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Abstract. The verification of multithreaded software is still a challenge.
This comes mainly from the fact that the number of thread interleav-
ings grows exponentially in the number of threads. The idea that thread
interleavings can be studied with a matrix calculus is a novel approach
in this research area. Our sparse matrix representations of the program
are manipulated using a lazy implementation of Kronecker algebra. One
goal is the generation of a data structure called Concurrent Program
Graph (CPG) which describes all possible interleavings and incorporates
synchronization while preserving completeness. We prove that CPGs in
general can be represented by sparse adjacency matrices. Thus the num-
ber of entries in the matrices is linear in their number of lines. Hence
efficient algorithms can be applied to CPGs. In addition, due to syn-
chronization only very small parts of the resulting matrix are actually
needed, whereas the rest is unreachable in terms of automata. Thanks to
the lazy implementation of the matrix operations the unreachable parts
are never calculated. This speeds up processing significantly and shows
that this approach is very promising.
Various applications including data flow analysis can be performed on
CPGs. Furthermore, the structure of the matrices can be used to prove
properties of the underlying program for an arbitrary number of threads.
For example, deadlock freedom is proved for a large class of programs.

1 Introduction

With the advent of multi-core processors scientific and industrial interest focuses
on the verification of multithreaded applications. The scientific challenge comes
from the fact that the number of thread interleavings grows exponentially in
a program’s number of threads. All state-of-the-art methods, such as model
checking, suffer from this so-called state explosion problem. The idea that thread
interleavings can be studied with a matrix calculus is new in this research area.
We are immediately able to support conditionals, loops, and synchronization.
Our sparse matrix representations of the program are manipulated using a lazy
implementation of Kronecker algebra. Similar to [3] we describe synchronization
by Kronecker products and thread interleavings by Kronecker sums. One goal
is the generation of a data structure called Concurrent Program Graph (CPG)
which describes all possible interleavings and incorporates synchronization while



preserving completeness. Similar to CFGs for sequential programs, CPGs may
serve as an analogous graph for concurrent systems. We prove that CPGs in
general can be represented by sparse adjacency matrices. Thus the number of
entries in the matrices is linear in their number of lines.

In the worst-case the number of lines increases exponentially in the number
of threads. Especially for concurrent programs containing synchronization this
is very pessimistic. For this case we show that the matrix contains nodes and
edges unreachable from the entry node.

We propose two major optimizations. First, if the program contains a lot of
synchronization, only a very small part of the CPG is reachable. Our lazy imple-
mentation of the matrix operations computes only this part (cf. Subsect. 3.6).
Second, if the program has only little synchronization, many edges not accessing
shared variables will be present, which are reduced during the output process of
the CPG (cf. Subsect. 3.7). Both optimizations speed up processing significantly
and show that this approach is very promising.

We establish a framework for analyses of multithreaded shared memory con-
current systems which forms a basis for analyses of various properties. Differ-
ent techniques including dataflow analysis (e.g. [23–25, 14]) and model checking
(e.g. [6, 9] to name only a few) can be applied to the generated Concurrent Pro-
gram Graphs (CPGs) defined in Section 3. Furthermore, the structure of the
matrices can be used to prove properties of the underlying program for an arbi-
trary number of threads. For example in this paper, deadlock freedom is proved
for p-v-symmetric programs.

Theoretical results such as [21] state that synchronization-sensitive and con-
text-sensitive analysis is impossible even for the simplest analysis problems. Our
system model differs in that it supports subprograms only via inlining and re-
cursions are impossible.

The outline of our paper is as follows. In Section 2 control flow graphs, edge
splitting, and Kronecker algebra are introduced. Our model of concurrency, its
properties, and important optimizations like our lazy approach are presented in
Section 3. In Section 4 we give a client-server example with 32 clients showing
the efficiency of our approach. For a matrix with a potential order of 1015 our
lazy approach delivers the result in 0.43s. Section 5 demonstrates how dead-
lock freedom is proved for p-v-symmetric programs with an arbitrary number of
threads. An example for detecting a data race is given in Section 6. Section 7 is
devoted to an empirical analysis. In Section 8 we survey related work. Finally,
we draw our conclusion in Section 9.

2 Preliminaries

2.1 Overview

We model shared memory concurrent systems by threads which use semaphores
for synchronization. Threads and semaphores are represented by control flow
graphs (CFGs). Edge Splitting has to be applied to the edges of thread CFGs
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that access more than one shared variable. Edge splitting is straight forward
and is described in Subsect. 2.3. The resulting Refined CFGs (RCFGs) are rep-
resented by adjacency matrices. These matrices are then manipulated by Kro-
necker algebra. We assume that the edges of CFGs are labeled by elements of a
semiring. Details follow in this subsection. Similar definitions and further prop-
erties can be found in [16].

Semiring 〈L,+, ·, 0, 1〉 consists of a set of labels L, two binary operations +
and ·, and two constants 0 and 1 such that

1. 〈L,+, 0〉 is a commutative monoid,
2. 〈L, ·, 1〉 is a monoid,
3. ∀l1, l2, l3 ∈ L : l1 · (l2 + l3) = l1 · l2 + l1 · l3 and (l1 + l2) · l3 = l1 · l3 + l2 · l3

hold and
4. ∀l ∈ L : 0 · l = l · 0 = 0.

Intuitively, our semiring is a unital ring without subtraction. For each l ∈ L
the usual rules are valid, e.g., l + 0 = 0 + l = l and 1 · l = l · 1 = l. In addition
we equip our semiring with the unary operation ∗. For each l ∈ L, l∗ is defined
by l∗ =

∑
j≥0l

j , where l0 = 1 and lj+1 = lj · l = l · lj for j ≥ 0. Our set of labels
L is defined by L = LV ∪ LS, where LV is the set of non-synchronization labels
and LS is the set of labels representing semaphore calls. The sets LV and LS

are disjoint. The set LS itself consists of two disjoint sets LSp and LSv . The first
denotes the set of labels referring to P-calls, whereas the latter refers to V-calls
of semaphores.

Examples for semirings include regular expressions (cf. [26]) which can be
used for performing dataflow analysis.

2.2 Control Flow Graphs

A Control Flow Graph (CFG) is a directed labeled graph defined by G =
〈V,E, ne〉 with a set of nodes V , a set of directed edges E ⊆ V × V , and a
so-called entry node ne ∈ V . We require that each n ∈ V is reachable through
a sequence of edges from ne. Nodes can have at most two outgoing edges. Thus
the maximum number of edges in CFGs is 2 |V |. We will use this property later.

Usually CFG nodes represent basic blocks (cf. [1]). Because our matrix calcu-
lus manipulates the edges we need to have basic blocks on the edges.1 Each edge
e ∈ E is assigned a basic block b. In this paper we refer to them as edge labels
as defined in the previous subsection. To keep things simple we use edges, their
labels and the corresponding entries of the adjacency matrices synonymously.

In order to model synchronization we use semaphores. The corresponding
edges typically have labels like p1 and v1, where px and vx ∈ LS. Usually two
or more distinct thread CFGs refer to the same semaphore to perform synchro-
nization. The other labels are elements from LV. The operations on the basic
blocks are ·,+, and ∗ from the semiring defined above (cf. [26]). Intuitively, ·,+,
and ∗ model consecutive basic blocks, conditionals, and loops, respectively.

1 We chose the incoming edges.
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(a) Binary Semaphore (b) Counting
Semaphore

Fig. 1. Semaphores

In Fig. 1(a) and 1(b) a binary and a counting semaphore are depicted. The
latter allows two threads to enter at the same time. In a similar way it is possible
to construct semaphores allowing n non-blocking P-calls.

2.3 Edge Splitting

A basic block consists of multiple consecutive statements without jumps. For
our purpose we need a finer granularity as we would have with basic blocks
alone. To achieve the required granularity we need to split edges. Shared variable
accesses and semaphore calls may occur in basic blocks. For both it is necessary
to split edges. This ensures a representation of possible context switches in a
manner exact enough for our purposes. We say “exact enough” because by using
basic blocks together with the above refinement, we already have coarsened the
analysis compared to the possibilities on statement-level. Furthermore we do not
lose any information required for the completeness of our approach. Anyway,
applying this procedure to a CFG, i.e. splitting edges in a CFG, results in a
Refined Control Flow Graph (RCFG).

Let V be the set of shared variables. In addition, let a shared variable v ∈ V be
a volatile variable located in the shared memory which is accessed by two or more
threads. Splitting an edge depends on the number of shared variables accessed
in the corresponding basic block. For edge e this number is being referred to as
NSV(e). In the same way we refer to NSV(b) as the number of shared variables
accessed in basic block b. If NSV(e) > 1, edge splitting has to be applied to edge
e; the edge is used unchanged otherwise.

If edge splitting has to be applied to edge e which has basic block b assigned
and NSV(b) = k then the basic blocks b1, . . . , bk represent the subsequent parts
of b in such a way that ∀bi : NSV(bi) = 1, where 1 ≤ i ≤ k. Edges ej get assigned
basic block bj , where 1 ≤ j ≤ k. In Fig. 2 the splitting of an edge with basic
block b and NSV(b) = k is depicted.

For semaphore calls (e.g. p1 and v1) edge splitting is required in a similar
fashion. In contrast to shared variable accesses we require that semaphore calls
have to be the only statement on the corresponding edge. The remaining consec-
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Fig. 2. Edge Splitting for Shared Variable Accesses

utive parts of the basic block are situated on the previous and succeeding edges,
respectively.2

The effects of edge splitting for shared variables and semaphore calls can be
seen in the data race example given in Section 6. Each RCFG depicted in Fig. 12
is constructed out of one basic block (cf. Fig. 11).

Note that edge splitting ensures that we can model the minimal required
context switches. The semantics of a concurrent programming language allows
usually more. For example consider an edge in a RCFG containing two consec-
utive statements, where both do not access shared variables. A context switch
may happen in between. However, this additional interleaving does not provide
new information. Hence our approach provides the minimal number of context
switches.

Without loss of generality we assume that the statements in each basic block
are atomic. Thus, we assume while executing a statement, context switching is
impossible. In RCFGs the finest possible granularity is at statement-level. If,
according to the program’s semantic, atomic statements may access two or more
shared variables, then we make an exception to the above rule and allow two
or more shared variable accesses on a single edge. Such edges have at most one
atomic statement in their basic block. The Kronecker sum (which is introduced
in the next subsection) ensures that all interleavings are generated correctly.

2.4 Synchronization and Generating Interleavings with Kronecker
Algebra

Kronecker product and Kronecker sum form Kronecker algebra. In the following
we define both operations, state properties, and give examples. In addition, for
the Kronecker sum we prove a property which we call Mixed Sum Rule.

We define the set of matricesM = {M = (mi,j) |mi,j ∈ L}. In the remaining
parts of this paper only matrices M ∈ M will be used, except where stated
explicitly. Let o(M) refer to the order3 of matrix M ∈ M. In addition we will
use n-by-n zero matrices Zn = (zi,j), where ∀i, j : zi,j = 0.

2 Note that edges representing a call to a semaphore are not considered to access
shared variables.

3 A k-by-k matrix is known as square matrix of order k.
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Definition 1 (Kronecker product). Given a m-by-n matrix A and a p-by-q
matrix B, their Kronecker product denoted by A⊗B is a mp-by-nq block matrix
defined by

A⊗B =

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 .

Example 1.

Let A =

(
a1,1 a1,2
a2,1 a2,2

)
and B =

b1,1 b1,2 b1,3b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

. The Kronecker product C =

A⊗B is given by


a1,1b1,1 a1,1b1,2 a1,1b1,3 a1,2b1,1 a1,2b1,2 a1,2b1,3
a1,1b2,1 a1,1b2,2 a1,1b2,3 a1,2b2,1 a1,2b2,2 a1,2b2,3
a1,1b3,1 a1,1b3,2 a1,1b3,3 a1,2b3,1 a1,2b3,2 a1,2b3,3
a2,1b1,1 a2,1b1,2 a2,1b1,3 a2,2b1,1 a2,2b1,2 a2,2b1,3
a2,1b2,1 a2,1b2,2 a2,1b2,3 a2,2b2,1 a2,2b2,2 a2,2b2,3
a2,1b3,1 a2,1b3,2 a2,1b3,3 a2,2b3,1 a2,2b3,2 a2,2b3,3

 .

As stated in [18] the Kronecker product is also being referred to as Zehfuss
product or direct product of matrices or matrix direct product. 4

In the following we list some basic properties of the Kronecker product. Proofs
and additional properties can be found in [2, 10, 7, 11]. Let A, B, C, and D be
matrices. The Kronecker product is noncommutative because in general A⊗B 6=
B⊗A. It is permutation equivalent because there exist permutation matrices P
and Q such that A ⊗ B = P (B ⊗ A)Q. If A and B are square matrices, then
A ⊗ B and B ⊗ A are even permutation similar, i.e., P = QT . The product is
associative as

A⊗ (B ⊗ C) = (A⊗B)⊗ C. (1)

In addition, the Kronecker product distributes over +, i.e.,

A⊗ (B + C) = A⊗B +A⊗ C, (2)

(A+B)⊗ C = A⊗ C +B ⊗ C. (3)

Hence for example (A+B)⊗ (C +D) = A⊗ C +B ⊗ C +A⊗D +B ⊗D.
The Kronecker product allows to model synchronization (cf. Subsect. 3.2).

Definition 2 (Kronecker sum). Given a matrix A of order m and matrix
B of order n, their Kronecker sum denoted by A ⊕ B is a matrix of order mn
defined by

A⊕B = A⊗ In + Im ⊗B,
4 Knuth notes in [15] that Kronecker never published anything about it. Zehfuss was

actually the first publishing it in the 19th century [27]. He proved that det(A⊗B) =
detn(A) · detm(B), if A and B are matrices of order m and n and entries from the
domain of real numbers, respectively.
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where Im and In denote identity matrices5 of order m and n, respectively.

This operation must not be confused with the direct sum of matrices, group
direct product or direct product of modules for which the symbol ⊕ is used too.
By calculating the Kronecker sum of the adjacency matrices of two graphs the
adjacency matrix of the Cartesian product graph [12] is computed (cf. [15]).

Example 2. We use matrices A and B from Ex. 1. The Kronecker sum A⊕B is
given by

A⊗ I3 + I2 ⊗B =(
a1,1 a1,2
a2,1 a2,2

)
⊗

 1 0 0
0 1 0
0 0 1

+

(
1 0
0 1

)
⊗

 b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =


a1,1 0 0 a1,2 0 0
0 a1,1 0 0 a1,2 0
0 0 a1,1 0 0 a1,2
a2,1 0 0 a2,2 0 0

0 a2,1 0 0 a2,2 0
0 0 a2,1 0 0 a2,2

+


b1,1 b1,2 b1,3 0 0 0
b2,1 b2,2 b2,3 0 0 0
b3,1 b3,2 b3,3 0 0 0
0 0 0 b1,1 b1,2 b1,3
0 0 0 b2,1 b2,2 b2,3
0 0 0 b3,1 b3,2 b3,3

 =


a1,1 + b1,1 b1,2 b1,3 a1,2 0 0

b2,1 a1,1 + b2,2 b2,3 0 a1,2 0
b3,1 b3,2 a1,1 + b3,3 0 0 a1,2
a2,1 0 0 a2,2 + b1,1 b1,2 b1,3

0 a2,1 0 b2,1 a2,2 + b2,2 b2,3
0 0 a2,1 b3,1 b3,2 a2,2 + b3,3

 .

In the following we list basic properties of the Kronecker sum of matrices A,
B, and C. Additional properties can be found in [20] or are proved in this paper.
The Kronecker sum is noncommutative because for element-wise comparison
in general A ⊕ B 6= B ⊕ A. Anyway it essentially commutes because from a
graph point of view, the graphs represented by matrices A ⊕ B and B ⊕ A are
structurally isomorphic.

Now we state a property of the Kronecker sum which we call Mixed Sum
Rule.

Lemma 1. Let the matrices A and C have order m and B and D have order
n. Then we call

(A⊕B) + (C ⊕D) = (A+ C)⊕ (B +D)

the Mixed Sum Rule.

Proof. By using Eqs. (2) and (3) and Def. 2 we get (A ⊕ B) + (C ⊕ D) =
A⊗In+Im⊗B+C⊗In+Im⊗D = (A+C)⊗In+Im⊗(B+D) = (A+C)⊕(B+D).

ut
5 The identity matrix In is a n-by-n matrix with ones on the main diagonal and zeros

elsewhere.
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For example let the matrices A and B be written as A =
∑

i∈IAi and B =∑
j∈JBj , respectively. In addition, let the sets I and J have the same number

of elements, i.e., |I| = |J |. By using the mixed sum rule we can write A ⊕ B =∑
i∈I,j∈JAi ⊕Bj .
We will frequently use the Mixed Sum Rule from now on without further

notice.
The Kronecker sum is also associative, as (A⊕B)⊕C and A⊕ (B ⊕C) are

equal.

Lemma 2. Kronecker sum is associative.

Proof. In the following we will use Im ⊗ In = Im.n. Note that Z denotes zero
matrices. We have

A⊕ (B ⊕ C) =A⊕ (B ⊗ Io(C) + Io(B) ⊗ C)

{adding Zo(A)}= (A+ Zo(A))⊕ (B ⊗ Io(C) + Io(B) ⊗ C)

{Lemma 1}= (A⊕ (B ⊗ Io(C))) + (Zo(A) ⊕ (Io(B) ⊗ C))

{Eq.(1), Def.2}= (A⊕ (B ⊗ Io(C))) + Io(A) ⊗ Io(B) ⊗ C
{ass.+, Def.2}=A⊗ Io(B).o(C) + Io(A) ⊗B ⊗ Io(C) +

Io(A).o(B) ⊗ C
{comm. of +}=A⊗ Io(B) ⊗ Io(C) + Io(A).o(B) ⊗ C +

Io(A) ⊗B ⊗ Io(C)

{Def. 2}= ((A⊗ Io(B))⊕ C) + Io(A) ⊗B ⊗ Io(C)

{Def. 2}= ((A⊗ Io(B))⊕ C) + ((Io(A) ⊗B)⊕ Zo(C)

{Lemma 1}= (A⊗ Io(B) + Io(A) ⊗B)⊕ (C + Zo(C))

{rm. Zo(C)}= (A⊗ Io(B) + Io(A) ⊗B)⊕ C
{Def. 2}= (A⊕B)⊕ C.

ut

The associativity properties of the operations ⊗ and ⊕ imply that the k-fold
operations

k⊗
i=1

Ai and

k⊕
i=1

Ai

are well defined.
Note that Kronecker sum calculates all possible interleavings (see e.g. [17]

for a proof). Note that this is true even for general CFGs including conditionals
and loops. The following example illustrates interleaving of threads and how
Kronecker sum handles it.

Example 3. Let the matrices C and D be defined as follows:

C =

0 a 0
0 0 b
0 0 0

 D =

0 c 0
0 0 d
0 0 0

 .
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(a) C (b) D

Interleavings

a · b · c · d
a · c · b · d
a · c · d · b
c · a · b · d
c · a · d · b
c · d · a · b

(c) Interleavings (d) C ⊕D

Fig. 3. A Simple Example

The graph corresponding to matrix C is depicted in Fig. 3(a), whereas the graph
of matrix D is shown in Fig. 3(b). The regular expressions associated to the
CFGs are a · b and c · d, respectively. All possible interleavings by executing C
and D in an interleavings semantics are shown in Fig. 3(c). In Fig. 3(d) the
graph represented by the adjacency matrix C ⊕D is depicted. It is easy to see
that all possible interleavings are generated correctly.

3 Concurrent Program Graphs

Our system model consists of a finite number of threads and a finite number
of semaphores. Both, threads and semaphores, are represented by CFGs. The
CFGs are stored in form of adjacency matrices. The matrices have entries which
are referred to as labels l ∈ L as defined in Subsect. 2.1. Let S and T be the sets
of adjacency matrices representing semaphores and threads, respectively. The
matrices are manipulated by using Kronecker algebra. Similar to [3] we describe
synchronization by Kronecker products and thread interleavings by Kronecker
sums. Note that higher synchronization features of programming languages such
as Ada’s rendezvous can be simulated by our system model as the runtime system
uses semaphores provided by the operating systems to implement them.

Formally, the system model consists of the tuple 〈T ,S,L〉, where

– T is the set of RCFG adjacency matrices describing threads,
– S is the set of CFG adjacency matrices describing semaphores, and
– L is the set of labels out of the semiring defined in Subsect. 2.1. The labels

in T ∈ T are elements of L, whereas the labels in S ∈ S are elements of LS.

A C oncurrent Program Graph (CPG) is a graph C = 〈V,E, ne〉 with a set
of nodes V , a set of directed edges E ⊆ V × V , and a so-called entry node
ne ∈ V . The sets V and E are constructed out of the elements of 〈T ,S,L〉.
Details on how we generate the sets V and E follow in the next subsections.
Similar to RCFGs the edges of CPGs are labeled by l ∈ L. Assuming without
loss of generality that each thread has an entry node with index 1 in its adjacency
matrix t ∈ T , then the entry node of the generated CPG has index 1, too.
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Fig. 4. Overview

In Fig. 4 an overview of our approach is given. As described in Subsect. 2.3
the set of shared variables V is used to generate T .

3.1 Generating a Concurrent Program’s Matrix

Let T (i) ∈ T and S(i) ∈ S refer to the matrices representing thread i and
semaphore i, respectively. Let M = (mi,j) ∈ M. In addition, we define the
matrix Ml as the matrix with entries of M equal to l and zeros elsewhere:

Ml = (ml;i,j), where ml;i,j =

{
l if mi,j = l,
0 otherwise.

We obtain the matrix representing the k interleaved threads as

T =

k⊕
i=1

T (i), where T (i) ∈ T .

According to Fig. 1 we have for the binary and the counting semaphore an
adjacency matrix of order two and three, respectively. If we assume that the
ith and the jth semaphore, where 1 ≤ i, j ≤ r, are a binary and a counting
semaphore, respectively, then we get the following adjacency matrices.

S(i) =

(
0 pi
vi 0

)
and S(j) =

 0 pj 0
vj 0 pj
0 vj 0


In a similar fashion we can model counting semaphores of higher order.
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The matrix representing the r interleaved semaphores is given by

S =

r⊕
i=1

S(i), where S(i) ∈ S.

The adjacency matrix representing program P referred to as P is defined as

P = T ◦ S =
∑
l∈LS

(Tl ⊗ Sl) +
∑
l∈LV

(Tl ⊕ Sl) . (4)

When applying the Kronecker product to semaphore calls we follow the rules
vx · vx = vx and px · px = px.

In Subsect. 3.5 we describe how the ◦-operation can be implemented effi-
ciently.

3.2 ◦-Operation and Synchronization

Lemma 3. Let T =
⊕k

i=1 T
(i) be the matrix representing k interleaved threads

and let S be a binary semaphore. Then T ◦ S correctly models synchronization
of T with semaphore S.6

Proof. First we observe that

1. the first term in the definition of Eq. (4) replaces

– each p in matrix T with

(
0 p
0 0

)
and

– each v in matrix T with

(
0 0
v 0

)
,

2. the second term replaces each m ∈ LV with

(
m 0
0 m

)
, and

3. both terms replace each 0 by

(
0 0
0 0

)
.

According to the replacements above the order of matrix T ◦ S has doubled
compared to T .

Now, consider the paths in the automaton underlying T described by the
regular expression

π =
(∑

m∈LV
m
)∗ (

p
(∑

m∈LV
m
)∗
v
(∑

m∈LV
m
)∗)∗

.

By the observations above it is easy to see that paths containing π are present
in T ◦S. On the other hand, paths not containing π are no more present in T ◦S.
Thus the semaphore operations always occur in (p, v) pairs in all paths in T ◦S.
This, however, exactly mirrors the semantics of synchronization via a semaphore.

ut
6 Note that we do not make assumptions concerning the structure of T .
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Generalizing Lemma 3, it is easy to see that the synchronization property is
also correctly modeled if we replace the binary semaphore by one which allows
more than one thread to enter it. In addition, the synchronization property is
correctly modeled even if more than one semaphore is present on the right-hand
side of T ◦ S.

As a byproduct the proof of Lemma 3 shows the following corollary.

Corollary 1. If the program modeled by T ◦ S contains a deadlock, then the
matrix T ◦ S will contain a zero line `. Node ` in the corresponding automaton
is no final node and does not have successors.

Thus deadlocks show up in CPGs as a pure structural property of the underlying
graphs. Nevertheless, false positives may occur. From a static point of view, a
deadlock is possible while conditions exclude this case at runtime. Our approach
delivers a path to a deadlock in any case. Nevertheless, our approach of finding
deadlocks is complete. If it states deadlock freedom, then the program under
test is certainly deadlock free.

A further consequence of Lemma 3 is that after applying the ◦-operation only
a small part of the underlying automata can be reached from its entry node. This
allows for optimizations discussed later.

3.3 Unreachable Parts Caused by Synchronization

In this subsection we show that synchronization causes unreachable parts. As
an example consider Fig. 5. The program consists of two threads, namely T1
and T2. The RCFGs of the threads are shown in Fig. 5(a) and Fig. 5(b). The
used semaphore is a binary semaphore similar to Fig. 1(a). Its operations are
referred to as p1 and v1. We denote a P and V-call to semaphore x of thread
t as t.px and t.vx, respectively. T1 and T2 access the same shared variable in a
and b, respectively. The semaphore is used to ensure that a and b are accessed
mutually exclusively. Note that a and b may actually be subgraphs consisting of
multiple nodes and edges.

For the example we have the matrices

T1 =


0 p1 0 0
0 0 a 0
0 0 0 v1
0 0 0 0

 , T2 =


0 p1 0 0
0 0 b 0
0 0 0 v1
0 0 0 0

 , and S =

(
0 p1
v1 0

)
.

Then we obtain the matrix T = T1 ⊕ T2, a matrix of order 16, consisting of the
submatrices defined above and zero matrices of order four (instead of Z4 simply
denoted by 0) as follows.

T =


T2 p1 · I4 0 0
0 T2 a · I4 0
0 0 T2 v1 · I4
0 0 0 T2


12



In order to enable a concise presentation of T ◦ S we define the matrices

U =



0 0 0 p1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 b 0 0 0
0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 v1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, V =



0 p1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 p1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 p1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 p1
0 0 0 0 0 0 0 0


,

W = a · I8, and X =



0 0 0 0 0 0 0 0
v1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 v1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 v1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 v1 0


of order 8.

Then we obtain the matrix T ◦ S, a matrix of order 32, consisting of the sub-
matrices defined above and zero matrices of order eight (instead of Z8 simply
denoted by 0) as follows.

T ◦ S =


U V 0 0
0 U W 0
0 0 U X
0 0 0 U

 .

The generated CPG is depicted in Fig. 5(c). The resulting adjacency matrix
has order 32, whereas the resulting CPG consists only of 12 nodes and 12 edges.
Large parts (20 nodes and 20 edges) are unreachable from the entry node. In
Fig. 6 these unreachable parts are depicted.

In general, unreachable parts exist if a concurrent program contains synchro-
nization. If a program contains a lot of synchronization the reachable parts may
be very small. This observation motivates the lazy implementation described in
Subsect. 3.6.

3.4 Properties of the Resulting Adjacency Matrix

In this subsection we prove interesting properties of the resulting matrices.
A short calculation shows that the Kronecker sum in general generates at

most mn2 +nm2−nm non-zero entries.7 Stated the other way, at least (mn)2−
mn2 − nm2 + mn entries are zero. We will see that CFGs and RCFGs contain
even more zero entries. We will prove that for this case the number of edges
is in O

(
mn
)
. Thus, the number of edges is linear in the order of the resulting

adjacency matrix.

7 Assuming the corresponding matrices have an order of m and n, respectively.
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Lemma 4 (Maximum Number of Nodes). Given a program P consisting
of k > 0 threads (t1, t2, . . . , tk), where each ti has n nodes in its RCFG, the
number of nodes in P’s adjacency matrix P is bounded from above by nk.

Proof. This follows immediately from the definitions of ⊗ and ⊕. For both the
order of the resulting matrix is given by the multiplication of the orders of the
input matrices. ut

Definition 3. Let M = (mi,j) ∈M. We denote the number of non-zero entries
by ||M || = |{mi,j |mi,j 6= 0}|.

For a RCFG with n nodes it is easy to see that it contains at most 2n edges.

Lemma 5 (Maximum Number of Entries). Let a program represented by
Mk ∈ M consisting of k > 0 threads be represented by the matrices T (i) ∈ T ,
where each T (i) has order n. Then ||Mk|| is bounded from above by 2k nk.

Proof. We prove this lemma by induction on the definition of the Kronecker sum.
For k = 1 the lemma is true. If we assume that for m threads ||Mm|| ≤ 2mnm,
then for m+ 1 threads ||Mm+1|| ≤ 2mnm · n+ nm · 2n = 2(m+ 1)nm+1. Thus,
we have proved Lemma 5. ut

Compared to the full matrix of order nk with n2k entries the resulting matrix
has significantly fewer non-zero entries, namely 2k nk. By using the following
definition we will prove that the matrices are sparse.

Definition 4 (Sparse Matrix). We call a n-by-n matrix M sparse if and only
if ||M || = O

(
n
)
.

Lemma 6. CFGs and RCFGs have Sparse Adjacency Matrices.

Proof. Follows from Subsect. 2.2 and Def. 4. ut

Lemma 7. The Matrix P of a Program P is Sparse.

Proof. Let T =
⊕k

i=1 T
(i) ∈M be a N-by-N adjacency matrix of a program. We

require that each of the k threads has order n in its adjacency matrix T (i). From
Lemma 5 we know ||T || = O

(
2k nk

)
. In addition, N = nk is given by Lemma 4.

Hence, for k threads and by using Definition 4 we get ||T || ≤ 2k nk = 2kN =
O
(
N
)
. A similar result holds for S and P = T ◦ S. ut

Lemma 7 enables the application of memory saving data structures and effi-
cient algorithms. Algorithms may for example work on adjacency lists. Clearly,
the space requirements for the adjacency lists are linear in the number of nodes.
In the worst-case the number of nodes increases exponentially in the number of
threads.
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3.5 Efficient Implementation of the ◦-Operation

This subsection is devoted to an efficient implementation of the ◦-operation.
First we define the Selective Kronecker product which we denote by �. This
operator synchronizes only identical labels l ∈ LS of the two input matrices.

Definition 5 (Selective Kronecker product). Given two matrices A and
B we call A �L B their Selective Kronecker product. For all l ∈ L ⊆ L let
A�L B = (ai,j)�L (bp,q) = (ci.p,j.q), where

ci.p,j.q =

{
l if ai,j = bp,q = l ∧ l ∈ L,
0 otherwise.

Definition 6 (Filtered Matrix). We call ML a Filtered Matrix and define
it as a matrix of order o(M) containing entries l ∈ L ⊆ L of M and zeros
elsewhere as follows.

ML = (mL;i,j), where mL;i,j =

{
l if mi,j = l ∧ l ∈ L,
0 otherwise.

Note that ∑
l∈LS

(Tl ⊗ Sl) = T �LS S. (5)

In the following we use o(SLV) =
∏r

i=1 o(S
(i)) = o(S). Note that S con-

tains only labels l ∈ LS. Hence, when the ◦-operator is applied for a label
l ∈ LV, we get Sl = Zo(S), i.e. a zero matrix of order o(S). Thus we obtain∑

l∈LV
(Tl ⊕ Sl) = TLV ⊗ Io(S). We will prove this below.

Finally, we can refine Eq. (4) by stating the following lemma.

Lemma 8. The ◦-operation can be computed efficiently by

P = T ◦ S = T �LS S + TLV ⊗ Io(S).

Proof. Using Eq. (4) P = T ◦ S is given by
∑

l∈LS
(Tl ⊗ Sl) +

∑
l∈LV

(Tl ⊕ Sl) .

According to Eq. (5) the first term is equal to T�LSS. By mentioning Sl = Zo(S)

for l ∈ LV, Lemma 1, and Def. 2, the second term fulfills.∑
l∈LV

(Tl ⊕ Sl) =
∑
l∈LV

(
Tl ⊕ Zo(S)

)
= TLV ⊕ Zo(S) = TLV ⊗ Io(S).

Note that S contains only l ∈ LS. It is obvious that the non-zero entries of
the first and the second term are l ∈ LS and l ∈ LV, respectively. Both terms
can be computed by iterating once through the corresponding sparse adjacency
matrices, namely T and S. ut
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3.6 Lazy Implementation of Kronecker Algebra

Until now we have primarily focused on a pure mathematical model for shared
memory concurrent systems. An alert reader will have noticed that the order of
the matrices in our CPG increases exponentially in the number of threads. On
the other hand, we have seen that the ◦-operation results in parts of the matrix
T ◦ S that cannot be reached from the entry node of the underlying automaton
(cf. Subsect. 3.3). This comes solely from the fact that synchronization excludes
some interleavings.

Choosing a lazy implementation for the matrix operations, however, ensures
that, when extracting the reachable parts of the underlying automaton, the
overall effort is reduced to exactly these parts. By starting from the entry node
and calculating all reachable successor nodes our lazy implementation exactly
does this. Thus, for example, if the resulting automaton’s size is linear in terms of
the involved threads, only linear effort will be necessary to generate the resulting
automaton.

Our implementation distinguishes between two kind of matrices: Sparse ma-
trices are used for representing threads and semaphores. Lazy matrices are em-
ployed for representing all the other matrices, e.g. those resulting from the op-
erations of the Kronecker algebra and our ◦-operation. Besides the employed
operation, a lazy matrix simply keeps track of its operands. Whenever an en-
try of a lazy matrix is retrieved, depending on the operation recorded in the
lazy matrix, entries of the operands are retrieved and the recorded operation is
performed on these entries to calculate the result. In the course of this compu-
tation, even the successors of nodes are evaluated lazily. Retrieving entries of
operands is done recursively if the operands are again lazy matrices, or is done
by retrieving the entries from the sparse matrices, where the actual data resides.

In addition, our lazy implementation allows for simple parallelizing. For ex-
ample, retrieving the entries of left and right operands can be done concurrently.
Exploiting this, we expect further performance improvements for our implemen-
tation if run on multi-core architectures.

3.7 Optimization for NSV

Our approach already works fine for practical settings. In this subsection we
present additional optimizations which are optional.

As already mentioned in Subsect. 2.4 the Kronecker sum interleaves all en-
tries. Sometimes this is disadvantageous because irrelevant interleavings will be
generated if some basic blocks do not access shared variables. Such basic blocks
can be placed freely as long as other constraints do not prohibit it.

For example consider the CFGs in Fig. 3. Assume for a moment that a, b,
c, and d do not access shared variables. Then the overall behavior of the C-
D-system can be described correctly by choosing one of the six interleavings
depicted in Fig. 3(d), e.g., by a · b · c · d. Hence the size of the CPG is reduced
from nine nodes to five.
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Fig. 7. A Counterexample

From now on we divide set LV into two disjoint sets LSV and LNSV depending
on whether the corresponding basic blocks access shared variables or not.

The following example shows that NSV-edges cannot always be eliminated.

Example 4. In this example we use the graphs depicted in Fig. 7. The graphs E
and F form the input graphs. It is assumed that a is the only edge not accessing
a shared variable. All graphs have Node 1 as entry node. We show that it is not
sufficient to chose exactly one NSV-edge. The matrix E ⊕ F is given by

0 c a 0 0 0 0 0
0 0 0 a 0 0 0 0
0 0 0 c p 0 0 0
0 0 0 0 0 p 0 0
0 0 0 0 0 c b 0
0 0 0 0 0 0 0 b
v 0 0 0 0 0 0 c
0 v 0 0 0 0 0 0


.

The graph represented by E⊕F which is structurally isomorph to (E⊕F )◦S
is depicted in Fig.7(c). Both loops in the CPG must be preserved. Otherwise the
program would be modeled incorrectly. By removing an edge labeled by a, we
would change the program behavior. Thus it is not sufficient to use only one
edge labeled by a.
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In general, the only way to reduce the size of the resulting CPG is by studying
the matrix T ◦ S. One way would be to output the automaton from T ◦ S and
try to find reductions afterwards. We decided to perform such reductions during
the output process such that a unnecessarily large automaton is not generated.
It turned out that the problems to be solved to perform these reductions are
hard. This will be discussed in detail below.

Fig. 8 shows the algorithm employed for the output process in pseudo code.
By `(n→ i) we denote the label assigned to edge (n→ i). In short, the algorithm
records all NSV-edges and proceeds until no other edges can be processed. Then
it chooses one label of the NSV-edges. From the set of all recorded edges with this
label a subset is determined such that all the edges in the subset can be reached
from all nodes that have been processed so long. This is a necessary condition, if
we want to eliminate the edges outside the subset. Determining a minimal subset
under this constraint, however, is known as the Set Covering Problem which is
NP-hard. We decided to implement a greedy algorithm. However, it turned out
that in most cases we encountered a subset of size one, which trivially is optimal.

If no subset can be found, no edges can be eliminated.

Concerning Ex. 4 we note that the reason why none of the NSV-edges can be
eliminated, can be found in the presence of the loop in E. Our output algorithm
traverses the CPG in such a way that we do not know in advance if a loop will be
constructed later on. Hence our algorithm has to be aware of loops that will be
constructed in the future. This is done by remembering eliminated edges which
will be reconsidered if a suitable loop is encountered.

In detail, if edges can be eliminated, we remember the set of eliminated edges
R in set RECONSIDER together with a copy of the current set DONE. If later on
we encounter a path in the CPG that reaches some nodes in this set DONE, we
have to reconsider our decision. In this case all edges in R are reconsidered for
being present in the CPG. Note that several RECONSIDER-sets can be affected
if such a “backedge” is found. Note also that this reconsider mechanism handles
Ex. 4 correctly.

Our implementation showed that the decision which label is chosen in Line 29
is also crucial. The number of edges (and nodes) being eliminated heavily de-
pends on this choice. We are currently working on heuristics for this choice.

In the following we execute the algorithm on the example of Fig. 3 under
the above conditions, i.e., a, b, c, and d do not access shared variables. At the
beginning we have TBD = {1} and TBDNSV(a) = TBDNSV(b) = TBDNSV(c) =
TBDNSV(d) = DONE = ∅. Since RECONSIDER-sets are not necessary in this
example, we do not consider them in the following to keep things simple.

The 1st iteration finds NSV-edges only. So: TBDNSV(a) = {(1 → 4)},
TBDNSV(c) = {(1→ 2)}, DONE = {1} and the other sets are empty.

The 2nd iteration chooses label a in Line 29. SUBSET clearly is {(1 → 4)},
TBD = {4}, and TBDNSV(a) = ∅.

The 3rd iteration processes Node 4 and again finds NSV-edges only. So:
TBDNSV(c) = {(1 → 2), (4 → 5)} and TBDNSV(b) = {(4 → 7)}. DONE be-
comes {1, 4}.
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OutputCPG ()
1 TBD← {startnode}
2 TBDNSV(` ∈ LNSV) {array of sets; all sets initialized to ∅}
3 DONE← ∅
4 while TBD 6= ∅ or ∃` : TBDNSV(`) 6= ∅ do
5 if TBD 6= ∅ then
6 n← Element(TBD) {choose one element of set TBD}
7 print n
8 for all edges (n→ i) do
9 if `(n→ i) ∈ LNSV then
10 TBDNSV(`(n→ i))← TBDNSV(`(n→ i))∪
11 {(n→ i)}
12 else
13 TBD← TBD ∪ {i}
14 print (n→ i)
15 endif
16 while ∃R : i ∈ R and ∃D : {(D,R)} ∈ RECONSIDER do
17 {we have found a path back to a set of nodes
18 which we have used to eliminate NSV edges;
19 all these edges have now to be reconsidered}
20 for (m→ j) ∈ R do
21 TBDNSV(`(m→ j))← TBDNSV(`(m→ j))∪
22 {(m→ j)}
23 endfor
24 RECONSIDER← RECONSIDER \ {(D,R)}
25 endwhile
26 endfor
27 DONE← DONE ∪ {n};TBD← TBD \ DONE
28 else {TBD = ∅ }
29 `← NonEmptyElement(TBDNSV)
30 {choose one label with non-empty set in TBDNSV}
31 SUBSET← SmallestSubset(TBDNSV(`),DONE)
32 {choose smallest subset of TBDNSV(`) such that
33 subset can be reached from all nodes in set DONE}
34 if TBDNSV(`) \ SUBSET 6= ∅ then
35 RECONSIDER← RECONSIDER ∪
36 {(DONE,TBDNSV(`) \ SUBSET)}
37 {remember eliminated edges;
38 in case we find a path back to nodes in DONE,
39 we have to reconsider these edges}
40 endif
41 for (n→ i) ∈ SUBSET do
42 print (n→ i)
43 TBD← TBD ∪ {i}
44 endfor
45 TBDNSV(`)← ∅
46 endif
47 endwhile

Fig. 8. Output CPG
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The 4th iteration chooses label b in Line 29. Thus SUBSET clearly is {(4→
7)}, TBD = {7}, and TBDNSV(b) = ∅.

The 5th iteration processes Node 7 and finds one NSV-edge labeled c. So:
TBDNSV(c) = {(1→ 2), (4→ 5), (7→ 8)}. DONE becomes {1, 4, 7}.

The 6th iteration handles label c. The smallest subset is found to be {(7 →
8)} since Node 7 can be reached from each of the nodes in set DONE = {1, 4, 7}.
Hence, edges (1→ 2) and (4→ 5) can be eliminated, i.e., they are not printed.
So: TBDNSV(c) = ∅ and TBD = {8}.

The 7th iteration finds one NSV-edge labeled d. Thus we continue with
TBDNSV(d) = {(8→ 9)}. DONE becomes {1, 4, 7, 8}.

The 8th iteration handles label d. We obtain TBDNSV(d) = ∅ and TBD =
{9}.

The 9th iteration prints Node 9, sets DONE = {1, 4, 7, 8, 9} and TBD = ∅.
The algorithm terminates and the result is depicted in Fig. 9.

Fig. 9. Sequentialized C-D-System

4 Client-Server Example

We have done analysis on client-server scenarios using our lazy implementation.
For the example presented here we have used clients and a semaphore of the
form shown in Fig. 10(a) and 10(b), respectively.

In Table 10(c) statistics for 1, 2, 4, 8, 16, and 32 clients are given. Fig. 10(d)
shows the resulting graph for 8 clients. The few nodes in the resulting matrix and
the node IDs indicate that most nodes in the resulting matrix are superfluous.
The case of 32 clients and one semaphore forms a matrix with an order of approx.
3.706 × 1015. Our implementation generated only 65 nodes in 0.43s. In fact we
observed a linear growth in the number of clients for the number of nodes and
edges and for the execution time. We did our analysis on an Intel Xeon 2.8 GHz
with 8GB DDR2 RAM. Note that an implementation of the matrix calculus for
shared memory concurrent systems has to provide node IDs of a sufficient size.
The order of T ◦S can be quite big, although the resulting automaton is small.

5 Generic Proof of Deadlock Freedom

Let Si for i ≥ 1 denote binary semaphores and let their operations be denoted
by pi and vi.
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(d) Result for 8 Clients

Fig. 10. Client-Server Example

Definition 7. Let M = (mi,j) ∈ M denote a square matrix. In addition, let
PM = {(i, j, r) | mi,j = pr for some r ≥ 1} and VM = {(j, i, r) | mi,j =
vr for some r ≥ 1} (note the exchanged indexes (j, i)). We call M p-v-symmetric
iff PM = VM .

By definition of Kronecker sum and Kronecker product, it is easy to prove the
following lemma.

Lemma 9. Let M and N be p-v-symmetric matrices. Then M ⊕ N , M ⊗ N ,
and M ◦N are also p-v-symmetric. ut

To be more specific, let Si =

(
0 pi
vi 0

)
for i ≥ 1. Then S(r) =

⊕r
i=1 Si is p-v-

symmetric.

22



Now, consider the p-v-symmetric matrix

Mk =


0 p1 p2 . . . pk
v1 0 0 . . . 0
...

...
...

. . .
...

vk 0 0 . . . 0

 .

Thus M
(n)
k =

⊕n
i=1Mk is also p-v-symmetric.

Now we state a theorem on deadlock freedom.

Theorem 1. Let P = M
(n)
k ◦ S(k) be the matrix of a n-threaded program with

k binary semaphores, where M
(n)
k and S(k) are defined above. Then the program

is deadlock free.

Proof. By definition and Lemma 9 P is p-v-symmetric. By Corollary 1 a deadlock
manifests itself by a zero line, say `, in matrix P . Since P is p-v-symmetric,
column ` does only contain zeroes. Hence line ` is unreachable in the underlying
automaton.

This clearly holds for all zero lines in P and thus the program is deadlock
free. ut

For counting semaphores we obtain matrices of the following type

0 p 0 · · · 0 0
v 0 p · · · 0 0
0 v 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 p
0 0 0 · · · v 0


which clearly is p-v-symmetric. Thus a similar theorem holds if counting sema-
phores are used instead of binary ones.

A short reflection shows that if we allow Mk to contain additional entries and
non-zero lines and columns which do not contain ps and vs, the system is still
deadlock free. So, we have derived a very powerful criterion to ensure deadlock
freedom for a large class of programs, namely p-v-symmetric programs.

Concerning the example in Section 4 we note that if edges labeled a are
removed from the clients, we obtain p-v-symmetric matrices. Thus this simple
client-server system is deadlock free for an arbitrary number of clients. If we
reinsert edges labeled a into the clients, no zero lines and columns appear (as
noted above), so that the system is still deadlock free for an arbitrary number
of clients.

Theorem 1 may be compared to the results of [8, 5], where for homogenous
token passing rings it is proved that checking correctness properties can be re-
duced to rings of small sizes.
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T1 ()
1 s.p {edge T1.p}
2 r ← sv {edge a}
3 r ← r + 1 {edge b}
4 sv ← r {edge b}
5 s.v {edge T1.v}
T2 ()
1 t← sv {edge c}
2 s.p {edge T2.p}
3 t← t + 1 {edge d}
4 sv ← t {edge d}
5 s.v {edge T2.v}

Fig. 11. Example Program

(a) T1 (b) T2

Fig. 12. RCFGs after Edge Splitting

6 A Data Race Example

We give an example, where a programmer is supposed to have used synchroniza-
tion primitives in a wrong way. The program consisting of two threads, namely
T1 and T2, and a semaphore s is given in Fig. 11. We assume that sv = 0 at
program start. It is supposed that the program delivers sv = 2 when it termi-
nates. Both threads in the program access the shared variable sv. The variables
r and t are local to the corresponding threads. The programmer inadvertently
has placed line 1 in front of line 2 in T2.

After edge splitting we get the RCFGs depicted in Fig. 12. As usual the
semaphore looks like Fig. 1(a). The corresponding matrices are

T1 =


0 T1.p 0 0 0
0 0 a 0 0
0 0 0 b 0
0 0 0 0 T1.v
0 0 0 0 0

 and T2 =


0 c 0 0 0
0 0 T2.p 0 0
0 0 0 d 0
0 0 0 0 T2.v
0 0 0 0 0

 .
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Although the following matrices are not computed by our lazy implementa-
tion, we give them here to allow the reader to see a complete example. To enable
a concise presentation we define the following submatrices of order five:

H =


0 c 0 0 0
0 0 T2.p 0 0
0 0 0 d 0
0 0 0 0 T2.v
0 0 0 0 0

 , I =


T1.p 0 0 0 0

0 T1.p 0 0 0
0 0 T1.p 0 0
0 0 0 T1.p 0
0 0 0 0 T1.p

 ,

J = a · I5,K = b · I5, and L =


T1.v 0 0 0 0

0 T1.v 0 0 0
0 0 T1.v 0 0
0 0 0 T1.v 0
0 0 0 0 T1.v

 .

Now, we get T = T1⊕T2, a matrix of order 25, consisting of the submatrices
defined above and zero matrices of order five (instead of Z5 simply denoted by
0).

T =


H I 0 0 0
0 H J 0 0
0 0 H K 0
0 0 0 H L
0 0 0 0 H

 .

To shorten the presentation of P = T ◦S we define the following submatrices of
order ten:

U =



0 0 c 0 0 0 0 0 0 0
0 0 0 c 0 0 0 0 0 0
0 0 0 0 0 T2.p 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d 0 0 0
0 0 0 0 0 0 0 d 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 T2.v 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, V =



0 T1.p 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 T1.p 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 T1.p 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 T1.p 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 T1.p
0 0 0 0 0 0 0 0 0 0


,
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W = a · I10, X = b · I10, and Y =



0 0 0 0 0 0 0 0 0 0
T1.v 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 T1.v 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 T1.v 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 T1.v 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 T1.v 0


.

With the help of zero matrices of order ten we can state the program’s matrix

Fig. 13. Resulting CPG
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P = T ◦ S = T ◦
(

0 p
v 0

)
=


U V 0 0 0
0 U W 0 0
0 0 U X 0
0 0 0 U Y
0 0 0 0 U

 .

Matrix P has order 50. The corresponding CPG is shown in Fig. 13. The
lazy implementation computes only these 19 nodes. Due to synchronization the
other parts are not reachable. In addition to the usual labels we have add a set
of tuples to each edge in the CPG of Fig. 13. Tuple (x, y, z) denotes values of
variables, such that sv = x, r = y and t = z. We use ⊥ to refer to an undefined
value. A tuple shows the values after the basic block on the corresponding edge
has been evaluated. The entry node of the CPG is Node 1. At program start we
have the variable assignment (0,⊥,⊥). At Node 49 we result in the set of tuples
{(1, 1, 1), (2, 1, 2), (2, 2, 1)}. Due to the interleavings different tuples may occur
at join nodes. This we reflect by a set of tuples. As stated above the program is
supposed to deliver sv = 2. Thus the tuple (1, 1, 1) shows that the program is
erroneous. The error is caused by a data race between the edges c of thread T2
and the edges a and b of thread T1.

7 Empirical Data

In Sec. 4 we already gave some empirical data concerning client-server examples.
In this section we give empirical data for ten additional examples.

Let o(P ) and o(C) refer to the order of the adjacency matrix P , which is not
computed by our lazy implementation, and the order of the adjacency matrix C
of the resulting CPG, respectively. In addition k and r refer to the number of
threads and the number of semaphores, respectively.

k r o(P )
√

(o(P )) o(C) Runtime [s]

2 4 256 16,00 12 0,03
3 5 4800 69,28 30 0,097542
4 6 124416 352,73 98 0,48655
3 6 75264 274,34 221 1,057529
4 7 614400 783,84 338 2,537082
4 8 1536000 1239,35 277 2,566587
4 8 737280 858,65 380 3,724364
4 13 298721280 17283,56 2583 96,024073
4 11 55050240 7419,58 3908 146,81
5 6 14929920 3863,93 7666 309,371395

Table 1. Empirical Data
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In the following we use the data depicted in Table 1.8 The numbers in the
third column are rounded to two decimal places. As a first observation we note
that except for one example all values of o(C) are smaller as the corresponding
values of

√
(o(P )). In addition, the runtime of our implementation shows a

strong correlation to the order o(C) of the adjacency matrix C of the generated
CPG with a Pearson product-moment correlation coefficient of 0,9990277130. In
contrast the values of the theoretical order o(P ) of the resulting adjacency matrix
P correlates to the runtime only with a correlation coefficient of 0.2370050995.9

This observations show that the runtime complexity does not depend on the
order o(P ) which grows exponentially in the number of threads. We conclude
this section by stating that the collected data give strong indication that the
runtime complexity of our approach is linear in the number of nodes present in
the resulting CPG.

8 Related Work

Probably the closest work to ours was done by Buchholz and Kemper [3]. It
differs from our work as stated in the following. We establish a framework for
analyzing multithreaded shared memory concurrent systems which forms a ba-
sis for studying various properties of the program. Different techniques including
dataflow analysis (e.g. [23–25, 14]) and model checking (e.g. [6, 9] to name only
a few) can be applied to the generated CPGs. In this paper we use our approach
in order to prove deadlock freedom. Buchholz and Kemper worked on gener-
ating reachability sets in composed automata. Our approach uses CFGs and
semaphores to model shared memory concurrent programs. Buchholz and Kem-
per use it for describing networks of synchronized automata. Both approaches
employ Kronecker algebra. An additional difference is that we propose optimiza-
tions concerning the handling of edges not accessing shared variables and lazy
evaluation of the matrix entries.

In [9] Ganai and Gupta studied modeling concurrent systems for bounded
model checking (BMC). Somehow similar to our approach the concurrent system
is modeled lazily. In contrast our approach does not need temporal logic spec-
ifications like LTL for proving deadlock freedom for p-v-symmetric programs
but on the other hand our approach may suffer from false positives. Like all
BMC approaches [9] has the drawback that it can only show correctness within
a bounded number of k steps.

Kahlon et al. propose a framework for static analysis of concurrent pro-
grams in [13]. Partial order reduction and synchronization constraints are used
to reduce thread interleavings. In order to gain further reductions abstract in-
terpretation is applied.

In [22] a model checking tool is presented that builds up a system gradually,
at each stage compressing the subsystems to find an equivalent CSP process

8 We did our analysis on an Intel Pentium D 3.0 GHz machine with 1GB DDR RAM
running CentOS 5.6.

9 Both correlation coefficients are rounded to ten decimal places.
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with many less states. With this approach systems of exponential size (≥ 1020)
can be model checked successfully. This can be compared to our client-server
example in Sect. 4, where matrices of exponential size can be handled in linear
time.

Although not closely related we recognize the work done in the field of
stochastic automata networks (SAN) which is based on the work of Plateau [19]
and in the field of generalized stochastic petri nets (GSPN) (e.g. [4]) as related
work. Compared to ours these fields are completely different. Nevertheless, basic
operators are shared and some properties influenced this paper.

9 Conclusion

We established a framework for analyzing multithreaded shared memory concur-
rent systems which forms a basis for studying various properties of programs.
Different techniques including dataflow analysis and model checking can be ap-
plied to CPGs. In addition, the structure of the matrices can be used to prove
properties of the underlying program for an arbitrary number of threads. In this
paper we used CPGs in order to prove deadlock freedom for the large class of
p-v-symmetric programs.

Furthermore, we proved that in general CPGs can be represented by sparse
matrices. Hence the number of entries in the matrices is linear in their number
of lines. Thus efficient algorithms can be applied to CPGs.

We proposed two major optimizations. First, if the program contains a lot
of synchronization, only a very small part of the CPG is reachable and, due
to a lazy implementation of the matrix operations, only this part is computed.
Second, if the program has only little synchronization, many edges not accessing
shared variables will be present, which are reduced during the output process of
the CPG. Both optimizations speed up processing significantly and show that
this approach is very promising.

We gave examples for both, the lazy implementation and how we are able to
prove deadlock freedom.

The first results of our approach (such as Theorem 1) and the performance of
our prototype implementation are very promising. Further research is needed to
generalize Theorem 1 in order to handle systems similar to the Dining Philoso-
phers problem. In addition, details on how to perform (complete and sound)
dataflow analysis on CPGs have to be studied.
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