very specific TTP system architecture, and [9], which considers a timer-based approach for
initialization in the MAFT architecture. However, none of those solutions is time(r)-free and works in partially synchronous
systems.

Clock synchronization in presence of link failures has been studied in [17] and in part of our previous work [10, 18, 20,
21, 24]. None of those papers considered initial startup, however. Moreover, with the exception of [10, 21], all those papers
consider synchronous systems only. In [10], we introduced a time(r)-free implementation of a perfect failure detector in
partially synchronous systems based upon consistent broadcasting. Its analysis, which is based upon results from [21], is also
based upon the fully-fledged perception-based failure model of [22]. We assumed, however, that all processes are up right
from the start. This assumption could now be dropped by the results of the present paper.

Organization of the paper: Section 2 contains an overview of (an extension of) the perception-based failure model
of [22]. In Section 3, we provide the hybrid version of the algorithm of [34], along with our major results. Section 4 is
devoted to the analysis of our algorithm when insufficiently many processes get up simultaneously, Section 5 shows what
happens when the number of processes increases during startup. In Section 7, we analyze our algorithm when sufficiently
many nodes are up. The paper is rounded off with some conclusions in Section 8.

2 Perception-based Failure Model

This section contains a very brief overview of our failure model, which slightly extends the perception-based model
introduced in [22] by adding messages with history. It consists of an execution model, a basic physical failure model, and
a more abstract perception failure model. Both the physical and the perception failure model are hybrid ones [1, 33], i.e.,
distinguish several classes of failures. The advantage of a hybrid failure model is its improved resilience: Less severe failures
can usually be handled with fewer processes than more severe ones.

Due to lacking space, we will entirely omit the description of the physical failure model. It distinguishes several classes of
time and value failures for both processes and links, and uses assertions like “at most � ��� processes may behave Byzantine in
a single round”. Due to the exploding number of possible combinations of time and value failures, it is not used for analyzing
fault-tolerant algorithms, however. Its primary purpose is the analysis of the assumption coverage in real systems.

The physical failure model can be reduced to a more abstract (and vastly simpler) perception failure model, which is similar
in spirit to the round-by-round fault detector approach of [6]. It is a generalization of the synchronous model of [25,26], and
is solely based upon the local view (= perception of failures) of every process in the system. The perception failure model is
particularly well-suited for analyzing the fault-tolerance properties of distributed algorithms.

2.1 Execution Model

We consider a distributed system of � processors connected by a fully or partially connected point-to-point network. All
links between processors are bidirectional, consisting of two unidirectional channels that may be hit by failures independently.
The system will execute a distributed round-based algorithm made up of one or more concurrent processes at every processor.
Processes can communicate bidirectionally with each other via the interconnecting links. Every processor is identified by
a unique processor id �
	��!������������� ; every process is uniquely identified system-wide by the tuple (processor id, process
name), where the process name is chosen from a suitable name space. Since a process will usually only communicate with
processes of the same name, we will distinguish processes primarily by their processor ids and suppress process names when
they are clear from the context.

Restricting our attention to round-based algorithms, we assume that all processes execute a finite or infinite sequence of
consecutive rounds ������ �������� . In every round except the initial one ����� , which is slightly different, a single process �
may broadcast (= successively send) a single message—containing the current round number � and a value ���� depending
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upon its local computation—to all processes contained in � ’s current receiver set ������ ����������� ��� .2 We assume that every
(non-faulty) receiver � knows its current sender set ���� � � �
	���	�� �� � containing all the processes that should have sent a
message to it, and that a process satisfying ��	���� (and hence � 	� �� ) sends a message to itself as well.

Concurrently, for every round number � , process � receives incoming round � messages from its peer processes 	����� and
collects their values in a local array (subsequently called perception vector) ���� ��� ����� �� ������� ����� �� � . Note that ���� ������ � 	�� as
well as its individual entries ����� �� � ����� �� �
	�� are actually time-dependent; we will usually suppress 	 , however, in order not to
overload our notation. Storing a single value for each peer in the3 perception vector is sufficient, since any receiver may get
at most one round � message from any non-faulty sender. The entry � � � �� 	�� �� (subsequently called perception) is either  if
no round � message from process � came in yet (or if �"!	���� ), or it contains the received value from the first round � message
of process � .

Process � ’s current round � is eventually terminated at the round switching time #��� , which is the real-time when process �
switches from round � to the next round � � � . At the round switching time, the value � �%$&�� ��' �)( � �� �*# �� �,+ to be broadcast
by process � in the next round � � � is computed as a function ' � of the round � perceptions available in � �� �-� �� �.# �� � at
time # �� .

The above execution model is sightly generalized by introducing messages with arbitrary history size �0/213/54 . A
history size 106�� means that a round � message includes also the values broadcast in the 1 rounds ��/��"781 ������� �"7��
prior to the current round � (if any). If some round �:9 message from sender � arrives at process � while in round ��/ �:9 , all
the still empty entries � � � �� 	���� for ;<>= � �  �?9%7"1 �@/A�B/ ��9 are filled with the appropriate values contained in the message.
Although such perceptions are usually time faulty, in the sense that they should have arrived earlier (namely, in the process’s
round � message), they are nevertheless useful for some algorithms: 1��C4 models full information mode protocols, whereas
1 � � corresponds to the standard situation. The case 1�6 � allows to model a more flexible round switching, which allows
to incorporate information from processes within 1 � � rounds. In the algorithm of Figure 1, for example, we employ 1��CD
for echo-messages to substitute round � messages that were not received due to late booting or catch-up.

Formally, the essentials of the above execution pattern are captured by two specific events: E%F �� � � ���G 	 ��IH is process � ’s
round � broadcast event, whereas �JF � � �� � � � � �� G 	 � � �� H denotes process � ’s perception event of process � ’s broadcast event.
Those events are related via their parameter values � � � �� � � �� (which are equal if there is no fault) and their occurrence
times 	 � � �� ��	 �� �8K � � �� , where K � � �� is the end-to-end computational + transmission delay between sender � and receiver � in
round � . Note that K � � �� includes any round � computation at sender and receiver processes, in particular, the computation of
' � (*� �� �*# �� � + .

Our model stipulates lower and upper bounds L �M6�� and L?$ANO4 , usually not known to the algorithm, which guarantee

L � /AK � � �� /AL $ (1)

for any two well-behaved processes � , � connected by a non-faulty link. Note that this relation must be valid for any round � ,
and for � �P� as well. Introducing the interval Q � G L�� ,L?$ H , the above relation (1) can be written concisely as K � � �� 	0Q .
The resulting bound for K � � �� ’s delay uncertainty resp. delay ratio, which will play a central role in our analysis, is given byR �SL?$T7TL � resp. U��3L?$�VWL � . Bear in mind that the algorithm of Figure 1 does not know LJ$ and L � , and not even R or U .

2.2 Perception Failure Model

Consider the round � perception vector � �� � 	�� —observed at some real-time 	 — of a well-behaved process � . Our execution
model implies that � �� �
	�� is monotonic in time, in the sense that X � �� �
	 �ZY 	��[X �\X � �� � 	��]X for any Y 	���� , since perceptions are
only added. Moreover, since the value � �%$&�� to be broadcast in the next round � � � is computed solely from � �� 	 �3� �� �*# �� �
and � ’s local state at the round switching time # �� , it is obvious that, ultimatively, only the failures in the perceptions present
at the respective round switching times count. Timing failures are no longer visible here (but will probably affect # �� , recall
Section 2.1), since a message that did not drop in by # �� at process � just results in � � � �� �^ . Consequently, the resulting

2Throughout the paper, we use the following notation: “Anonymous” processes and round numbers are usually denoted by lowercase letters _ , ` anda
, b , respectively. Process subscripts denote the process where a quantity like ced[f gh is locally available, process superscripts denote the remote source of a

quantity. Calligraphic variables like i&jd denote sets or vectors, bold variables like k denote intervals.
3Since we allowed multiple concurrent processes, there may of course be several different perception vectors on a processor. Any process may send

messages for a specific perception vector, at most one process per processor may receive messages from it.

3



perception failure model is much simpler than the physical one and therefore more suitable for analyzing an algorithm’s
fault-tolerance properties.

Our formalization solely rests upon the ��� � matrix � � � 	�� 4 of round � perceptions observed at the same arbitrary time 	 —
typically, some process’s round switching time—at all processes:

� � 	�� �

����
�
� � �
	��� � �
	��...
� � � 	��

�����
� �

����
�
���� � �� ����� ����� �� � �� ����� � ��...

...
...

...
���� � �� ����� ����

�����
�
	 (2)

Note that � � 	�� is in fact a quite flexible basis for our failure model, since different “views” of the state of the distributed
computation can be produced easily by choosing a suitable 	 .

We distinguish the following failure modes for single perceptions in � �
	�� in our perception failure model:

Definition 1 (Perception Failures). Process � ’s perception � �� of process � ’s broadcast value ��� can be classified according
to the following mutually exclusive failure mode predicates:� correct ( � �� + : � �� � � � ,� omission ( � �� + : � �� �� ,� value ( � �� + : � �� !�C and � �� !� � � .

Next, we have to classify sender process failures. If � � denotes some sender � ’s receiver set, let � � � � � denote the set
of non-faulty processes among those.

Definition 2 (Perception Process Failures). Let � be a (faulty) sender process and � be an non-faulty receiver such that  Z!�
� � 	T� �
	�� . In the absence of link failures, process failures of � can be classified according to the perceptions � �� 	T� �
	 � R �
at all non-faulty receivers � 	 � � � � � as follows:� Non-faulty: � � 	 � � 	 correct ( � �� + ,� Manifest: � � �� 	 � � 	�� �� � � �� !� � � detectably,� Crash: � � 	 � � 	 omission ( � �� + ,� Omission: � � 	 � � 	 correct ( � �� +�� omission ( � �� + ,� Symmetric: � � �� 	 � � 	�� �� � � �� ,� Arbitrary: no constraints.

A faulty process producing at most asymmetric omission failures is called benign faulty.

The following Definition 3 specifies the possible failures in perceptions caused by link failures.

Definition 3 (Perception Link Failures). In the absence of sender process failures, a failure of the link from sender � to an
non-faulty receiver � can be classified according to its effect upon � ’s perception � �� 	� � 	�� as follows:� Link non-faulty: � �� � � � ,� Link omission: � �� �C ,� Link arbitrary: no constraint.

The failure classes up to link omission failures are called benign.

4We will subsequently suppress the round number
a

in quantities like i g������ for brevity.
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To overcome the impossibility of consensus in presence of unrestricted link failures [7, 13], it turned out that send and
receive link failures should be considered independently [25, 26]. The following link-failure-related parameters are hence
incorporated in the final perception failure model of Definition 4 below:

(A1 � ) Broadcast link failures: For any single sender � , there are at most � �� receiver processes � with a perception vector � �
that contains a faulty perception � �� from � .

(A1 � ) Receive link failures: In any single process � ’s perception vector � � , there are at most � �� faulty perceptions � �� .

A process that suffers from at least one broadcast link failure is said to commit a broadcast failure, whereas a process
that suffers from at least one receive link failure is said to commit a receive failure. Note carefully that we will allow every
process in the system to commit a broadcast and/or receive failure in every round, without considering the process as faulty
in the usual sense. Up to � �� send and up to � �� receive link failures may occur in any process’s broadcast failure and receive
failure, respectively, and the particular links actually hit are usually different in different rounds.

Definition 4 (Asynchronous Perception Failure Model). For some arbitrary time 	 , let � � �
	�� be the round � perception
matrix of an asynchronous system of processes running on different processors that comply to our execution model. For any
non-faulty receiver � , it is guaranteed that � � � �� �C if � !	�� �� or if � � � �� was not received by time 	 . Moreover:

(P1) There are at most � � , �
�
, ��� , ��� , and � � columns in � � � 	�� that may contain arbitrary, symmetric, omission, crash, and

manifest faulty perceptions � � � �� , respectively, resulting from faulty processes; up to � � � �
�

may be timing faulty.

(A1 � ) In each single column � , at most � �� arbitrary perceptions � � � �� 	S� � � 	�� corresponding to non-faulty receivers � 	
� ���� � �� may differ from the value(s) obtained in the absence of broadcast link failures. At most � � �� /�� �� of those
may be link arbitrary faulty.

(A1 � ) In each single row � corresponding to an non-faulty receiver, at most �)�� of the perceptions � � � �� 	T� � � 	�� corresponding
to senders � 	� �� may differ from the outcome(s) obtained in the absence of receive link failures. At most �&� �� / � �� of
those may be link arbitrary faulty.

(A2) Process � knows the origin � of � � � �� 	� � � 	�� .
(A3)  �!��� � � �� 	
� � �
	����  �!��� � � �� 	
� � � 	 � R � for every non-faulty sender � connected to non-faulty receivers � and �

via non-faulty links.

2.3 Model of the Startup Phase

At the very beginning all processes are down. Every message that arrives at a process while it is down is lost, and no
messages are sent by such a process, not even spurious ones generated by arbitrary link failures. Correct processes boot at
unknown times that cannot be bounded a priori. For faulty processes, we assume5 that they are up right from the beginning.
Throughout the paper, we will use �
	 � for the number of processes, including the faulty ones, that are up at a given time.

During startup, a correct process goes through the following sequence of operating modes:

1. down: A process remains down when it has not been started yet or has not completed booting.

2. up: A process gets up if it has completed booting. To get a clean distinction of up and down, we assume that a process
flushes the input queues of its network interface as the first action after booting is completed. Hence, the algorithm
gets only messages that dropped in when it was already up.

3. passive: A process that just got up performs an algorithm-dependent initialization phase, where it is called passive. As
the first action in passive mode, a process may send a join message to all its peers. The first reception of a join message
from some process � causes the receiver to retransmit the current round message to � (point-to-point); subsequent join
messages from the same sender are ignored.

4. active: A process that has completed its initialization phase is called active.

5We do not care about the clocks of faulty processes in this paper, since they need not satisfy the clock synchronization conditions. If we studied uniform
variants of (P) and (A), cp. [10, 25], benign faulty (“obedient”) processes must be exempted here.
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In case of the algorithm of Figure 1, for example, a passive process broadcasts join—to get the last (echo, k) message of
every peer—and participates in the algorithm as in active mode. It need not satisfy the clock synchronization conditions
(P) and (A) while passive, however. The transition to active mode occurs when the process can be sure that it is within the
synchronization precision  � � � .

3 Algorithm and Major Results

Assuming that every process � in the system is equipped with an adjustable discrete clock � � �
	�� that can be read at
arbitrary real-times 	 , a proper clock synchronization algorithm must guarantee the following:

Definition 5 (Clock Synchronization Conditions). (P) Precision Requirement: There is some precision  ����� 6 � such
that

X � � �
	��B7 � � � 	��]X?/  ����� (3)

for any two active non-faulty processes � and � and any real-time 	 .
(E) Envelope Requirement: There are some constants � � �� � �� $ ��@$A6 � such that

� � �
	 � 7 	 � �B7�� � /�� � �
	 � � 7 � ��� 	 � � /�� $ �
	 � 7 	 � � ��� $ (4)

for any active non-faulty process � and any real-times 	 � � 	 � .
The precision requirement (P) just states that the difference of any two correct clocks in the system must be bounded,

whereas the envelope requirement (E) guarantees some relation of the progress of clock time with respect to the progress of
real-time; (E) is also called accuracy requirement in the literature.

Traditional research on clock synchronization (see [16,19,27,28] for an overview) considers synchronous systems equipped
with hardware clocks with high time-resolution and small drift � (in the range of � ����� �����	� s/s). Optimal clock synchroniza-
tion algorithms for synchronous systems like [5, 18, 29] guarantee ����� ��7
� and � $ � � ��� and very small � � , � $ .
The achievable precision depends primarily upon the transmission delay uncertainty R , which is in the � ����� ��� ms-range for
typical LANs. By contrast, clocks in partially synchronous systems [4, 15] are implemented as simple software counters. In
our case, a process � ’s clock will be the round number of the clock synchronization algorithm running on � : ��� � 	�� is incre-
mented by 1 when process � switches to the next round. The time-resolution of any clock is hence determined by the number
of round switches within a given real time interval. Theorem 7.5 will reveal that our algorithm ensures � � � �WV � DWL $ � ,
�@$ � � V��*DWL � � with small reasonably small � � , �@$ , where the lower bound � � and � � holds only if sufficiently many
processes are up and running.

Note carefully that, by using local hardware timers in conjunction with hardware packet timestamping at all processors, it
is possible to “stretch” L�� to ensure L $
�SL �$� D����� , where � is the communication delay uncertainty of the network only.
This way, a situation comparable to synchronous clock synchronization settings can be established, see [21] for details.

The clock synchronization algorithm considered in this paper is a hybrid variant of the algorithm of [34]. It is an extension
of the well-known non-authenticated6 clock synchronization algorithm of [29], which employs consistent broadcasting for
generating nearly-simultaneous global resynchronization events in the system. Every processor � runs two7 concurrent
processes, which maintain � � � 	�� by executing the pseudo-code shown in Figure 1. Comparison of our algorithm with hybrid
variants [10, 21] of the original consistent broadcasting primitive (without startup handling) shows that the first three if-
clauses are the same: Informally, each round � is started by sending an (init, k) message to all. If a correct process can be
sure that at least one correct process has sent a round � message, it sends (echo, k) to all. When a process can be sure that
there are enough round � messages in the system to guarantee that every correct process will eventually advance its clock, it
advances to round � ��� and hence sends (init, k+1). This guarantees both (P) and (A) if sufficiently many correct processes
are up and running in systems with � �SD � � �� �8D!� �� � ��� � � �!�

�
� D � � � D � � ��� .

In order to properly handle system startup as well, however, join messages and two additional if-clauses are required. As
shown in [34], three consecutive modes of system operation must be distinguished here:

6Since we consider a distributed system at the very beginning, we cannot assume any kind of authentication service.
7In order to comply to the formal requirements of our execution model, every processor _ must run two processes � and ��� that process (init, k) and

(echo, k) messages in their perception vectors i gd and i gd � , respectively. � d � ��� is simply the current round number
a

of � � , which is shared by both
processes. Note that only � � needs to react to a join message of a newly booted processor, by retransmitting (echo, k). In order to keep our description
simple, we will usually not explicitly distinguish � and � � , however: By saying that process _ responds to (init, k) resp. (echo, k), we mean that � resp. � �
on processor _ does so.
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For each correct process

VAR k : integer := � ;
VAR mode : � passive, active � := passive;

if received (init, k) from at least �Ij����� � � � �
	 ��� distinct processes send (echo, k) to all;
fi

if received (echo, k) from at least � j��� � � � � � 	 ��� distinct processes send (echo, k) to all;
fi

if received (echo, k) from at least ����� j� ��� � ���
	������������ distinct processes if mode = active  ��� � a ��� ; /* update clock */a � � a ��� ;
send (init, k) to all; /* start next round */

fi

/* *** catch-up rule *** */
if received (echo, l) from at least � j��� � � � � � 	 ��� distinct processes

with b�� a ��� if mode = active  ��� �b�� � ; /* update clock */
for � � � a to b��"! send (echo, i) to all;a � �Zb#� � ; /* jump to new round */
send (echo, k) to all;

fi

/* *** change to active mode *** */
if received (init, x) from at least �Ij����� � � � �
	 ��� distinct processes if mode = passive ��� ��$&%(' � ')� �+* a � ;a � ��$�%(' � ',� �+* a � ;

mode := active;
send (echo, k) to all;

fi
fi

Figure 1. Clock Synchronization Algorithm for the Hybrid Perception-based Failure Model with Startup
Phase

� Early mode, where the first few correct processes have completed booting and started exchanging messages.� Degraded mode, where enough correct processes are up such that some clocks may advance when “assisted” by faulty
processes or links.� Normal mode, where sufficiently many correct processes are up and synchronized to guarantee progress for all clocks.

Note carefully that it is impossible for any process in the system to delimit the exact borders between those modes from local
information.

First of all, a newly booted process must tell all others that it up now and must learn their current clock values. This is
accomplished by means of join messages, as introduced in Section 2.3: Every process � sends join = (echo, 0) as the very first
message after having completed booting. Every process � that receives this message replies by retransmitting its previously
sent (echo, k) message. This ensures that � will eventually get sufficiently many messages—which may have been lost while
it was down—to trigger the catch-up rule described below.

The major problem in degraded mode is the impossibility to guarantee (P) solely via the third if-clause: There are not
sufficiently many correct processes to guarantee that every correct process will eventually advance its clock when a single
one does so. Here it is where the fourth if, our catch-up rule, comes into play: It allows a correct process to advance its clock
to round ��7 � when sufficiently many round � messages have been received. Therefore, eventually, a sufficiently large group
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of correct processes can be guaranteed to be within two rounds of each other. This causes two other problems, however: First,
the second and third if-clause must trigger when sufficiently many echo-messages from different processes within � rounds
have been received. This is conveniently expressed in our execution model by setting the history size of (echo, k) messages
to 1 �^D , recall Section 2.1: Since the reception of (echo, k) at process � implies that the sender � must already have sent
(echo, l) for all � N�� as well, empty round � 7 � and �"7 D perceptions � �� 9 can safely be filled on that occasion as well.
Note that those perceptions may be empty if � missed the earlier messages due to late booting.

Second, due to failures or a large group of simultaneous late joiners, the first round an initializing process may reach by
the catch-up rule could be arbitrarily small. This would violate the precision requirement, however. We therefore assume
that only active, but not passive processes, must satisfy (P) and (A). A passive process switches to active mode when it
has sufficient evidence that its local round number is within  � � � of the clocks of the other correct active processes in the
system. This is accomplished by the fifth if-clause, which triggers when sufficiently many (init, x)-messages for an arbitrary
round = have been obtained. Since it can be shown that = must be sufficiently close to the maximum correct clock value in
the system since init-messages are only generated by the third if-clause, this conditions indeed serve their purpose.

Results: Due to space restriction we briefly summarize the major results. See the appendix for a detailed analysis.
As far as precision (P) is concerned, our algorithm always guarantees a precision (Theorem 5.5) of  � � � ���*D U ���>V D��

for all correct active processes. This worst case precision, however, applies only to some processes during a short period of
time, namely, late starters during the first R seconds of active mode. The clock value of such a process becomes better as soon
as the information from all other processes arrives. Since there are two rules that can be used by a process to advance its
clock (third and fourth if-clause in Figure 1), there are two bounds on the achievable precision after this worst case situation.
The first of those is enforced by the fourth if (Theorem 4.6): As soon as all answers to join message reach an initializing
process, it becomes synchronized to within ��	��
 ��� � VID U ��>V D�� even if not all correct processes are up at that time,
i.e., even in degraded mode. During normal mode, when all correct processes are active, the third if is guaranteed to be
enabled within bounded time at every correct process (see below). It enforces another bound on the precision (Theorem 7.6)
"9����
 ��� ��V DWU�� � V D��

The time required to enter normal operation after sufficiently many correct processes got up is bounded (Theorem 5.7)
by Y � � �

	
��� L $ . A precision of ������� �����
   9�	��
 � can be guaranteed in normal mode after that time. Which of the

contributing bounds is tighter depends solely on the network behaviour, i.e. on the ratio of L $ and L�� . In normal mode our
algorithm also guarantees (A) accuracy (Theorem 7.5)

	
� �

	
�

����� 7���� � N�� ���
	 � � 7 � ��� 	 � � N
	
� �

	
�

�!�#" �  ����� � � for all active
processes. The upper envelope bound is guaranteed to hold during system startup as well, i.e., clocks cannot progress faster
during the whole system life time. The lower envelope bound, however, could be 0 during system startup, i.e., there need not
be progress of the clocks in degraded mode.

4 From Early to Degraded Mode

Before considering the full system startup scenario, we will study the algorithm of Figure 1 in a system of � � D � � �� �
D � �� � ��� � �OD �

�
�OD!����� ��� � � processes with a fixed but arbitrary number �T/#� 	 � /�� of running processes. We will

assume that all � 	 � processes, except the at most � � ���
�

arbitrary or symmetrically faulty ones, are initially synchronized
and active. Our results will hence show how the algorithm works with a small number of participating processes if we assume
initial synchronization. It will turn out in Section 5, however, that the above minimum number of processes in the system
must be increased by �

�
� � � when full system startup is considered.

We start with a few definitions and lemmas, which will be used frequently in our analysis. First of all, the following prop-
erties of the perception vectors at two different non-faulty receivers follow immediately from our fault model in Definition 4.

Lemma 4.1 (Difference in Perceptions [22]). At any time 	 , the perception vector � � � 	�� of any process on an non-faulty
receiver � may contain at most � � �� � � � � �

�
time/value-faulty perceptions � �� !�C . Moreover, at most Y ���#� � �� � � �� � � � � ���

perceptions � �� corresponding to � �� !�� may be missing in any other non-faulty receiver’s � � � 	 � Y 	�� for any Y 	 � R .
Proof. The first statement of our lemma is an obvious consequence of Definition 4. To prove the second one, we note that
at most � � �� � � � perceptions may have been available (partly too early) at � without being available yet at � , additional
� � �� 9 / � � �� perceptions may be late at � , and � �� 7#� � �� 9 ones could suffer from an omission at � . Summing up all the
differences, the expression for Y � given in Lemma 4.1 follows.

Our analysis will heavily use properties related to the maximum clock value of all well-behaved processes in the system,
which is given by the following Definition 6.
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Definition 6 (Maximum Local Clock Value). Let ������� �
	�� denote the maximum of all local clock values of correct or
benign faulty processes that are up at time 	 . Let further # �� � � �

	
�-# �� / 	 be the real-time the first correct or benign faulty

process � has set its local clock value to � � � �#� ����� �
	�� .
The following Lemma 4.2 shows that progress of ������� � 	�� is only possible via the third if in Figure 1. This fact will be

heavily used in our proofs.

Lemma 4.2 (3rd if). Every correct process that sets its clock to � ����� �
	�� by time 	 must do so by the third if clause.

Proof. By contradiction. Let a correct process � set its clock to � ��� ����� �
	�� at instant 	 by a catch-up rule (fourth or fifth
if clause). At least one correct (or benign faulty) process must have sent a message for a tick ��6�� to enable the catch-up
rule at � . Since such processes only send messages for ticks less or equal their local clock value at least one must have had a
clock value � 6�� at instant 	 . Thus � ����� � 	�� 6 � which provides the required contradiction.

The following Theorem 4.3 is the first major result of this section. It shows that the clocks at correct processes obey
three properties, namely, weak correctness (P1W), unforgeability (P2), and weak relay (P3W), the names of which have been
coined in the context of consistent broadcasting [10, 29, 30]. Our properties are weak ones, however, since we do not have
sufficiently many processes up and running to ensure the strong ones of Theorem 7.1. Note that our theorem is even valid for
� 	 � N � 7 � ��� �

�
� � � � � � , although it is trivial to see from Figure 1 that no correct process can make any progress in this

case.

Theorem 4.3 (Weak Clock Synchronization Properties). For � �SD �)� �� �8D!� �� ���!� � �8D �
�
�8D!� � � � � ��� and any � 	 � ,

the algorithm from Figure 1 achieves

P1W Weak Correctness. If at least � � �� � � �� � � � � �
�
� � correct processes set their clocks to � by time 	 , then every correct

process sets its clock to ��7 � by time 	 �8D L $ .

P2 Unforgeability. If no correct or benign faulty process sets its clock to � by time 	 , then no correct process sets its clock
to � � � by 	 � DWL�� or earlier.

P3W Weak Relay. If a correct process sets its clock to � at time 	 , then every correct process sets its clock to � 78D by time
	 � R .

Proof. Weak Correctness. If � � � � � � � 	�� , at least � � �� �#� �� �#� � �#�
�
� � correct processes must have sent (init, k) by

time 	 according to Lemma 4.2. The perception vectors of these �)� �� �#� �� �#� � � �
�
� � correct processes hence satisfy

X � � � 	 �
L?$ �[X � � � �� � � � � �
�
� � . Hence, they all achieve sufficient evidence in the first if by time 	 ��LJ$ , where they send

(echo,k) to all processes. By time 	 � DWL:$ all correct processes reach sufficient evidence in the fourth if to catch-up.
If �ZN � ����� � 	�� , at least � � �� ��� �� �"� � �"�

�
� � correct processes must have set their clocks to � before some time 	 9 9)N 	 using

the third if according to Lemma 5.1. Consequently, all correct processes set their clocks to ��7 � by time 	 9 9 ��D L?$8N 	���DWL?$
by the same reasoning as above.

Unforgeability. Setting the clock value can be done at a process by (1) the third if, by (2) the fourth if or (3) by the fifth if.
The proof for both is by contradiction.
Assume (1) that there is a process � that sets its clock to � � � before instant 	�� D L � using the third if. This implies
X � � �� �
	 � DWL � �]X �SD � � �� � � �� � D � � � � � � � � � � .
Since only at most � � �� � � � � �

�
of the corresponding (echo, k) messages may be due to messages produced by arbitrary receive

link faults and time/value–faulty processes at least one correct process � must have sent8 such an (echo, k) message before
time 	 ��L � . Process � has done so caused by received messages for the �

	
�

tick such that X � �� � 	 ��L � �]X ��� � �� � � � � �
�
���

or X � � �� � 	 ��L � �]X ��� � �� � � � � �
�
��� . Hence—by the same argument as before—at least one correct process must have sent

a message for the �

	
�

tick before time 	 , which contradicts the assumption of unforgeability.
Assume (2) that there is a process � that sets its clock to � �#� before instant 	 � D L � using the fourth if. � does so because
X ��� �� �
	 �-DWL � �]X � � � �� � � � ��� � � � or for some ��6 � � � . That is, at least one (echo, l) message must have been
sent by a correct process � before 	��SL � . Process � must have sent it, because X � �� � 	���L � �]X�� � � �� ��� � � �

�
��� or

X � � �� � 	 �0L � �[X � � � �� � � ��� �
�
� � for a tick = �O� . These perceptions stem from messages that must have been sent before

8Note that this statement remains true if ` sent (echo,
a ��� ) and hence generates a “simulated” reception of (echo,k), according to the semantics of

messages with history, recall Section 2.3.
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time 	 since =�6 � and messages for tick = are sent by a correct process only after tick � messages. But by P2’s assumption
no tick � message was sent before 	 , which again provides the required contradiction.
Assume (3) that there is a process � that sets its clock to �$��� before instant 	 �ODWL � using the fifth if. Process � does so
because X � ��$ �� �
	�� D L � �]X � � � �� � � � � �

�
� � . At least one (init, � � D ) message must have been sent by a correct process �

before 	���L � . Process � must have sent it, because X �
�
��$&� � �� �
	 ��L � �[X �OD � � �� � � �� ��D!� � � � � � �

�
��� , such that more than

one correct processes must have sent (echo, � � � ) before time 	 . A correct process never sends any � � � messages before it
has send a message for tick � . By assumption no tick � message was sent by time 	 which again provides the contradiction.

Weak Relay. Assume � � � � � � � 	�� . The correct process � that advanced its clock to � by assumption must use the third

if according to Lemma 4.2, such that X �
�
� � � �� 9 �
	��]X �\D � � �� � � �� �OD � ��� � � � �

�
� � . Hence the perception vector for tick

� 7 � at any correct process � at time 	 � R must satisfy X �
�
� � � �� 9 � 	 � R �]X � � � �� � � ��� �

�
�#� according to Lemma 4.1. It

follows that all correct processes achieve sufficient evidence in the fourth if to catch-up to round ��7 D .
If ��N�� ����� �
	�� then at least one correct process has already set its clock to � 6�� at 	 9 / 	 using the third if. We have shown
in the previous paragraph that all correct processes must set their clocks to � 70D by time 	 9 � R so all correct processes must
have set their clocks to � 70D by time 	 � R are well.

The following simple Lemma 4.4, which will be used frequently in our proofs, follows immediately from property P2.
Note that it is hence true for any clock synchronization algorithm that satisfies unforgeability.

Lemma 4.4 (Fastest Progress). Let � be the first correct process that sets its clock to � at time 	 . Then no correct process
can can reach a larger clock value � 9 before 	 � DWL���� �?9?7 ��� .
Proof. By induction on � � �?9:7 � . For � � � Lemma 4.4 is identical to unforgeability and therefore true. Assume that no
correct process has set its clock to � �O� before 	 �SDWL � � for some � . Thus no processes may set their clocks to � �O� ���
before 	 � DWL��&� � DWL � ��	 � DWL � �*� ��� � following unforgeability. Hence Lemma 4.4 is true for � � � as well.

In our analysis we will frequently require to bound the increase of � ����� during a given real-time interval G 	 � �	 � H . For this
purpose Lemma 4.4 can only be applied if and only if 	 � �-# �� � � �

	
. In all other cases we cannot use Lemma 4.4. As in [23]

we unify this situation, starting with the following Definition 7.

Definition 7 (Synchrony). Real-time 	 is in synchrony with � � � � � 	�� iff 	 � # �� � � �
	

for some real-time # �� � � �
	

(for some
arbitrary � ) as defined in Definition 6. Let the indicator function of non-synchrony be defined as

� 	 ���� � � � �
	�� � � � if 	 is in synchrony with � ����� � 	���
� otherwise �

Lemma 4.5 (Maximum Increase of � ����� within Time Interval). Given any two real-times 	 � � 	 � . � ����� �
	 � � 7� ����� � 	 � ��/ �
	
� �

	
�

�!� " � �
� � � 	 � � .

Proof. Let � � � ����� � 	 � � 7 � . We have to distinguish the two cases # �� � � �
	
� 	 � and # �� � � �

	
N 	 � .

Let # �� � � �
	
� 	 � such that

� � � 	 � � � � . From Lemma 4.4 follows that � ����� may increase every DWL � time-units hence
�

	
� �

	
�

��� " � times before 	 � . Since
� � � 	 � � � � Lemma 4.5 is true for this case.

Now let # �� � � �
	
N 	 � such that

� � � 	 � � � � . And let the real-time 	 9 �C# ��$&�� � � �
	
6 	 � . We can now apply Lemma 4.4 starting

from time 	,9 . Since 	 � 7�	 � 6#	 � 7�	 9 it follows from Lemma 4.4 that � ����� cannot increase more often than �

	
� �

	
�

�!� " � times
between 	 9 and 	 � . At instant 	 9 � ����� has already increased once such that � ����� �
	 � � 7 � ����� � 	 � ��/ �

	
� �

	
�

�!�#" � � � . Since� � � 	 � � � � Lemma 4.5 is also true for this case.

In the following major Theorem 4.6 we give a bound for the precision requirement (P). We assume an instant 	 such that
for a correct process ��# �� � 	 . From weak relay we can conclude about a bound for # �%$ �� for any other correct process �
such that # ��$ �� �3# �%$ �� � � �

	
. Using Lemma 4.5 we can give a bound for ������� � 	�� and hence precision.

Theorem 4.6 (Precision in Degraded Mode). In a system with � �OD � � �� �ZD!� �� ���!� � �D �
�
�D � � ��� � � � processes, where

��/ � 	 ��/ � processes, except the faulty ones, are initially synchronized, the algorithm of Figure 1 satisfies the precision
requirement (P) with ��	��
 ��� �� U#�	� � � .
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Proof. If no correct process advances its clock beyond � �^D , precision  �	��
��PD is automatically maintained since all
clocks are initially synchronized to � � � .

Assume a correct process � has a local clock value � � � within an unknown precision  ����
 to all other correct
processes—and therefore also to � ����� �
	 9 � —at real-time 	,9 . We now use weak relay (P3W), Definition 7 and Lemma 4.5 to
reason about  ����
 by calculating � ����� � 	�� for a time 	 6 	 9 .

Let � advance its clock to � � � such that # �� � 	�6 	 9 . Process � has not done so before 	 because no other correct process

has set its clock to � � � before 	&7 R following directly from weak relay (P3W), thus # ��$ �� � � �
	
� 	 7 R .

From Lemma 4.5 follows that � ����� � 	���/ �

	
�
�
	
���
�

�!�#" � � � � � 	�7 R � � � ����� � 	�7 R � . Let us now take a closer look at the
term

� � �
	B7 R � � � � � � � 	B7 R � : If # ��$ �� � � �
	
� 	 7 R and therefore 	 7 R is synchronized with � ����� , � ����� �
	 7 R � � � � � and� � � 	 7 R � � � (following Definition 7). If on the other hand # ��$ �� � � �

	
6 	 7 R , � ����� �
	 7 R � � � � D and

� � �
	 7 R � � � . In both
cases

� � � 	 7 R � � � ����� �
	B7 R � � � � � such that � ����� �
	���/ � ���� " � � � � � thus � ����� �
	���/ � �� U#� � � � � � .
Process � has a clock value � � � 	 9 � ��� at a time 	 9 N 	 which is by assumption within precision. Since ��� � 	 9 � N�� � � 	��

and � ����� � 	 9 ��/ � ����� �
	�� , we get a bound for our precision �����
 from the difference � ����� � 	��J7 � ��� 	 9 � � � � � � � 	��J7 ��/
� �� U � �� � .
Remark Note carefully that, although Theorem 4.6 is written in the context of the algorithm of Figure 1, it actually holds
for every algorithm that satisfies weak correctness (P1W), unforgeability (P2), and weak relay (P3W).

The result of Theorem 4.6 can be applied to all correct processes that participate in the algorithm during the early phase,
i.e., boot early. All those processes remain synchronized to each other within  ����
 , even in the subsequent degraded and
normal mode. The problem is, however, that other correct processes might complete booting during degraded mode, after
some progress has been achieved by the group of early starters. As a late process starts with a clock value of 0, it is clearly
not synchronized. We will deal with this situation in the following section.

5 From Degraded to Normal Mode

In this section, we will incorporate correct processes that get up late, namely, during degraded mode. It will turn out that
those late starters considerably spoil the overall precision in the system. This is due to the fact that such processes compute
their first clock values from very little information on the system state: It could be that a late starter becomes active due to
an (init, x) message sent by a single well-behaved process only (“assisted” by faulty processes). Although this is sufficient
to guarantee some precision "����� , it is nevertheless true that "����� is considerably larger than �����
 . Fortunately, even a
late starter will get synchronized within precision �����
 as soon as the messages from all correct processes arrive. Hence,
 ����� applies only to late starters during a short period after becoming active.

Besides the large precision  ����� , initialization introduces another disadvantageous property: In order to handle system
booting, our algorithm requires an increased number of processes for some restricted failure modes. To guarantee that every
correct process eventually becomes active, sufficiently many (init, x) messages must be sent for every round. Lemma 5.1
will show that this requires �

�
�#��� additional processors such that, from now on, we have to consider a system with �#�

D � � �� �3D � �� � ��� � � �!�
�
�OD � � �OD � � ��� . Symmetric process failures are hence as severe as asymmetric ones, and crash

failures are as severe as our crash failures here. Note that this can be explained by the fact that processes boot at unpredictable
times, which turns otherwise consistently perceived process failures in inconsistent ones.

This section also provides the analysis of the system behaviour starting from the time when the last correct process � got
up. We will see that � forces all correct processes to advance their clocks, such that sufficiently many correct processes send
an (init, x) message. As a consequence, all remaining correct processes will become active within some bounded initialization
time Y � � �

	
. From then on it is guaranteed that all correct processes regularly increase their clocks; system startup is completed

and the system is in normal operation.

This section’s results—precision  ����� and initialization time Y � �I�
	
—strongly depend on the properties of (init, k) mes-

sages, in particular, their arrival times. The following Lemma 5.1 shows that sufficiently many of those messages are sent for
every tick, such that every correct process could eventually switch to active by the fifth if.

Lemma 5.1 (Minimal Number of Init Messages). Given an arbitrary point in time 	 with � � � ����� �
	�� , let 	,9e6 	 be the
instant when � ����� further increases. For � ��D!� � �� � D � �� � �!� � � �!�

�
� D ��� � D!��� �#� , at least � � �� � � �� � � � � �

�
�#�

correct processes set their clocks to � ����� � 	�� by the third if and therefore send (init, l) before 	 9 .
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Proof. In order for the first correct process to set its clocks to � � � , it must have got �07#�)�� 7#� � 7#�
�
7#� � 7#� � �

D � � �� � � �� ��D � � ��D!�
�
� � � � � � � � (echo, l) messages. At least � � �� � � �� � � � � �

�
� � of those must originate from correct

processes, which must have set their local clock to � by the third if and sent (init, l) earlier, recall Lemma 4.2.

Another important property—expressed in the following Lemma 5.2—of our solution of initialization is the real-time 	
�

� � �
when a late starter process � arrives at a local clock value ����� 	

�
� � � � within precision �����
 such that � ����� �
	�� 7 � � � 	���/

�����
 for any time 	 �
�

� � � . Note carefully that we do not give an upper bound on 	
�

� � � w.r.t 	 	 � . By now9 it is only
interesting how large � ����� is compared to the the time � started listening. Note that the instant 	 	 � 7 L � is more important
than 	 	 � for these properties since every message sent by a correct process after 	 	 ��7ML � is guaranteed to reach � (except
those messages that suffer from at most � �� link omissions). We will use this lemma in the proofs that guarantee precision.
There we must assume that processes send messages based on the fewest information. Hence they are assumed to send these
messages shortly after booting possibly based on only one message by a correct processes. But they must send their worst
messages before 	

�
� � � , i.e. before they catch up.

Lemma 5.2 (First Synchronization). Let � be a correct processes that becomes up at instant 	 	 � . And let � �#� ����� �
	 	 � 7
L � � � � . Further let � ����� increase at time 	,9 such that 	,9 � # �� � � �

	
. From time 	

�
� � � � 	 9 � R on � ’s local clock value

� ��� 	���� � ����� �
	��B7 �����
 for all times 	 � 	
�

� � � .������� � 	
�

� � � � / � ����� �
	 	 � 7 L � � � � �� U �
�

� � .
Proof. Let the first correct process � set its clock to � � � ��� ����� � 	 	 � 7 L � � � D at time 	 9 �\# �� �\# �� � � �

	
. It has done so

because X � � �� � 	 9 �]X � ��7 � �� 7 � � 7 �
�
7 ���)7 �

�
�OD!� � �� � � �� ��D � � ��D �

�
� ��� � ��� � � . Thus at least � � �� � � �� � � � � �

�
� �

correct process have sent (echo, k) after 	 	 � 7OL � because the first correct processes has set its clock to � after that and
correct processes never send messages for greater ticks than their own clock value. Therefore � receices all messages sent
by correct processes (except those that suffer from at most � �� link omissions) for all ticks ��� � , such that (P1W), (P2) and
(P3W) can be applied to � starting from tick � � � . Therefore—caused by weak relay (P3W)— process � catches up by time
	
�

� � � � 	 9�� R , and � � � 	�� ��� � � � � 	�� 7  ����
 for all times 	�� 	
�

� � � . Hence the first part of Lemma 5.2 is true.
By assumption � � � � � 	 9 � ��� ����� � 	 	 ��70L � � �OD � � � � and 	 9 � # �� � � �

	
such that following Definition 7

� � � 	 9 � ��� .
From Lemma 4.5 follows that ��� � � � 	 9�� R � / ������� � 	 9 � � �

	
�
�
�
	
�
���
�

�!� " � � � � �
	 9 � � � ����� �
	 	 ��70L � � �OD � � �� U 7 �� � �������� � 	 	 � 7 L � � � � �� U#�
�

� � . Since 	
�

� � � / 	 9 � R Lemma 5.2 is true

We now consider the quality of (init, k) messages when sent by correct (or benign faulty) processes. The difference of
the clock value sent via an (init, x) message and ������� is in fact the most important part for calculating the precision of the
clocks. We start with Lemma 5.3, which tells us that messages from the same process are required to advance � ����� and to
send the worst possible (init, x) message at different processes.

Lemma 5.3. For � �-D � � �� �OD � �� � ��� � � ���
�
�SD � � �SD � � ��� , any two correct or benign faulty processes � and � that

send (init, x) and (init, y), respectively, must have got at least one message from a common process � that is either correct or
benign faulty (omission or crash fault).

Proof. Both processes � and � must have received at least � 7 �)�� 7 � � 7 �
�
7 � � 7 � � (echo) messages in order to send (init).

Among those could be �!� � �
�
� � � �� messages with malign faulty origin such that ; ����7 � �� 7 � � �� 7TD!� � 7�D �

�
7 � � 7 � �

is the minimal number of messages sent by processes that are either correct or benign faulty (crash or omission). The total
number of correct or benign faulty processes in the system is �7�����7 �

�
. Since

DW;27 �"� � ��� �
�
���T7 D!� �� 70D � � �� 7 �!� � 7 �!�

�
70D � � 70D � � � �

the pigeonhole principle reveals that at least one of � and � ’s (echo) messages must originate from the same correct or benign
faulty process � (although it need not be the same message from � at � and � ).

We are now ready to to bound the quality of any (init, k) message from a correct process with respect to � ����� . The worst
possible (init, k) message is sent by process � that becomes up shortly before it sends (init, k), such that is has very few
information on the system state. On the other hand it must send shortly before it is guaranteed to get a good picture. These
two properties are already discussed in Lemma 5.2. On the other hand we have to bound the quality of the messages—when
sent by correct processes—which are used by � to calculate its clock value. In the following Lemma 5.4 we use Lemma 5.3
for this purpose.

9The bound on initialization time is given by Theorem 5.7
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Lemma 5.4. Every correct or benign faulty process � that sends (init, k) at instant 	 does so for ��� � ����� � 	��B7 � U 7 �� � .
Proof. We have to assume that � sends (init, k) on possibly few and bad information on the system state. Still Lemma 5.3
ensures that at least one message � uses is sent by another correct (or benign faulty) process � whose messages are also used
ot increase � ����� .

Let 	 	 � be the time when process � changes to up. Process � sends the worst possible (init, k) message at instant 	 ��	 	 �
based on an (echo, k+1) message sent by a correct or benign faulty process � that is received at � at time 	 � � 	 	 � . We assume� to be the common process whose message was used to increase � ����� at instant 	 � � 	 � 7 R such that 	 � ��# ��$&�� � � �

	
.

The worst case is that � has sent this messages as far as possible in the past, such that � ����� could have increased
as much as possible before � became up (in fact the interresting instant is 	 	 � 7SL � since messages sent after this time
must be received by � , faults excluded). Thus we must assume: 	 � � 	 	 � and 	 � � 	 	 � 7 R . Since 	 � � # ��$&�� � � �

	
, 	 � is

synchronized with � � � � and hence
� � � 	 � � ��� following Definition 7 it follows from Lemma 4.5 that � ����� �
	 	 � 7 L � � /

������� � 	 � � � �
�
	
��� � � "

�
�
�
	
� �

�!� " � � � � � 	 � � � � � D � � ��� � "�!�#" � � � �� U#� � � � � .
Now we have a bound for � ����� �
	 	 � 78L � � . We must further assume that � sends (init, k) as late as possible before it

must catch up and � ����� increases meanwhile. Lemma 5.2 provides us a bound for � ����� � 	
�

� � � � — 	 � � � � being the time �
catches up—w.r.t � ����� � 	 	 ��7ML � � . We must just consider that � sends (init, k)—based on messages with malign origin or
sent by passive processes—shortly before 	

�
� � � in order to proof our lemma. From Lemma 5.2 follows that � ����� �
	

�
� � ��� /� ����� � 	 	 � 7ML � � � � �� U �

�

� ��/ � �� U���� � ��� � � �� U��
�

� � � � U � � � � ��� such that � ��� ����� � 	
�

� � � � 7 � U 7	�� � as
asserted.

Equipped with Lemma 5.4, we can now bound the resulting overall precision. This precision stems from the fact that a
late starter process � may change to active based on only one (init, k) message sent by a correct processes. Again we must
assume that this happens shortly after booting, such that � ’s information on the system stems only from this (init, k) message.
For the worst case we assume that a correct process sends (init, k) possibly far away in the past, such that � ����� can increase
as much as possible before a late started process � becomes up and receives the message. Then again Lemma 5.2 provides us
with a bound on � ����� at the instant � changes to active, shortly before it catches up.

Theorem 5.5 (Precision). For � �OD!� � �� �TD � �� � �!� � � ���
�
�TD �����TD!��� � � , the algorithm of Figure 1 achieves the precision

property (P) during the whole system life-time with  � � � ���.DWU � � �� � .

Proof. We have to assume that � changes to active on possibly few and bad information on the system state. Still Lemma 5.4
provides us with the worst possible (init, k) message correct processes may send w.r.t. � ����� .

Let 	 	 � be the time when process � becomes up. Process � changes to active based on an (init, k) message sent by a correct
or benign faulty process � that is received at � at time 	 � � 	 	 � .

The worst case is that � has sent this messages as far as possible in the past at instant 	 � , such that � ����� could have
increased as much as possible before � became up (in fact the interresting instant is 	 	 � 7SL � since messages sent after
this time must be received by � , faults excluded). Thus we must assume 	 � � 	 	 � and 	 � � 	 	 ��78L?$ . From Lemma 4.5

follows that � ����� � 	 	 � 7ZL � ��/ � ����� � 	 � � � �
�
	
��� � � "

�
�
�
	
� �

�!� " � � � � � 	 � � . Since 	 � is not syhnchronized with � ����� � � � 	 � � � �
following Definition 7, a bound for � ����� � 	 � � w.r.t. � is given by Lemma 5.4 which states that � ����� �
	���/ �$� � U � �� � .Thus � � � � � 	 	 � 7
L � � /�� � � U#� �� � � � ��!� " � � � � � � �

�

� U#� ��� .Now we have a bound for � ����� � 	 	 � 7�L � � . We must further assume that � changes to up as late as possible before it must
catch up. Lemma 5.2 provides us a bound for � ����� �
	

�
� � ��� — 	 � � � � being the time � catches up—w.r.t � � � � � 	 	 � 7
L � � . We

must just consider that � changes to active—based on messages with malign origin—at time 	�� �
	

shortly before 	
�

� � � in order
to proof our lemma. From Lemma 5.2 follows that ������� � 	

�
� � � ��/ � ����� �
	 	 �:7�L � � � � �� U"�

�

� ��/ � � �
�

� U�� �#� � � �� U��
�

� � ��.D U � �

� ����� such that � ��� ����� � 	
�

� � � � 7 �.DWU��
�

� � . Since � 7�� ��� ��� 	�� �
	
� , the value of  ����� given in our theorem

follows.

We now start the analysis of the second problem of initialization: Is it guaranteed to occur within bounded time? We
will show that the time Y � � �

	
it takes for all correct processes to become active after the last correct one got up is bounded.

For calculating Y � � �
	

it is required to know how good the local clock value of the last correct process is after all answers
reach it: The catch-up rule requires � � �� � � � ���

�
� � messages. We will see in the following Lemma 5.6 that at least

� � �� � � �� ��� � � �
�
� � correct processes are always have clock values of ������� �
	�� or � ����� � 	���7�� and that therefore the

clock value of the initializing process is very good after answers by these processes in front arrive.
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Lemma 5.6 (Frontier Processes). In any execution of the algorithm of Figure 1, there are at least �&� �� � � �� � � � � �
�
���

correct processes with local clock values � ����� � 	�� or � � � � � 	�� 7 � at any time 	 .
Proof. Let � be any correct process that sets its clock to the maximum at time 	 , such that � � � 	�� � � � � � � 	�� � � . According
to Lemma 4.2, this happens via the third if, so � has received at least � 7 �)�� 7 � �e7 �

�
7 � � 7 � � �OD!� � �� � � �� �
D � � ��D!�

�
�

� � � � � � � (echo, � 7 � ) messages, i.e. at least � � �� � � �� � � � � �
�
� � ones sent by correct processes. Correct processes

never send (echo) messages for ticks larger than their local clock values. Therefore, at least � � �� � � �� � � � � �
�
� � correct

processes must have a clock value of � � � 	�� or � � �
	��B7 � at time 	 .
We now give a bound for the maximum time interval it takes to get progress into the system after the last correct processes

has become running. The worst case scenario here is different from that of the worst difference in clock values (Theorem 5.5).
Whereas, for the biggest difference in clock values, the initialization must happen very quickly, so that the initializing process
has very few time to gain information on the system state, we now must consider that the processes are not making progress.
We must further assume that their local clock values are spread over several rounds. In this case the messages by the
initializing process are required to let all correct processes update their clocks first. When they do so, the necessary (init)
messages are eventually sent and all passive processes change to active mode.

Since at least one correct process has a clock value of � ����� �
	�� at the time 	 the last correct process got up, at least one (init,
������� � 	�� ) message is missed by the initializing process. The first tick, for which it is guaranteed that all correct processes
receives at least � � �� ��� � � �

�
��� (init) messages, is � � � � � 	�� � � . The following Theorem 5.7 gives the latest possible

instant when those (init, � ����� �
	�� � � ) messages are received by all correct processes.

Theorem 5.7 (Initialization Time). Let 	 be the time when the �7�� � 7��
�
7 ��� 7��

	
�
� correct process got up. Progress of

the clocks of all correct processes is guaranteed after time 	 � Y � � �
	
, where Y � � �

	
� � L?$ .

Proof. Let � be the ��7�� � 7��
�
7 ��� 7 �

	
�
� correct passive process that sends its first (echo, 0) message at time 	 . If there is

progress in the system, � will be initialized very quickly because it receives the necessary (init) messages L $ after they were
sent.

If the processes in front are not making progress, the clock value of � at time 	 ��D LJ$ is � � � 	 ��DWL?$ � ��� ����� �
	�� 7TD . It is
reached using the catch-up rule, since by this time the replies to � ’s join message must be received from at least � � �� � � ���
�
�
��� of the most advanced processes (see Lemma 5.6). Process � then sends (echo, � ����� � 	��B7 D ), so that by time 	 ���IL?$

every running correct process must have received �7�� �� 7�� ��7 �
�
7�� � 7�� � (echo, � ����� � 	��B70D ) messages.

Every correct process now sets its clock to ��� � � � 	��&7 � (if it has not yet done so) and sends an (init, � ����� � 	��&7 � ) message.
It could be that � does not receive � � �� � � ��� �

�
�#� (init, � ����� � 	��B7 � ) messages, because there were too many processes

that already had the clock value ������� �
	��B7 � . So � does not necessarily switch to active mode her.
By time 	 � � L?$ , however, all correct processes set their clocks to � ����� � 	�� and by time 	 � � L?$ to � ����� �
	�� � � .

Therefore � and all other correct processes receive at least �)� �� � � � � �
�
� � (init, � � � � � 	�� � � ) messages by time 	 � �IL?$

or earlier.

6 From Degraded to Normal Mode - Revisited

The solution discussed in Section 5 has got a major drawback. The maximum overall precision ������ ���*D U � � �� � that
we must consider is vastly larger than the precision  �	��
 � � �� U#� �� � that every correct processes is guaranteed to reach
within a very short time after becoming up. The advantage of our solution from Section 5 is the early change into active
mode, if there is progress—possibly due to faulty processes—in the system.

This section introduces an alternative solution for the problem of when to switch to active. This switch is only guaranteed
to happen later, i.e. when all correct processes are up, even in the case of progress before that.

The algorithm from Figure 2 differs from the previous one from Figure 1 in (1) the fifth if, the rule that manages the
change to active mode and (2) in the fourth if.

Whereas in the previous solution the change happend on the reception of �&� �� �#� � �#�
�
� � (init, l) messages, i.e. the

reception of at least one sent by a correct process, it happens in the algorithm of Figure 2 on the reception of �Z7 � �� 7 � � 7
�
�
7����)7���� (echo, l) messages. Note carefully that it is possible that � N�� , such that passive processes must keep perception

vectors of past rounds. Since this rule requires ��7 �)�� 7 � � 7 �
�
7 ��� 7 ��� messages, it is only guaranteed to be enabled

when eventually all correct processes are up. This is done by (1).
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Since we do note require that � � �� � � �� � � ��� �
�
��� (init, k) messages are sent for each round, we can catch-up closer,

such that (2) is modified. Using this solution we can reach a smaller ������ . We can hence modify our catch-up rule such that
the constant factor of  ����
 can be decreased by � .

For each correct process

VAR k : integer := � ;
VAR mode : � passive, active � := passive;

if received (init, k) from at least � j����� � � � � 	 ��� distinct processes send (echo, k) to all;
fi

if received (echo, k) from at least � j��� � � � � �
	 ��� distinct processes send (echo, k) to all;
fi

if received (echo, k) from at least �����Ij� ��� � ���
	������������ distinct processes if mode = active  ��� � a ��� ; /* update clock */a � � a ��� ;
send (init, k) to all; /* start next round */

fi

/* *** catch-up rule *** */
if received (echo, l) from at least � j��� � � � � �
	 ��� distinct processes

with b�� a if mode = active  ��� �b ; fi /* update clock */a � �Zb ; /* jump to new round */
send (echo, k) to all;

fi

/* *** change to active mode *** */
if received (echo, l) from at least ����� j� ��� � ���
	������������ distinct processes if mode = passive ��� ��$&%(' � b ���+* a � ;a � ��$�%(' � b ���+* a � ;

mode := active;
if � b ��� � � a  send (init, k) to all; fi

fi
fi

Figure 2. Clock Synchronization Algorithm for the Hybrid Perception-based Failure Model with Startup
Phase and Late Change to Active Mode (Higher Precision)

Since we modified the catch-up rule we can now give better properties for weack synchronization:

Theorem 6.1 (Weak Synchronization Properties). For � �PD � � �� �3D � �� � �!� � �3D �
�
�SD � � �#� � ��� and any � 	 � , the

algorithm from Figure 2 achieves

P1WL Weak Correctness. If at least � � �� � � �� � � � � �
�
� � correct processes set their clocks to � by time 	 , then every correct

process sets its clock at least to � by time 	 �8D L $ .

P2L Unforgeability. If no correct or benign faulty process sets its clock to � by time 	 , then no correct process sets its clock
to � � � by 	 � DWL�� or earlier.

P3WL Weak Relay. If a correct process sets its clock to � at time 	 , then every correct process sets its clock at least to � 7 �
by time 	 � R .

Proof. Similar to proof of Theorem 4.3. Catch-up rule jumps one tick farther.

Precision in degraded mode based on P1WL, P2L and P3WL.

15



Theorem 6.2 (Precision in Degraded Mode). In a system with � �OD � � �� �ZD!� �� ���!� � �D �
�
�D � � ��� � � � processes, where

��/ � 	 ��/ � processes, except the faulty ones, are initially synchronized, the algorithm of Figure 1 satisfies the precision
requirement (P) with  �	��
 ��� �� U#�

�

� � .
Proof. Similar to proof of Theorem 4.6. Weak relay just goes back to tick ��7 � (insted of � 7 D in Theorem 4.6).

Overall precision:

Theorem 6.3 (Precision). For � �OD!� � �� �TD � �� � �!� � � ���
�
�TD � � �TD!� � � � , the algorithm of Figure 2 achieves the precision

property (P) during the whole system life-time with Z9� � � ��� U#� �� � .

Proof. See proof for Lemma 5.4. � is the smallest clock value—compared to � ����� —any initializing process is guaranteed
to have when changing to active.

Theorem 6.4 (Initialization Time). Let 	 be the time when the �7�� � 7��
�
7 ��� 7��

	
�
� correct process got up. Progress of

the clocks of all correct processes is guaranteed after time 	 � Y � � �
	
, where Y � � �

	
� � L $ .

Proof. See proof for Lemma 5.7. The time all change to active is the time when all correct processes must send (init,
� ����� � 	�� � � ) instead of receiving these messages. Hence initialization is done earlier at time 	 � � LJ$ .

Note that an improved precision also influences the upper envelope bound from Theorem 7.5 in Section 7. Since processes
may not jump over  ����� clock values but only  9����� , the upper envelope bound tightens for newly started processes.

7 Clock Synchronization in Normal Mode

We have seen in Theorem 5.7 that progress comes into the system with the last correct process becoming active. In this
section we will see the bounds for the accuracy requirement (A). These bounds apply beginning at time 	 when every correct
process � reaches a clock value � � � 	���6 � ����� �
	 	 �!� � � , 	 	 � being the instant the last correct process became up. Such a
clock value must be reached using “fresh” messages, i.e. they were not resend during initialization (by the fifth if). Hence
the time bounds L $ and L � can be used to calculate the bounds for envelope synchronization.
We now consider a system with �
	 � � � �SD � � �� � D � �� ���!� � � ���

�
�0D!� � � D!� � � � where all correct processes are active.

The following two properties from Theorem 7.1 are required in order to give the lower bound from Lemma 7.3. Note that the
properties P1W, P2 and P3W from Theorem 4.3 are also guaranteed.

Theorem 7.1 (Clock Synchronization Properties). For �
	 � � � �OD � � �� �
D � �� � ��� � � �!�
�
�
D � � ��D!� � � � the algorithm

from Figure 1 achieves

P1F Full Correctness. If all correct processes set their clocks to � by time 	 , then every correct process sets its clock to
� ��� by time 	 �8D L?$ .

P3 Relay. If a correct process sets its clock to � at time 	 , then every correct process does so by time 	 � DWL $ � R .
Proof. Full Correctness. If � � � ����� �
	�� all correct processes must have sent (init, k) by time 	 , such that every correct
process reaches sufficient evidence by time 	�� L:$ to send (echo, k) (which they do since all have a clock value � by
assumption). By time 	 �OD L $ the perception of every correct process � is X � � �� � 	 �SD L?$ �]X � ��7 � �� 7 � � 7 � � 7 � � 7 � �
such that every correct process then sets its clock to � � � .
If ��N�� ����� �
	�� at least � � �� � � �� � � �����

�
� � correct processes must have sent (echo, k) by time 	)7
L � (see Lemma 4.2).

All correct processes set their clocks to � by time 	 (by assumption). On the reception of the at least �&� �� � � � �#�
�
� �

(echo, k) messages by time 	 � R all correct processes send (echo, k) such that for every correct process � its perception
X � � �� �
	 �ML?$ � R �[X � �T7�� �� 7 � � 7�� � 7 � � 7�� � . Thus all correct processes set their clocks to � � � by time 	 �0LJ$ � R .

Relay. Assume � � � � � � � 	�� . From Weak Relay follows that every correct processes sets its clock to � 7 D by time 	 � R
caused by � � �� ��� �� � � � ���

�
� � (echo, � 7 � ) messages sent by correct processes. These messages force all correct processes

to send (echo, �@7�D ) by time 	 � R which must be received by time 	 �
L:$�� R by all correct processes which set their clocks
to ��7 � . The � � �� ��� �� ��� � � �

�
� � (echo, � 7 � ) messages now force all correct processes to send (echo, ��7�� ) such that

by time 	 � DWL $ � R all correct processes set their clocks to � .
If � N�� ����� �
	�� at least one correct process has already set its clock to ��6�� at time 	 9eN�	 . In the previous paragraph we
have seen that all correct processes must set their clocks to � by time 	 9!�8DWL?$ � R so all correct processes must also set their
clocks to � by time 	 �8D L $ � R .
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Remark Note that our time bound for relay D L:$ � R is larger than the bound for the original clock synchronization algorithm
from [29]. This is due to the fact that our algorithm only sends messages for clock values smaller or equal its local clock.
The sending of messages is hence suspended until a process reaches the corresponding clock value.

Lemma 7.2. Let � be a correct process that sets its clock to � at instant 	 . � sets its clock to � ��� by time 	 � �IL $ � R .
Proof. The proof uses the properties P1F and P3 from Theorem 7.1. P3 (relay) guarantees that all correct processes set their
local clocks to � by time 	,9���	 �8DWL?$ � R . P1F (full correctness) guarantees that all correct processes, including � , must set
their clocks to � � � by time 	,9�� DWL?$ . Hence � sets its clock by time 	 � � L $ � R .
Lemma 7.3 (Lower Envelope Bound). For the described system with � 	 � � � �OD!� � �� � D � �� � �!� � � �!�

�
�
D � � �
D!� � � �

and all correct processes are active,

	
� �

	
�

��� � 7�� � � N � � �
	 � � 7 � � �
	 � � for all correct active processes � at all times 	 � � 	 � .

Proof. Let � � �
	 � � � � and � � � 	 � � � �$�O� . � has set its clock to � at instant # ��/ 	 � and to �$�O� at instant # ��$ � /�	 � .
Hence 	 � 7 	 � NA# �%$ � $&��7 # ��/O# ��$ � 7 # � � � L?$ � R (following Lemma 7.2).
From Relay follows that process � may wait as long as D L:$ � R for the other correct processes to catch-up to its round and
force progress in � ’s clock value. Hence the time there is progress without waiting is 	 � 7 	 � 7
D L?$�7 R N 	 � 7 	 � . Such that
	 � 7 	 � 7�� L?$ 70D R /O# ��$ � 7 # � . ( 	 � 7 	 � 7�� L?$
7 D R � 	 � 7 	 � 7 � L?$ � DWL � ).
� � � 	 � � � � � �.# � � and � � � 	 � � � � � �.# ��$ � � such that the number of steps � � � � �.# �%$ � �e7 � � �*# � � . � is always larger than
the smallest possible number of steps within any time interval of the size 	 � 7 	 � 7 � L?$ �SD L � . Hence

	
� �

	
�

��� � 7�� � � N
� � � 	 � �B7�� � �
	 � � (following full correctness).

A straight forward approach for giving the upper bound for the envelope condition would be to give the shortest possible
interval between clock updates like Lemma 4.4. Lemma 4.4, however, only refers to the most advanced clock values. Due to
the catch-up rule no shortest possible interval between consecutive clock updates can be given for clocks that are behind. In
Lemma 7.4 we use the precision of the clocks in conjunction with Lemma 4.4 to get an upper envelope bound.

Lemma 7.4 (Upper Envelope Bound). For the described system with � 	 � ��� �SD � � �� � D!� �� � �!� � � �!�
�
� D ��� �
D!��� � �

and all correct processes are active, ��� �
	 � ��7 � � � 	 � ��N
	
� �

	
�

�!� " ��$����� ��� for all correct active processes � at all times
	 � � 	 � .
Proof. From Theorem 5.5 (precision) follows that ������� �
	�� 7# � � ��/ � � �
	�� / � ����� �
	�� at all times 	 for all correct
processes � . Specifically at instant 	 � the clock value of any correct process � is therefore bounded by � � � � � 	 � �B7� � � � /� ��� 	 � � , and at instant 	 � there is an upper bound of � � � 	 � ��/ � ����� �
	 � � . Thus � � � 	 � � 7 � � � 	 � ��/ � ����� � 	 � �B7 � ����� � 	 � � �$����� .
������� � 	 � � 7 � � � � � 	 � � needs to be bounded: Let � ����� �
	 � � � � and � ����� � 	 � � � � � � . � ����� is set by any correct process
to � at instant # �T/ 	 � and to � �O� at instant # ��$ � / 	 � . Hence 	 � 7�	 � 6-# ��$ �&78# ��$&���-# ��$ �&78# � 7 D L � (following
unforgeability) and directly follows 	 � 7 	 � � DWL �06O# ��$ � 7 # � .� ����� � 	 � � � � ����� �*# � � and � � � � � 	 � � � � ����� �.# ��$ � � such that the number of steps � � � ����� �.# ��$ � � 7 � ����� �*# � � . � is
always smaller than the largest possible number of steps within any time interval of the size 	 � 7 	 � ��DWL � . Using Lemma 4.4
we get � ����� � 	 � �B7 � ����� � 	 � ��N

	
� �

	
�

��� " � � . Thus � � �
	 � � 7�� � �
	 � � N
	
� �

	
�

��� " �  ����� � � .
Theorem 7.5 (Envelope Condition). The described system with � 	 � ��� �AD!� � �� �MD!� �� � �!� � ���!�

�
�MD!� � �MD!� � � � and

all correct processes being active, satisfies the following envelope condition	
� �

	
�

����� 7 � � � N�� � �
	 � �B7�� � �
	 � ��N
	
� �

	
�

��� " �  ����� � �
for all correct active processes � for all times 	 � � 	 � .
Proof. See Lemma 7.3 and Lemma 7.4.

Remark As we have seen in Lemma 5.2, there is a time for each correct processes from when it is guaranteed to remain
within precision  ����
 to all other correct processes and hence stays in precision with � ����� . Note that our upper envelope
bound from Theorem 7.5 uses  ����� . That is because every active correct processes could jump over  � � � clock values
once, shortly after it became active. During normal operation, however, when all correct processes are within precision
 ����
 , the upper envelope bound tightens from

	
� �

	
�

��� " �  ����� � � to

	
� �

	
�

�!�#" �  ����
 � � . Unfortunately a correct processes
cannot be guaranteed to determine the time when this happens and for safety reasons the bound containing  ����� must be
considered.
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We have seen that progress is guaranteed if all correct processes are eventually active. This is enforced by the third if. This
led us to the relay property from Theorem 7.1. Compared to weak relay from Theorem 4.3 relay is on the one hand better
regarding the clock values processes are guaranteed to reach. On the other hand it is worse regarding the time bound when
this happens. Our precision bound  ����
 from Theorem 4.6 is built upon weak relay. In the following Theorem 7.6—which
we build upon relay—we will examine an additional bound for precision  9����
 that is only guaranteed to hold if all correct
processes are active.

Theorem 7.6 (Precision of MCB during normal operation). For the algorithm from Figure 1 there exists a constant �9����

such that X!� � � 	��B7�� � � 	���X / "9����
 for all processes � and � at every time 	 for � 	 � ��� �-D � � �� �OD � �� � ��� � �OD �

�
�

D ��� � ��� � � where all correct processes are active. Z9�	��
 ��� �

� U#� �� � .
Proof. Assume a correct process � has a local clock value � ��� within an unknown precision �9����
 to all other correct
processes—and therefore also to � ����� � 	 9 � —at real-time 	,9 . We now use relay (P3), Definition 7 and Lemma 4.5 to reason
about �9����
 by calculating � ����� �
	�� for a time 	 6 	 9 .

Let � advance its clock to � � � such that # �� � 	�6 	 9 . Process � has not done so before 	 because no other correct process
has done so before 	&70DWL $ 7 R following directly from relay (P3), thus # �� � � �

	
� 	B7 D L?$ 7 R .

From Lemma 4.5 follows that � ����� � 	���/ �
	
�
�
	
���!� � ���

�
�!� " � � � � �
	:7 R ��� � ����� � 	J7 R � . Let us now take a closer look at the

term
� � �
	 7�D L?$T7 R � � ������� � 	 7�DWL?$T7 R � : If # �� � � �

	
� 	 7�DWL?$T7 R and therefore 	 7�D L $T7 R is synchronized with � ����� ,

� ����� � 	 7 D L?$�7 R � � � ��� and
� � �
	&7 DWL?$
7 R � � � (following Definition 7). If on the other hand # �� � � �

	
6 	 7 DWL?$ 7 R ,

� ����� � 	&7
DWL $ 7 R � � � and
� � � 	 7
DWL $ 7 R � � � . In both cases

� � � 	 7
DWL $ 7 R � ��� ����� �
	&7
D L $ 7 R � � � ��� such that
������� � 	�� / � �!� � $ ��!� " � � � ��� thus � ����� � 	���/ � �

� U � �� � � � .
Process � has a clock value � � � 	 9 � ��� at a time 	 9 N 	 which is by assumption within precision. Since ��� � 	 9 � N�� � � 	��

and � ����� � 	 9 ��/ � ����� �
	�� , we get a bound for our precision Z9����
 from the difference � ����� � 	��J7 � ��� 	 9 � � � � � � � 	��J7 ��/
� �

� U � �� � .
When comparing our two bounds on precision—which are both valid during normal operation—we discover a “break

even” at U � D . Only for very small uncertainties ( L $ N\D L � )  9����
 and hence the third if guarantees a better precision.
In systems with larger uncertainties our first bound ��	��
 —enforced by the fourth if—is better. But note that due to
initialization requirements our algorithm has a larger time bound on relay than the classic clock synchronization algorithm
from [29] which would guarantee a precision of ���
 � � U#� �� �

10.

8 Conclusions

We described and analyzed a clock synchronization algorithm for partially synchonous systems with unknown bounds
G L �  L?$ H upon delays, which works during system startup and tolerates a large number of hybrid process and link failures.
Whereas accuracy (and hence progress of the clocks) can only be guaranteed when sufficiently many correct processes are
eventually up and running, it guarantees bounded precision  ����� during both startup and normal operation. Our clock
algorithm is hence a promising basis for studying other partially synchronous algorithms during system startup.

Our algorithm is actually a purely time- and timer-free and hence “asynchronous” algorithm. Its timing properties hence
solely “immerse” [8] from the underlying system, which means that e.g. its precision ������ adapts to the actual L $ and L � .
Even more, its precision actually depends only upon the ratio U � LJ$eV L � . In terms of assumption coverage, this is an
advantageous property: At heavy network load, when messages have to be queued at the network interfaces, both L $ and L �
increase. Therefore it is possible that an assumption on U holds despite of the fact that an assumption on L $ does not. In this
case our algorithm would hence still provide the expected performance, whereas a synchronous would fail.
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