
Web Services in Building Automation with focus

on BACnet/WS

Stefan Szucsich

e0728333@student.tuwien.ac.at

Institute of Computer Aided Automation

Vienna University of Technology, Vienna, Austria

June 2010

Abstract

Currently, there exist two major challenges in the scope of Building
Automation System (BAS) integration. First of all the integration of
building automation subsystems from different vendors is difficult due to
still existing proprietary solutions. The second challenge is the integration
between BASs and enterprise applications. Web services have been proven
to be capable of solving both of these problems. This paper outlines the
three most common web services based technologies in building automa-
tion, i.e., OPC Unified Architecture (OPC UA), Open Building Informa-
tion Exchange (oBIX), and Building Automation and Control Network -
Web Services (BACnet/WS). In the main part of this paper BACnet/WS
is discussed in detail including the specified data model, attributes and
services. Finally the results of a BACnet/WS performance study are pre-
sented.

Keywords: BACnet/WS, building automation, web services.

1 Introduction

Building automation industry has advanced over the last decades. Several com-
munication protocols and a variety of Building Automation System (BAS) prod-
ucts from various vendors are available on the market. The major problem that
arises as a direct consequence of this diversity is the interoperability of products
from different vendors.

In former BASs those products have typically been interconnected by pro-
prietary communication protocols [1]. This has led to a missing interoperability
of products from different vendors. First solutions have addressed this problem
by applying gateways between non-cooperating subsystems. Nevertheless, gate-
ways have had some major disadvantages including the huge engineering effort
for construction and maintenance, and the lack of scalability and extensibility.
The next approach has been the employment of standard communication proto-
cols such as LonWorks [2], Building Automation and Control Network (BACnet)

1

[3], and KNX [4]. They have been conceived to cover all domains of build-
ing automation, including Heating, Ventilating and Air Conditioning (HVAC),
lighting, and alarming. Hence, proprietary communication protocols have be-
come unnecessary and interoperability of components from different vendors
could have been achieved. However, standard communication protocols have
not been able to completely solve the integration problem due to still existing
proprietary products. So new approaches have had to be developed for the
integration of building automation subsystems.

BASs have typically been separated from IT networks so far [5]. However, in
the last years the desire to use data from field devices within existing enterprise
applications has arisen. Therefore, communication protocols supporting the
TCP/IP network protocol stack have been developed. These protocols have
had to cope with many problems in TCP/IP networks, such as firewalls and
security issues. As for the integration problem mentioned before, new solutions
have had to be found for the integration of BASs into enterprise networks.

The evolution of the web and web technologies has created new opportu-
nities for solving both integration problems mentioned above. Web services
are self-contained, modular software applications that can be published, lo-
cated, and called across the web [6]. They are based on other web technolo-
gies, such as Extensible Markup Language (XML), Web Services Description
Language (WSDL), and Simple Object Access Protocol (SOAP). More detailed
information about the core technologies of web services can be found in [6].

Web services technology has several advantages including platform inde-
pendency and a loose coupling of distributed system components. However,
there exists a major drawback, too. Service requests and responses are encoded
in XML format which leads to additional communication overhead and hence
longer response times1. Also the need for processor power increases as a result
of parsing the XML-formatted messages [6].

Web services can be used to implement system architectures based on the
Service-Oriented Architecture (SOA) paradigm. There are various definitions
for the notion of a SOA. This paper follows the definition given in [8] and [9]:

“A service-oriented architecture (SOA) is a set of architectural
tenets for building autonomous yet interoperable systems.”

This basic definition helps to understand the most important concepts of a
SOA. Its essential keywords are automomous and interoperable. Autonomous
means that the systems are created independently of each other and that they
operate independently of their environment. The term interoperable implies
that the interfaces of services, that are exposed to their environment, are clearly
abstracted from the implementation of these services. A summary of service-
oriented architectural principles for achieving autonomy and interoperability
can be found in [8].

The next section gives an overview about the most common web services
based technologies in building automation. In Section 3 Building Automation
and Control Network - Web Services (BACnet/WS) is described in detail in-
cluding the specified data model, attributes, and services. Section 4 presents
the results of a performance study of BACnet/WS and concludes this article.

1to counter this drawback of the standard XML format, a compressed XML format, e.g.,
Efficient XML Interchange (EXI) [7], can be used

2

2 State of the Art

Currently, there exist a couple of web services based technologies for the use in
building automation. In the next sections the three most common web services
based technologies are outlined and subsequently compared to each other.

2.1 OPC Unified Architecture

OPC Unified Architecture (OPC UA) [10] has been specified by the OPC Foun-
dation2 to overcome the disadvantages of classical OLE for Process Control
(OPC)3 standards. The main problems with classical OPC variants like OPC
Data Access (OPC DA), OPC Alarm & Events (OPC A&E), and OPC Histor-
ical Data Access (OPC HDA), are their platform dependency and limited data
model [11]. OPC UA has been standardized as series of standards IEC 62541.
The structure of the series can be found in [10].

OPC UA is based on a service-oriented client/server architecture [12]. This
means that the complete functionality of an OPC UA server is available through
services. Services are divided into logical groups, called service sets. Each service
set allows access to a specific aspect of an OPC UA server. However, not all
services have to be provided by a single server. Thus, OPC UA defines profiles
that specify which services have to be supported by a server.

To achieve platform independency, a new communication stack has been
defined instead of using Microsoft’s Component Object Model (COM) and Dis-
tributed Component Object Model (DCOM) technology as in classical OPC.
This communication stack consists of two different transport mechanisms [12].
For efficient data transfers the binary TCP protocol UA Native can be used.
Since there is no overhead for data encoding, this protocol is especially suitable
when network and/or computer resources are limited. The second transport
mechanism, the UA Web Services protocol, uses SOAP over Hypertext Trans-
fer Protocol (HTTP) for transmission of XML-formatted data. This transport
protocol allows an easy integration into the existing IT network since standard
web service tools can be used.

Also the limited data model of classical OPC has been replaced by an object-
oriented extensible data model [11]. Moreover, the new data model allows mod-
eling of complex data as well as modeling of meta data. The collection of infor-
mation that is visible to clients is called the address space. It basically consists
of nodes and references between nodes. Nodes are described by attributes and
properties. Most of the modeling concepts, such as reference types and object
types, are represented as nodes in the address space. A reference describes the
relation between nodes. The semantics of a reference is defined by its reference
type.

2.2 oBIX

The Open Building Information Exchange (oBIX) specification [13] has been
published by the Organization for the Advancement of Structured Information
Standards (OASIS)4 in December 2006. This platform independent technology

2http://www.opcfoundation.org
3OLE stands for “Object Linking and Embedding”
4http://www.oasis-open.org

3

is designed to provide machine-to-machine communication between embedded
software systems over existing networks using standard technologies such as
XML and HTTP.

As OPC UA, oBIX is also based on a service-oriented client/server archi-
tecture. Only three request/response services are defined by the oBIX specifi-
cation. These services can be used to read and manipulate data or to invoke
operations. Each service response is an oBIX XML document containing the
requested information or the result of the service. The implementation of the
three request/response services, i.e., how they are transmitted over the network,
is called a protocol binding.

There are two different protocol bindings specified by the oBIX standard.
The HTTP binding simply maps oBIX requests to HTTP methods. The com-
plete mapping can be found in [13]. For more information about HTTP 1.1
see [14]. The second protocol binding is the SOAP binding. It maps a SOAP
operation to each of the three oBIX requests.

One of the two fundamental elements of the oBIX specification is the concise
but extensible object model. It consists of typed objects that are described by
attributes, called facets. Objects are identified by either a name, a Unified
Resource Locator (URL) [15], or both. The URL is used to specify the target
object of a service request or to refer to other objects. Each object can contain
other objects — named or unnamed. The object model can be extended by a
mechanism, called contracts. Contracts are used to define new types but also
provide a possibility of specifying default values. They are kind of templates that
can be implemented by objects. By implementing a list of contracts, multiple
inheritance can be accomplished.

The second essential part of the oBIX specification is the simple XML syntax
to represent the object model. Basically each oBIX object maps to exactly one
XML element. Sub-objects result in nesting of XML elements. The built-in
object types map to the name of the XML element. All other information, e.g.,
the facets of an object, is represented as XML attribute.

2.3 BACnet/WS

BACnet/WS [16] has been specified by the American Society of Heating, Refrig-
erating and Air-Conditioning Engineers (ASHRAE)5 as addendum to ANSI /
ASHRAE standard 135-2004 in October 2006. It extends the BACnet standard
[3] by defining a web service interface and data model for the integration of data
from field devices into existing enterprise applications. BACnet/WS has been
incorporated into ANSI / ASHRAE standard 135-2008.

BACnet/WS is based on a service-oriented client/server architecture. It
basically defines services for accessing and manipulating data in the server.
Implementations of the service requests and responses shall conform to the Web
Services Interoperability Organization (WS-I) Basic Profile 1.0 which specifies
the transport of XML-formatted data over network using SOAP over HTTP
[17]. Services are described in more detail in Section 3.3.

The data model defined by the BACnet/WS specification is rather simple
and not extensible. Its basic element is the node. Nodes are hierarchically
arranged and described by attributes. Some attributes are localizable, i.e., they

5http://www.ashrae.org

4

can have multiple values or formats for multiple languages. Section 3.1 depicts
the data model in more detail. Attributes are described in Section 3.2.

2.4 Comparison

OPC UA has the most complex data model of all standards mentioned be-
fore. The data model of OPC UA is almost arbitrarily extensible by subtyping
and composition. Also multiple inheritance is not forbidden in OPC UA [11].
However, only inheritance rules for single inheritance are specified. Further-
more, references with different semantics are provided. On the other hand, the
BACnet/WS data model is quite simple and not extensible. There is no possi-
bility of subtyping. Somewhere in between lies the data model of oBIX. It is
concise, but very flexible. Multiple inheritance is explicitly allowed and rules for
single and multiple inheritance are specified. The flexibility of the data model
is achieved by contracts.

All of the above mentioned standards define a transport mechanism that
uses SOAP over HTTP for transfer of XML-formatted data. Only OPC UA
provides a transport protocol for raw data. Since XML adds some overhead to
the data, transport of raw data can be very suitable when network resources
are limited.

The integration of the BAS into existing enterprise networks leads to a
higher need for security. OPC UA defines its own security model including
communication channel security, authentication and authorization, and certifi-
cates [11]. It also specifies services to satisfy the security requirements. In
oBIX and BACnet/WS no security mechanisms are specified. However, they
both recommend the use of the Transport Layer Security (TLS) protocol for
secure communication. This includes the usage of HTTP over TLS (HTTPS)
instead of HTTP. More information about TLS and HTTPS can be found in
[18] and [19]. Additional security measures can be placed in the client and server
implementation but are not specified by these standards.

Localization can be used to provide multilingual displays or to adapt the
format of dates, times, and numbers according to a given locale. Each of the
previously mentioned standards allows some kind of localization. In OPC UA,
the built-in data type LocalizedText allows to add a language tag to a localized
string. The format of the language tags is defined in RFC 3066 [20]. In oBIX,
localization of some facets is recommended. Auto-conversion of units may also
be possible. However, the mechanisms for localization are not specified by
oBIX. Localization in BACnet/WS is similar to oBIX. Several attributes are
localizable but the mechanisms for localization are left as an implementation
issue. Table 1 depicts the comparison of OPC UA, oBIX, and BACnet/WS.

The next section discusses BACnet/WS in more detail including the specified
data model, attributes, and services.

3 BACnet/WS

The BACnet/WS standard [16] defines a web service interface that allows clients
to exchange data with BACnet/WS servers. However, it does not define how
the data is stored internally in a server. Furthermore this standard specifies a
data model and access services. The data model and access services can be used

5

Table 1: Comparison of OPC UA, oBIX, and BACnet/WS

OPC UA oBIX BACnet/WS

Data model complexity complex concise simple

extensible yes yes no

Transport mechanisms
SOAP/HTTP,

SOAP/HTTP SOAP/HTTPbinary TCP
(for raw data)

Security mechanisms

secure channel, not specified
(TLS
recommended)

not specified
(TLS
recommended)

authentication,
authorization,
certificates

to access data from any source. A BACnet/WS server may act as a gateway
to other protocols or own the data locally. Hence, BACnet/WS is independent
from the underlying BAS.

The next sections will describe the data model, attributes, and services that
are specified in BACnet/WS.

3.1 Data Model

The fundamental element in the BACnet/WS data model is the node. The data
model consists of hierarchically arranged nodes. Each node has exactly one
parent node6 and may have an arbitrary number of children. Figure 1 shows
an example node hierarchy including the standard nodes (see Section 3.1.2 for
more details). Note that the root node is represented by a forward slash (’/’)
character instead of an empty string as defined in Section 3.1.1. This should
help for a better understanding of the node hierarchy.

Figure 1: Example of a BACnet/WS node hierarchy

Attributes are used to describe nodes and may themselves have attributes.
Some attributes are required for all nodes, and some are optional. BACnet/WS
servers may define proprietary attributes at any level of the hierarchy. At-
tributes are described in more detail in Section 3.2.

6except the root node, i.e., the topmost node in the hierarchy

6

3.1.1 Paths

Nodes and attributes are identified by their path. Paths are character strings
that are composed of two parts: the node part followed by the attribute part.
The node part reflects the node hierarchy and consists of node identifiers sepa-
rated by forward slash (’/’) characters. An empty node part refers to the root
node of the hierarchy. The attribute part is made up of attribute identifiers
separated by colon (’:’) characters. If the attribute part is empty the Value
attribute is assumed by default. The complete path form is:

[/node id[/node id]...][:attribute id[:attribute id]...]

where ’[]’ indicates an optional element and ’...’ indicates iteration of the
previous element.

Identifiers are case sensitive and have to consist of printable ANSI X3.4 char-
acters except of the following characters: / \ : ; | < > * ? " [] { }. Ad-
ditionally node identifiers beginning with a period (’.’) character and attribute
identifiers not beginning with a period (’.’) character are reserved. Hence, pro-
prietary node identifiers defined by a BACnet/WS server must not begin with
a period (’.’) character, whereas proprietary attribute identifiers have to do.
Some valid path examples are:

• ":Children",
• "/Floor 1/Room 2:.Employee",
• "/.sysinfo/.vendor-name", and
• "/.sysinfo/.vendor-name:Value".

The first example accesses the Children attribute of the root node. In the
second one a proprietary attribute called .Employee is accessed. The latter two
expamples are logically equal and refer to the vendor name of the BACnet/WS
server.

3.1.2 Standard Nodes

Structuring the node hierarchy and the naming of nodes is generally of local
concern. However, there exist some standardized nodes that allow clients to
retrieve some basic information about the server. As mentioned before these
nodes all have identifiers beginning with a period (’.’) character. Table 2 lists
all standard nodes including their value types and descriptions. Additionally
the standard node hierarchy is depicted in the left part of Figure 1.

3.1.3 Reference Nodes

BACnet/WS allows nodes to logically appear in different places of the hierarchy.
This can be done through the use of reference nodes. The node a reference node
refers to is called referent node. Except of the attributes Children, Aliases,
Attributes, and Reference, all attributes of a reference node reflect the cor-
responding attribute of the referent node. The path to a referent node is stored
in the Reference attribute of the reference node.

More than one reference node may refer to the same referent node. It is also
possible to point to other reference nodes. However, it is not allowed to create

7

Table 2: Standard nodes [16]

Node Path Value Type Description

/.sysinfo None This node is the container for the
following nodes (it has no value)

/.sysinfo/.vendor-name String Contains the name of the vendor
of this server

/.sysinfo/.model-name String Contains the model name and/or
number of this server

/.sysinfo/.software-version String Contains the version of the soft-
ware running in this server

/.sysinfo/.standard-version Integer Contains the version of the
BACnet/WS standard that the
server is implementing

loops, nor is a node allowed to refer to itself. Figure 2 depicts a node hierarchy
including references.

Figure 2: A BACnet/WS node hierarchy including references

3.2 Attributes

Attributes are used to store information about nodes. Some attributes are
required for all nodes, and some are optional. However, it can be assumed that
the set of available attributes will remain unchanged in normal operation and
changes only occur after reconfiguration of the server.

There are three types of attributes. Primitive attributes are attributes of
datatypes defined by the XML Schema [21], such as boolean, string, or double.
Enumerated attributes are enumerations of XML Schema datatype string [21].
The set of allowed values is defined by the BACnet/WS standard. The last type,
array attributes, are attributes that consist of an array of primitive attributes.

8

All elements of the array have the same primitive datatype. Arrays can be
accessed either as an array of separate elements or as concatenation of all the
elements.

Table 3 lists all attributes including their XML Schema datatype [21].
Columns 3 and 4 indicate if the attribute is an array attribute or an enumer-
ated attribute. Column 5 shows whether or not the attribute is localizable. In
column 6, the presence of the attribute is stated.

In the following subsections the attributes are described in more detail.

3.2.1 NodeType

The NodeType attribute is required for all nodes and allows the general classifi-
cation of nodes. This attribute is enumerated. Table 4 shows the allowed values
for this attribute.

3.2.2 NodeSubtype

This optional attribute — in combination with the NodeType attribute — al-
lows a more specific classification of a node. Its value is a string of printable
characters. The NodeSubtype attribute may be localized.

3.2.3 DisplayName

This required attribute is a string of printable characters that provides a short
descriptive name to display in user interfaces. It can be localized to create
multilingual displays. The value of the DisplayName attribute does not need to
be unique.

3.2.4 Description

The optional Description attribute is a string of printable characters that
provides a longer description of the node. This attribute may be localized.

3.2.5 ValueType

This required attribute determines the datatype of the Value attribute and its
restricting attributes. A list of all allowed values for this attribute is shown in
Table 5.

Table 6 illustrates the effect of the ValueType attribute on the datatype
of the Value attribute and its restricting attributes. The datatypes are XML
Schema datatypes [21]. Attributes listed with the n/a datatype should not be
present in the node.

3.2.6 Value

The Value attribute represents the value of the node. It is required if the
ValueType attribute has a value other than “None”. The values of this attribute
may be localized if the ValueType attribute is equal to “Multistate”, “Boolean”,
or “String”.

9

Table 3: Attribute summary [16]

Attribute Identifier Datatype Array Enum-
erated

Local-
izable

Presence

NodeType string No Yes No Required

NodeSubtype string No No Yes Optional

DisplayName string No No Yes Optional

Description string No No Yes Optional

ValueType string No Yes No Required

Value varies (see 3.2.5) No No Yes Required1

Units string No Yes Yes Required2

Writable boolean No No No Required1

InAlarm boolean No No No Optional

Minimum varies (see 3.2.5) No No Yes Optional

Maximum varies (see 3.2.5) No No Yes Optional

Resolution varies (see 3.2.5) No No Yes Optional

MinimumLength nonNegativeInteger No No No Optional3

MaximumLength nonNegativeInteger No No No Optional3

IsMultiLine boolean No No No Optional

Attributes string Yes No No Required

WritableValues string Yes No Yes Required4

PossibleValues string Yes No Yes Required5

Overridden boolean No No No Optional

ValueAge double No No Yes Optional

Aliases string Yes No No Required6

Children string Yes No No Optional

Reference string No No No Present7

HasHistory boolean No No No Required1

SinglyWritableLocales string Yes No No Present8

HasDynamicChildren boolean No No No Optional
1 if ValueType is not equal to “None”
2 if ValueType is Real or Integer
3 only present if ValueType is “String”
4 if ValueType is equal to “Multistate” or “Boolean” and Writable is true
5 if ValueType is equal to “Multistate” or “Boolean”
6 if there are reference nodes referring to this node
7 if and only if the node is a reference node
8 if and only if ValueType is equal to “String” and Writable is true

10

Table 4: Allowed values for the NodeType attribute

Value Description

“Unknown” For data that originates in another source and
no type information is known

“System” For an entire mechanical system

“Network” For a communication network

“Device” For a physical device

“Functional” For system components or logical components

“Organizational” For organizational classification like depart-
ment, working group, etc.

“Area” For geographical classification like building,
floor, etc.

“Equipment” For a single piece of equipment

“Point” For a single data point

“Collection” As container for grouping other nodes

“Property” For data that logically belongs to the parent
node

“Other” For everything else

Table 5: Allowed values for the ValueType attribute

Value Description

“None” Has to be used when the node does not have
a value

“String” For human readable character strings

“OctetString” For arbitrary binary data

“Real” For floating point values

“Integer” For integer values

“Multistate” For choices between an arbitrary number of
named states

“Boolean” For choices between exactly two named states

“Date” For calendar dates

“Time” For the time of a day

“DateTime” For an exact moment in time (specifying both
date and time)

“Duration” For time spans

11

Table 6: Effect of the ValueType attribute [16]

ValueType
Value

Value
Datatype

Minimum
Datatype

Maximum
Datatype

Resolution
Datatype

“None” n/a n/a n/a n/a

“String” string n/a n/a n/a

“OctetString” base64Binary n/a n/a n/a

“Real” double double double double

“Integer” integer integer integer integer

“Multistate” string n/a n/a n/a

“Boolean” string n/a n/a n/a

“Date” date date date integer1

“Time” time time time double2

“DateTime” dateTime dateTime dateTime double2

“Duration” double2 double2 double2 double2

1 in days
2 in seconds

3.2.7 Units

This enumerated attribute determines the unit for the Value attribute of the
node. It has to be present if the ValueType of the node is equal to “Integer”
or “Real” but it may have the value of “no-units”. For other values of the
ValueType attribute it may optionally be present. The allowed values for this
attribute are defined by the ASN.1 production for BACnetEngineeringUnits
in Clause 21 of [3]. However, it is possible to extend this attribute to support
customized units, too.

The value of this attribute can be obtained in two ways. If the canonical
service option (see Section 3.3.1) is true, then the value of this attribute has to
be one of the enumeration identifiers defined by the standard mentioned before.
Otherwise the value is an arbitrary string that may be localized.

3.2.8 Writable

The Writable attribute has to be present if and only if the ValueType attribute
has a value other than “None”. It indicates whether or not the Value attribute
of the node can be written through web services.

3.2.9 InAlarm

This optional attribute indicates if the node is “in alarm” or not. The meaning
of “in alarm” is not defined by the BACnet/WS standard.

12

3.2.10 Minimum

The Minimum attribute determines the minimum value of the Value attribute.
The datatype of this attribute depends on the ValueType attribute of this node
(see Table 6).

3.2.11 Maximum

The Maximum attribute determines the maximum value of the Value attribute.
The datatype of this attribute depends on the ValueType attribute of this node
(see Table 6).

3.2.12 Resolution

The Resolution attribute determines the smallest possible change of the Value
attribute. The datatype of this attribute depends on the ValueType attribute
of this node (see Table 6).

3.2.13 MinimumLength

This optional attribute defines the minimum length, in characters, for the Value
attribute. It is only present if the ValueType attribute is equal to “String”.

3.2.14 MaximumLength

This optional attribute defines the maximum length, in characters, for the Value
attribute. It is only present if the ValueType attribute is equal to “String”.

3.2.15 IsMultiLine

The IsMultiLine attribute indicates whether or not the Value attribute is
capable of containing multiple lines of text. This attribute is optional and
should only be present if the ValueType attribute is equal to “String”. Lines
are separated by the ANSI X3.4 control character newline (0x0A).

3.2.16 Attributes

This required attribute is an array of character strings. It contains the names
of all attributes that are present in this node.

3.2.17 WritableValues

The optional WritableValues attribute is an array of character strings con-
taining all string values that may be written to the Value attribute when the
ValueType is equal to “Multistate” or “Boolean”.

3.2.18 PossibleValues

The optional PossibleValues attribute is an array of character strings. It con-
tains all possible string values for the Value attribute of a node whose ValueType
is equal to “Multistate” or “Boolean”. If the ValueType is equal to “Boolean”
the first entry in the array relates to true and the second to false.

13

3.2.19 Overridden

This optional attribute indicates whether or not the value of the Value at-
tribute has been overridden. For data points representing physical inputs, the
Overridden attribute may be used to denote that the Value attribute does not
react to changes of the physical input anymore.

3.2.20 ValueAge

The optional ValueAge attribute stores the time, in seconds, since the Value
attribute was last successfully updated in the server.

3.2.21 Aliases

This attribute is an array of character strings containing the paths of all refer-
ence nodes referring to this node. It has to be present if and only if there exists
at least one reference node referring to this node.

3.2.22 Children

The Children attribute is an array of character strings. It contains the identi-
fiers for the children of this node on a given path. These identifiers can be used
to build new paths to child nodes. Child identifiers do not start with a forward
slash (’/’) character. Hence, a forward slash (’/’) character has to be inserted
between the original path and the child identifier when constructing the new
path.

3.2.23 Reference

This attribute is present if and only if the node is a reference node. Its value is
the path to the referent node.

3.2.24 HasHistory

The HasHistory attribute is required if the ValueType attribute has a value
other than “None”. It indicates whether or not historical records are available
for this node.

3.2.25 SinglyWritableLocales

This attribute is present if and only if the ValueType attribute is equal to
“String” and the Writable attribute is true. It is an array containing locales
that can be used with the writeSingleLocale service option (see Section 3.3.1)
to set individual localized string values for a node. All of its elements have to
be contained in the result set of the getSupportedLocales service (see Section
3.3.12).

3.2.26 HasDynamicChildren

The HasDynamicChildren attribute indicates that the node has a dynamic set
of children. Clients should assume that the children nodes may change at any
time if this attribute is true. Otherwise clients can assume that changes will
only occur after reconfiguration of the server.

14

Table 7: Service options [16]

Option Name Datatype Default Value

“readback” boolean false

“errorString” string "? error number error message"

“errorPrefix” string "" (empty string)

“locale” string Depends on server configuration

“writeSingleLocale” boolean false

“canonical” boolean false

“precision” nonNegativeInteger 6

“noEmptyArrays” boolean false

3.3 Services

The BACnet/WS standard defines web services that are used to access and
manipulate data in a server. Some services allow to specify service options that
manipulate their behavior or their return values.

The specified service options are described in the next section. Sections 3.3.2
to 3.3.12 depict the services that are defined by the BACnet/WS specification
[16].

3.3.1 Service Options

Service options are used to modify the behavior of services. They are specified
as character strings of form:

[option name[=option value][;option name[=option value]]...]

where ’[]’ indicates an optional element and ’...’ indicates iteration of the
previous element. Multiple service options are combined into a single string
separated by semicolons (’;’). Hence, option values must not contain semicolons
(’;’).

For boolean service options, the option value can be omitted. In this case
the service option is assumed to be true. Option names may be specified more
than once in a string. However, only the last occurrence of an option name will
be considered.

Table 7 shows the defined service options and their respective XML Schema
datatype [21]. If an option name is omitted in the option string the default
value is assumed.

The readback service option forces services that set values to read back the
values just written and return the results.

Specifying the errorString service option overrides the default error string.
By default error strings are encoded as "? error number error message".
The error number is a standardized number defined in the BACnet/WS spec-
ification [16] whereas the error message is a human readable message whose
content is of local concern.

15

Table 8: Effects of the locale and canonical service options [16]

Attribute
Identifier

ValueType Effect of local service
option

Effect of canonical
service option

Value

“String” Different values may be
returned or accepted for
different locales

Ignored“Multistate”

“Real”

The value is formatted
according to the server
configuration for the
requested locale

Overrides locale
service option

“Integer”
“Date”
“Time”
“DateTime”
“Duration”
“Boolean”

“OctetString” Ignored Ignored

DisplayName Different values may be
returned for different
locales

IgnoredDescription
WritableValues
PossibleValues

ValueAge The value is formatted
according to the server
configuration for the
requested locale

Overrides locale
service option

Minimum
Maximum
Resolution
Units

The errorPrefix service option can be used to prefix the error string. Re-
gardless of the use of the errorString option the resultant error string is the
error prefix followed by the error string.

If the locale service option is defined the format of date/time values, string
values, numbers, and units for the given locale should be used by the server.
Locales are specified by language tags as described in RFC 3066 [20]. How-
ever, the language tag must match exactly one of the strings returned by the
getSupportedLocales service (see Section 3.3.12). For unsupported locales an
invalid locale error is returned.

For nodes with a ValueType of “String” the Value attribute is set in all
locales by default. The writeSingleLocale service option allows clients to
set the value only for the given locale. If the locale option is not specified
the default locale is assumed. Whether the locale option is specified or the
default locale is assumed, the locale to be set has to be an element of the
SinglyWritableLocales attribute of the node. Otherwise an invalid locale
error is returned.

The canonical service option is used to override certain localized string for-
mats. The canonical form is a locale-independent standardized form especially
suitable for machine processing. Table 8 summarizes the effects of the locale
and canonical service options on accessed attributes.

The precision service option defines the number of digits after the decimal

16

point for floating point values of any requested attribute. Floating point values
should be rounded and not truncated.

When the noEmptyArrays service option is specified the server should return
an error string rather than empty arrays.

3.3.2 getValue Service

The getValue service allows clients to retrieve the value for any single attribute
of a single node. Its return value is always a single string. When the value of an
array attribute, such as the Children attribute, is requested, the elements of
the array are concatenated into a single string separated by semicolons (’;’). If
an array of strings should be returned rather than a single string, the getArray
or getArrayRange service (see Sections 3.3.5 and 3.3.6) can be used instead.

Table 9 shows the parameters for the getValue service with their corre-
sponding XML Schema datatype [21]. The Path parameter specifies the node
and attribute to be read. If the path’s attribute part is empty, the Value
attribute is assumed. The Options parameter may be used to modify the be-
havior of this service as discussed in Section 3.3.1. If no error occurs the result
is returned as a single string containing the requested attribute. Otherwise an
appropriate error string is returned by the server.

Table 9: Parameters and result of the getValue service
Parameter Name Datatype Description

Options string The option string as defined in 3.3.1

Path string The path as defined in 3.1.1

Result string The requested value as single string

3.3.3 getValues Service

The getValues service can be used to read more than one attribute at a time.
Instead of specifying a single path, an array of paths is passed to the server.
The server processes the entries in the Paths parameter the same way as the
getValue service starting with the first element of the array. All single return
strings are entered into the return array. If the server is not able to process the
Paths parameter, or if the Paths parameter is of zero length, the return value
is an array of size one containing the error string. Table 10 summarizes the
parameters of the getValues service.

3.3.4 getRelativeValues Service

The getRelativeValues service is an optional service that is similar to the
getValues service. Instead of specifying absolute paths, the getRelative-
Values service takes a single base path to a node or attribute, and a list of
relative sub paths. The base path has to end with a node or attribute identifier.
However, the BasePath parameter might be an empty string. Then each sub
path becomes an absolute path. In order to form complete paths, the sub paths
have to begin with a path delimiter (’/’ or ’:’).

17

Table 10: Parameters and result of the getValues service
Parameter Name Datatype Description

Options string The option string as defined in
3.3.1

Paths array of string An array containing the paths as
defined in 3.1.1

Results array of string An array containing the re-
quested values as single strings

This service processes the entries of the Paths parameter beginning with the
first element in the array. A complete path is constructed through concatenation
of the base path and a sub path. The complete paths are evaluated separately
as if the getValue service were called for each of them. Return strings are
entered into the return array at the corresponding positions. In Table 11 the
parameters of the getRelativeValues are shown.

Table 11: Parameters and result of the getRelativeValues service
Parameter Name Datatype Description

Options string The option string as defined in
3.3.1

BasePath string The base path as defined in 3.1.1

Paths array of string An array containing the relative
sub paths

Results array of string An array containing the re-
quested values as single strings

3.3.5 getArray Service

Clients can request array attributes using the optional getArray service. In
opposite to the getValue service the array attribute is returned as an array of
strings and not as single string. The format of the array elements depends on
the attribute’s datatype and the service options. If the array attribute is empty,
an empty result array is returned unless the noEmptyArrays service option is
true. In this case and in case of any other error occuring an array of size
one containing an appropriate error string is returned. The parameters of the
getArray service are listed in Table 12.

If the requested array is too large to be returned, the getArrayRange ser-
vice (see Section 3.3.6) can be used to retrieve only a portion of the array.
The getArray service should be provided together with the getArraySize and
getArrayRange services.

18

Table 12: Parameters and result of the getArray service
Parameter Name Datatype Description

Options string The option string as defined in
3.3.1

Path string The path to the array attribute
as defined in 3.1.1

Result array of string The requested array attribute

3.3.6 getArrayRange Service

If only a portion of an array attribute should be retrieved, clients can use the
optional getArrayRange service. The format of the array elements depends on
the attribute’s datatype and the service options.

Table 13 summarizes the parameters of the getArrayRange service. The
Index parameter is a non negative integer defining the beginning of the re-
quested array portion. Array index zero corresponds to the first entry of the
array, index one to the second entry, and so on. The Count parameter specifies
the number of entries to be read, starting at the Index parameter. A count of
zero is invalid. If the Count parameter exceeds the number of available array
entries, the result has to be truncated. This service returns the specified portion
of the array if no error occurs, otherwise an array containing a single error string
is returned.

Table 13: Parameters and result of the getArrayRange service
Parameter Name Datatype Description

Options string The option string as defined in
3.3.1

Path string The path to the array attribute
as defined in 3.1.1

Index nonNegativeInteger The array index to start from

Count nonNegativeInteger The number of entries to re-
trieve, starting at the Index pa-
rameter

Result array of string The requested portion of the ar-
ray attribute

3.3.7 getArraySize Service

The optional getArraySize service allows clients to retrieve the number of
elements of an array attribute. Table 14 shows the parameters of this service.
The Path parameter specifies the array attribute. If successful, this service
returns the non negative size of the array attribute encoded as string. Otherwise
an appropriate error string is returned.

19

Table 14: Parameters and result of the getArraySize service
Parameter Name Datatype Description

Options string The option string as defined in 3.3.1

Path string The path to the array attribute as
defined in 3.1.1

Result string The size of the array attribute

3.3.8 setValue Service

The setValue service can be used to write a new value to the Value attribute
of a single node. Note that only the Value attribute is writable and that the
node’s Writable attribute has to be true.

This service always returns a single string. If successful, an empty string is
returned unless the readback service option is specified. When the readback
service option is true, the server tries to read back the written value and returns
it to the client if successful. In case of any error occuring during execution of
the service an error string is returned.

The Value parameter contains the new value that has to be written. If the
node’s value is localizable, i.e., its value type is equal to “Multistate”, “Boolean”,
or “String”, the locale and writeSingleLocale service options may be used
to set the value only for the specified locale. Otherwise the value is set for all
locales. The parameters of this service are summarized in Table 15.

Table 15: Parameters and result of the setValue service
Parameter Name Datatype Description

Options string The option string as defined in 3.3.1

Path string The path as defined in 3.1.1

Value string The new value to be set

Result string An empty string (readback = false)
or the written value as single string
(readback = true)

3.3.9 setValues Service

If more than one value has to be set, the optional setValues service can be
applied to set the Value attribute of multiple nodes. This service is similar to the
setValue service except that it takes multiple paths and values as parameters
rather than a single path and value. It also returns multiple results in form
of a non-empty array of strings. The parameters of the setValues service are
shown in Table 16.

Each pair of path and value is processed separately in the same way as
the setValue service starting with the first entries of the arrays. The return
string is entered into the corresponding entry of the result array. If the Paths
parameter can not be processed or is of zero length, or the same error occurs

20

while processing each of the path value pairs, an array containing a single error
string is returned.

Table 16: Parameters and result of the setValues service
Parameter Name Datatype Description

Options string The option string as defined in 3.3.1

Paths array of string An array containing the paths as de-
fined in 3.1.1

Values array of string An array containing the new values
to be set

Results array of string An array containing single return
strings

3.3.10 getHistoryPeriodic Service

Historical data of a node’s Value attribute can be retrieved by the optional
getHistoryPeriodic service. This service takes several parameters that iden-
tify the samples of interest. The Start parameter represents the point in time
of the first sample. The time interval, in seconds, between any two samples
is specified by the Interval parameter. An interval of length zero is invalid.
The total number of samples to return is defined by the Count parameter. At
least one sample has to be returned. A Client may request historical values
with a specific sampling rate regardless of the actual sampling rate of the
server. Hence, the server must be able to resample the data for the client’s
needs. The ResampleMethod parameter specifies the resample method to apply
to the historical data if necessary. Table 17 lists the possible values for the
ResampleMethod parameter.

If successful, this service returns an array containing the requested historical
values, else an array containing a single error string is returned. The parameters
of the getHistoryPeriodic service are summarized in Table 18.

3.3.11 getDefaultLocale Service

The getDefaultLocale service can be used to retrieve the default locale config-
ured for the server. Its return value is the locale string for the configured default
locale, or an emtpy string if there is no default locale. If any error occurs while
processing the service request, an error string is returned. Table 19 shows the
parameters of the getDefaultLocale service.

3.3.12 getSupportedLocales Service

Clients can use the getSupportedLocales service to get a list of all locales
supported by the server. This service returns an array containing the locale
strings of the supported locales, if successful. If localization is not supported by
the server, an empty array is returned unless the noEmptyArrays service option
is true. When any error occurs, an array of size one containing the error string

21

Table 17: Resample methods
Resample Method Description

“interpolation” Each data sample is determined by straight line in-
terpolation between the actual sample before and the
actual sample after the specified point in time

“average” For each data sample the average of all collected sam-
ples within the specified time interval, centered on
the returned sample time, is returned

“after” For each data sample the closest actual sample at or
after the specified point in time is returned

“before” For each data sample the closest actual sample at or
before the specified point in time is returned

“closest” For each data sample the closest actual sample at,
before, or after the specified point in time is returned

“default” The most appropriate resample method is used (may
be any proprietary method)

Table 18: Parameters and result of the getHistoryPeriodic service
Parameter Name Datatype Description

Options string The option string as defined in
3.3.1

Path string The path as defined in 3.1.1

Start dateTime The point in time to start from

Interval double The time interval between the re-
turned values in seconds

Count nonNegativeInteger The number of values to return

ResampleMethod string The resample method to apply to
the historic data if necessary

Results array of string An array containing the histori-
cal values

Table 19: Parameters and result of the getDefaultLocale service
Parameter Name Datatype Description

Options string The option string as defined in 3.3.1

Result string The locale string for the configured
default locale or an empty string (if
there is no default locale)

is returned. The parameters of the getSupportedLocales service are listed in

22

Table 20.

Table 20: Parameters and result of the getSupportedLocales service
Parameter Name Datatype Description

Options string The option string as defined in
3.3.1

Results array of string An array containing the locale
strings of all supported locales

4 Conclusion

Since BACnet/WS has emerged to a serious alternative solution for integration
of the BAS into enterprise networks it is reasonable to take a look at the per-
formance of BACnet/WS. Especially communication performance is a crucial
factor that has to be considered because of long message formats and encoding
of data. Unfortunately there have not been many studies on the communication
performance of BACnet/WS so far. One of these studies tries to analyze the
communication performance using the BACnet/WS getValues service [22].

The communication performance simulation in [22] is based on a remote
monitoring system, i.e., client and server are located on different networks sep-
arated by an IP network. As automation system a Variable Refrigerant Flow
(VRF) air-conditioning system [23] has been chosen. VRF air-conditioning sys-
tems typically consist of hundrets of air-conditioner units that have input/output
points, such as sensors and fans. These air-conditioner units are interconnected
by a proprietary VRF fieldbus. The BACnet/WS server is directly connected
to this fieldbus and represents each input/output unit as BACnet object of a
given type, such as AnalogInput, or DigitalOutput, as defined in Annex H
of [16]. The BACnet/WS client accesses these objects using the getValues
service which is transported over network using SOAP over HTTP. Service
data is encoded using the XML format as defined in [24] and [21]. For a more
realistic communication scenario constant bit rate background traffic has been
introduced.

The main purpose of this research has been to find an optimal combination
of the number of accesses and the number of objects per access under various
background traffic conditions. At first, the single access time of the BACnet/WS
getValues service has been analyzed for different numbers of objects. This sim-
ulation has shown that the influence of the background traffic varies depending
on the number of objects that are read at once. The more objects have been
read, the larger the observed influence of the background traffic on the access
time has been. This phenomenon is caused by longer BACnet/WS messages as
a result of reading more objects at once. In further consequence the total access
time, i.e., the product of single access time and the number of accesses has been
examined. The number of accesses is defined by the total number of objects
divided by the number of objects read per access. Results have shown that in
general, the more objects have been read per access, the shorter the total access
time has become. However, the total access time has increased dramatically

23

in case of higher background loads when reading many objects. More details
about the simulation model and the results of this study can be found in [22].

References

[1] A. Malatras, A. Asgari, T. Bauge, and M. Irons. A service-oriented archi-
tecture for building services integration. Journal of Facilities Management,
6(2):132 – 151, 2008.

[2] EN 14908: Open Data Communication in Building Automation, Controls
and Building Management - Building Network Protocol, 2005. LonWorks.

[3] International Organization for Standardization. ISO 16484-5: Building
automation and control systems - Part 5: Data communication protocol,
2008. BACnet.

[4] International Organization for Standardization. ISO 14543-x: Information
technology - Home Electronic System (HES) Architecture. KNX.

[5] J. Bai, H. Xiao, X. Yang, and G. Zhang. Study on integration technologies
of building automation systems based on web services. In ISECS Interna-
tional Colloquium on Computing, Communication, Control, and Manage-
ment, 2009 (CCCM 2009), volume 4, pages 262 – 266, 8-9 2009.

[6] S. Wang, Z. Xu, H. Li, J. Hong, and W. Shi. Investigation on intelligent
building standard communication protocols and application of IT tech-
nologies. Automation in Construction, 13(5):607 – 619, 2004. Current IT
Research and Development in the Construction Industry of China.

[7] World Wide Web Consortium. Efficient XML Interchange (EXI) Format
1.0, December 2009. http://www.w3.org/TR/exi/ (acc. July 1, 2010).

[8] F. Jammes and H. Smit. Service-oriented paradigms in industrial automa-
tion. IEEE Transactions on Industrial Informatics, 1(1):62 – 70, February
2005.

[9] F. Jammes, A. Mensch, and H. Smit. Service-Oriented Device Communi-
cations Using the Devices Profile for Web services. In 21st International
Conference on Advanced Information Networking and Applications Work-
shops, 2007 (AINAW 2007), volume 1, pages 947 – 955, 2007.

[10] OPC Foundation. OPC Unified Architecture, Part 1: Overview and Con-
cepts, February 2009. http://www.opcfoundation.org (acc. July 1, 2010).

[11] W. Mahnke, S. Leitner, and M. Damm. OPC Unified Architecture. Springer
Berlin Heidelberg, 2009. ISBN: 978-3-540-68899-0.

[12] T. Hannelius, M. Salmenpera, and S. Kuikka. Roadmap to adopting OPC
UA. In 6th IEEE International Conference on Industrial Informatics, 2008
(INDIN 2008), pages 756 – 761, July 2008.

[13] Organization for the Advancement of Structured Information Stan-
dards. oBIX 1.0 Committee Specification 01, December 2006.
http://www.obix.org (acc. July 1, 2010).

24

[14] Internet Engineering Task Force. RFC 2616 - Hypertext Transfer Protocol
– HTTP/1.1, June 1999. http://www.ietf.org/rfc/rfc2616.txt (acc. May
28, 2010).

[15] Internet Engineering Task Force. RFC 3986 - Uniform Resource Identifier
(URI): Generic Syntax, January 2005. http://www.ietf.org/rfc/rfc3986.txt
(acc. May 27, 2010).

[16] American Society of Heating, Refrigerating and Air-Conditioning Engi-
neers, Inc. ANSI/ASHRAE Addendum c to ANSI/ASHRAE Standard 135-
2004, October 2006. http://www.bacnet.org (acc. July 1, 2010).

[17] Web Services Interoperability Organization. Basic Profile Version 1.0,
April 2004. http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
(acc. May 30, 2010).

[18] Internet Engineering Task Force. RFC 5246 - The Trans-
port Layer Security (TLS) Protocol Version 1.2, August 2008.
http://www.ietf.org/rfc/rfc5246.txt (acc. June 30, 2010).

[19] Internet Engineering Task Force. RFC 2818 - HTTP Over TLS, May 2000.
http://www.ietf.org/rfc/rfc2818.txt (acc. May 29, 2010).

[20] Internet Engineering Task Force. RFC 3066 - Tags for the Identification of
Languages, January 2001. http://www.ietf.org/rfc/rfc3066.txt (acc. May
17, 2010).

[21] World Wide Web Consortium. XML Schema Part 2: Datatypes Second
Edition, October 2004. http://www.w3.org/TR/xmlschema-2/ (acc. May
25, 2010).

[22] C. Ninagawa, T. Sato, and Y. Kawakita. Communication performance sim-
ulation for object access of BACnet Web Service building facility monitor-
ing systems. In IEEE International Conference on Emerging Technologies
and Factory Automation, 2008 (ETFA 2008), pages 701 – 704, September
2008.

[23] W. Goetzler. Variable Refrigerant Flow Systems. In ASHRAE Journal,
volume 49, pages 24 – 31, April 2007.

[24] World Wide Web Consortium. XML Schema Part 1: Structures Second
Edition, October 2004. http://www.w3.org/TR/xmlschema-1/ (acc. May
25, 2010).

25

