
BAKKALAUREATSARBEIT

IEEE 802.15.4 MAC API

ausgeführt am Institut für Rechnergestützte Automation
zum Zwecke der Erlangung des akademischen Grades

eines Bakkalaureus der Technischen Informatik

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
und

Dipl.-Ing. Mag. Christian Reinisch

durchgeführt von

Lukas Krammer

Matr.-Nr. 0525332

Gumpendorferstraße 140/13c, 1060 Wien

Wien, am 26. Mai 2008 .

IEEE 802.15.4 MAC API

Kurzfassung

In den letzten Jahren wurden viele verschiedene Funktechnologi-
en entwickelt und haben sich auf dem Markt etabliert. Diese sind
jedoch hauptsächlich auf Multimedia Anwendungen bzw. auf die
Übertragung großer Datenmengen ausgelegt. Im Gegensatz dazu wurde
IEEE 802.15.4/ZigBee entwickelt, das den Fokus hauptsächlich auf die
Übertragung von Kontrolldaten legt.
In dieser Arbeit werden IEEE 802.15.4/ZigBee Implementierungen ver-
schiedener Hersteller und deren Eigenschaften diskutiert. Darüberhinaus
wird ein kurzer Einblick in die Grundkonzepte von IEEE 802.15.4 gegeben.
Das Hauptziel dieser Arbeit ist die Implementierung des MAC Sublayers
des IEEE 802.15.4 Stacks, wobei Teile des Stacks von Texas Instruments
verwendet werden. Die Implementierung wurde notwendig, da ein großer
Teil des IEEE 802.15.4 Stacks von Texas Instruments nur als Library für
einen bestimmten Compiler veröffentlicht wurde, jedoch nicht als Quelltext.
Ein wichtiges Ziel ist es auch, eine kompatible Schnittstelle zu der ur-
sprünglichen Implementierung von Texas Instruments zu schaffen. Dies ist
notwendig um gegebenenfalls den ZigBee Stack von Texas Instruments auf
die aktuelle Implementierung aufzusetzen.
Als RF Transceiver wird ein Chipcon CC2420 verwendet, der Teile des Phy-
sical Layers (PHY) von IEEE 802.15.4 bereits integriert hat. Dieser Chip
ist mit einem MSP430 Microcontroller von Texas Instruments verbunden,
auf welchem der Stack sowie die Applikation implementiert sind.
Abschließend wird in dieser Arbeit die Funktion des IEEE 802.15.4 Stacks
mithilfe einer kurzen Applikation demonstriert.

i

IEEE 802.15.4 MAC API

Abstract

In the last few years a large number of wireless technologies was estab-
lished, but most of them focus on multimedia applications with capabilities
to transmit high amount of data. In difference to these technologies the
IEEE 802.15.4/ZigBee standard is well suited for wireless control applica-
tions.
This thesis discusses different implementations of IEEE 802.15.4/ZigBee
and illustrates the basic concepts of IEEE 802.15.4.
The main focus of this thesis is the implementation of the medium access
control (MAC) sublayer of the IEEE 802.15.4 stack by using parts of the
IEEE 802.15.4 stack of Texas instruments. This implementation is neces-
sary because Texas Instruments published parts of the IEEE 802.15.4 stack
only as library for a special compiler and not as source code.
The primary goal of this implementation is the compliance of the current
implementation with the implementation of Texas Instruments because it
should be possible to set up the ZigBee stack (network layer NWK and
above) from Texas Instruments.
The stack uses a smart RF transceiver (Chipcon CC2420) which provides
parts of the physical layer PHY layer of the IEEE 802.15.4 stack. As target
device a MSP430 microcontroller unit (MCU) is used, which is connected
to the CC2420 trough a serial data interface.
Finally this thesis demonstrates the functionality of the IEEE 802.15.4 im-
plementation in a short demo application.

ii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives . 2
1.3. Related Work . 2
1.4. Structure of the Thesis . 3

2. Concepts 4
2.1. Introduction in IEEE 802.15.4 4

2.1.1. Introduction . 4
2.1.1.1. Device Types 4
2.1.1.2. Network Topology 5

2.1.2. PHY Layer . 6
2.1.2.1. Frequency Bands 6
2.1.2.2. Transmit Power 7
2.1.2.3. Physical frame structure 8

2.1.3. MAC Sublayer . 8
2.1.3.1. Introduction 8
2.1.3.2. Communication Modes 9
2.1.3.3. Superframe Structure 10
2.1.3.4. CSMA-CA . 10
2.1.3.5. Starting a personal area network (PAN) 12
2.1.3.6. Association and Disassociation 14

3. Implementation 15
3.1. Hardware . 15

3.1.1. Hardware Description . 15
3.1.2. Interface Description . 17

3.2. Porting of the hardware abstraction layer (HAL) 19
3.2.1. Changing Macros . 19
3.2.2. Changing Registers . 20
3.2.3. Changing the clock source 20

3.3. MAC Stack Overview . 20
3.3.1. Provided Functions of the TI Stack 22

3.3.1.1. Basic Radio Functions 22
3.3.1.2. Receive and Transmit Functions 23
3.3.1.3. Timer Functions 23

iii

3.3.2. Source File Structure . 25
3.4. MAC API Description . 26

3.4.1. General Event Structure 26
3.4.2. Memory Management . 27
3.4.3. MAC Data Service . 28

3.4.3.1. MCPS Data Request 28
3.4.3.2. MCPS Purge Request 31
3.4.3.3. MCPS Data Allocate 31

3.4.4. Management Services . 32
3.4.4.1. MLME Association 32
3.4.4.2. MLME Disassociation 35
3.4.4.3. MLME Start 36
3.4.4.4. MLME Beacon Notify 38
3.4.4.5. MLME Get . 40
3.4.4.6. MLME Set . 40
3.4.4.7. MLME GTS 41
3.4.4.8. MLME Reset 43
3.4.4.9. MLME RX Enable 43
3.4.4.10. MLME Scan 43
3.4.4.11. MLME Poll . 47

3.5. Demo Application . 48
3.5.1. Test environment . 48
3.5.2. Beacon-enabled Demo Application 50
3.5.3. guaranteed time slot (GTS) verification 52
3.5.4. Non beacon-enabled Demo Application 53

4. Conclusion 55

Bibliography 56

A. Acronyms and abbreviations 57

B. Board Documentation 59
B.1. Documentation of the RF Board 59
B.2. Schematic of the MCU Board 61

iv

1. Introduction

1.1. Motivation

In the last few years the number of electrical and electronic devices in a house-
hold or a functional building raised very fast. Nowadays the term ’smart build-
ing’ becomes more and more important. Such systems also require smart com-
munication systems which connect the devices together in a cheap and efficient
way. In such systems wireless technologies may be preferred instead of wired
technologies, because they are more flexible and do not need expensive wire
connections.

Actual wireless technologies are only for a small group of products or for prod-
ucts of one manufacturer. Moreover many of these technologies, like Wireless
LAN (IEEE 802.11) or Bluetooth (IEEE 802.15.1) have the focus on multime-
dia applications, like audio/video streaming. However they do not have the
focus on control applications nor on security or real time applications. ZigBee
and IEEE 802.15.4 ([1]) are protocol standards, which focus exactly on this
market segment. Hence ZigBee is an ideal technology for control applications
in the home and building area, like lighting control or heating, ventilating, and
air conditioning (HVAC). Because of its security capabilities it’s also ideal for
security applications like alarm systems or door control systems. Moreover it’s
possible to transmit also audio or video data, but these tasks are not the main
application area of this technology.
Since there is a large distance between the sensors and actuators in a building,
ZigBee includes also a routing mechanism. This mechanism makes the com-
munication between devices possible, which are not directly connected .
Another advantage of this technology is the low power consumption. This fea-
ture is especially important for battery powered devices, like remote controls.
Since a building consists of a large number of sensors and actuators, the ex-
pense factor is very important. That is the reason why ZigBee/IEEE 802.15.4
is a very slim standard compared to Bluetooth (IEEE 802.15.1)or wireless lo-
cal area network (WLAN) (IEEE 802.11), so ZigBee devices need less complex
hardware and so they are much cheaper than other wireless products.

1

1 Introduction 1.2 Objectives

1.2. Objectives

There are a lot of manufacturers, which provide ZigBee stacks and ZigBee
transceivers, as listed in Chapter 1.3. For the actual project the RF transceiver
Chipcon CC2420 in combination with the ZigBee/IEEE 802.15.4 Stack from
Texas Instruments were used. The ZigBee/IEEE802.15.4 Stack is implemented
in a Texas Instruments MSP430, which is a low cost MCU with a very low
power consumption. This stack is written in C and originally built with
the proprietary IAR Compiler. Since the IAR Compiler is a commercial
compiler and a license is very expensive the GNU C compiler for MSP430
MCUs (mspgcc) was used in this project.
Since the MCU, which was used by Texas Instruments to implement the
stack, has only one universal asynchronous receiver transmitter (UART),
another type of MSP430 MCU was used, which contains two UARTs. To
set up an experimental environment, a development board from TI with the
MSP430F149 on it was connected to a RF development board from Microchip
which hosts a Chipcon CC2420. The first idea was to take the original stack
and only change a few compiler specific code segments and a few register
definitions to make the stack running in our development environment using
the mspgcc. After changing these few things it focused out, that elementary
parts of the stack are only represented in a static library for the IAR compiler.
There were only a few low level primitives provided by Texas Instruments, but
not the complete IEEE 802.15.4 stack. Moreover trials to convert the static
library with binary utilities failed and also an intensive search for these missing
files failed. Finally the only possibility to use this stack, was to implement
the missing parts of the stack and so the the MAC layer of the IEEE 802.15.4
standard was implemented.

Therefore the focus of this work is the implementation of the IEEE 802.15.4
stack using existing parts of the stack from Texas Instruments. Another very
important requirement is to design the self implemented stack fully compat-
ible to the original stack from Texas Instruments. This is so important, be-
cause in future projects the higher layers of the stack (Network layer (NWK),
Application layer (APL) of ZigBee) should be set up on the actual implemen-
tation

1.3. Related Work

The ZigBee/IEEE 802.15.4 standard is used and implemented by many
different suppliers, but since the ZigBee standard is an open standard, the

2

1 Introduction 1.4 Structure of the Thesis

devices of the different supplier should by compatible to each other.

In this section a short overview of the most important and interesting im-
plementations of IEEE 802.15.4/ZigBee is given.
The first implementation which is mentioned is the ZigBee stack from Atmel.
Atmel produces an own Radio Transceiver, which is compliant to the IEEE
802.15.4 standard. The function of this RF transceiver (Atmel AT86RF230) is
quite similar to the Chipcon CC2420. The stack of Atmel is easier than the
of Texas Instruments, but primitives for task handling and messaging are not
included. A main advantage of the stack from Atmel is the support of GTS,
because GTS is not supported in the stack from Texas Instruments. Microchip
also published a ZigBee stack, which uses the same RF transceiver as Texas
Instruments. Unfortunately this stack do not support GTS as the stack from
Texas Instruments.
Open-ZB is a community driven implementation of a ZigBee stack for TinyOS.
This implementation is licensed under the Academic Free License (AFL) and
does not necessarily need a complex RF transmitter e.g. Chipcon CC2420 or
Atmel AT86RF230, nevertheless such chips are also supported.

1.4. Structure of the Thesis

This thesis is structured as follows: Chapter 2 gives a short introduction in the
IEEE 802.15.4 standard, including the basic operations and primitives. The
first part of Chapter 3 describes the hardware arrangement of the development
environment, including a detailed description of the interface between the MCU
and the RF transceiver. The second part of this chapter describes the software
interface of the MAC layer and the restrictions for the use of this API. Chapter 4
summarizes the thesis and gives an outlook on possible applications with the
results of this thesis and general applications, which are possible with ZigBee.

3

2. Concepts

2.1. Introduction in IEEE 802.15.4

2.1.1. Introduction

This chapter gives a short introduction in the IEEE 802.15.4 and ZigBee stan-
dard. The ZigBee protocol stack can be described by using the International
Organization for Standardization (ISO) - Open Systems Interconnection (OSI)
model as shown in Figure 2.1. The actual ZigBee standard ([2]) is located
on the NWK and APL layer of the OSI model and above. ZigBee is based
on IEEE 802.15.4 standard ([1]), which defines the physical layer (PHY) and
MAC layer of the OSI model. The IEEE 802.15.4 standard stack is not nec-
essarily used in combination with ZigBee, because it is also possible to set up
other communication protocols like Internet Protocol (IP) or fieldbus systems
like Wireless Highway Addressable Remote Transducer (HART). Moreover an
interesting fact is, that the ZigBee standard is defined and maintained by the
ZigBee Alliance, while 802.15.14 is maintained by IEEE.

Figure 2.1.: ZigBee/IEEE 802.15.4 protocol stack architecture (taken from [3])

2.1.1.1. Device Types

In the IEEE 802.15.4 standard two different device types are defined:

• Full-Function Device (FFD)
Such a device has implemented the whole primitives and functions, which
are defined in the standard. A full-function device (FFD) is able to act

4

2 Concepts 2.1 Introduction in IEEE 802.15.4

as coordinator, which provides beacon transmission or to act as simple
device.
Hence such a device should be able to act as coordinator, more memory
capacity is needed and as a consequence of that, the power consumption
and the hardware costs are higher.

• Reduced-Function Device (RFD)
In contrast to a FFD, the reduced-function device (RFD) only consists
of the minimum implementation of the standard. So it is not possible
for such a device to act as coordinator. Moreover it is only possible to
connect it to one single FFD.
Because of the low power consumption and the low hardware require-
ments, these devices are quite cheaper than FFDs and are used as e.g.,
small sensors or actuators.

The distinction between these two device types offers the way to design systems
in a very flexible and economic way.

2.1.1.2. Network Topology

The IEEE 802.15.4 standard offers a few different types of network topologies:

• Star Topology
In such a topology as shown in Figure 2.2, one FFD acts as PAN coordina-
tor and all devices (either a FFD or RFD) in the area of the coordinator
can associate with it. If a device wants to communicate with another
device in the PAN, it has to send the message to the coordinator, which
forwards the message to the destination device.

Figure 2.2.: Structure of a Star Topology (taken from [3])

• Peer-to-Peer Topology
In a peer-to-peer network (as shown in Figure 2.3), basically each device
can communicate with each other device in its environment directly. If
one device wants to communicate with a device, which is not in the

5

2 Concepts 2.1 Introduction in IEEE 802.15.4

immediate environment, a routing mechanism can be introduced. This
mechanism should forward messages through a number of routing devices
to the destination device, with routing is performed by FFDs. Such a
routing mechanism is not in the scope of the IEEE 802.15.4 standard,
but it is implemented in the NWK layer of ZigBee.

Figure 2.3.: Structure of a Peer-to-Peer Topology (taken from [3])

2.1.2. PHY Layer

The PHY of IEEE 802.15.4 is used to transmit a basic data frame over the
physical medium. Moreover the PHY layer is responsible for modulation and
encoding. It also defines frequency band and transmit power.

2.1.2.1. Frequency Bands

Different frequency bands and modulation methods are defined in this standard
which makes it possible to use this standard in many regions and countries
allover the world. The following list gives a short overview about the different
frequency bands and the distribution area of them:

• The frequency band around 868,3 MHz is especially defined for Europe.

• The frequency band around 915 MHz is used in the USA.

• The frequency band around 2,46 GHz can be used everywhere around the
world.

The most popular frequency band in our region is the 2.46 GHz band.
This frequency band is also used by many other wireless technologies and
applications. Bluetooth and wireless LAN are the most popular technologies
in this frequency band. The use of Bluetooth (IEEE 802.15.1) or Wireless
local area network (LAN) (IEEE 802.11) in combination with IEEE 802.15.4

6

2 Concepts 2.1 Introduction in IEEE 802.15.4

in the 2,46GHz band causes some problems, like packet errors, which are
described in [4].

2.1.2.2. Transmit Power

The physical layer also specifies the transmit power, whether the maximum
physical transmit power depends on the frequency band and the local regu-
lations. The value of the transmit power is not a fixed value, but a variable
value, which also can be set by higher layers. The major advantage of an ad-
justable transmit power is the reduction of power consumption. So if e.g., two
communication devices are only a few centimeters away from each other, it is
not necessary to transmit a frame with the maximum power. There exists a
number of channel pages, which basically indicate the modulation mode. Cur-
rently there are only 3 channel pages used, but there is altogether a number
of 32 channel pages defined, from which 29 are reserved for future purposes.
Basically there exists a number of 28 channels per channel page. Depending
on the channel page properties, there are not all combinations of channels with
channel pages valid. A short overview of channels and channel pages is given
in Figure 2.4.

Figure 2.4.: Table of Channel pages (taken from [1])

7

2 Concepts 2.1 Introduction in IEEE 802.15.4

2.1.2.3. Physical frame structure

The basic data frame structure, as shown in Figure 2.5, is divided into the
synchronisation header (SHR), the PHY header (PHR) and the PHY payload.
The SHR contains the preamble field, which is used for symbol synchronization
at the receiver and has a variable length depending on the frequency band and
the modulation. Moreover the SHR contains the start frame delimiter (SFD)
field which has also a variable length and indicates the end of the SHR.
The PHR contains only one field which indicates the length of the PHY protocol
data unit (PPDU) frame. This field has a length of 8 bits, while one bit is
reserved. A valid frame length is between a value of 9 to the maximum defined
frame length. The frame length field may contains a special value of 5, which
indicates an acknowledgment frame.

Figure 2.5.: PPDU frame format (taken from [1])

2.1.3. MAC Sublayer

The data link layer (DLL), the second layer of the OSI model is divided into
two sublayers, the MAC and the logical link control (LLC). The MAC sublayer
is close to the PHY layer and uses services of it. Normally the LLC sublayer
sits above the MAC layer and provides services to the NWK layer, but in the
IEEE 802.15.4 Standard the LLC sublayer does not exists. Normally the NWK
layer of ZigBee sits directly above the MAC layer, but it is also possible to set
up an IEEE 802.2 LLC layer above the MAC layer through a service specific
convergence sublayer (SSCS) as described in the Annex of the IEEE 802.15.4
standard reference [5].

2.1.3.1. Introduction

The MAC sublayer of IEEE 802.15.4 provides an interface between the physical
layer and the next higher layer and it can be divided into two different parts,
as shown in Figure 2.6. The MAC common part sublayer (MCPS) provides
the basic data services, like data requests and data indications. The second
part of the MAC sublayer is the MAC sublayer management entity (MLME),

8

2 Concepts 2.1 Introduction in IEEE 802.15.4

which is responsible for management services within the MAC sublayer, e.g.,
association and disassociation.

Figure 2.6.: MAC sublayer overview (taken from [1])

For a communication in a multi node network a unique address is absolutely
necessary. In the IEEE 802.15.4 standard there are two addressing modes
specified. Each of them has a unique 64 bit IEEE address which should be
assigned to the device during the initialization. This address can be compared
to the MAC address in Ethernet (IEEE 802.3). There also exists a 16 bit short
address, which is not assigned in the initialization phase. A short address can
be allocated during the association procedure (described in Section 2.1.3.6).
If no short address is defined for a device, its internal address value should
be set to 0xffff (broadcast address). Moreover there exists a PAN address,
which determines the membership of a node to a PAN (cf. the star-topology
in Section 2.1.1.2). If the source PAN ID of a message is different to the
destination PAN ID, the message should be routed through other nodes to the
destination PAN, but this routing is out of the scope of the IEEE 802.15.4
standard.

2.1.3.2. Communication Modes

The MAC sublayer basically provides two options for message transmission.
The first and simpler method is the non beacon-enabled mode. In this mode
two devices communicate with each other using the medium access protocol
called carrier sense multiple access with collision avoidance (CSMA-CA), which
is described in Section 2.1.3.4. Since also time triggered messages should be
transmitted, a method called superframe structure in a beacon-enabled mode
is introduced, which is described in Section 2.1.3.3. In this mode the time
interval, limited by so called beacons, is divided into two intervals. In the first

9

2 Concepts 2.1 Introduction in IEEE 802.15.4

part of the superframe, CSMA-CA is used to transmit messages, whereas in
the second part real time communication through scheduled TDMA is possible.

2.1.3.3. Superframe Structure

For critical messages the beacon-enabled mode is used. In this mode a coordi-
nator manages the associated nodes and periodically transmits beacon frames.
The time interval between two beacons, called beacon interval, is specified as
follows:
aBaseSuperframeDuration ∗ 2BO where BO is the Beacon Order. This value
is valid between a Range of 0 <= BO < 15. BO = 15 indicates a nonbeacon-
enabled PAN. The aBaseSuperframeDuration is defined as the minimum
superframe duration.

The time interval between two beacons is divided (shown in Figure 2.7) into
two sections, the active period and the inactive period. The length of the active
period of the superframe is defined as aBaseSuperframeDuration∗2SO where
SO is the Superframe Order. This value is valid in a range of 0 <= SO <=
BO < 15. In the inactive portion it is possible to switch the coordinator
and all associated devices in sleep mode to reduce power consumption. The
active portion of the superframe is also divided into two sections, the contention
access period (CAP) and the contention-free period (CFP). Figure 2.7 shows
the portion of the superframe.
In the CAP every node, which is associated with the coordinator is allowed to
transmit packets using the CSMA-CA algorithm. If a node starts transmitting
at the end of the CAP and it cannot finish the transmission before the CAP
ends, it has to cancel its transmission.
The CFP is used to provide one single node of the PAN exclusive access rights
on the channel. Such a time slot is called GTS. In this slot no other device is
allowed to transmit a frame. If a node wants to allocate such a GTS it has to
request the GTS from the coordinator in a specified time slot. The coordinator
checks, if there is a free slot and updates the superframe structure. GTS can
be allocated as long as the minimum CAP length is not reached.
If a node receives the beacon it has to check if the requested GTS is allocated in
the GTS list. If so, it is allowed to transmit a message within this slot without
using CSMA-CA. The whole active period including CAP and CFP is divided
into a number of time slots (16 by default).

2.1.3.4. CSMA-CA

The CSMA-CA algorithm is basically used to transmit message frames on a
shared medium, in which every node is allowed to send. There are existing

10

2 Concepts 2.1 Introduction in IEEE 802.15.4

Figure 2.7.: Superframe timing diagram (taken from [1])

two versions of the CSMA-CA algorithm, as shown in Figure 2.8. One is used
in non beacon-enabled PANs and the other is used in the CAP in a beacon-
enabled PAN.
Before the algorithm is explained, the basic timebase of this algorithm (in
general of the whole MAC sublayer) is described.

• A backoff period is the basic time period, which is defined as 20 symbols.
The length of a symbol period depends on the frequency band and the
modulation method and can be considered as constant. In a beacon-
enabled PAN the backoff period depends on the internal clock of the
coordinator, but in a non beacon-enabled PAN, the backoff period only
depends on the internal clock of the MCU.

Basically there are existing three different variables which are necessary to
understand the algorithm.

• The beacon exponent (BE) variable determines the maximum time which
the algorithm waits before it checks the channel. This delay time is a
random number between 0 and 2BE − 1 backoff periods.

• The number of backoffs (NB) variable represents the number of attempts
to access the channel. If this number reaches a predefined value the
algorithm terminates with a failure.

• The contention window (CW) variable determines the number of backoff
periods the channel has to be cleared before transmission of the frame
can be started.

CSMA-CA in a non beacon-enabled PAN In a non beacon-enabled PAN
the algorithm acts as follows:
When the algorithm starts, the NB variable is set to zero and the BE variable
is set to minBE, then a random number of backoffs between 0 and 2BE − 1
is waited. After the delay the clear channel assessment (CCA) is performed.

11

2 Concepts 2.1 Introduction in IEEE 802.15.4

This means that the receiver listens to the channel for one backoff period.
If the receiver detects no active transmission, the transmitter is enabled and
the message can be transmitted. If the receiver detects a transmission on the
channel, it increases the NB by one and also increase the BE by one. If the BE
reaches the maximum backoff exponent, it does not increase the BE. After this,
the algorithm checks, if the number of maximum CSMA-CA backoffs have been
reached. If so, the algorithm terminates with a failure. Otherwise the algorithm
returns to the begin and waits for a random period, before it performs CCA.

CSMA-CA in a beacon-enabled PAN In beacon-enabled PANs, the algo-
rithm is quite similar, except a few differences. If the battery life extension is
enabled, the BE variable is calculated as follows BE = min(2, minBE) and
otherwise the BE variable will be set to the same value as in the non beacon-
enabled mode (BE = minBE). After this, the algorithm checks the boundary
of the CAP. If the algorithm can’t be terminated before the CAP ends, the
algorithm stops and resumes its execution in the next superframe. After the
backoff delay the algorithm performs CCA and if the channel is idle, the CW
variable is decremented by one and if the value is not equal to zero, the algo-
rithm performs another CCA. Since the CCA was set to 2 at the beginning of
the algorithm, the CCA is performed at least twice before the message can be
transmitted. If there is any traffic on the channel, the CW count will be reset
to 2, the BE will be increased by one and the NB will also be increased by
one. If the NB reaches the number of maximum CSMA backoffs, the algorithm
terminates with a failure. If the NB variable has not reached its maximum
value of two, a new CCA will be started after the backoff delay.

2.1.3.5. Starting a PAN

Before a device can associate to a PAN, it first has to know about reachable
PANs and the link quality of them, which can be determined by the scan
procedure. If a node is not associated with a PAN, it has the possibility to
check, if anything is transmitted on the each channel. So it is possible to
detect the signal energy and link quality (Energy detection scan) of each
channel. Moreover it is possible to make active or passive scans.

During a passive scan the device turns on its receiver and listens to the
channel for a defined period of time. After that it switches to the next
specified channel and performs the scan again. If all requested channels were
scanned, the MAC sublayer indicates the next higher layer and returns all
discovered PANs. The active scan is quite similar to the passive scan. It
additionally transmits a beacon request frame and waits a defined period of

12

2 Concepts 2.1 Introduction in IEEE 802.15.4

Figure 2.8.: CSMA-CA algorithm (taken from [1])

time for a beacon frame of the coordinator, hence the active scan is used for
non beacon-enabled PANs. If a PAN coordinator in a non beacon-enabled
PAN receives a beacon request, it has to answer with a single beacon frame.

If on the other hand a PAN coordinator wants to start a PAN, it first has
to reset its internal state. After that the device updates its internal variables
with the values provided by the next higher layer (e.g., PAN ID, shortAddress).
After that the device starts operating as PAN coordinator.

13

2 Concepts 2.1 Introduction in IEEE 802.15.4

2.1.3.6. Association and Disassociation

• If a device discovered a PAN coordinator through a previous scan, it
can start with the association procedure. Before an association request is
sent, the internal state of the device must be updated. So for example the
address of the coordinator or the PAN ID must be updated. After that an
association request command can be sent. If the according coordinator
receives this message, it indicates the next higher layer. The higher layer
decides whether the association is permitted or not. Depending on this
decision the MAC sublayer sends a response to the device which requested
the association. If the device receives this response, it indicates the next
higher layer. If the association was successful, it stores the received short
address into its internal data structure.

• If a device wants to disassociate from a PAN the next higher layer of the
device sends a disassociation notification frame to the MAC. The MAC
sublayer generates a disassociation notification command and transmits
it to the coordinator. After receiving an acknowledgment frame from the
coordinator, the MAC indicates the next higher layer the disassociation.
If the device does not receive an acknowledgment frame, it indicates the
disassociation anyway.

If the coordinator wants a device to disassociate it sends a disassociation
request to its MAC sublayer. The MAC sends a disassociation notification
frame to the device which should be disassociated. This device should
send an acknowledgment frame back to the coordinator and should indi-
cate its next higher layer the disassociation. If the coordinator does not
receive the acknowledgment frame or the timeout expires, the MAC of
the coordinator indicates the next higher layer the disassociation anyway.

14

3. Implementation

3.1. Hardware

3.1.1. Hardware Description

The hardware basically consists of three different printed circuit boards (PCB)
which are arranged and connected as shown in Figure 3.1. This figure is not a
detailed nor complete schematic diagram, but it gives an overview about the
hardware arrangement and shows the essential connections. The necessary pins
are described in Section 3.1.2. A detailed schematic diagram can be found in
Annex B.

• The controller board is a commercial development board from Texas
Instruments and includes an MSP430F149 MCU. A 10 pin connector
provides the JTAG interface for programming and debugging the MCU.
Moreover, there is a crystal with 8MHz connected to the MCU. On this
board all pins of the MCU are connected to multi-pin connectors.

• The environment board provides the power supply and basic IO functions.
So there are 4 LEDs on the board and 4 Buttons on the board. There are
two different voltages (5V, 3.3V) provided by the board. A level converter
(MAX232) on the board provides a serial data connection (RS232) to the
PC through a SUBD9 connector.

• The RF board is a commercial RF board from Microchip and consists of
a Chipcon CC2420 RF chip and a few peripheral analogue parts. There is
also a 12 pin connector on the board which is used for the communication
with the MCU. Moreover there is a small printed RF antenna on the
board.

15

3 Implementation 3.1 Hardware

4 7

4 6

4 4

4 5

S P M C L K

S P M M I S O

S P M M O S I

S P M S S n

9

8

6

7

S C K

S O

S I

C S n

3 2

3 4

3 1

3 3

C o n n .
P i n

C C 2 4 2 0
P i n

S i g n a lS i g n a l P i n

2 4

2 6

2 2

2 3

P 2 . 4

P 2 . 6

P 2 . 3

P 2 . 2

2 1

2 0P 2 . 0

P 2 . 1

1 2

1 1

5

1 0

F I F O P

S F D

C C A

F I F O

2 9

2 7

3 0

2 8

3

4 V R E G _ E N

R E S E T n2 1

4 4

G N D2

1 V C C

P O W E R
S U P P L Y
3 , 3 V D C

L E D 1

L E D 2

L E D 3

L E D 4

B T 1

B T 2

B T 3

B T 4

V C C

G N D

M A X 2 3 2
R X D

T X D

3 3

3 2

1 2

P 3 . 5

P 3 . 4

P 1 . 0

1 4

1 3P 1 . 1

P 1 . 2

1 5P 1 . 3

1 6P 1 . 4

1 8

1 7P 1 . 5

P 1 . 6

1 9P 1 . 7

 1D V C C

3 , 3 V 3 , 3 V

3 , 3 V

G N D

G N D S
U
B
D
9

J
T
A
G

M S P 4 3 0 F 1 4 9 P I C D E M (C C 2 4 2 0)

B a s i c I O B o a r d

F I F O P

S F D

C C A

F I F O

V R E G _ E N

R E S E T n

G I O

G I O

G I O

G I O

G I O

G I O

G I O

G I O

R X

T X

S C K

M I S O

M O S I

C S n

Figure 3.1.: blockdiagram of hardware arrangement

16

3 Implementation 3.1 Hardware

3.1.2. Interface Description

The MCU is connected to the CC2420 through a serial peripheral interface
(SPI) as shown in Figure 3.1. Additionally to the SPI, the MCU and the
CC2420 are connected by a few other important signal lines (Figure 3.2 and
Figure 3.3).

• SFD Pin
During the reception of a frame, this pin goes high after the SFD was
completely received. It returns to low after the last byte of the message
was received. If the address recognition fails, the SFD pin immediately
goes low.
In the transmit mode the SFD pin goes high, if the SFD field has been
transmitted and it goes low again when the message has been completely
transmitted.

• FIFO Pin
This pin is high, if there are data bytes in the receive buffer and it gets
low, when the buffer is empty again.

• FIFOP Pin
This pin goes high if the maximum threshold of the receive buffer has been
reached. Moreover it gets high if the last byte of a message is received.

• CCA Pin
After starting the CSMA-CA algorithm the CCA pin is activated, if the
receiver listened to the channel for a defined time period and nothing
is detected on the channel, which means that the channel is free. The
polarity of this pin can be inverted be changing a register in the CC2420.

17

3 Implementation 3.1 Hardware

Figure 3.2.: Timing diagram during receiving (taken from [1])

Figure 3.3.: Timing diagram during transmitting (taken from [1])

18

3 Implementation 3.2 Porting of the HAL

3.2. Porting of the HAL

3.2.1. Changing Macros

Since the original stack from Texas Instruments was written for the IAR com-
piler, some compiler specific macros and code segments were changed to make
them compilable for the mspgcc:

• The macros HAL ENABLE INTERRUPTS and HAL DISABLE INTERRUPTS were
changed to the mspgcc macros EINT() and EINT().

• Moreover there are existing macros which disable interrupts within a crit-
ical section and make this section to an atomic operation sequence. To
restore the interrupt state again after leaving this section, the interrupt
state has to be stored. The IAR compiler provides macros and a prede-
fined data structure to store the interrupt state. Since such macros are
not provided by the mspgcc, the data structure and the macros had to
be implemented as follows:

typedef struct {

uint8_t ifg1; /* Interrupt flag register 1 */

uint8_t ifg2; /* Interrupt flag register 2 */

uint8_t ie1; /* Interrupt enable register 1 */

uint8_t ie2; /* Interrupt enable register 1 */

uint16_t mysr; /* status register */

} istate_t;

When the critical section is entered, the interrupt flag registers, the inter-
rupt enable registers and the global status register are stored in a special
data structure and all interrupts are disabled. When the critical section
is left, these registers are restored with the original values, stored in the
data structure. The macros, which are used to handle these sequences
are listed below:

#define HAL_ENTER_CRITICAL_SECTION(x) \

x.ifg1 = IFG1; x.ifg2 = IFG2; x.ie1 = IE1; \

x.ie2 = IE2; x.mysr = READ_SR; \

HAL_DISABLE_INTERRUPTS();

#define HAL_EXIT_CRITICAL_SECTION(x) \

IFG1 = x.ifg1; IFG2 = x.ifg2; \

IE1 = x.ie1; IE2 = x.ie2; \

WRITE_SR(x.mysr);

Since the ISR macros are quite different between the IAR compiler and
the mspgcc, the following macro was changed.

19

3 Implementation 3.3 MAC Stack Overview

#define HAL_ISR_FUNCTION(y,x) \

interrupt(x) y (void); interrupt(x) y (void)

This macro calls a function y, if the interrupt at the vector x is called.

• Moreover there exists a macro which reads the current interrupt state.

#define HAL_INTERRUPTS_ARE_ENABLED() (READ_SR & GIE)

3.2.2. Changing Registers

Since the MCU of the original stack is different to the used MCU, a few register
and pin names were changed.

• Registers of the UART in the hal uart.h

• Registers of the SPI in the hal spi.h

• General IO Pins of the UART and the SPI

3.2.3. Changing the clock source

The MCU which is used by the stack of Texas Instruments uses a different
clock source than the actual MCU. In this project the LFXTL is used as clock
source, with a 8MHz quartz oscillator. This clock source is also used for the
SPI and the UART without a division factor.

3.3. MAC Stack Overview

The ZigBee stack from Texas Instruments is designed as shown in Figure 3.4.
Apart from the ZigBee stack itself, some useful functions are provided by the
HAL and the operating system abstraction layer (OSAL). The HAL library
provides access to basic IO devices like buttons and LEDs. Moreover the HAL
provides useful functions for UART communication. Optionally the HAL
provides functions for liquid crystal display (LCD) and timer support, which
are not used by the Stack itself.
The OSAL library of the stack provides basic task handling, dynamic memory
management, timer functions and a messaging system for the communication
between different tasks. Moreover it has a few useful functions for random
number generation and memory copies.
As mentioned in a previous chapter, the stack of Texas Instruments is not
completely published, so the major part of the MAC sublayer had to be
reimplemented. An overview of the different parts of the provided functions
is given in Figure 3.5. The most important functions, which are used in our

20

3 Implementation 3.3 MAC Stack Overview

implementation, are basic radio functions (e.g., channel, transmit power or
address). There are also functions included for the transmission and reception
of a frame and additionally timer functions, which make the implementation
of a superframe structure much easier.

The major disadvantage of the IEEE 802.15.4 Stack from Texas instruments
is, that there is no support of GTS allocation. Hence it is not possible to realize
a real time communication system with this stack. Since the original stack does
not support GTS, a self defined application programming interface (API) was
implemented to provide this functionality. It is quite similar to the structure of
the original MAC stack and also uses many of the provided functions by Texas
Instruments. A detailed description of the GTS usage is given in Section 3.4.4.7.

Even though the security capabilities are a part of the IEEE 802.15.4 stan-
dard, security was not considered in this thesis. All security parameters are
ignored in the actual implementation. The security capabilities may be added
in future thesis.

P H Y

M A C

H A L

O S A L

N W K

A P L

I E E E 8 0 2 . 1 5 . 4

Z i g B e e

Figure 3.4.: ZigBee Stack Overview

21

3 Implementation 3.3 MAC Stack Overview

C C 2 4 2 0

R X F r a m e
T X F r a m e (C S M A)
E n e r g y D e t e c t i o n

M H R E n c o d i n g D e c o d i n g
M C P S I n t e r f a c e
M L M E I n t e r f a c e

U A R T , A D C , T i m e r
 K e y p a d , L E D s , B u t t o n s

T a s k h a n d l i n g
M e s s a g e e x c h a n g e

I n t e r r u p t h a n d l i n g
M e m o r y a l l o c a t i o n

H A L

O S A L

M A C

P H Y

8 0 2 . 1 5 . 4 A P I D e f i n i t i o n

S c o p e o f t h i s T h e s i s

b y T e x a s I n s t r u m e n t s

b y T e x a s I n s t r u m e n t s

b y T e x a s I n s t r u m e n t s

Z i g B e e
b y T e x a s I n s t r u m e n t s

N W K

Figure 3.5.: Implementation Overview of the ZigBee Stack

3.3.1. Provided Functions of the TI Stack

In this section, the essential functions are listed, which are used in the current
implementation of the API.

3.3.1.1. Basic Radio Functions

The basic radio functions, which are implemented in the file mac radio.c in-
clude functions to set the following parameters of the RF device.

• PAN coordinator address

• PAN ID

• Device short address

• Device extended IEEE address

• Transmit power

• Physical channel

22

3 Implementation 3.3 MAC Stack Overview

This is necessary because the RF chip is able to perform message filtering
and address decoding. There are also functions for channel scanning imple-
mented. These functions only edit parameters in the RX state machine, which
is described in Section 3.3.1.2, so that only beacon frames are received. More-
over there is a function for the energy detection implemented which calculates
the received signal strength indication (RSSI) value and the link quality (LQ).

3.3.1.2. Receive and Transmit Functions

The receive primitive is implemented as an event driven state machine at
the interrupt level. If a frame is received, a callback function is executed.
The receive state machine decodes the frame header and delivers the header
information to the callback function through parameters. The callback
function gets a pointer to the buffer of the payload and the length of the
frame. This buffer is allocated by using OSAL functions for dynamic memory
allocation. It has to be deallocated immediately after its use, otherwise the
memory gets an overflow and the system crashes.

The macTxFrame() function is designed to transmit all three types of mes-
sages, the unslotted CSMA-CA, the slotted CSMA-CA and the slotted (im-
mediate) transmission. A closer loop inside the function revealed that only
the unslotted CSMA-CA transmission is originally supported by Texas Instru-
ments.
The reason why the slotted CSMA-CA mode is not originally supported is, that
the CC2420 chip is not completely compliant to the 802.15.4 standard and so
it is not possible to implement a compliant version of the slotted CSMA-CA
mode.
If another mode is chosen, the function forces an assert (a complete stop of
the MCU). Therefore this function was extended to support also the slotted
CSMA-CA and the slotted immediate transmission.
As mentioned in Section 2.1.3.4 the algorithm has to perform the CCA check
twice, but as described in [7], the CC2420 has only one internal operation,
called STXONCCA, which performs the CCA only once. If the channel is free,
the frame is immediately transmitted. This fact is ignored by the modified im-
plementation, but the remaining parts of the TX function comply to the IEEE
802.15.4 standard.

3.3.1.3. Timer Functions

Since there are only two timers in the MSP430 MCU and a lot of time
triggered events and much delays have to be handled, the timer functions

23

3 Implementation 3.3 MAC Stack Overview

are very complex. The whole MAC stack needs only one hardware timer, as
shown in Figure 3.6 to handle all timing tasks. Therefore a timer is started
at the initialization phase of the device and a rollover interrupt is registered
for a period of one backoff interval, which is the primary timebase for the
superframe structure and CSMA-CA algorithm.

1 6 b i t H a r d w a r e T i m e r

R o l l o v e r a t 1 b a c k o f f p e r i o d

3 2 b i t S o f t w a r e T i m e r (B a c k o f f T i m e r)

T r i g g e r E v e n t o n S o f t w a r e T i m e r C o m p a r e

M i c r o s e c o n d s T i m e r (g r a n u a l i t y 1 µ s)

R o l l o v e r a t 1 b a c k o f f p e r i o d

T i m e u n t i l n e x t r o l l o v e r T i m e f r o m l a s t r o l l o v e rN u m b e r o f B a c k o f f s * r o l l o v e r c o u n t

Figure 3.6.: Schematic view of the global timebase

Microseconds Timer A very important function (macMcuTimerUsecs())
provides a user defined callback after a given period of microseconds. This
function is used to set a timeout, if a device is waiting for an acknowledgment.

Backoff Timer The backoff timer is used for the superframe structure and
has a granularity of one backoff period. The backoff timer is a 32 bit variable,
which is incremented during each overflow of the hardware timer rollover. In
beacon enabled PANs the count should always be reseted, if a beacon frame is
received. To adjust the local backoff timer with the timebase of the coordina-
tor, there exists a function, which realigns the local timer. This realignment
uses the current value of the timer at reception time and the estimated timer

24

3 Implementation 3.3 MAC Stack Overview

count of the coordinator to calculate the correction value for the timer rollover.
It is also possible to register a rollover callback function which is called peri-
odically after a number of backoff periods. This rollover callback can be used
to transmit the beacon frame, if the device is a coordinator.
Another function (macBackoffTimerSetTrigger()) allows a device to register
a trigger callback, which can be used to send a frame in a specified GTS. After
the execution of a trigger callback, the registration is cleared and the trigger
has to be registered again, if necessary.

3.3.2. Source File Structure

An overview of the file structure of the stack is given in Figure 3.7. The current
implementation of the IEEE 802.15.4 stack is implemented in the API source
files, which are described in the following sections. The file mac spec.h provides
basic constants of the IEEE 802.15.4 standard, while the mac api.h provides
the interfaces of the MAC primitives and the used data structures and defines
some useful constants.

m a c _ a p i _ a s s o c i a t i o n . c

m a c _ a p i _ g t s . c

m a c _ a p i _ b e a c o n . c

m a c _ a p i _ b a c k o f f _ c b . c

m a c _ a p i _ r x _ c b . c

m a c _ a p i _ t x _ c b . c

m a c _ a p i _ b e a c o n _ r x . c

m a c _ a p i _ m c p s . c

m a c _ a p i _ m l m e _ d a t a _ r q . c

m a c _ a p i _ s c a n . c

m a c _ a p i _ s y n c _ p o l l . c

m a c _ a p i _ a s s o c i a t i o n . h

m a c _ a p i _ g t s . h

m a c _ a p i _ b e a c o n . h

m a c _ a p i _ b a c k o f f _ c b . h

m a c _ a p i _ r x _ c b . h

m a c _ a p i _ t x _ c b . h

m a c _ a p i _ b e a c o n _ r x . h

m a c _ a p i _ m c p s . h

m a c _ a p i _ m l m e _ d a t a _ r q . h

m a c _ a p i _ s c a n . h

m a c _ a p i _ s y n c _ p o l l . h

m a c _ l o w _ l e v e l . c

m a c _ h i g h _ l e v e l . c

m a c _ m c u _ t i m e r . c

m a c _ b a c k o f f _ t i m e r . c

m a c _ t x . c

m a c _ r x . c

m a c _ r s _ o n o f f . c

m a c _ r a d i o . c

m a c _ l o w _ l e v e l . h

m a c _ h i g h _ l e v e l . h

m a c _ m c u _ t i m e r . h

m a c _ b a c k o f f _ t i m e r . h

m a c _ t x . h

m a c _ r x . h

m a c _ r s _ o n o f f . h

m a c _ r a d i o . h

m a c _ a p i . h

m a c _ s p e c . h

m a c _ t x _ e x t . c

S c o p e o f t h i s t h e s i s S c o p e o f t h i s t h e s i s

A P I s o u r c e f i l e s A P I l o c a l h e a d e r f i l e s

I E E E 8 0 2 . 1 5 . 4 c o n s t a n t s

De f i n t i on o f p r im i t i ves

D e c l a r a t i o n o f s t r u c t u r e s

G l o b a l c o n s t a n t s

Figure 3.7.: Overview of the file structure

25

3 Implementation 3.4 MAC API Description

3.4. MAC API Description

As mentioned in the introduction of this thesis, the API is only provided by
a static library, which is not compliant to the mspgcc. For compatibility rea-
sons, the API, which was implemented has the same structure and interfaces
as the original MAC Stack of Texas Instruments. The function headers and
data structures are provided in the file mac api.h and completely described in
[6]. The compliance of the syntax between the own stack and the one of Texas
Instruments is very important, because in the future it should be possible to
set up the NWK and APL layer of the ZigBee stack of Texas Instruments.
Currently only a set of the most important functions is implemented. More-
over there is a self defined API extension implemented which provides GTS
handling, because the original Stack of Texas Instruments does not support
GTS as mentioned in Section 3.3.
Since the used MCU has only 2KB memory and the one which is originally
used by the implementation of Texas Instruments, has 8Kbytes memory, it was
not possible to provide the full functionality as defined in the IEEE 802.15.4
standard. There are limitations in the buffer size of the transmit buffer as
described in Section 3.4.2. Moreover the dynamically allocated receive buffer
is very limited.
These limitations cause some restrictions of the API primitives which are de-
scribed in Section 3.4.3.1 and the following.

3.4.1. General Event Structure

To make the MAC API very flexible and efficient, it is necessary to implement
the API functions event triggered. Such an implementation has the advantage,
that the system does not waste expensive CPU capacity and is also easier to
understand.

Since some of the API functions are event triggered, an efficient and global
method is implemented to handle them. So there exists one single callback
function for the whole MAC API, which is called every time an event occurs.
To identify the actual event and to deliver the individual parameters, a union
data structure (Figure 3.8) exists which includes one individual data structure
for each event. The first two values of the union are the identifier of the event
and the status variable. There exists also a data structure in the union, which
allows direct access to the event and status variable, without using a special
event data structure. This is possible because all members of the union are
using the same memory area and the status and the event variable are defined

26

3 Implementation 3.4 MAC API Description

e v e n t

s t a t u s

s p e c i a l
p a r a m e t e r s

e v e n t

s t a t u s

M A C e v e n t h e a d e r (h d r)

U n i o n o f c a l l b a c k s t r u c t u r e s

c a l l b a c k s t r u c t u r e c a l l b a c k s t r u c t u r e

Figure 3.8.: Overview of the union data structure

always at the beginning of each individual data structure.

3.4.2. Memory Management

Since the MCU has only 2KB memory, it is not possible to fully implement
the functionality, which is described in the standard. Alternatively two global
frame buffers are used, as shown in Figure 3.9, which are allocated statically
at the beginning.

• The first buffer is used for beacon frames and is divided into three parts.
In the first part of the frame the MAC header (MHR) fields are located.
Since these fields have a variable length and the following GTS fields
should be updated independently, the GTS management uses an own
buffer for GTS fields. Before a beacon is transmitted, the GTS buffer is
copied to the main buffer, depending on the length of the MHR fields. The
pending addresses field are handled quite similar, they are also updated
independently and copied to the main frame before a beacon transmission.

• The second buffer is used for all other frame types including MCPS frames
and MLME frames. This buffer has no special structure like the beacon
buffer.

27

3 Implementation 3.4 MAC API Description

M H R f i e l d s
(i n d l u d i n g S F S)

G T S
f ie lds

P e n d i n g
A d d r e s s e s

v a r i a b l e l e n g t h

G T S M a n a g e m e n t P e n d i n g A d d r e s s
M a n a g e m e n t

M C P S D a t a P r i m i t i v e s
M L M E A s s o c i a t i o n P r i m i t i v e s

M L M E D i s a s s o c i a t i o n P r i m i t i v e s
.. .

M H R f i e l d s

B e a c o n B u f f e r G e n e r a l F r a m e B u f f e r

P a y l o a d

v a r i a b l e l e n g t h

v a r i a b l e l e n g t h v a r i a b l e l e n g t h

Figure 3.9.: Internal memory management of the stack

3.4.3. MAC Data Service

The Data Interfaces provides primitives (defined in [6]) which are used to ex-
change data between the MAC and the next higher layer. The MAC itself is
able to transmit data frames to the receiver, where the data can be read by the
next higher layer of the MAC.
An overview of the primitives of the MCPS is given the following table:

Name

MCPS Data Request
MCPS Purge Request

Table 3.1.: Overview of MCPS primitives

3.4.3.1. MCPS Data Request

Description The MAC McpsDataReq() is used to transmit a data frame as
shown in Figure 3.10 to the receiver which is specified by the parameters
dstAddr and dstPanId. The function forms the frame header, considering
the input parameters as described below. After the function has formed the
frame header it adds the requested data and sends the frame using the function
macTxFrame() which is originally provided by the Texas Instruments stack.

28

3 Implementation 3.4 MAC API Description

Figure 3.10.: Schematic view of a data frame (taken from [1])

Events If the MAC McpsDataReq() primitive is called the following events
possibly occur:

• MAC MCPS DATA CNF

The MAC MCPS DATA CNF event always occurs at the device which has
called the MAC McpsDataReq() primitive.

– If the next higher layer tries to call two data requests consecu-
tively, the MAC MCPS DATA CNF event is generated with the status
MAC TRANSACTION OVERVFLOW, because it is only possible to buffer
one single frame.

– If an acknowledgment frame was requested and a number of mac-
MaxFrameRetries transmissions of the data request frame fail, the
status MAC NO ACK is delivered.

– If the message was transmitted successfully, the status variable of
the event has the value MAC SUCCESS.

• MAC MCPS DATA IND

The MAC MCPS DATA IND is always generated at the destination device of
the actual data request.

– If the frame was successfully transmitted and the destination address
of the message is equal to the address of the receiver, a buffer with
the length of the frame payload is allocated at the receiving device.
Finally the MAC MCPS DATA IND event is generated with the status
MAC SUCCESS and the payload can be read from the buffer.

Some special cases of these events which occur during indirect transmission and
the GTS transmission are described below.

Options Since the MAC McpsDataReq() can be used in different network
modes (beacon-enabled, non beacon-enabled), there exist different transmission
modes which are described as follows:

29

3 Implementation 3.4 MAC API Description

• Normal transmission
If no special parameter is set, the frame is immediately trans-
mitted using the macTxFrame(type) function with the parameter
MAC TX TYPE SLOTTED CSMA or MAC TX TYPE UNSLOTTED CSMA, depending
on if the device is associated with a beacon-enabled PAN or not.

• GTS transmission
If the parameter txOptions contains the flag MAC TXOPTION GTS, the
function checks, if the device is associated with a beacon-enabled PAN.
If a GTS is allocated, a timer will be triggered at the beginning of the
GTS. If the trigger is fired, the frame is transmitted using the function
macTxFrame(type) with the parameter MAC TX TYPE SLOTTED.

• Indirect transmission
If the flag MAC TXOPTION INDIRECT is set in the parameter field
txOptions and this function is called by a PAN Coordinator, the frame
is transmitted using indirect transmission.
In this case the address of the destination device is added to the pending
addresses field of the beacon frame. Each associated device should check
if there is a message pending by examining the pending addresses field
of the beacon frame. If the own address is recognized, a MLME data
request should be sent to the coordinator which is described in the next
sections. If the coordinator receives the expected MLME data request, it
should return an acknowledgment frame with FRAME PENDING flag in the
frame control field (FCF) set. To determine whether the acknowledgment
frame should be set or not, a callback function is called by the provided
macTxFrame() function. After the acknowledgment frame was transmit-
ted, the actual data frame is transmitted using the macTxFrame() func-
tion with the parameter MAC TX TYPE SLOTTED CSMA during the CAP pe-
riod.
After adding the destination address to the pending addresses field, a
counter is started which is increased by each beacon frame transmission.
If the coordinator does not receive a MLME data request within aGTS-
DescPersistenceTime beacon transmissions, the address is removed from
the pending addresses field and the MAC MCPS DATA CNF event occurs with
the status MAC TRANSACTION OVERFLOW.
If the MLME data request is not acknowledged, it is retransmitted
up to a number of macMaxFrameRetries. After the last retransmis-
sion fails, the MAC MCPS DATA CNF event is generated with the status
MAC CHANNEL ACCESS FAILURE.

30

3 Implementation 3.4 MAC API Description

Restrictions

• If an indirect transmission in a non beacon-enabled PAN is requested, the
message frame normally should be buffered, until the associated device
requests the message using the MAC Mlme PollReq() primitive.
Since the MCU has limited memory, a buffered frame would block
the whole communication of the coordinator, until the data is re-
quested by the other device. In the current implementation the
MAC TXOPTION INDIRECT parameter in a non beacon-enabled PAN is ig-
nored. In the future, this indirect transmission should be included.

• Unlike the API specification [6], this function can not buffer more
than one frame, because of the high demand of memory. A new
transmission can only be started, if the past transmission was fin-
ished, otherwise the MAC MCPS DATA CNF event occurs with the status
MAC TRANSACTION OVERFLOW.

• Since the memory of the MCU is limited, it is only possible to receive two
to three frames (depending on the length) consecutively. Therefore it is
recommended to deallocate the dynamic buffer immediately after the use
of the data.

3.4.3.2. MCPS Purge Request

Description The MAC McpsPurgeReq() primitive is used to purge requested
data frames from the message queue.

Restrictions Because of limited memory, there exists a buffer for only one
data or command frame which is defined statically. It is only possible to start
a MCPS data request (or any MLME request), if the past transmission was
completed. Therefore the API function MAC McpsPurgeReq() is obsolete and
not implemented. In a future version this function should be implemented.

3.4.3.3. MCPS Data Allocate

Description There exists also a function MAC McpsDataAlloc() in the API
specification [6] which is not specified in the IEEE standard. This function
dynamically allocates a frame buffer of a specified length.

Events The MAC McpsDataAlloc() primitive does not generate any events.

31

3 Implementation 3.4 MAC API Description

Restrictions Because of the memory limitations, this function returns only
the pointer to the single buffer in each case.

3.4.4. Management Services

The Management services are used for association, disassociation, synchronisa-
tion and much more. A detailed description is given in [1]. An overview of the
primitives which are currently implemented, is given in the following table:

Name Implemented

MLME Association yes
MLME Disassociation yes
MLME Beacon Notify yes
MLME Get yes
MLME Set yes
MLME GTS yes
MLME Orphan not yet
MLME Reset yes
MLME RX Enable yes
MLME Scan yes
MLME Start yes
MLME Comm-Status yes
MLME Sync implicit included
MLME Sync-Loss not yet
MLME Poll yes

Table 3.2.: Summary of primitives

The primitives which are currently implemented are described in the follow-
ing sections.

3.4.4.1. MLME Association

Description The association procedure is used to associate an unassociated
device to a PAN. To start such an association procedure, the channel and
the address of the PAN have to be known by the device. This information
could be either statically written to the device memory or discovered through
a previous scan procedure, as described in Section 3.4.4.10.

32

3 Implementation 3.4 MAC API Description

If a device wants to associate with a PAN, the primitive
MAC Mlme AssociateReq() has to be called, which forms the association
request frame and checks, if the local PAN is a beacon-enabled PAN or not.
This distinction can be made by looking at the MAC PAN information
base (PIB) elements BeaconOrder and superframeOrder. If one of the two
values is greater or equal than 15, it is a non beacon-enabled PAN. If both
values are smaller than 15, a beacon-enabled PAN is used. The different
association procedures are described below.

Events If the MAC MlmeAssociationReq() primitive is called the following
events can occur:

• MAC MLME ASSOCIATE CNF

– If there is an active transmission detected at the beginning of the
MAC Mlme AssociateReq() primitive, the association procedure can
not be started. The MAC MLME ASSOCIATE CNF event is generated
with the status MAC CHANNEL ACCESS FAILURE.

– If a MLME data request frame was sent by the associating
device and an acknowledgment frame was received from the
coordinator with the frame pending subfield in the FCF not
set, the MAC MLME ASSOCIATE CNF event is generated with status
MAC NO DATA.

– If the associating device receives an association response frame from
the coordinator, it generates a MAC MLME ASSOCIATION CNF event
and delivers the received address information and actual status to
the callback function. Note that the parameters of the MAC PIB
are not updated by the API function, because this is not within
the scope of the standard and has to be done by the next higher layer.

• MAC MLME ASSOCIATE IND

– If the MLME association request frame is received by the coordi-
nator and the address is valid, the MAC MLME ASSOCIATION IND is
generated and indicates the association request. After the indica-
tion the coordinator has time to decide about the association and
should call the MAC MlmeAssociationRsp() primitive afterwards.

• MAC MLME BEACON NOTIFY IND

The occurance of this event is described in Section 3.4.4.4.

Association in a beacon-enabled PAN If a device wants to associate to a
beacon-enabled PAN, it transmits the previously formed frame during the CAP

33

3 Implementation 3.4 MAC API Description

using the macTxFrame() function. If an acknowledgment frame is received, a
timer is started which requests a callback after a time of aResponseWaitTime.
During this time interval the coordinator has time to decide about the associ-
ation, while the associating device checks each received beacon for a pending
message.
After the coordinator made its decision, the MAC MlmeAssociationRsp() is
called and the coordinator adds the extended 64 bit address of the device to
the pending addresses field of the beacon frame and waits, while the response
frame is requested through a MLME data request command by the associating
device. If a beacon with pending information (device address of the associat-
ing device in the address pending fields) is received by the associating device,
the timer is canceled and a MLME data request frame is automatically sent
to the coordinator, if the macAutoRequest parameter of the MAC PIB is set.
However if this parameter is not set, the event MAC MLME BEACON NOTIFY IND

is generated as described in Section 3.4.4.4 and the next higher layer decides
whether a MLME data frame is sent or not.
If the coordinator receives this data request, an acknowledgment frame is gen-
erated in which the frame pending subfield in the FCF is set. After the ac-
knowledgment frame was transmitted, the actual response frame is transmitted
to the device using the extended 64bit address as destination address.
If the associating device receives the MLME association response frame the
association procedure is finished.

Association in a non beacon-enabled PAN In a non beacon-enabled PAN,
the frame forming and the transmission of the association request command
is quite similar to the beacon-enabled mode. However if the request frame
was successfully sent, a timer is started which generates an interrupt after
a time of aResponseWaitTime. During this time the coordinator has time
to decide whether it allows association or not. Afterwards it should call the
MAC MlmeAssociationRsp() primitive which waits for the MLME data request
frame from the device.
After the expiration of the timer at the associating device, an interrupt service
routine is called and a MLME data request frame is sent to the coordinator.
If the coordinator sends an acknowledgment frame, with the frame pending
subfield set in the FCF, the associating device waits for an association response
of the coordinator.
If the coordinator receives this MLME data request, an acknowledgment frame
is generated, with the frame pending subfield set. After the acknowledgment
frame was transmitted, the actual response frame is transmitted to the device
using the extended 64bit address as destination address.
If the device receives the MLME association response frame the association

34

3 Implementation 3.4 MAC API Description

procedure is finished.

3.4.4.2. MLME Disassociation

The disassociation is used to disassociate an associated device from a PAN.
The disassociation procedure can be started either by the coordinator or by
the associated device. When the disassociation is started with the primitive
MAC MlmeDisassociateReq(), the function first checks, if there is no active
transmission and then the disassociation frame is formed and transmitted as
described below.

Events If the MAC MlmeDisassociationReq() primitive is called the following
events can occur.

• MAC MLME DISASSOCIATE CNF

– If there is an active transmission which uses the frame buffer at the
same time the MAC MlmeDisassociationReq() is called, the disas-
sociation is stopped and the MAC MLME DISASSOCIATE CNF event is
generated with the status MAC TRANSACTION OVERFLOW.

– If no acknowledgment frame is received after aMaxFrameRetries re-
tries, the MAC MLME DISASSOCIATE CNF event is generated with the
status MAC NO ACK.

– If the device which initiated the disassociation receives an acknowl-
edgment frame, the MAC MLME DISASSOCIATE CNF event is generated
with the status MAC SUCCESS.

• MAC MLME DISASSOCIATE IND

– If a device receives a disassociation notification frame, it extracts
the disassociation reason from the frame and immediately informs
the next higher layer by generating the MAC MLME DISASSOCIATE IND

event. The MAC PIB is not updated by the API function, because
this is not within the scope of the IEEE 802.15.4 standard.

• MAC MLME BEACON NOTIFY IND

The occurance of this event is described in Section 3.4.4.4.

Note that the MAC MLME DISASSOCIATE CNF event is generated at the device
which initiated the disassociation procedure. This could be either the coordi-
nator or the disassociating device.
The MAC MLME BEACON NOTIFY IND event is always generated at the receiver of
the disassociation notification frame.

35

3 Implementation 3.4 MAC API Description

Disassociation initiated by the device If the disassociation was initiated by
the currently associated device, the disassociation notification frame is trans-
mitted in the CAP using slotted CSMA-CA in a beacon-enabled PAN. In a
non beacon-enabled PAN the frame is transmitted using unslotted CSMA-CA.
Since the acknowledge request parameter in the FCF is set, the device waits
for an acknowledgment frame. If the acknowledgment frame is not received
within a time of macAckWaitDuration symbols the frame is retransmitted up
to a number of aMaxFrameRetries. If the acknowledgment frame is received,
the device is disassociated.

Disassociation initiated by the coordinator If the disassociation was initi-
ated by the coordinator in a beacon-enabled PAN, the disassociation request
frame should be transmitted indirectly. After forming the frame, the address
of the device which should be disassociated is added to the pending addresses
field of the beacon frame. If the currently associated device recognizes that a
message is pending, it either automatically transmits a MLME data request or
generates a MAC MLME BEACON NOTIFY IND event as described in Section 3.4.4.4.
After the coordinator receives the MLME data request frame, it transmits
an acknowledgment frame, with the frame pending subfield set in the FCF.
Then it transmits the previously formed disassociation notification frame to
the device. Since the acknowledge request subfield in the FCF is set, the co-
ordinator retransmits the frame up to a number of aMaxFrameRetries. If a
device receives a disassociation notification frame, it is disassociated and the
MAC MLME DISASSOCIATE IND event is generated as described above.

Restrictions Since the disassociation (initiated by the coordinator) requires
indirect transmission, it is currently not possible that a coordinator initiates
the disassociation in a non beacon-enabled PAN. The reason therefore is that
in case of a disassociation request, the whole traffic of the coordinator would
be blocked until the associated device calls a MAC MlmePollReq() primitive.

General Assumption In case the disassociation is not successful, a device
(either the coordinator or the associated device) can assume that the associated
device is disassociated now.

3.4.4.3. MLME Start

Description The MAC MlmeStartReq() is used to initiate the device as PAN
coordinator. So if this primitive is called, first the parameters (from the next
higher layer) like PAN ID or short address are checked and the MAC PIB

36

3 Implementation 3.4 MAC API Description

is updated if the values are valid. If the superframeOrder and BeaconOrder
parameters are less than 15, a beacon-enabled PAN should be started and
the rollover value of the backoff timer is initiated to generate a callback event
every 2BeaconOrder backoff periods. Each time this event occurs, the rollover
value is updated with the BeaconOrder value of the MAC PIB and a beacon
frame is formed and sent.

Events

• MAC MLME START CNF

– The MAC MLME START CNF event is called with status
MAC INVALID PARAMETER, if one of the parameters (e.g., super-
frameOrder or BeaconOrder) is not valid.

– If the MAC MlmeStartReq() primitive was performed success-
fully the MAC MLME START CNF event is generated with the status
MAC SUCCESS.

Beacon Frame The frame, as shown in Figure 3.11 consists of four different
parts, where each part has a variable length. Since that, it is necessary to edit
each part independently. The best method is to implement different buffers
which are merged before transmitting a frame as shown in Figure 3.9. These
different parts are listed as follows:

• The first part consists of the MHR field which is similar in all frames
and the superframe specification (SFS) which has a constant length of
2 byte. Since the beacon frame is not a directed message, the destina-
tion address should be the broadcast address 0xFFFF. The acknowledge
request subfield should not be set, because it is not possible to receive an
acknowledgment frame from each receiving device.

• The second part of the beacon frame is the GTS field which contains
a variable number of entries. This part contains the direction field and
one three byte record for each GTS entry. Each entry consists of a two
byte short address and one byte specification field, which determines the
length and the start slot of the actual GTS.

• The third part of the beacon frame represents the pending addresses
field which contains a variable number of addresses. The first byte of
this part is the pending address specification, which contains the count
of short and extended addresses stored in the pending addresses field. In
the following bytes the addresses are stored.

37

3 Implementation 3.4 MAC API Description

• The last part of the beacon frame is optional and consists of the beacon
payload.

If a beacon should be transmitted, the buffers which can be edited by the cor-
responding function (e.g., GTS management, pending addresses management)
are merged to one single buffer and the frame is finally transmitted using direct
transmission.

Note Since the beacon frame has to be sent periodically, it is the only frame
type which has its own buffer as shown in Figure 3.9.

Restrictions

• The length of the GTS list is limited to 11 bytes. It is only possible to
store at most three GTS.

• The length of the pending addresses field is limited to 17 bytes in the
current implementation.t is only possible to store at most two extended
addresses, eight short addresses or any other combination with a size of
maximum 16 bytes.

• In this implementation a beacon payload is not needed and would only
waste memory. No buffer for the beacon payload is allocated.

Figure 3.11.: Schematic view of a beacon frame (taken from [1])

3.4.4.4. MLME Beacon Notify

Description The MLME Beacon Notify (MAC MLME BEACON NOTIFY IND) is an
event which is possibly generated at an associated device in a beacon-enabled
PAN.
The beacon notify indication is used to inform the next higher layer about

38

3 Implementation 3.4 MAC API Description

the reception of a beacon frame. This event is only generated, if the beacon
contains any payload or if the macAutoRequest parameter in the MAC PIB is
not set.
To check if the beacon contains payload, the whole beacon frame (shown in
Figure 3.11) has to be decoded.

• The MHR fields are decoded by the provided RX state machine and
available in a structured form. The SFS is the first entry of the beacon
frame with a length of two bytes.

• Then the GTS specification has to be decoded to determine the length of
the GTS list. If the GTS list contains at least one entry, there also exists
a GTS direction field of one byte and 3 bytes for each GTS slot in the
list.

• To determine the length of the pending addresses field, the pending ad-
dress specification has to be decoded. The pending addresses field pos-
sibly contains short addresses of 2 bytes and extended addresses of 8
bytes.

Events

• If there are any data in the frame following the pending addresses field,
these bytes are the beacon payload and they are extracted and copied
to a dynamic buffer. Afterwards the MAC MLME BEACON NOTIFY IND

event is generated. Since this function allocates dynamic memory, it is
strongly recommended to deallocate the memory immediately after the
usage and before the reception of the next beacon frame with any payload.

• The MAC MLME BEACON NOTIFY IND is also generated, if the macAutoRe-
quest parameter of the MAC PIB is not set and if the own device address
(either short or extended) is found in the pending addresses field of the
beacon frame. In this case the coordinator wants to transmit a frame to
the associated device and waits for a MLME data request frame. If the
parameter macAutoRequest is set, the MLME data request is transmitted
automatically and otherwise the next higher layer is responsible for that.

Restrictions As a result of the limited memory, the maximum number of
address, especially extended addresses is strongly limited to two addresses (de-
scribed in Section 3.4.4.3) and not as large as defined in the IEEE standard.

39

3 Implementation 3.4 MAC API Description

3.4.4.5. MLME Get

Description The MAC MlmeGetReq() primitive is used to read parameters of
the MAC PIB. In the MAC PIB there are some parameters, which are read
only and some, which are read and writable. To choose the desired parameter,
a numerical value is used, which is defined by macros in the mac api.h file.

Return Values Apart from the other MAC primitives, the MAC MlmeGetReq()

does not generate the general callback event as described in Section 3.4.1, but
it only returns the status value via a simple return value.
If an invalid parameter should be read, the function returns the value
MAC UNSUPPORTED ATTRIBUTE.

Note The requested value is delivered through a so called void pointer. As
a result of that, the calling function has to know exactly the data type of the
desired variable and no error or warning is generated by the compiler in case
of a bad type conversion.

3.4.4.6. MLME Set

Description The MAC MlmeSetReq() primitive is quite similar to
MAC MlmeGetReq() primitive, but it is used to set parameters in the
MAC PIB.

Return Values Apart from the other MAC primitives, the MAC MlmeSetReq()

does not generate the general callback event as described in Section 3.4.1. It
only returns the status value via a simple return value.

• If a read only parameter should be set, the function returns the status
MAC READ ONLY.

• If an unknown parameter should be set, the status
MAC UNSUPPORTED ATTRIBUTE is returned.

• If the requested parameter is valid and if it is a writable parameter,
the value domain is checked. If there are restrictions in domain for the
actual parameter (e.g., 0 ≤ macPib.BeaconOrder ≤ 15) and the value
is out of range, it is not updated and the status MAC INVALID PARAMTER

is returned.

• In case of a correct request (attribute name + value) the primitive returns
the status MAC SUCCESS.

40

3 Implementation 3.4 MAC API Description

Note If the requested parameter is also stored in the CC2420 (e.g.,
macPib.shortAdress), the value in the chip has to be updated too, using func-
tions, which are provided by the original stack.

3.4.4.7. MLME GTS

Description The MAC MlmeGtsReq() is called by an associated device in a
beacon-enabled PAN and is used to allocate or deallocate a GTS. This primi-
tive checks the parameter value GTSCharacteristics (Figure 3.12). If it is valid,
a GTS request frame is formed and transmitted to the coordinator during the
CAP period. If no acknowledgment frame is received the frame is retransmit-
ted. If the coordinator receives the GTS request frame, it analyzes the GTS
characteristics field (shown in Figure 3.12). If the Characteristics Type subfield
is set, a GTS is requested Finally it is checked, if there is a free slot in the CFP.

Figure 3.12.: GTS Characteristics field (taken from [1])

Adding a GTS Since no fragmentation of GTS is allowed, the new slot can
only be allocated only at the beginning of the CFP interval. So it only has to
be considered the minimum CAP length, which guarantees a minimum time
interval for CSMA-CA transmissions. This value is not defined by a number
of slots in the superframe structure, because the length of a slot depends on
the SuperframeOrder and BeaconOrder, but it is defined by the number of
symbols, while a symbol interval is constant and defined in the PHY of the
IEEE standard. As a result of that, the higher the SuperframeOrder is, the
more GTS can be allocated.
If there is enough time to allocate a GTS, the address of the requesting device
is added to the GTS list of the beacon coordinator.

Removing a GTS Since the GTS slot is only valid for a number of aMaxDe-
scPersistenceTime beacon frames, a counter variable has to be introduced
for each entry in the GTS list. These variables have to be decreased each
time, a beacon is transmitted. If one value reaches zero, the according GTS is
deallocated. A GTS is also deallocated if the device wants to deallocate the
GTS by calling the MAC MlmeGtsReq().

The deallocation of a GTS is quite harder, because the whole GTS frame
buffer and the CFP itself (shown in Figure 3.13) have to be reorganized.

41

3 Implementation 3.4 MAC API Description

• First the actual slot has to be found either by searching for the address,
in case of the deallocation was requested by a device or by searching for
expired persistence variables, every time a beacon is transmitted.

• If a GTS is selected, it first has to be deleted from the GTS list of the
beacon frame buffer and the entries above the actual entry (in the mem-
ory) have to be moved. Additionally the persistence counter variables
have to be moved analogue to the GTS entry.

• Afterwards the start slot value of each slot, which is chronological before
the actual frame, is increased by the size (in slots) of the deallocated slot
to close the gap in the CFP as shown in step 2 of Figure 3.13.

Figure 3.13.: CFP defragmentation on GTS deallocation (taken from [1])

42

3 Implementation 3.4 MAC API Description

Note

• The GTS direction subfield in the GTSCharacteristics is used to deter-
mine the direction of the data between the associated device and the
coordinator. This subfield should also be checked if a data transmission
in a GTS is started(described in Section 3.4.3.1).

• Since the MLME GTS primitives are not implemented in the original
MAC Stack of Texas Instruments, an own simple API definition was
introduced. However these primitives are very similar to the other
predefined primitives and have the full functionality as described in the
IEEE standard.

3.4.4.8. MLME Reset

Description The MAC MlmeResetReq() is used to reset the internal state of
the MAC and the PHY layer. If the parameter SetDefaultPIB is set, the values
in the MAC PIB are reset to their initial values.
To reset the internal state of the stack, provided low level primitives are used,
which reset the CC2420 and turn off the transmitter and the receiver.

Note This primitive has to be called at least once during the initialization of
the device.

3.4.4.9. MLME RX Enable

The MLME RX Enable request is not directly implemented in the API of Texas
Instruments. A similar function provides the same functionality and is defined
in the mac low level.h file.

3.4.4.10. MLME Scan

Description The scan primitive is basically used to discover the channel be-
fore starting a PAN or to search for an existing PAN to associate with. In
general we distinguish between the following four scan modes:

• Energy detection scan

• Passive scan

• Active scan

• Orphan scan

43

3 Implementation 3.4 MAC API Description

Basic Scan Procedure The basic procedure, as shown in Figure 3.14, is quite
similar for each of the scan modes. Basically the backoff timer is set, depending
on the parameter scanDuration which specifies the time one channel is observed.
If the timer event occurs, the actual channel will be set according to the channel
list and afterwards the scan is started. The channel list is a 32bit bit field, where
each bit specifies whether a channel has to be scanned or not. Since the actual
operating mode allows only channel values from 11 to 26, other channels are
ignored.
If the next Timer ISR event occurs, the previous scan is stopped and the
discovered data (e.g., RSSI, beacon descriptor) are stored in the result vector,
afterwards the next channel is set and the scan is started once again, until there
is no more channel to scan.

44

3 Implementation 3.4 MAC API Description

B a c k o f f T i m e r I S R

F i r s t ca l l o f ISR?

S e t n e x t c h a n n e l

A n y c h a n n e l s t o s c a n ?

C a n c e l T i m e r

Ca l l
M A C _ M L M E _ S C A N _ C N F

e v e n t h a n d l e r

S t o p l a s t s c a n

S t a r t S c a n

S e t T i m e r R o l l o v e r

S t o r e s c a n r e s u l t s

n o

y e s

n o

y e s

Figure 3.14.: Flow Chart of the basic scan procedure

45

3 Implementation 3.4 MAC API Description

Scan Modes

• Energy Detection
In case of an energy detection scan, the internal function starts a timer
with an interval of one backoff period. Every time the timer event occurs
the RSSI value is read from the CC2420 and the maximum value is stored.

• Passive Scan
If a passive scan is started, the receiver state machine, as described in
Section 3.3.1.2, is advised to receive all beacon frames. If the beacon
frame is received, the RX callback function checks, if either the active or
passive scan is activated. In such case it decodes the beacon and stores
the decoded beacon information in the beacon descriptor result vector.
If a beacon is received once again, because of a long scan duration, the
beacon is compared, with the stored beacons in the beacon descriptor
vector. If the beacon is equal to one of them, it is discard.

• Active Scan
Before a scan on a channel is started, a beacon request frame is
generated (broadcast), which advises all (especially non beacon-enabled)
coordinators to send one single beacon. The rest of the scan procedure
is similar to the passive scan.

• Orphan Scan
The orphan is not yet implemented.

Events

• MAC MLME SCAN CNF

If the last channel has been scanned or the maximum value of the result
vector is reached, the MAC MLME SCAN CNF event is called and the result
vector is delivered to the callback function.

Restrictions

• Since the Orphan procedures are not implemented in the current version,
the orphan scan is not supported. If an orphan scan is requested, the
parameter is ignored and the function returns without any action.

• Because of the limited memory of the MCU and the large size of a beacon
descriptor, it is strongly recommended, to limit the result vector to two
beacon descriptors, in case of an active or passive scan. In case of the
energy detection scan, the result has only one byte.

• Because of an unknown reason, the time interval where the RSSI value
is read from the CC2420 is too short, the read operation could not be

46

3 Implementation 3.4 MAC API Description

finished. Hence the standard value of the timer was adapted by doubling
the rollover value of the timer. This changes the timebase of the whole
backoff timer which is also used to determine the scan duration. Because
of this, the scan duration, which is defined by a number of backoff counts,
has to be adapted (divided by 2). After the energy detection scan is
finished, the value of the backoff timer rollover has to be reset.

3.4.4.11. MLME Poll

Description The MAC MlmePollReq() primitive is used to request pending
data from a coordinator in a non beacon-enabled PAN. This primitive should be
called periodically by the next higher layer. If there is no active transmission a
data request frame is formed and transmitted to the coordinator using unslotted
CSMA-CA.

Events

• MAC MLME POLL CNF

– If the MAC MlmePollReq() primitive is called, it is checked, if there
is an active transmission. In this case the MAC MLME POLL CNF event
is generated with the status MAC CHANNEL ACCESS FAILURE.

– If no acknowledgment frame is received, after a number of
aMaxFrameRetries, the MAC MLME POLL CNF event is generated with
the status MAC NO ACK.

– If the MLME data request was successfully transmitted and the
acknowledgment frame was received by the associated device with
the frame pending subfield in the FCF is not set, no data is available
at the coordinator. Hence the MAC MLME POLL CNF event is generated
with the status MAC NO DATA.

– If the frame pending subfield in the FCF is set in the received ac-
knowledgment frame, a message frame is available at the coordina-
tor which is transmitted immediately by the coordinator. Hence the
MAC MLME POLL CNF event is generated with the status MAC SUCCESS.

• Other Events:
If the MAC MLME POLL CNF event was generated with the status
MAC SUCCESS, a data frame is available at the coordinator. Depending
on the type of the frame, the following types of events are possibly gen-
erated:

– MAC MCPS DATA IND

A detailed description is given in Section 3.4.3.1.

47

3 Implementation 3.5 Demo Application

– MAC MLME DISASSOCIATE IND

A detailed description is given in Section 3.4.4.2.

Restrictions As mentioned in Section 3.4.3.1, the indirect data transmission
in a non beacon-enabled PAN is not enabled, because the coordinator is blocked
until the associated device calls the MLME Poll primitive.

3.5. Demo Application

The demo application is used as prototype of the implemented MAC API. To
show a large number of API functions, two different demo applications are
implemented. One shows the communication in a non beacon-enabled PAN.
The other demo application shows the communication in a beacon-enabled
PAN.

3.5.1. Test environment

The demo application shows the communication between two devices, one coor-
dinator and one FFD device, which are represented by two development boards
as shown in Figure 3.15.

Figure 3.15.: Top view of the demo board

48

3 Implementation 3.5 Demo Application

The communication is monitored by a ZigBee USB stick from Integration as
shown in Figure 3.16.

Figure 3.16.: ZiBee USB Stick from Integration

The wireless protocol analyzer (WPA)1 which visualizes all received frames,
is able to decode IEEE 802.1.4/ZigBee frames and shows all parts of the frame
broken down to each flag and data word as shown in Figure 3.17.

Figure 3.17.: Example of decoded frame of the WPA

Moreover it is possible to enable a filter, which filters only correct frames and
discards all others. One of the main advantages of the WPA is timestamping.
Since the timestamp of each received frame is recorded, it is possible to prove

1The WPA is a commercial product from Integration

49

3 Implementation 3.5 Demo Application

the timing of the beacon interval or the data transmission within a GTS. The
whole arrangement of the test environment is shown in Figure 3.18.

D e v e l o p m e n t B o a r d

D e v i c e

D e v e l o p m e n t B o a r d

C o o r d i n a t o r

I n t e g r a t i o n
P r o t o c o l A n a l y z e r

O b s e r v e r

Figure 3.18.: Arrangement of the test environment

3.5.2. Beacon-enabled Demo Application

This demo application shows, how an unassociated device is able to associate
with a coordinator and send data in a CFP or in the CAP using indirect
transmission.

Scan If a device wants to associate with a coordinator, it first performs an
energy detection scan, to detect any traffic on the channel. The energy levels
of the selected channels are sent to a text output application over the serial
interface to a PC. After the energy detection scan was performed, a passive
scan is started to discover a coordinator. Since the corresponding coordinator
has a BeaconOrder = 6, the scanDuration is set to a value of 7. If a beacon
is received from the coordinator, the MAC MLME SCAN CNF event is generated,
because the scan result is limited to one. In this event handler the device reads
the coordinator address and its PAN ID from the beacon descriptor and starts
the association procedure by calling the primitive MAC MlmeAssociationReq().

Association The MAC MlmeAssociationReq() primitive sends an association
request frame to the coordinator as described in Section 3.4.4.1. At the coor-
dinator the MAC MLME ASSOCIATION IND event is generated. The coordinator
assigns a predefined address to the device and sends the response to the device
by calling the MAC MlmeAssociationRsp() primitive. If the device receives the
association response from the coordinator, it updates its MAC PIB.

50

3 Implementation 3.5 Demo Application

Indirect MCPS transmission After the association was finished, the
coordinator wants to send a data frame to the device using indirect trans-
mission, by calling the MAC McpsDataReq() primitive with the txOption
MAC TXOPTION INDIRECT. The coordinator adds the address of the device
to the pending addresses field of the beacon frame and waits for a MLME
data request frame. Since the autoRequest parameter in the MAC PIB
of the associated device is set, the device automatically transmits the
MLME data request frame. If the coordinator receives this frame, it trans-
mits the MCPS data frame. If the associated device receives this frame the
MAC MCPS DATA IND event is generated and the payload is written to the UART.

GTS Request After that the associated device initiates a GTS transmission,
but before a frame could be sent, a GTS has to be allocated by using the
MAC MlmeGtsReq() primitive. If the coordinator receives the GTS request of
the device, it allocates a GTS and updates the beacon frame. If the associated
device receives the beacon frame, in which a GTS is allocated for the device the
MAC MLME GTS CNF event is generated and now the MAC McpsDataReq() primi-
tive can be called.

MCPS GTS transmission The MAC McpsDataReq() primitive calculates the
backoff count of the allocated GTS and triggers the backoff timer. If the trigger
is fired, the requested data frame is transmitted and the MAC MCPS DATA IND

event is generated at the coordinator. In this event handler the transmitted
data are written to the UART.
After that transmission the coordinator tries to disassociate the device by call-
ing the MAC MlmeDisassociationReq() primitive.

Disassociation The MAC MlmeDisassociationReq() primitive adds the
address of the device to the pending addresses field of the beacon frame and
waits for a MLME data request. If the coordinator receives the MLME data
request, the disassociation notification frame is transmitted to the device.
If the device receives the disassociation notification frame, the
MAC MLME DISASSOCIATION IND event is generated and the demo appli-
cations is stopped. On the other side the coordinator transmits its beacons
anyway and waits for another association request.
A screenshot of the WPA shows the sequence of message frames which are
transmitted in the demo application (Figure 3.19).

51

3 Implementation 3.5 Demo Application

Figure 3.19.: Screenshot of the WPA, showing the packets of the demo
application

3.5.3. GTS verification

To check the correctness of the calculation of the GTS, the timestamps of the
WPA are used as shown in Figure 3.20. A schematic view of the analyzed bea-
con interval is shown in a timeline diagram (Figure 3.21). The time difference
between two beacon transmissions is

z = 2501024.8− 1502624.8 = 998400

and the start time of the GTS transmission within the superframe is

x = 2441224.8− 1502624.8 = 938600

If assumed that the normalized beacon interval is

z̄ = 16

52

3 Implementation 3.5 Demo Application

the normalized time of data transmission in the superframe is

x̄ =
x

z
· z̄ = 15, 041

and this value is correct.

Figure 3.20.: GTS timing sequence

0 1 5

B e a c o n F r a m e B e a c o n F r a m e

D a t a F r a m e

x y

z

Figure 3.21.: Superframe timeline diagram

3.5.4. Non beacon-enabled Demo Application

The demo application in a non beacon-enabled PAN is quite shorter than in
a beacon-enabled PAN because only unslotted CSMA-CA transmissions are
possible.

Initialization After the initialization of the devices, the coordinator is started
with the MAC MlmeStartReq() primitive, which updates all necessary parame-
ters in the MAC PIB and listens on the channel.

Active scan The device which should be associated with the coordinator
starts an active scan after the initialization, using the MAC MlmeScanReq()

primitive, which is described in Section 3.4.4.10. In this scan mode the device
first sends a beacon request frame on each channel, before the scan is started.

53

3 Implementation 3.5 Demo Application

If the coordinator receives a beacon frame request, it transmits only one single
beacon. If the scanning device receives this beacon, the scan is terminated by
generating the MAC MLME SCAN CNF, because the result list is limited to one.

Association After the active scan was finished, the coordinator address and
the PAN ID are updated in the macPib and then the association proce-
dure is started by calling the MAC MlmeAssociationReq(). In this primi-
tive the device transmits an association request frame to the coordinator.
If the coordinator receives the association request frame, it generates the
MAC MLME ASSOCIATION IND event. The coordinator now assigns a static short
address to the device and calls the MAC MlmeAssociationRsp(). This prim-
itive forms the association response frame and waits until a MLME data re-
quest frame is received from the device. After a specified time, which is de-
scribed in Section 3.4.4.1, the devices transmits a MLME data request frame.
If the coordinator receives that frame, it transmits the actual association re-
sponse frame to the device and if this frame is received by the device the
MAC MLME ASSOCIATION CNF event is generated and the device is successfully
associated.

MCPS transmission After updating the short address with the assigned ad-
dress from the coordinator, a normal data transmission is started by calling the
MAC McpsDataReq(). This primitive transmits a data frame to the coordina-
tor. If this frame is received by the coordinator the MAC MCPS DATA IND event
is generated and the payload of the frame is written to the UART.

Disassociation After the MAC MCPS DATA CNF event occurs at the device,
the device is going to disassociate itself from the coordinator by call-
ing the MAC MlmeDisassociationReq(). This primitive generates a dis-
association notification frame and transmits it to the coordinator. Af-
ter the acknowledgment frame was returned by the coordinator the
MAC MLME DISASSOCIATION IND is generated and the coordinator waits for an-
other association request. If the device receives the acknowledgment frame it
generates the MAC MLME DISASSOCIATION CNF event and stops its operation.

54

4. Conclusion

This thesis focused on the implementation of an IEEE 802.15.4 protocol stack.
Since the MAC sublayer of the IEEE 802.15.4 stack was not published by Texas
Instruments, it has to be reimplemented. The main goal of this implementation
was to make the MAC sublayer compatible to the original implementation of
Texas Instruments. The realization is according to the API interface description
of Texas Instruments and the IEEE 802.15.4 standard.

The current implementation of the IEEE 802.15.4 MAC API is the corner-
stone for a large number of applications and future projects. So the actual
implementation could be directly used to realize simple control networks or
time triggered applications. It is also possible to realize simple point to point
applications. If ZigBee is not used, a simple routing protocol can be imple-
mented, to make mesh networks possible.

Since the Chipcon CC2420 is not fully compliant to the IEEE 802.15.4 stan-
dard and the MCU has limited memory capabilities, neither large applications
nor real IEEE 802.15.4 compliant applications can be implemented. In future
projects the successor of the Chipcon CC2420, the CC2520 can be used in com-
bination with the MSP430F2618 MCU, which has 8KB memory. Moreover the
Chipcon CC2520 is claimed to be fully IEEE 802.15.4 compatible in contrast
to the CC2420. If this hardware configuration is used, the provided functions
of Texas instruments have to be replaced, and a few compiler specific macros
have to be redefined, which are quite similar to the changes in the actual imple-
mentation. Finally, it should be possible to make this hardware configuration
running and then the actual implementation could be extended by using the
larger memory.

It is also possible to set up the ZigBee stack from Texas Instruments because
the MAC API should be compliant to the IEEE 802.15.4 stack from Texas
Instruments.
Another possibility is to port the whole IEEE 802.15.4 stack to another MCU
type (e.g. the Atmel ATMega series). This is even possible, but many changes
have to be done (e.g, changing timer functions, USART functions and the mem-
ory management).
If security is additionally implemented in future projects, also security appli-
cations, like door control systems or alarm systems could be realized with this
implementation.

55

Bibliography

[1] IEEE, 3 Park Avenue, New York, NY 10016-5997, USA, Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks (WPANs), September 2006.

[2] ZigBee Alliance Inc., 2400 Camino Ramon Suite 375, San Ramon CA 94583,
USA, ZigBee Specification, January 2008.

[3] A. Koubâa, M. Alves, and E. Tovar, “Ieee 802.15.4 for wireless sensor net-
works: A technical overview,” tech. rep., IPP-HURRAY! Polytechnic In-
stitute of Porto (ISEP-IPP), Rua Dr. António Bernardino de Almeida431,
4200-072 Porto, PORTUGAL, July 2005.

[4] S. Y. Shin and S. Choi, “Packet error rate analysis of zigbee under wlan and
bluetooth interferences,” IEEE TRANSACTIONS ON WIRELESS COM-
MUNICATIONS, vol. 6, August 2007.

[5] Freescale Semiconductor Inc., 1300 N. Alma School Road, Chandler,
Arizona 85224, USA, IEEE 802.15.4 / ZigBee Software Selector Guide,
September 2007.

[6] Texas Instruments, San Diego, CA USA, 802.15.4 MAC Application Pro-
gramming Interface, March 2007. Available at http://focus.ti.com/

docs/toolsw/folders/print/timac.html.

[7] Texas Instruments Norway AS, Gaustadalléen 21, NO-0349 Oslo, NOR-
WAY, CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,
November 2007. Available at http://focus.ti.com/lit/ds/symlink/

cc2420.pdf.

[8] Microchip Technology Inc., 2355 West Chandler Blvd., Chandler, AZ 85224-
6199, USA, PICDEM Z DEMONSTRATION KIT USER’S GUIDE, Octo-
ber 2004.

[9] Texas Instruments, San Diego, CA USA, Texas Instruments MSP-
FET430P140 Flash Emulation Tool User’s Guide, April 2001.

56

http://focus.ti.com/docs/toolsw/folders/print/timac.html
http://focus.ti.com/docs/toolsw/folders/print/timac.html
http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

A. Acronyms and abbreviations

API application programming interface

APL Application layer

BE beacon exponent

CAP contention access period

CCA clear channel assessment

CFP contention-free period

CSMA-CA carrier sense multiple access with collision avoidance

CW contention window

DLL data link layer

FCF frame control field

FFD full-function device

GTS guaranteed time slot

HAL hardware abstraction layer

HART Highway Addressable Remote Transducer

HVAC heating, ventilating, and air conditioning

IP Internet Protocol

ISO International Organization for Standardization

LAN local area network

LCD liquid crystal display

LLC logical link control

LQ link quality

MAC medium access control

MCPS MAC common part sublayer

MCU microcontroller unit

MHR MAC header

MLME MAC sublayer management entity

57

A Acronyms and abbreviations

mspgcc GNU C compiler for MSP430 MCUs

NB number of backoffs

NWK Network layer

OSAL operating system abstraction layer

OSI Open Systems Interconnection

PAN personal area network

PCB printed circuit board

PIB PAN information base

PHR PHY header

PHY physical layer

PPDU PHY protocol data unit

RFD reduced-function device

RSSI received signal strength indication

SFD start frame delimiter

SFS superframe specification

SHR synchronisation header

SPI serial peripheral interface

SSCS service specific convergence sublayer

UART universal asynchronous receiver transmitter

WPA wireless protocol analyzer

WLAN wireless local area network

58

B. Board Documentation

B.1. Documentation of the RF Board

Figure B.1.: Top view of the RF Board from Microchip (take from [8])

59

B Board Documentation B.1 Documentation of the RF Board

Figure B.2.: Schematic of the RF Board from Microchip (take from [8])

60

B Board Documentation B.2 Schematic of the MCU Board

B.2. Schematic of the MCU Board

Figure B.3.: Schematic of the MCU Board (take from [9])

61

	Introduction
	Motivation
	Objectives
	Related Work
	Structure of the Thesis

	Concepts
	Introduction in IEEE 802.15.4
	Introduction
	Device Types
	Network Topology

	PHY Layer
	Frequency Bands
	Transmit Power
	Physical frame structure

	MAC Sublayer
	Introduction
	Communication Modes
	Superframe Structure
	CSMA-CA
	Starting a PAN
	Association and Disassociation

	Implementation
	Hardware
	Hardware Description
	Interface Description

	Porting of the HAL
	Changing Macros
	Changing Registers
	Changing the clock source

	MAC Stack Overview
	Provided Functions of the TI Stack
	Basic Radio Functions
	Receive and Transmit Functions
	Timer Functions

	Source File Structure

	MAC API Description
	General Event Structure
	Memory Management
	MAC Data Service
	MCPS Data Request
	MCPS Purge Request
	MCPS Data Allocate

	Management Services
	MLME Association
	MLME Disassociation
	MLME Start
	MLME Beacon Notify
	MLME Get
	MLME Set
	MLME GTS
	MLME Reset
	MLME RX Enable
	MLME Scan
	MLME Poll

	Demo Application
	Test environment
	Beacon-enabled Demo Application
	GTS verification
	Non beacon-enabled Demo Application

	Conclusion
	Bibliography
	Acronyms and abbreviations
	Board Documentation
	Documentation of the RF Board
	Schematic of the MCU Board

