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Abstract

A crucial aspect at the introduction of electrical vehicles is the deployment of a charging infras-
tructure. Once the hardware devices have been installed, the collection, storage and processing
of the recorded data plays an important role within the deployment process.
As data centric use cases are quite similar as in common smart metering, it is fanciable to use
existing and well evolved solutions.
This thesis describes an existing meter data management solution for meter data management
of a public electric vehicle charging infrastructure and analysis of the meter data. Due to the
differences of common smart metering and charging infrastructures in the purpose of metering,
several customizations have to be made as charging session data has to be managed as well as
common meter data.
Furthermore, a library has been developed which enables analysis of the data created by such a
system. One part is the analysis of time series using descriptive statistics to compute expressive
features. Comparison of time series using auto-correlation and trend analysis or forecasting us-
ing regression analysis are further possible analysis methods.
Whether all users are able to charge at the same time, how long they would have to wait or how
many users have to wait in case of shortages is determined by applying queuing theory.
To enable simulation of charging infrastructures, an additional library has been developed that
allows the creation of meter data and charging sessions of charging stations by using different
driving profiles.
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Kurzfassung

Ein wesentlicher Aspekt bei der Einführung der Elektromobilität ist die Bereitstellung einer
Ladeinfrastruktur. Dabei spielen neben den eingesetzten Geräten die Erfassung, Speicherung,
Verarbeitung und Analyse der anfallenden Daten eine zentrale Rolle.
Aufgrund der Ähnlichkeit der Anwendungsfälle zum herkömlichen Smart-Metering im Bereich
der Datenerfassung und Verarbeitung und der fortgeschrittenen Entwicklung von Konzepten und
Lösungen dabei, ist es naheliegend sich an diesen zu orientieren.
Inhalt dieser Arbeit ist die Beschreibung des Einsatzes einer bestehenden, ausgereiften Me-
ter Data Management Lösung im Umfeld einer öffentlichen Elektromobilitäts-Ladeinfrastruktur
und die Analyse der entstehenden Metering Daten. Der Einsatz eines solchen Systems erfordert
diverse Anpassungen der bestehenden Lösung aufgrund der Differenzen zum herkömlichen Me-
ter Data Management. So müssen zum Beispiel neben den herkömlichen Zählerdaten Informa-
tionen von einzelnen Ladesitzungen verwaltet werden.
Weiters wurde im Zuge dieser Arbeit eine Programmbibliothek erstellt, welche die Analyse
der in einem solchem System anfallenden Daten erlaubt. Ein Schwerpunkt liegt dabei auf der
Analyse von Zeitreihen, wobei mittels deskriptiver Statistik aussagekräftige Parameter ermittelt,
Teilbereiche mittels Autokorrelation miteinander verglichen und Trends bzw. Prognosen mit
Hilfe der Regressionsanalyse durchgeführt werden können.
Ob alle Benutzer/innen ausreichend bedient werden können, wie lange die Wartezeit beträgt und
wieviele Benutzer/innen gleichzeitig warten müssen, kann durch Anwendung der Warteschlangen-
theorie analysiert werden.
Zur Simulation von Ladeinfrastrukturen wurde eine weitere Programmbibliothek erstellt, mit
deren Hilfe man Ladesitzungen mit Zählerdaten verschiedener Fahrprofile erzeugen kann.
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CHAPTER 1
Introduction

1.1 Motivation

As many countries are now eager to start reducing their carbon dioxide emissions, electric vehi-
cles become a more and more popular topic. There are several different approaches how to deal
with charging processes and periods and one is to provide a public charging infrastructure. It is
obvious that the provider of a charging infrastructure has to manage users and assets, charging
session data and billing procedures. Due to the fact that common asset management, meter data
management and billing solutions for smart metering are well evolved and approved it is fancia-
ble to integrate them into an overall charging infrastructure solution.
To highlight the benefits of the usage of a meter data management solution, applying already
gained knowledge in data analysis to forecast usage and shortages within the charging infras-
tructure is an essential issue.

1.2 Problem statement

There exist many well evolved software solutions for meter data management in common smart
metering. Thus it seems natural to use these solutions for meter data recorded by electric vehicle
charging infrastructures due to the fact that the challenges are quite similar. The major difference
is the additional required effort to manage charging session data associated with different users
and charging points. In common smart metering, metering systems in general just create periodic
records of the consumption data and a meter is associated with only one customer over the long
term. A public charging infrastructure metering system additionally provides information of
the start, end, consumption and user of a charging session. To enable the management of this
information, an existing meter data management solution has to be customized and / or extended
at several different sites.
Computional data analysis is a powerful approach to acquire further information of the collected
data. To gain useful knowledge, it is necessary to decide what kind of knowledge is valuable
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and how the data gets analyzed. Which statistical methods will be used and how is it possible to
implement and integrate them into a meter data management system is another important point.
To support the decision making process of which data and knowledge is valuable a simulation
of a charging infrastructure’s meter data is required.

1.3 Aim of the thesis

Within the scope of this thesis an extension / a customization of an existing meter data manage-
ment solution has been designed. The extension consists of an interface (adapter) for a charging
infrastructure head-end system, additional database tables for the storage of session data and an
export interface to a billing system.
Furthermore, to enable data analysis, a Java based analysis library has been developed which
contains mathematical methods for data estimation, derivation, aggregation and statistical meth-
ods like auto-correlation or linear regression. As charging processes can be considered as queu-
ing processes, queuing analysis by applying queuing theory is also part of the library.
To enable ordinary testing of these statistical methods a Java based simulation library that allows
creation of various scenarios has been developed.
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CHAPTER 2
Meter data management

2.1 Definition

As there is no standard definition what meter data management is, it is necessary to define the
term to create a better understanding.

GTM Research separates meter data management into different subcategories where two of
them do not conflict to other definitions: [1]

• “Meter Data Repository (MDR) – is the database for permanent storage of advanced meter
data, plus the programs and procedures used to process meter data into billing determi-
nants so that customer information systems (CIS) can bill time-of-use data. The MDR
receives, validates and stores advanced meter data for billing and other purposes.”

• “Meter Data Management (MDM) is an integration architecture that provides the commu-
nication and data management services for sharing and circulating meter data for building
new applications and for enhancing existing applications. MDM is a set of enterprise data
services. A robust MDM platform provides the environment for building service-oriented
architectures (SOA) for low-cost integration and rapid deployment of new capabilities.”

The definition of advanced metering infrastructure (AMI) is an area of conflict. GTM Re-
search defines AMI as a part of meter data management.

“Advanced Metering Infrastructure (AMI) - in this report, we refer to smart
meters as advanced meters. ‘Advanced metering infrastructure’ is used as an en-
compassing term for both advanced meters and the supporting field networks that
control and manage meters, including communications from the meter to the wide
area network (WAN), which is usually located at the sub-station. Communications
and services that connect AMI to MDR are considered part of the broader MDM
platform.” [1]
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Gartner Inc. as opposed to this, defines meter data management as a part of AMI.

“AMI is a composite technology – involving meters (smart meters), communi-
cation links and MDM – that spans IT and operational technology (OT) domains,
and it supports all components of the meter data life cycle.” [2]

Furthermore, Gartner Inc. defines meter data management as follows:

“MDM products are the IT components of the AMI responsible for cleansing,
calculating, and providing data persistency and the dissemination of energy con-
sumption data, which can originate from a variety of sources.” [2]

If advanced metering infrastructure is mentioned in the course of this thesis the definition of
GTM Research is applicable.
The term meter data management within the scope of this thesis is compliant to definition of
Gartner Inc. .

There is also a difference between AMI and automatic meter reading (AMR). Where AMR
is used just for collecting meter data requiring unidirectional communication, AMI is also used
for remote control of smart meters.

2.2 Meter data management system/platform

A meter data management system/platform (MDMS) is a set of different software components
that enable the processing, storage and forwarding of data created by an advanced metering in-
frastructure (Figure 2.1).
The head end system (a server application which communicates with the AMI’s components) of
the AMI sends collected data to the MDMS. As there is no standardized communication proto-
col, another integration layer (sometimes called Data Collector) is necessary.
Once the MDMS received the data, it performs several validations, estimates missing data
records and saves it to the database. [1]
To assure interoperability, the MDMS has to provide interfaces for all types of collected data.

Requirements

The following requirements are crucial for MDMS: [1]

• Performance and scalability to ensure processability of a huge amount of data

• Reliability and uptime as the processing of meter data is a business critical service of
utilities

• Backup and recovery to prevent data loss

• Security and data privacy to fulfill all directives set by regulators
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Figure 2.1: Meter data management (Source: [1])

Available products and vendors

In general there are ten notable vendors who achieve a different type of maturity and are most
often considered as solution providers by utilities. [2]
Gartner Inc. gives an overview on the market with its magic quadrant for meter data manage-
ment solutions (Figure 2.2).

The evaluation criteria for Ability to Execute are product/service, overall viability, sales exe-
cution/pricing, market responsiveness and track records, marketing execution, customer experi-
ence, and operations.
The corresponding evaluation criteria for Completeness of Vision are market understanding, mar-
keting strategy, sales strategy, offering (product) strategy, business model, vertical/industry strat-
egy, innovation and geographic strategy.

Eight out of ten vendors are placed in the Niche Players quadrant because of their limited
geographic reach or niche functionality. [2]
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Figure 2.2: Gartner Magic Quadrant for MDMS (Source: [2])

2.3 Meter data management for electric vehicle charging
infrastructures

Charging infrastructure definition

As the term meter data management, the definition of electric vehicle charging infrastructure is
not standardized.
Often it is used to summarize all charging possibilities a user of an electric vehicle has, including
home, apartment block, workplace or general public charging stations. [3]
In this thesis, a charging infrastructure is understood as a network of public charging stations
provided by a company e.g., energy utilities. Thus these networks of charging stations are such,
where user identification and charging session management are required.
The term encompasses charging stations, their communication network and a head end system
that is able to communicate with the charging stations (Figure2.3).
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Figure 2.3: Charging infrastructure architecture

Prerequisite for the combined usage of a charging infrastructure and a meter data manage-
ment system is, that the charging stations use integrated meters, which record meter data.
The communication between charging stations and the head end system can be unidirectional
or bidirectional. In case of unidirectional communication, the charging stations send their mes-
sages to the head end system. Messages could be events (start of a session, end of a session,
system errors) or data (meter readings, load profiles). Bidirectional communication is used by
head end systems to send control commands to charging stations, e.g. for load management.
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Differentiation to common meter data management

The principal difference if the advanced metering infrastructure gets replaced by a electric ve-
hicle charging infrastructure with integrated meters is the additional management of charging
session data. Thus, the power consumption data gets extended by a charging session entity.
The power consumption data of a common advanced metering infrastructure usually consists of
meter readings and load profiles that are unrelated in the sense of the data model (Figure 2.4).

-meter
-date : Date
-reading : Double

Meter Reading

-meter
-date : Date
-consumption : Double

Load Profile

Figure 2.4: Simplified power consumption data model

Naturally, there is of course a relationship between these two types of data:
A Meter Reading describes meter readings of a meter usually made at fixed intervals (e.g. every
15 minutes).
Load Profiles describe consumption data which can be derived of meter readings as shown in
Equation 2.1.

LP (t) = MR(t)−MR(t− i) (2.1)

LP (t) ... load profile at date t
MR(t) ... meter reading at date t
i ... defined interval

Considering electric vehicle charging infrastructures, charging sessions are added to the
power consumption data and both, meter readings and load profiles belong to charging sessions.
The simplified power consumption model is shown in Figure 2.5.

-startdate : Date
-enddate : Date

Charging Session

-date : Date
-reading : Double

Meter Reading

-date : Date
-consumption : Double

Load Profile

1

-session

*

1

-session

*

Figure 2.5: Simplified power consumption data model
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A Charging Session describes a charging process where the startdate is the date once a
car starts charging at a charging station. The start_meter_reading is the meter reading of the
charging station’s integrated meter. The enddate and end_meter_reading are the date and meter
reading by the time the charging process is finished.

Customization and extension

To enable the processing of the charging session data, an existing meter data management system
has to be extended at several different points. Please see Figure 2.6 for a general concept for an
extension.

Meter Data Management System

Meter Data Repository

Event Processor VEE Services System Management

Charging Infrastructure Extension

Charging Session 
Repository

Charging Infrastructure Interface

Billing Module

CIS/Billing

Charging Sessions,
Power Consumption

Event
Operational and 

System

Demand 
Response

Consumer Portal

Figure 2.6: Meter data management system with extension
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To store session data, a charging session data repository is required as the storage of such
data is not provided by existing solutions.
Furthermore, the charging infrastructure interface must be able to store session data in the charg-
ing session repository and forward the meter data such as meter readings to the underlying
MDMS.
To enable billing or data export to other third-party systems, the extension must also provide
an export module that merges the data of the meter data repository with the charging session
data. The export module of the MDMS just allows access to the meter data of the meter data
repository.
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CHAPTER 3
Meter data analysis

The major purpose of data analysis is to get a better understanding of some data’s characteristics.
To achieve this goal a set of methods like descriptive statistics, time series techniques, linear
regression models or multivariate exploratory techniques are used in order to: [4]

• maximize the innermost knowledge of the data

• reveal underlying structure

• extract import variables

• develop simple models

With this knowledge, the introduction of smart metering in general, independent of the un-
derlying purpose, opens new opportunities by providing large amounts of collected meter data
that can be analyzed.

“It is now possible to view and analyze consumption data in new ways for a
plethora of business applications, including capacity planning, demand manage-
ment, rate design and reducing peak power consumption.” [5]

More concretely, it is possible to answer questions such as: [6]

• “How much excess energy will be available, when to sell it and whether the grid can
transmit it?”

• “When and where equipment downtime and power failures are most likely to occur?”

• “Which customers are most likely to feed energy back to the grid, and under what circum-
stances?”
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• “Which customers are most likely to respond to energy conservation and demand reduc-
tion incentives?”

• “How to manage the commitment of larger, traditional plants in a scenario where peaks
from distributed generation are becoming relevant?”

Considering electric vehicle charging infrastructures, further and different questions and
analysis scenarios arise:

• Are there enough charging stations for all users/customers of the infrastructure?

• Are there peak times in usage?

• Is the charging behavior of the users/customers seasonal?

• How does the load within the infrastructure evolve in the future?

By using meter data analysis it is possible to find answers to these questions.

3.1 Meter data analysis for electric vehicle charging
infrastructures

In respect to the domain model of power consumption data of electric vehicle charging infras-
tructures, as shown in Figure 2.5, it is clear that there are two different types of analyzable data.

First, there are Meter Readings and Load Profiles that are simple time series.
Second, there are Charging Sessions, which can be considered as time series values in respect of
start date and end date and their corresponding values, but can also be considered as processes
that are analyzable using queuing theory since an arrival rate and the residence time can be de-
termined.

Time series can be analyzed in several different ways. Descriptive statistics can be used to
highlight main features by determining expressive statistical parameters. Correlation analysis
allows the detection of pattern, similarities and seasonality. Regression analysis is useful to
determine trends and forecasting. The analysis of multiserver queues allows the calculation of
performance measures of a queuing system.
Combining these techniques, it is possible to gain valuable knowledge of the data collected and
stored by a meter data management system.
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3.2 Meter data analysis library

The Java library that has been developed within this thesis provides methods for the analysis of
both, time series and queuing data.
There are components that support the calculation of statistical parameters and the correlation
coefficient of autocorrelation, to perform linear regression analysis and to calculate different
performance measures of multiserver queues.
To ensure reusability, the library is not directly coupled to the described domain model. Using
descriptors, it is applicable on every domain model which can be considered as a time series or
queuing processes. As simple integration is a desired goal, descriptors for the usage of annota-
tions are provided.

Architecture

Despite the difference of the two analyzable types of data and a difference in their descriptors,
the architecture for both parts of the analysis library is equal and very simple (Figure 3.1).

Utils

Descriptor

Domain

Figure 3.1: Library architecture

Domain layer

The domain layer consists of domain objects that should be processed by the library’s utils.
In general there are no special requirements to the domain objects that can be processed.
Any Java object is applicable if it has a time and value attribute in the case of a time series entity,
and a startdate and enddate attribute in the case of a queue entity.
How the library accesses these attributes is described in the descriptor layer.

Descriptor layer

The descriptor layer ensures reusability. Introducing descriptors, the utils layer does never ac-
cess a domain object directly and thus is independent of and uncoupled to the domain layer.
The central elements of this layer are the descriptor interfaces which must be implemented for
all used domain objects (Listing 3.2 and Listing 3.2).
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public interface TimeSeriesEntityDescriptor<E> {
public Date getTime(E e);

public Double getValue(E e);
}

Listing 3.1: TimeSeriesEntityDescriptor class

public interface QueueEntityDescriptor<E> {
public Date getStartdate(E e);

public Date getEnddate(E e);
}

Listing 3.2: QueueEntityDescriptor class

The generic types of the interfaces are naturally the types of the domain objects they de-
scribe.

Utils layer

The utils layer provides the functionality to perform the analytical calculations and is provided
as a library. As already mentioned, utils access the attributes required for the calculations using
descriptors. Thus each util must have a reference to its appropriate descriptor (Listing 3.2 and
Listing 3.2).

public abstract class AbstractTimeSeriesUtil<E> {

protected TimeSeriesEntityDescriptor<E> descriptor;

protected Date getTime(E e) {
return descriptor.getTime(e);

}

protected Double getValue(E e) {
return descriptor.getValue(e);

}

Listing 3.3: AbstractTimeSeriesUtil class

14



public abstract class AbstractQueueUtil<E> {

protected QueueEntityDescriptor<E> descriptor;

protected Date getStartdate(E e) {
return descriptor.getStartdate(e);

}

protected Date getEnddate(E e) {
return descriptor.getEnddate(e);

}

Listing 3.4: AbstractQueueUtil class

Every util class in the library is a subclass of one of the two abstract util classes.
As the generic type of the util and the descriptor is the same, the interaction between them is
type-safe.

Layer interaction

Utils never directly access a domain object’s attribute. They call the relevant get method of the
descriptor, the descriptor accesses its domain object, the domain object returns the attribute and
the descriptor forwards it to the util. The corresponding sequence diagram is shown in Figure
3.2.

Utils Descriptor Domain

getAttribute()

getAttribute()

attribute

attribute

Figure 3.2: Attribute access
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Annotation-based descriptor implementation

Simple and rapid usage on every domain is a desirable goal, thus annotation-based descriptor
implementations are provided by default.

Time series annotations:

• @TimeSeriesEntity indicates a time series entity

• @Time indicates the time attribute of a time series entity

• @Value indicates the value attribute of a time series entity

Queue annotations:

• @QueueEntity indicates a queue entity

• @Startdate indicates the start date of a queue entity

• @Enddate indicates the end date of a queue entity

Example entities are shown in Listing 3.2 and Listing 3.2.

@TimeSeriesEntity
public class GenericTimeSeriesEntity {

@Time
private Date time;

@Value
private Double value;

}

Listing 3.5: GenericTimeSeriesEntity class

@QueueEntity
public class GenericQueueEntity {

@Startdate
private Date startdate;

@Enddate
private Date enddate;

}

Listing 3.6: GenericQueueEntity class

16



Entity classes that use these annotations can be used directly by the utils. The descriptor is
created implicitly at util initialization. Therefore an introspection method is called which checks
the type and scans both, methods and fields, to find attribute annotations (Listing 3.2 and Listing
3.2).

public AbstractTimeSeriesUtil(Class<E> clazz) {
descriptor= TimeSeriesEntityIntrospector.introspect(clazz);
comparator= new TimeSeriesEntityComparator<E>(descriptor);

}

Listing 3.7: AbstractTimeSeriesUtil constructor

public AbstractQueueUtil(Class<E> clazz) {
descriptor = QueueEntityIntrospector.introspect(clazz);
comparator = new QueueEntityComparator<E>(descriptor);

}

Listing 3.8: AbstractQueueUtil constructor

The introspection routine works as shown in Figure 3.3:

Check type Scan fields

Throw exception

Scan methods

Throw exception

[Type ok] 

[Type not ok] [Attributes found] 

[Attributes not found] 

[Attributes found] 

[Attributes not found] 

Figure 3.3: Entity introspection
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Time series analysis

Time series analysis is a major purpose of the library, independent whether meter data or other
time series get analysed. A time series is a sequence of collected data that follows a specific
order, denoted by Equation 3.1 [4].

(Xt, t ∈ T ) (3.1)

Where T ⊂ R refers to time. [4]
Now it is clear that both, meter readings and load profiles are time series.

The analysis of time series is based on the assumption that the values are taken at equally
spaced time intervals [4]. In the case of power consumption data is gathered typically at 15-
minute or hourly intervals. [5]

Time series analysis is separated in two parts. First, data preparation methods are provided
to estimate, insert, aggregate or partition data. The second part contains the actual analytical
methods.

Data preparation

Data preparation is crucial to enable the extraction of useful knowledge of the data. Thus missing
values have to be estimated, creation of new features must be possible, aggregation is important
to reduce the calculation effort and sampling/partitioning is very important at time series analysis
as seasonality may occur. [4]

Estimation Two different methods of value estimation are provided by the library. Both pro-
vide functionality to estimate missing values within a list of values of a given interval.

Linear interpolation A simple, but natural estimation method for the estimation of times
series items is linear interpolation.

The mathematical computation of a value is given in Equation 3.2.

y(x) = ymin +
ymax − ymin

xmax − xmin
∗ (x− xmin) (3.2)

To enable estimation by linear interpolation within list of values, the provided util iterates
over all intervals within the time range of the list. If a value is missing, it assumes the nearest
present neighbors as min and max.

Insertion The library provides another method to estimate values. As for linear interpo-
lation estimation, a util for insertion of values that iterates over all fixed intervals is provided.
To enhance flexibility, the insertion util expects a insertion function as argument, which can be
implemented by the user of the library (Listing 3.2).
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public interface InsertionFunction {
/**
* Creates a new value for the given time

*
* @param time

* @return

*/
public double getValue(Date time,Object... additionalArgs);

}

Listing 3.9: InsertionFunction interface

Derivation Derivation is used to create new features in general. Regarding meter data compu-
tation, derivation is a method to create load profiles out of recorded meter readings.

The library provides a method for calculating the backward difference of time series items
according to Equation 3.3

dy(t) = y(t)− y(t− i) (3.3)

dy(t) ... derived time series value at date t
y(t) ... time series value at date t
y(t− i) ... time series value at date t− i where i is the defined interval

Aggregation Aggregation is combining multiple values using a specified aggregate function.
This might be used to reduce the amount of data [4] or, in respect of meter data, for instance, to
create virtual meters by combining multiple meters that share a common characteristic. [5]

For that reason, the library provides functionality to aggregate a list of time series items by
iterating over all fixed intervals within a given time range, selecting the associated values and
aggregates them using a given aggregate function (Listing 3.2).

public interface AggregationFunction<T> {
/**
* Aggregates a list of values

*
* @param values

* @return

*/
public double aggregate(List<T> values);

}

Listing 3.10: AggregationFunction interface
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As summation is a very common aggregate function an implementation is provided which
aggregates correspondent to Equation 3.4.

a(t) =
∑

t−i≤tv<t

v(tv) (3.4)

a(t) ... aggregated value for date t
v(tv) ... time series value at date tv
i ... defined fixed interval

The code snippet for the aggregation is shown in Listing 3.2.

for (long time = startTime; time <= endTime; time += interval)
{
while (index < values.size() && getTime(values.get(index)).

getTime() < time) {
aggregationValues.add(values.get(index++));

}
aggregatedValues.add(factory.create(new Date(time),

aggregationFunction.aggregate(aggregationValues)));
aggregationValues.clear();

}

Listing 3.11: Aggregation snippet

Partitioning Partitioning is important as seasonality may occur over a long term.
To compare potential seasons like hours, days, weeks or months, it is necessary to provide a
possibility to divide a longer term time series into these parts.
The library provides a method for partitioning a time series in parts using a given interval (Listing
3.2).

for (long time = startTime; time <= endTime; time += interval)
{
List<E> partition = new ArrayList<E>();

while (index < values.size() && getTime(values.get(index)).
getTime() < time) {
partition.add(values.get(index++));

}
partitions.add(partition);

}

Listing 3.12: Partitioning snippet
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Analysis

Once the data is prepared, it is possible to perform statistical analysis. Three different types of
analysis can be performed:

• Descriptive statistics to highlight main features of a sample

• Correlation analysis to detect patterns and seasonality. As the analyzable data is time
series data, auto-correlation is the concrete form.

• Regression analysis to detect trends and forecasting

Descriptive statistics is used to highlight main features of a sample by calculating different
parameters. The library provides a ParameterUtil that enables the calculation of the following
sample features:

Arithmetic mean The arithmetic mean x̄ of a sample x1, ..., xn is defined by Equation
3.5.

x̄ =
1

n

n∑
i=1

xi (3.5)

Variance The variance of a sample is a measure of how far the sample is spread out (Equa-
tion 3.6).

σ2 =
1

n

n∑
i=1

(xi − x̄)2 (3.6)

x̄ ... arithmetic mean

Standard deviation As variance (Equation 3.6, standard deviation is a measure of how far
the sample is spread out (Equation 3.7). It is the more meaningful measure since its unit is equal
to unit of the sample.

σ =
√
σ2 (3.7)
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Covariance Covariance is a measure of how two samples change together (Equation 3.8).
[4]

Cov(X,Y ) =
1

n

n∑
i=1

(xi − x̄) ∗ (yi − ȳ) (3.8)

x̄ ... arithmetic mean of sample X
ȳ ... arithmetic mean of sample Y

A particular form of the covariance is the auto-covariance, which is a measure of how a
sample changes to a time-shifted sample of an equal source (Equation 3.9).

γ(t1, t2) =
1

n

n∑
i=1

(t1i − t̄1) ∗ (t2i − t̄2) (3.9)

t̄1 ... arithmetic mean of sample t1
t̄2 ... arithmetic mean of sample t2

Auto-correlation Auto-correlation is a measure of the similarity of two time-series samples
of the same source. It is used to find patterns and thus enables the detection of seasonality.
Its correlation coefficient is defined by Equation 3.10.

ρ(t1, t2) =
γ(t1, t2)

σt1 ∗ σt2
(3.10)

σt1 ... standard deviation of t1
σt2 ... standard deviation of t2
γ(t1, t2) ... auto-covariance of t1 and t2

This function gives a value 1 ≥ ρ(t1, t2) ≥ −1 :

1 ... perfect linear correlation of t1 and t2
0 ... no linear correlation of t1 and t2
−1 ... inverted linear correlation of t1 and t2

Linear regression Linear regression is a method to describe the linear relationship of two
variables (e.g., time and load) if it exists. The method describes the relationship as a straight line
called regression line (Figure 3.4). The mathematical model of this line is defined by Equation
3.11.

Y = α+ β ∗X (3.11)
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α and β are parameters which can be calculated using Equation 3.12 and Equation 3.13:

β =

∑n
i=1 (xi − x̄) ∗ (yi − ȳ)∑n

i=1 (xi − x̄)2
(3.12)

The calculation of the parameters is called least square fitting using vertical offsets. [4]

α = ȳ − β ∗ x̄ (3.13)

x̄ ... arithmetic mean of sample X
ȳ ... arithmetic mean of sample Y

Figure 3.4: Linear regression [4]

Queuing analysis

Queuing analysis is the analysis of queues using queuing theory by applying different queuing
models.

Queues and queuing theory are defined as follows:

“A queue is a special kind of list in which elements may only be removed from
the bottom by a pop action or added to the top using a push action.” [7]

Queuing theory is “the study of the waiting times, lengths, and other properties
of queues.” [8]

Other properties would be the number of items in the system, number of items waiting to be
served, their means and standard deviations and traffic intensity. [9]

A typical singleserver queuing system is shown in Figure 3.5.
Considering electric vehicle charging infrastructures, a charging station would be a server

and users/drivers items.
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Figure 3.5: Queuing system [9]

Drivers that want charge at the same charging station have to wait in the charging station’s
queue. A charging station handles incoming drivers by providing a charging possibility. Once a
charging process has finished, the driver departs and the next driver within the queue is able to
start charging.

Multiserver queue

Usually at a public charging infrastructure there will be more charging stations at one place that
can be used by an arriving user.
In this scenario, there are multiple servers that can handle items and share a single queue. (Fig-
ure 3.6)

Queuing theory provides the multiserver queue model to calculate such a system’s proper-
ties.
Drivers are waiting, if necessary, in a shared queue. If one charging station becomes available,
the driver who comes first can start charging at that station.

Considering the model, it is clear that all servers and service requests must be identical so that it
makes no difference which server is chosen. [9]

Typical application examples of multiserver queues would be charging stations at apartment
blocks, working places or other public hot spots where different drivers want to charge at the
same time.
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Figure 3.6: Multiserver queue [9]

Library integration

The library supports the calculation of multiserver queue properties by providing a class that is
a model of such a queue (Figure 3.7).

MultiServerQueue

-numServers : Integer
-arrivalRate : Double
-meanServiceTime : Double
-meanNumberItemsInSystem : Double
-meanItemInSystemResidenceTime : Double
-meanNumberItemsWaiting : Double
-meanWaitingTime : Double
-meanWaitingTimeWaitingItems : Double
-utilization : Double
-trafficIntensity : Double

Figure 3.7: MultiServerQueue class

To instantiate a multiserver queue the number of servers, the arrival rate and the service time
are required. After instantiation further multiserver queue properties can be calculated on the
basis of these initial parameters.

With respect to the library’s descriptor model, a factory class is provided that creates a mul-
tiserver queue model using the number of servers and a list of queue entities, a start date and an
end date.
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The startdate and enddate describe the observed time range. The list of queue entities (queueing
processes, in respect to charging infrastructure meter data charging sessions) are the observa-
tions within the time range.
To create a multiserver queue model, the factory determines the observations mean service time
using Equation 3.14.

Ts =
1

n
∗

n∑
i=1

enddatei − startdatei (3.14)

Ts ... mean service time
n ... number of observations
enddatei ... end date of observation i
startdatei ... start date of observation i

The result of the difference enddatei − startdatei is a timespan in hours.

The arrival rate of the observed time range is defined by Equation 3.15.

λ =
n

enddate− startdate
(3.15)

λ ... arrival rate
n ... number of observations
enddate ... time range end date
startdate ... time range

The result of the difference enddate− startdate is, as before, a timespan in hours.

Having these parameters, a multiserver queue model can be instantiated.

MultiServerQueue(N,Ts, λ) (3.16)

N ... number of servers
Ts ... service time
λ ... arrival rate
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CHAPTER 4
Charging infrastructure simulation

The previous chapter gives a short introduction to meter data analysis and described a library
that provides different methods to analyse different types of data. The application of the pro-
vided methods is actually not that simple. To conduct experiments and figure out the right usage
of the methods, reasonable meter data is required. Thus it is fanciable to simulate charging in-
frastructures if no recorded data is available.

Computer simulation, is a method which simulates a simplified model of an exisiting physi-
cal system. By making simulation of charging infrastructures available, the creation of artifical
meter data gets enabled. And thus, simulation of such infrastructures is crucial for the develop-
ment of crucial analytics use cases.

4.1 Model

The model of the simulation library is divided into three parts.

• The first part are driving profiles that describe different groups of drivers.

• Second, there are electric vehicles that describe the characteristics of their charging pro-
cesses load curve and thus the characteristics of the resulting load profiles as they depend
on the vehicle’s battery type.

• The third part is the model of charging points, which allows the simulation of charging
stations.
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Driving profiles

Driving profiles describe drivers in respect of three main properties:

• Vehicle: The vehicle is indicated by its battery capacity. The longer the driver’s routes
are, the higher is the vehicle’s battery capacity.

• Charging frequency: The charging frequency influences the battery’s state of charge at
the beginning of the charging process. The more often a driver charges, the higher is the
battery’s state of charge.

• Charging start time: Different drivers start charging at different times, but a driver usually
starts charging at settled times of day.

DrivingProfile

-state : Double
-capacity : Double

ChargingSessionStartParameter

-mean : Double
-standardDeviation : Double

1

-chargingSessionStartParameters

*

Figure 4.1: Driving profile domain model

This model allows the creation of driving profiles as specified.
It is possible to assign different times of day for the beginning of a charging process to a driving
profile. Using the parameters of ChargingSessionStartParameter, normal distributed random
numbers can be created to simulate the start of a charging session.

In Austria, there are typically four different types of driving profiles that can be applied on
weekdays: [10]

• Commuter

• Business driver

• Leisure driver

• Miscellaneous driver

These driving profiles are defined by the attribute values shown in Table 4.1.

On weekends, there are no typical driving profiles, thus the definition of specific driving
profiles would be necessary to simulate saturdays or sundays.

The listed driving profiles are accessible as constants of the DrivingProfile class.
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Driving profile Capacity Initial state Mean start time Standard deviation

Commuter 20 90%
06:30am 1.2h
15:30pm 2.7h

Business driver
25 55%

08:15am 1.23h
11:00am 1.7h
16:15pm 1.7h

Miscellaneous driver
25 65%

08:15am 1.3h
10:15am 1.3h
14:15pm 1.25h
17:15pm 1.1h

Leisure driver 25 67%
11:30am 3.5h
18:00pm 1.5h

Table 4.1: Driving profiles [10]

Electric vehicles

The model of Figure 4.2 is responsible for the creation of load profiles of a vehicle’s charging
process.
As the vehicle’s battery type defines the charging processes load curve and different battery
types are available, the library provides an abstract type that is used by other components. Thus,
different types of electric vehicles can be modeled and are usable.
The common battery type Lithium-ion [10] is provided as default by the library.

+charge(in date : Date)

ElectricVehicle

-rCapacity : Double
-capacity : Double

LithiumIonElectricVehicle

LoadProfile

-date : Date
-consumption : Double

Figure 4.2: Electric vehicle model

The charge method performs a charging process until the battery is fully charged and returns
a list of load profiles. After the method is called, the residual capacity is equal to the vehicle’s
capacity.
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Lithium-ion charging

The charging process of Lithium-ion batteries consists of two phases. [10] Until a specific state
of charge is reached the battery gets charged using constant power. Towards this state of charge,
the charging power declines exponential and is defined by Equation 4.1, Equation 4.2 and Equa-
tion 4.3.

P = Pconst + e
s−soc

kl (4.1)

Pconst ... constant charging power
s ... state of charge where the charging power begins to decline
soc ... current state of charge
kl ... charging breaking current

kl =
100− s
ln Pconst

Pls

(4.2)

Pls =
Uls

Un
∗ Ils ∗ Ebatt (4.3)

Pls ... charging breaking power
Uls ... charging breaking voltage
Un ... nominal voltage
Ils ... charging breaking current
Ebatt ... nominal energy

Considering the power source as a typical Austrian power outlet, the parameter values are
set as in Table 4.2

To create load profiles in a defined interval, it is necessary to forge a link to the parameter
time. The battery capacity is given in kilowatt-hours. The capacity in dependency of the state of
charge can be calculated using Equation 4.4.

capsoc = 80 ∗ Pconst +

∫ soc

80
Pdsoc (4.4)

The unit of capsoc is kilowatt-soc.
Because these capacities are in correspondence with each other, the Equation 4.5 can be set

up.

hours

cap
=

soc

capsoc
(4.5)

Using Equation 4.5, the charging capacity of a period can be calculated.
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Constant charging power Pconst 3.57 kilowatt
State of charge where the charging power begins to decline ks 80%
Charging breaking voltage Uls 4.2V
Nominal voltage Un 3.6V
Charging breaking current Ils 0.03 C-Rate

Table 4.2: Parameter values [10]

Process description Subsequently the procedure of a charging process looks as depicted in
Figure 4.3:

[rCapacity < capacity] 

[rCapacity = capacity] 

Charge exponential

Charge constant until soc <= 80%

Charge exponential for residual time

Charge constant for 15min

[soc >= 80%] 

[soc < 80%] 

[partial charge necessary] 

[constant charge possible] 

Figure 4.3: Charging process

The charging process continues as long as the remaining capacity is less than the capacity.
If the state of charge is greather than 80%, the defined exponential function is used for calculat-
ing the consumption of the interval.
Otherwise, a check whether constant charging for the whole interval is possible is performed.
If so, the consumption of the interval gets calculated using constant power.
In the other case, constant power charging is used as long as the state of charge is less or equal
80% and the residual time, the exponential function is used.
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Charging points

A charging point is the representation of a charging station (Figure 4.4).

+charge(in date, in vehicle)

ChargingPoint

-id : String
-lastChargingActivity : Date
-meterReading : Double

ChargingSession

-startdate : Date
-enddate : Date

MeterReading

-date : Date
-value : Double

1

*

1

*

1 *

Figure 4.4: Charging point model

ChargingSessions and MeterReads are simple domain objects as described in the previous
chapters.
A ChargingPoint is a representation of a charging station. It holds all ChargingSessions and
MeterReads created at it.

Furthermore, it provides a method charge to simulate a charging process of a electric vehicle
at this charging point.
The method itself does not simulate the charging process, it just delegates the method call to
the electric vehicle after performing a check of the given date. The load profiles returned by the
vehicle’s charge method get transformed into a charging session and meter reads (Figure 4.5).

Check date Charge vehicle Create session

Tranform load profiles to meter reads

[not ok] 

[ok] 

Figure 4.5: Charging at a charging point

If the given date is less than the charging point’s last charging activity, the charging simula-
tion fails.
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4.2 Scenario creation

Listing 4.2 demonstrates how to use the simulation library:

// Set driving profile
DrivingProfile drivingProfile

= DrivingProfile.COMMUTER_PROFILE;

// Create a new charging point with id ’cp1’ and
// lastChargingActivity as 0 (01-01-1970 00:00:00.000)
ChargingPoint chargingPoint

= new ChargingPoint("cp1", new Date(0));

// Create a new lithium-ion vehicle
ElectricVehicle electricVehicle

= new LithiumIonElectricVehicle(drivingProfile);

// Determine next startdate of the current date
// of the driving profile
// The service just determines the nearest parameters
// of the current day of time
// and creates a normal distributed random using the parameters
Date startdate = ChargingSessionStartdateService.

createChargingSessionStartDate(drivingProfile, new Date());

//Simulate charging process
ChargingSession session

= chargingPoint.charge(startdate, electricVehicle);

Listing 4.1: Simulation example

As shown in this example, the library’s components allow the simulation of charging infras-
tructures.
The library can be understood as a model kit which provides components to create different sce-
narios. It is clearly possible to create much more sophisticated simulation models as shown in
the example by adding more charging points, using different driving profiles and implementing
a more complex simulation logic.
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Analysis library integration

As mentioned, one major purpose of the simulation library is to help at the creation of analysis
use cases.
Therefore, it is necessary to integrate the analysis library. Listing 4.2 shows how this can be
done (based on Listing 4.2):

//Simulate charging process
ChargingSession session = chargingPoint.charge(startdate,

new LithiumIonElectricVehicle(drivingProfile));

ParameterUtil<MeterRead> pu
= new ParameterUtil<MeterRead>(MeterRead.class);

double mean = pu.calculateMean(session.getMeterReads());
double standardDeviation =

pu.calculateStandardDeviation(session.getMeterReads());

Listing 4.2: Analysis example
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4.3 Use cases

First use case

Listing 4.3 shows how the correlation coefficient of a charging point’s daily load profiles can be
calculated. Thirty charging sessions of just two different driving profiles get created. For the
first twenty charging sessions the driving profile COMMUTER_PROFILE and for the last ten
the driving profile BUSINESS_DRIVER are used. After the creation of the charging sessions,
the charging point’s load profiles get derived of its meter reads. The load profiles get aggregated
to hourly values and partitioned by days to enable a daily comparison.

ChargingPoint cp = new ChargingPoint("CP1", new Date());

//Create charging sessions
for (int i = 0; i < 30; i++) {

DrivingProfile dp = i < 20 ?
DrivingProfile.COMMUTER_PROFILE :
DrivingProfile.BUSINESS_DRIVER_PROFILE;

System.out.println("Charging Session : " +
charge(cp, dp, cp.getLastChargingActivity()));

}

//Derive load profiles
List<LoadProfile> loadProfiles =

derivationUtil.derive(cp.getMeterReads(),
loadProfileFactory);

//Aggregate load profiles hourly
loadProfiles =

sumAggregationUtil.aggregate(loadProfiles, TimeUtil.
HOUR_MILLIS, loadProfileFactory);

//Partition days
List<List<LoadProfile>> partitionedLoadProfiles =

partitionUtil.partition(loadProfiles, TimeUtil.DAY_MILLIS);

Listing 4.3: First use case
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Results of comparing the first day with all other days are given in Listing 4.3.

Correlation Coefficient : 1.0
Correlation Coefficient : 0.9660124932684988
Correlation Coefficient : 0.9673942796358493
Correlation Coefficient : 0.9682131117576436
Correlation Coefficient : 0.9758823270532502
Correlation Coefficient : 0.9821262219803067
Correlation Coefficient : 0.9757937295890604
Correlation Coefficient : 0.9668320596693216
Correlation Coefficient : 0.9704418588878823
Correlation Coefficient : 0.9746474690614162
Correlation Coefficient : 0.4760666361759543
Correlation Coefficient : 0.4721896590843059
Correlation Coefficient : 0.45526529246973174
Correlation Coefficient : 0.44826134492831016
Correlation Coefficient : 0.4581665971070294

Listing 4.4: First use case results

As both of the used driving profiles end up in two charging sessions a day as a result of their
characteristics, there are fifteen days that got compared two each other.
Since the first day was chosen as reference day, which got compared with all other days, the first
correlation coefficient, the comparison of the first day with itself, is 1.0. The next nine days the
same driving profile was used, therefore the correlation coefficients are close to 1.0. The last five
days the second driving profile was used and therefore the correlation coefficient is way smaller.
See results in Figure 4.6.

1.0
1

≥ 0.9

9

≤ 0.5

5

Figure 4.6: Number of charging session per correlation coefficient range
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Second use case

Listing 4.3 shows the application of queueing analysis. Charging sessions of different driving
profiles will be created at three different charging points. To show a change of the queue’s
parameters, expansion is simulated by creating charging sessions at one charging point in the
first run, at two charging points in a second run and at finally at all three charging points in a
third run. The sessions of all charging points get combined and partitioned by days.

ChargingPoint cp1 = new ChargingPoint("CP1", new Date());
ChargingPoint cp2 = new ChargingPoint("CP2", new Date());
ChargingPoint cp3 = new ChargingPoint("CP3", new Date());

for (int i = 0; i < 10; i++) {
charge(cp1, getDrivingProfile(), cp1.

getLastChargingActivity());
}

for (int i = 0; i < 10; i++) {
Date after = cp1.getLastChargingActivity();
charge(cp1, getDrivingProfile(), after);
charge(cp2, getDrivingProfile(), after);

}

for (int i = 0; i < 10; i++) {
Date after = cp1.getLastChargingActivity();
charge(cp1, getDrivingProfile(), after);
charge(cp2, getDrivingProfile(), after);
charge(cp3, getDrivingProfile(), after);

}

List<ChargingSession> allSessions = new ArrayList<
ChargingSession>();

allSessions.addAll(cp1.getChargingSessions());
allSessions.addAll(cp2.getChargingSessions());
allSessions.addAll(cp3.getChargingSessions());

List<List<ChargingSession>> dailySessions =
partitionUtil.partition(allSessions, TimeUtil.DAY_MILLIS);

Listing 4.5: Second use case - creation
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For each day, a new multiserver queue instance will be created and its parameters calculated.
The number of servers used for the creation of the multiservers queue instance is 3, the arrival
rate is the number of sessions divided by the number of hours of the day’s time range and the
service time is an average of the day’s charging sessions duration. See Listing 4.3.

for (List<ChargingSession> daySessions : dailySessions) {
Date day = TimeUtil.getDayStart(daySessions.get(0).

getStartdate());
System.out.println("### New day - " + day);

MultiServerQueue msq = multiServerQueueFactory.
createMultiServerQueue(3, daySessions);

System.out.println("Arrival rate: " + msq.getArrivalRate())
;

System.out.println("Mean service time: " + msq.
getMeanServiceTime());

System.out.println("Mean number waiting : " + msq.
getMeanNumberItemsWaiting());

}

Listing 4.6: Second use case - calculation
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Now it’s possible to calculate the multiserver queue’s parameters for each day (Listing 4.3).

### New day - Wed Oct 03 02:00:00 CEST 2012
Arrival rate: 0.18181818181818182
Mean service time: 2.195872083333333
Mean number waiting : 0.0012595592725580908

### New day - Thu Oct 04 02:00:00 CEST 2012
Arrival rate: 0.18181818181818182
Mean service time: 2.1938790277777778
Mean number waiting : 0.0012550991134093652

...

### New day - Mon Oct 08 02:00:00 CEST 2012
Arrival rate: 0.36363636363636365
Mean service time: 2.1958438194444443
Mean number waiting : 0.0187816001723483

...

### New day - Tue Oct 16 02:00:00 CEST 2012
Arrival rate: 0.5454545454545454
Mean service time: 2.0162323611111113
Mean number waiting : 0.06620283352126259

### New day - Wed Oct 17 02:00:00 CEST 2012
Arrival rate: 0.5454545454545454
Mean service time: 2.015377638888889
Mean number waiting : 0.0.06631496761712702

...

### New day - Tue Oct 16 02:00:00 CEST 2012
Arrival rate: 0.5454545454545454
Mean service time: 2.0162323611111113
Mean number waiting : 0.06631496761712702

Listing 4.7: Second use case results
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The result of the scenario shows that the more charging sessions a day are performed, the
higher is the arrival rate and thus the mean number of waiting items. The higher this number,
the more likely it is that not all charging requests can be handled (Figure 4.7).
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Figure 4.7: Second use case results

The average service time is similar due to the fact that the probability distribution of the
selected driving profile is the same for each day. Using average service times and a common
arrival rate for all charging sessions must be considered carefully. Since there are different
driving profiles with different expected charging times and arrival times, the result of the queues
can be misleading. The more heterogenous the driving profiles are, the more inaccurate the
model will be. One possibility to counteract this effect would be to consider particular time
frames instead of a whole day.
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CHAPTER 5
Conclusion

Existing meter data management solutions can be used for the management of the meter data
of public electric vehicle charging infrastructures. To enable usage, existing solutions must be
extended by a component that handles the management of charging session data. The compo-
nent must have a data collection interface which separates charging session data and meter data.
Charging session data can only be stored in the component’s charging session repository, while
meter data must be forwarded to the underlying meter data management system. Furthermore,
the component must also provide an export interface where the data is combined again.
Meter data analysis is a useful method to gain additional knowledge from the large amounts of
stored data. Thus applying such method is a desirable goal. The meter data analysis library en-
ables the application of several analytical methods in an easy way. It is possible to analyze time
series by computing expressive statistical parameters, applying auto-correlation or performing
regression analysis. As charging sessions can be considered as queuing processes, the analysis
of charging sessions using queuing theory is also possible.
The simulation of real world scenarios is very useful for many purposes as it enables the con-
duction of experiments. The simulation library provides models of the most common driving
profiles and a simulator of a charging station which is able to create realistic meter data. By
using this library the creation of different models which generate reasonable data is possible.
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Glossary

AMI Advanced metering infrastructure. 3–5

IT Information technology. 4

MDM Meter data management. 3, 4

MDMS Meter data management system/platform. 5, 9

MDR Meter data repository. 3, 4

45


	Introduction
	Motivation
	Problem statement
	Aim of the thesis

	Meter data management
	Definition
	Meter data management system/platform
	Meter data management for electric vehicle charging infrastructures

	Meter data analysis
	Meter data analysis for electric vehicle charging infrastructures
	Meter data analysis library

	Charging infrastructure simulation
	Model
	Scenario creation
	Use cases

	Conclusion
	Bibliography
	Glossary

