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Abstract

Introduction

Aim of this thesis it to design an develop an API for constrained RESTful environments based
on a domain-specific language. The API provides access to the data and operations of IoT (Inter-
net of the Things) devices communicating directly via IPv6 or through a multi-protocol gateway
that connects to existing building automation systems based on standards like KNX or BACnet.

In the proposed IPv6 based IoT architecture each device respectively each gateway is assigned
an own static IP address and runs a server that exposes a set of IoT objects to other IoT devices
and to applications. The IoT objects are described according to the oBIX (Open Building Infor-
mation Xchange) standard as a set of oBIX objects based on oBIX contracts. An oBIX contract
provides a template for a certain class of objects, e.g. the class of all light switches. HTTP
and CoAP (Constrained Application Protocol) bindings allow any application to access the IoT
devices by one of these protocols. Application design based on direct access via HTTP or CoAP
however requires knowledge of these protocols and implementation of a corresponding proto-
col client in every application. The API described in the thesis provides access to the devices
by a client application simply by accessing a local proxy object working as a device abstrac-
tion. All communication protocol specific functionality and support of encoding is encapsulated
in the API. In addition to getting and setting an object’s values, oBIX standard functionality
for watches, lobby, history and history rollup is provided together with support for CoAP ob-
serve functionality. The domain specific classes are generated from oBIX contracts similar to
wsdl2java for web services so that arbitrary sets of contracts are supported. The thesis describes
the concepts, implementation and usage of the API.
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CHAPTER 1
Introduction

1.1 Internet of the Things

The basic idea of the Internet of Things (IoT) is to give entities in the physical world a corre-
sponding representation in the information world so that each of these entities exposes infor-
mation about its type, structure, data and functions it can perform. Compared with the current
Internet where most of the information is provided by humans and used by humans in IoT [20]
most of the information is provided and consumed by machines which poses a set of basic issues:

• Large Number of Objects: The number of entities (called IoT objects) in the Internet of
Things will clearly outnumber the number of entities in the current internet, expected
to grow into 50 billion entities by 2020. Each of these IoT objects has to be uniquely
identifiable which will exceed the range of available IPv4 addresses. IPv6 [1] due to
its extremely large address space would be able to cope with the demand. Alternative
identification schemes are unique numbers such as used in RFID tags and the scheme
used in the semantic web which intends to make all things (not only physical entities)
addressable by a unique URI.

• Interoperability: In addition to being able to identify the IoT objects in the physical world
it is also necessary to enable communication between them and ensure interoperability.
IoT objects either communicate with each other in peer to peer manner or they commu-
nicate with central server based objects. They must be able to work together, even if
their interoperability is not designed explicitly as in a single application, but is guaranteed
by following a set of standards. IoT applications can use any objects adhering to these
standards.

• Semantics: It has to be taken into account that machines do not have the human capa-
bilities of interpretation, so precise foundations of semantics have to be assigned to the
objects, their data and functionalities. Ontology frameworks such as SensorML [10] or
DomoML [19] can provide such a foundation.
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The term Internet of Things is not really precisely defined and overlaps with concepts such as
Ambient Intelligence which is defined as systems that are sensitive and responsive to people,
e.g. sensing in a building automation system the presence of a person in a room and setting
the light and the room temperature accordingly, Ubiquitous computing, which means that com-
puting devices are fully integrated into the physical space and people are using them without
being aware of it, and Machine-to-Machine which focuses on the communication between de-
vices equipped with wireless or wired communication capabilities and servers running specific
applications such as fleet management or machine monitoring.

There are numerous applications envisioned in the IoT world in domains like Smart Cities,
Smart Environment, Smart Grids, Logistics, Health or Agriculture. According to 6LowPAN:
The Wireless Embedded Internet [17] examples are:

• Smart Roads: Intelligent highways with warning messages and diversions according to
climate conditions and unexpected events like accidents or traffic jams

• Snow Level Monitoring: Snow level measurement to know in real time the quality of ski
tracks allows security corps to perform avalanche prevention

• Smart Grid: Measure and control energy consumption, production and distribution

• Container Tracking: Measurement of position, vibrations, forces, container openings or
cold chain maintenance for insurance purposes

• Patient Monitoring: Measurement of vital functions such as heart rate, blood pressure or
movement of critical patients at home

• Green Houses: Control of climate conditions to maximize the production of fruits and
vegetables and their quality

1.2 Building Automation

Architecture

The term building automation comprises automation systems to monitor, control and optimize
technical processes in a building such as heating, ventilation, air condition, energy and wa-
ter supply or surveillance. Elements in such a process are sensors (measuring some physical
quantity), actuators (to change behaviour of the process), user interfaces, consumers and other
technical devices.

The architecture of a building automation system follows a layered approach in the following
summary viewed bottom-up:

• Field Level: It consists of actuators (e.g. analogue values of temperature or pressure, digi-
tal values of contacts), sensors (valves and switches) and their cabling to the corresponding
control system.
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• Control Level: Individual digital control systems directly connected to sensors and ac-
tuators responsible for a specific task like control of room temperature. Communication
between the control systems is either done manufacturer specific or by standardized bus
systems such as LONWorks or KNX.

• Management Level: Single or distributed system performing visualization, supervision
and optimization according to the term SCADA (Supervision, Control And Data Acqui-
sition). Systems at the management communicate with the control level via standardized
protocols such as BACnet [7] or OPC [9]. Management systems can also be distributed
between local systems that perform local management autonomously and remote systems
that communicate with the local management systems via IP connection.

A standard model for building automation systems is described in [2]. The following figure
taken from [13] shows a typical example of a building automation system. The system consists
of two independent field level secondary bus systems, each of them handling a set of control
elements such as a boiler controller or a lighting controller. A PLC (programmable logic control)
controls each of the bus systems and connects to a primary, management level bus system that
connects to systems such as web servers and graphical workstations for users interacting with
the system as shown in Fig. 1.1.

Technologies

A strong current focus is on interoperability so that field and control components of different
manufacturers are working together based on common bus systems and protocols [15]. Each of
the presented technologies is applicable to one or more of the levels described in the building
automations model.

Technology Field Level Control Level Management Level
KNX X X -
LONWorks X X -
BACnet - X X
OPC - - X
OSGI - - X

Table 1.1: Technologies in Building Automation Levels

• KNX (Konnex Bus) [8] describes how sensors and actuators are connected via a bus sys-
tem and communicate via a standardized protocol. It is the successor and compatible to
EIB (European Installation Bus). KNX separates the control functions from the energy
distribution on hardware level and can work with several communication systems such as
twisted pair, power line, radio or Ethernet.

• BACnet was developed by the American Society of Heating, Refrigerating and Air Con-
ditioning Engineers and is standardized by ISO as ISO 16484-5. BACnet defines a set
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Figure 1.1: Building Automation System

of services such as data sharing, event and alarm processing, processing of value changes
and device and network management. The standard defines a set of object types: analogue
and digital input, analogue and digital output, analogue and digital values, notifications,
trends, calendars and schedules. From communication protocols it follows a 4 layer model
(Link Layer, MAC Layer, Network Layer and Application Layer) with several options for
the layers 1 and 2 like Ethernet, BACnet/IP, point to point over RS232 or ZigBee for
wireless communication.

• LONWorks (Local Operation Network) is a networking platform built on a protocol cre-
ated by Echelon Corporation for networking devices over media such as twisted pair,
powerlines, fiber optics, and RF. It was submitted to ANSI and accepted as a standard for
control networking (ANSI/CEA-709.1-B). The underlying LONTalk protocol covers the
layers 2-7 of the ISO reference model. LONWorks is used in building and home automa-
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tion, transportation, utility, and industrial automation. It is a field level bus system, where
devices called Nodes communicate over the bus. Nodes are categorized into sensors,
actuators and controllers. From a logical point of view nodes communicate via communi-
cation objects called Network Variables. In order to facilitate interworking between nodes
of different manufacturers standard network variable types are defined. Interfaces connect
LONWorks devices to management level systems, e.g. via OPC.

• OPC (OLE for Process Control) is a standard for supplier independent communication
in automation systems. It was created by a set of leading companies in the automation
industry and is currently maintained by OPC foundation having more than 400 members.
Basic idea is that each device provides an OPC driver which is then used by an OPC server
to communicate with the devices. OPC clients such as a visualization system communi-
cate with the OPC server and not with the individual devices. The standard comprises a
set of services: Real-time Data Access, Alarms and Events, Historical Data Access, Data
Exchange, Command Handling and Web Services. Devices and their functions are repre-
sented as a set of COM (Common Object model) objects by the server and made available
for clients. OPCUA (Unified Architecture) describes the services with WSDL (Web Ser-
vice Definition Language) instead of the Microsoft specific COM model to make it also
available on non Microsoft platforms.

• OSGI (Open Services Gateway initiative) [16] is a specification for a dynamic software
platform based on the Java virtual machine. Components (called Bundles) expose their
interfaces (called Services) via a service registry. Bundles can be added, updated and
removed dynamically at run-time and from remote. OSGI is well suited to residential
gateways in home automation, smart grid or assisted living where new services can be
easily selected and installed from remote.

1.3 Constrained Restful Environments

REST (Representational State Transfer) is an architecture model based on the World Wide Web
following a Request Response pattern. Clients access resources on servers identified via a URI
(Uniform Resource identifier) by sending a small number of primitive operations only. These
primitives perform the standard CRUD (Create, Read, Update, Delete) functions on the re-
sources. For HTTP the primitives map to the HTTP messages POST, GET, PUT and DELETE.
Resources are described by standard notations such as XML or JSON. Compared with RPC (Re-
mote Procedure Call) or SOAP (Simple Object Access Protocol) REST applies simple operations
on complex resource descriptions (GET /users/user1/address) vs complex operations
on simple resource descriptions (getAddress(user1)).

Constrained Restful Environments apply the successful REST architecture to IoT gateways and
even single IoT devices that make their resources like sensors and actuators available to clients
via a web server. These devices are often very small in terms of their processing and memory
capabilities which makes it not possible to run a standard HTTP server on them. CoAP (Con-
strained Application Protocol) [11], like HTTP an application layer protocol, on top of UDP
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provides a small footprint alternative for constrained devices. Each device runs a CoAP server
that provides clients access to resources. Clients either work directly as a CoAP client or access
the CoAP enabled device via HTTP and an HTTP-to-CoAP proxy. Combined with efficient
wireless transmission protocols based on IPv6 such as 6LowPAN (IPv6 over Low power Wire-
less Personal Area Network) and efficient payload encoding techniques such as EXI (Efficient
XML Interchange) CoAP provides the base for an IoT architecture where the devices themselves
are first class citizens on the network rather than being controlled by a central server application.

1.4 oBIX Standard

oBIX (Open Building Information eXchange) [3] is a standard defined and promoted by OASIS
(Organization for the Advancement of Structured Information Standards) that defines an object
model and a set of protocol bindings in the domain of building automation systems. oBIX is
built on following concepts:

• Object Model: defines a set of base objects to handle data from sensors and actuators. The
data types comprise boolean, numeric, string and enumeration types to handle points (an
abstraction that holds a single scalar and its status and is mapped to sensors, actuators or
set points), date and time values to handle histories (sets of timestamped point values) and
URIs to name objects.

• Objects: describe concrete entities in the physical world (e.g. a lighting controller, an
air conditioning system or parts of them). Objects are defined as a set of parts which are
either objects from the base object model or objects that itself are composed of objects
from the base object model. The definition of objects is recursive, objects can contain
other objects.

• XML: is used to provide a simple mapping of the object model to a machine and human
readable form. Each of the object types maps to one type of XML element, the val attribute
maps the value of the object. The following sample taken from an object handled by
oBIX shows the XML representation. The object BrightnessActuator refers to a contract
iot:BrightnessActuator having one part with the name value and a value of 0.

<obj href="/BrightnessActuator" is="iot:BrightnessActuator">
<int name="value" href="value" val="0" writable="true"/>

</obj>

• Encoding: binary encoding provides a compact representation for usage on low bandwidth
connections and constrained devices.

• Contracts: are used to define a domain specific object model. They are objects them-
selves but can be referred to by other objects as a prototype. An object referring to a
contract by the is attribute ensures that at least all the fields defined in the contract are
available in the object, e.g. a certain object BrightnessActuator referring to a contract
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iot:BrightnessActuator ensures that the value which is an integer value is part of it, but
other parts like an on/off switch may be added to the object. Contract definitions can
be overridden (e.g. defining a new value) but the type defined in the contract can not be
changed. Objects can refer to multiple contracts similar to multiple inheritance in object
oriented languages. Flattening is used to avoid deep inheritance hierarchies as shown in
the following example where ClockRadio inherits directly from Clock, Radio and Device.

<obj href="Device">...<(obj>
<obj href="Clock" is="Device">
<obj href="Radio" is="Device">
<obj href="ClockRadio" is="Clock Radio Device">

• URIs: are used to identify objects, in fact the representation of objects in oBIX is a set
of XML documents identified by URIs. The usage of URIs as a naming scheme has
the advantage that they are already defined in an existing specification (RFC 3986) and
programming languages typically provide good support for them.

• REST (REpresentational State Transfer): is used as a model to access oBIX objects. Each
object identified by an URI is accessible via standard HTTP operations GET, PUT, POST
and DELETE mapped to the object operations of read, modify, create and delete.

• Extendibility: the concept of objects being recursively composed of other objects and of
contracts defined on base of prototype objects provides a high degree of building abstrac-
tions without need to touch the basic definition of oBIX. New abstractions are built out of
trees of existing objects.

oBIX objects play a server role, they provide means to query their values and set new values
but can not send spontaneous messages when a value changes. This is unlike the role of devices
typically have in machine-to-machine or home automation systems where they play a client role
and can send messages on changed values at any time. oBIX provides the concept of Watches to
handle rapidly changing object data without requiring the object’s client to implement a callback
and expose a public IP address. Watches work in following way:

• A Watch Service object provides a well-known URI as the factory for creating new watches.
When the make operation is performed on a watch service it creates and returns a new
Watch object.

• The client then adds existing objects to the watch by the add operation.

• In regular intervals the client should call the pollChanges operation which returns a list of
all objects that have changed since the last call to pollChanges.

History objects provide access to timestamped point value data, when ever a value changes, the
history object will add the value with the corresponding timestamp to a list of history data. His-
tories are queried by start time, end time and the maximum number of history entries and return
the list of all fitting history records. History rollups provide derivative data from the history

7



within certain time intervals. A history rollup query delivers the list of derivative data (count,
min, max, average and sum of values) for a defined time interval between a start data and an end
date to an application interested in the summary values rather than the raw history data.

The Lobby object provides access to all objects handled by an oBIX gateway. Utilizing the
lobby a client only needs to know the well-known address of the lobby and can retrieve the
URIs of all other objects.

1.5 oBIX Gateway

Architecture

The multi protocol IPv6 gateway [12] based on oBIX connects to existing building automation
systems (in case of the implementation BACnet and KNX) and makes the devices on these
systems available as oBIX objects via a REST or CoAP (Constrained Application Protocol) [4]
interfaces. It consists of the following architectural components as shown in the diagram in Fig.
1.2.

• HTTPHandler: provides access to the oBIX objects via REST style web services as
defined in the oBIX specification. It is based on NanoHTTPD, an open-source, small-
footprint web server.

• CoAPHandler: provides access to the oBIX objects via the CoAP protocol. It is a map-
ping of the PUT, POST and DELETE messages like Http but in addition provides an
observe option to the get message to avoid the polling required by clients to handle oBIX
watches. When a GET is combined with observe the return message to the get will be sent
when ever the status of the object changes. The Californium package by ETH Zurich is
used to implement the CoAP protocol handler [14].

• EXI Parser: provides an implementation of EXI (Efficient XML Interchange). XML is
a powerful and easy to understand protocol binding but adds considerable overhead com-
pared to raw protocols. EXI compresses XML so that also less powerful communications
channels and devices can be addressed by XML.

• oBIX Handler: provides access to the oBIX objects according to the standard and imple-
ments the base objects of the specification such as int, bool, real, str as well as the lobby
object, watches, lists and histories including rollup.

• IoT Objects: is a mediation layer that provides access to non oBIX devices through
the oBIX handler. Such objects will be connected to the oBIX layer through a set of
adapters. The KNX adapter and the BACnet adapter handle the corresponding protocols.
The virtual device adapter provides a set of virtual devices that can be used for testing
purposes without a set of real devices behind. Virtual devices adhere to the same interface
as real devices and behave exactly in the same manner.
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Figure 1.2: Multi Protocol Gateway and API Components
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Implementation

From the implementation point of view packages comprising the multi protocol gateway are:

• The obix.server package contains the CoAP server and the HTTP server

• The obix.server.objects.iot.actuators.* and the
obix.server.objects.iot.sensors.* packages contain the interface defini-
tions as well as the implementation of KNX, BACnet and virtual devices

• The obix.objects package contains the standard oBIX base objects such as base
types, watch and lobby

• The californium.* packages contains the sources of the CoAP implementation of
ETH Zurich [14]

Usage

The oBIX objects handled by the multi protocol gateway can be accessed by an HTTP REST
style client or by a CoAP client. For HTTP testing purposes HTTP Requester, a plug-in for
Mozilla Firefox is well suited, for CoAP access Copper, which is also a Firefox plug-in can be
used. While testing is quite easy to achieve writing clients embedded in an application requires
handling a lot of non-business protocol handling logic in each client. The approach outlined in
the next chapter will describe an API providing a convenient way to embed usage of the gateway
in client code.

1.6 oBIX Toolkit

Summarizing the documentation accompanying the Java oBIX Toolkit, it is an open source,
public domain library to support oBIX developers. Toolkit functions that will be used in the
implementation of the domain specific language are:

• The obix package provides a set of classes for modelling each of the oBIX built-in object
types: Obj, Bool, Int, etc. These classes provide support for managing tree structures,
contract definitions, and encoding/decoding of primitive data types

• The obix.io.ObixEncoder class takes an object tree and generates its XML repre-
sentation. Likewise the obix.io.ObixDecoder parses an XML representation into
memory as a tree of object instances. The obix.io.BinObixEncoder and the
obix.io.BinObixDecoder are used for binary serialization. Encoder and decoder
will be used in the implementation of the domain specific language.

• The oBIX compiler is a tool which reads an oBIX XML document and outputs Java source
code - one interface for each contract. The compiler will be enhanced with the ability to
generate also implementation classes in the course of the development of the API.
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1.7 Problem Statement

Clients access the oBIX objects via HTTP or CoAP protocol. Whereas such an access is not
hard to implement, especially from web based applications, it requires the application developer
to handle the protocol specific implementation, message handling and payload settings.

• Implementation of protocol management code has to be repeated for each new applica-
tion. There is a lot of code to write that has nothing to do with the business logic of the
application.

• The application is bound to a specific protocol (CoAP or HTTP) and it is not possible to
switch between them easily.

• To support different encodings would need a specific implementation in every new appli-
cation. Applications can not switch between encodings or decide on encoding based on
configuration.

• Applications have to care about updating object state by applying the watch or observer
pattern and handle repeated polling for the watch pattern and asynchronous responses for
the observer pattern.

• Text level access to objects inhibits standard type-safe access provided by object oriented
programming.

Combined together this makes writing even a simple application quite a difficult task. The
following example summarized pseudocode in Listing 1.1 takes 110 lines of code to realize a
simple temperature alarm application which monitors a temperature and switches on an alarm
light if the temperature is below or above a certain value. The business logic of this application
is less than 20 lines of code.

Listing 1.1: Temperature Alarm

p u b l i c c l a s s Tempera tureAlarm {
s e t a l a rm = f a l s e ;

s e t maxTemp = 2 8 . 5 ;

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
s e t u r i = " coap : / / [ 2 0 0 1 : 6 2 0 : 2 0 8 0 : 1 3 0 : : c8 ] / t e m p e r a t u r e " ;
a s s i g n new GETRequest
s p e c i f y URI of t a r g e t e n d p o i n t
e n a b l e r e s p o n s e queue
s e t o b s e r v e o p t i o n
s e t media t y p e = APPLICATION_XML

e x e c u t e t h e r e q u e s t
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w a i t t o r e c e i v e t h e r e s p o n s e

s e t v a l = e x t r a c t v a l u e from p a y l o a d
p r i n t o u t v a l

r e g i s t e r r e s p o n s e h a n d l e r w i th {
p u b l i c vo id h a n d l e R e s p o n s e ( Response r e s p o n s e ) {

s e t temp = e x t r a c t v a l u e from p a y l o a d
i f ( temp < maxTemp && ala rm ) {

a s s i g n new PUTRequest
s e t t a r g e t URI o f r e q u e s t
s e t p a y l o a d of r e q u e s t ( f a l s e )
e x e c u t e r e q u e s t
s e t a l a rm = f a l s e
}
i f ( temp > maxTemp && ! a la rm ) {

a s s i g n new PUTRequest
s e t t a r g e t URI o f r e q u e s t
s e t p a y l o a d of r e q u e s t ( t rue )
e x e c u t e r e q u e s t
s e t a l a rm = t rue

}
}

}
w a i t on t e r m i n a t i o n

}
}

1.8 Aim

It is aim of the thesis to provide a simple, type-safe business oriented API that encapsulates all
the protocol specific functionality in basic classes and provides an API to client applications
that just requires the client to instantiate proxy objects and manipulate them. The proxy objects
cover then communication, encoding and protocol specific patterns. The evaluation in Section
3 of the thesis will compare the client application based on the domain specific API with the
plain protocol based client application. The API follows a similar pattern as wsdl2java which
takes an XML description of a web service and generates Java client stubs that can be used by
the application developer like local objects.
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CHAPTER 2
Design and Implementation

2.1 Overview

The design of the domain specific API covers

• definition of an object model as base for device abstraction

• deriving a set of oBIX contracts implementing the object model

• using an existing toolkit (oBIX toolkit) to build a set of Java classes implementing the
oBIX contracts and adding HTTP and CoAP client code to these Java classes to implement
access to the real IoT devices

• building a domain specific language based on Groovy on top of the Java classes to facili-
tate simpler access to the library’s functionality

Object Model

The object model covers the capabilities of devices used in home and building automation but
avoids the full complexity possible with arbitrary oBIX contracts and provides:

• a device represents a physical device in the domain. It consists of a set of sensors and
actuators and a set of configuration parameters

• a sensor is part of a device and is capable to handle values measured in its environment,like
a temperature or a position. Each sensor is capable to handle a set of attributes, like a po-
sition sensor that might have longitude, latitude and altitude as attributes or a temperature
sensor that might have the value in degrees Celsius and the accuracy as attributes. Mea-
surements taken contain the actual value and a timestamp when the value was measured.

13



Figure 2.1: Architecture

• an Actuator represents a command that the device can perform, e.g. to set a valve. Each
command can have a number of attributes that control the command, e.g. the desired
position of the valve.

oBIX mapping

The mapping is straight forward. Each of the abstract model elements is represented by an
oBIX contract, specific devices, sensors and actuators are then represented by oBIX contracts
inheriting from the abstract contracts.

oBIX toolkit

The idea is that the toolkit builds automatically a set of Groovy classes from the set of concrete
defined oBIX contracts. In this way the library becomes independent of the actual set of defined
oBIX contracts as long as they are based on the same abstract model. The generated classes are
then enhanced with code to communicate with the device via HTTP and CoAP. This is realized
both as an add on to the oBIX toolkit but also requires modification of the toolkit itself.

Groovy DSL

The final step is to build a DSL (domain specific language) based on Groovy on top of the
API. This DSL provides access to the IoT objects in an easy to use manner. Compared with
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a Java application that uses the web services directly the number of lines of code to write an
application is greatly reduced. The final API can then be integrated into J2EE applications or
into cloud based application frameworks such as Cosm [5] or M2MLabs Mainspring framework
[6] to be deployed on public or private clouds, but this is not part of the bachelor work.

2.2 Requirements

The API should fulfil the following basic requirements:

• Protocol independence: The API should provide a view to the client that is the same,
independent of the underlying communication protocol (HTTP or CoAP).

• Communication agnostic: The client should not be aware of communication issues, the
API objects should work as local proxies working in a synchronous manner.

• Support for arbitrary contracts: The API has to support an arbitrary set of oBIX contracts
not known at API building time. The API is restricted to objects implementing a list of
contracts, objects not implementing a contract are not supported.

• Type safe interface: The API objects should provide a type safe interface, only meth-
ods should be callable that are defined in the contracts implemented by the object. Type
checking should be done preferred at compile time.

• Support for encoding: All encodings provided by the IoT multi protocol gateway (XML,
JSON, Octet-Stream, Binary, EXI) have to be supported by the API.

• Watches and Observers: oBIX watches and CoAP observer functionalities have to be
supported. Usage of watches and observers should be chosen automatically based on the
protocol.

• Histories: oBIX histories including roll-up and queries have to be supported by the API.
An oBIX object having a history defined should get automatically in the API correspond-
ing methods to handle the history.

• Lobby access: should be provided independent of the communication protocol used. The
lobby should give access to all objects handled by the multi protocol gateway.

2.3 Code Generation Approach

All oBIX contracts are dynamic in the sense that a contract is just a plain oBIX object that is
used as reference in an is attribute. It is possible to add a new piece of equipment (e.g. an HVAC
controller) to the set of oBIX contracts at any time and then create oBIX objects referencing this
contract. There a three possible approaches to deal with the dynamics of the oBIX contracts:
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• Generic Methods: We just define generic methods with a text based interface that access
oBIX objects and their parts via names. Advantage is that it is very simple to implement,
disadvantage is that there is no type-safe interface, wrong names are only detected at
runtime, Java generics can not be used for type-safe handling in application code.

• Code Generation: API objects are generated on-demand by reading a set of oBIX con-
tracts and generating Groovy code from the contracts. Advantage is a full type-safe inter-
face fulfilling all requirements, disadvantage is the complexity of oBIX contract parsing
and code generation. The oBIX toolkit helps a lot here providing a full oBIX object (and
therefore also contract) parser and code generation capability for Java interfaces. The code
generation capability will be enhanced in the course of this work to generate full Groovy
implementation classes from existing contracts.

• Groovy Dynamic Methods: An alternative approach is to use the dynamic methods of
Groovy for API object implementation. Dynamic objects allow a type-safe usage but
exceptions due to unknown methods in objects are only detectable at runtime.

In the implementation of the API the code generation approach will be used with Groovy dy-
namic methods as a parallel alternative way.

2.4 API Classes Static View

The UML class diagram (see Fig.2.2) gives a static view on the implementation classes of the
API. All generated objects (marked in grey colour) are derived from a BaseObj that contains

Figure 2.2: Static View
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all generic functionality so that generation only adds the type specific methods according to
the oBIX contract. The base object includes a Watch and an Observer object that provide base
functionality for the corresponding oBIX objects. Each of the generated objects may include
a History and a Rollup object depending on the oBIX contract characteristics. ObjListener is
an interface that contains the listen method which is called when an observed object’s value
changes. Clients have to provide application specific classes that implement ObjListener in
order to use this functionality.

2.5 API Classes Dynamic View

Reading Objects

Figure 2.3: Reading Objects

When a client creates a new API object the static method decode is called which performs
the following steps:

• Create a CoAP GET request (as shown in (Fig. 2.3) or an HTTP GET request depending
whether the URI starts with CoAP or HTTP.

• Set the encoding as defined in a parameter of the object constructor.

• Execute the request and wait for the response from the gateway.
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• Decode the content and return an oBIX toolkit Obj object.

• The generated API class then provides type-safe field access methods to read the API ob-
ject. Subsequent reads of fields will not trigger an update of the object’s content. To update
the content the watch or observation mechanism has to be used or the object is updated
by re-creating it with new(). This implementation has been chosen to avoid performance
issues due to frequent reading from gateway.

Writing Objects

Figure 2.4: Writing Objects

When a client writes an API object (as shown in Fig. 2.4) the static method write is called
which performs the following steps:

• Update the internal oBIX toolkit Obj object and encode it as a String using ObixEncoder.

• Create a CoAP PUT request (as shown in the diagram) or an HTTP PUT request depend-
ing whether the URI starts with coap or http.

• Set the encoding as defined in a parameter of the object constructor.

• Execute the request and wait for the response from the gateway.
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• Check the response and return the result. Although the gateway returns a complete ob-
ject as response only the result is checked here because the API object has already been
updated locally.

• It is assumed here that writeable fields of the IoT object are updated only by clients and
not by internal changes in the IoT object. In such a case race conditions could occur that
could overwrite an internal state change by a client state change and transactional writes
with a locking mechanism would be required.

Watch

Figure 2.5: Watch
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A Watch is created when an API object is created that defines monitor=true in a parameter
of its constructor (see Fig. 2.5). Depending on the type of URI (either http or coap) a Watch is
created for HTTP and an Observer is created for CoAP. The following steps are performed:

• A new API Watch object is created that is attached to the object. The watch is then added
to a watch object in the IoT gateway via a POST message.

• The API Watch object periodically in an own thread issues a pollForChanges message to
the gateway via a POST message. The gateway will respond with an updated object if the
object in the IoT gateway has changed since the last pollForChanges command.

• The API Watch object then identifies the corresponding API object and updates its status.

• All further reads of the API object will return the new contents.

As shown in the state diagram (Figure 2.6) a Watch object is created either in monitored state
or in not monitored state. At any time during the lifetime of the object it is possible to switch
between these states by the add() and remove() methods.

Figure 2.6: Watch States

Observer

An Observer is created when an API object is created that defines true for the monitor parameter
of its constructor (see Fig. 2.7) Depending on the type of URI (either http or coap) a Watch is
created for HTTP and an Observer is created for CoAP. The following steps are performed:

• A new API Observer is created that is attached to the object. The observer sends a CoAP
GET request to the gateway to enable observation.

• The gateway will send an unsolicited response whenever the observed IoT object changes.
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• The API Observer then identifies the corresponding API object and updates it. Optional, if
an object implementing the ObjListener interface is supplied in the constructor, the listen
method of this object is called. ObjListener allows to implement application specific code
that has to be executed whenever an IoT object changes.

• All further reads of the API object will return the new content.

As shown in the state diagram (see Fig. 2.8) an object is created either in monitored state or in
not monitored state. At any time during the lifetime of the object it is possible to switch between
these states by the start() and stop() methods.

Figure 2.7: Observer
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Figure 2.8: Observer States

History

Figure 2.9: History

A new History is created when a client calls the read history method of the API object, the
method is generated when the oBIX contract includes a part that refers to the obix:History in
its contract (see Fig. 2.9). The name of the method is composed of <field name>History. The
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following steps are performed when reading a history:

• When the History is created a history query is sent via a POST message to the IoT gateway.
The gateway responds with a list of timestamped values of the element requested.

• The History processes the results and stores them in a list of HistoryObj objects.

• The client can then retrieve the results via the read history method.

History Rollup

Figure 2.10: History Rollup

A new Rollup is created when a client calls the read rollup method of the API object, the
method is generated when the oBIX contract includes a part that refers to the obix:History in
its contract (See Fig. 2.10). The name of the method is composed of <field name>Rollup. The
following steps are performed when reading a history rollup:

• When the Rollup is created a rollup query is sent via a POST message to the IoT gateway.
The gateway responds with a list of timestamped rollup values of the element requested.

• The Rollup processes the results and stores them in a list of RollupObj objects.

• The client can then retrieve the results via the read rollup method.
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Lobby

Figure 2.11: Lobby

The Lobby allows access to the set of objects managed by the IoT gateway (see Fig. 2.11).
It provides a method to retrieve the URIs of all objects as a list and a method to get a list of all
contracts implemented by a certain object.

2.6 API Class Generation

Obixc

The oBIX compiler provides a class that reads a set of strings (either oBIX URIs or file names) in
its main method and generates a set of Java interfaces for each oBIX object and for the object’s
children recursively. The compile method uses the ObixDecoder to parse the oBIX object into
a tree representation and then maps the oBIX well known types to the tree nodes. These well
known types are realized as a set of classes in the oBIX toolkit. Finally, a simple text based
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generation procedure walks over the tree and generates the interface classes. All information
required for generation such as the names of oBIX objects and their types are contained in the
parse tree.

Modifications for the oBIX API

These modifications comprise:

• generation of Groovy API class files to the compile() method. Groovy compilation is done
when the command line arguments contain the argument groovy.

• the ability to generate interfaces is not used in the API and the ability to generate classes
recursively for oBIX objects is disabled because we do not want that own API classes are
generated for an object’s fields but rather a method in the parent class.

• the writeImplementation() method was added. This method generates the API classes.
Listing 2.1 shows the modified compile() method.)

Listing 2.1: Compile Method

p u b l i c vo id compi l e ( I n p u t S t r e a m i n )
throws E x c e p t i o n

{
/ / decode document
ObixDecoder d e c o d e r = new ObixDecoder ( i n ) ;
d e c o d e r . s e t U s e C o n t r a c t s ( f a l s e ) ;
Obj r o o t = d e c o d e r . decodeDocument ( ) ;

/ / map w e l l known o b j e c t s t o t y p e s
map ( r o o t ) ;

/ / c o m p i l e t h e w e l l known t y p e s t o . j a v a or . groovy f i l e s
i f ( l a n g u a g e . e q u a l s ( " groovy " ) ) {

w r i t e I m p l e m e n t a t i o n ( t y p e s [ 0 ] ) ;
} e l s e {

f o r ( i n t i =0 ; i < t y p e s . l e n g t h ; ++ i )
w r i t e I n t e r f a c e ( t y p e s [ i ] ) ;

/ / w r i t e C o n t r a c t I n i t . j a v a
w r i t e C o n t r a c t I n i t ( ) ;

}
}

A simple string based approach is applied when walking on the object tree and writing the
corresponding Groovy classes. It was also investigated to use a template based approach but it
was discarded because of additional implementation complexity. Figure 2.12 shows the class
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generation algorithm. Listing 2.3 shows the generated class for a simple contract of an object
handled by the IoT gateway. The generated code is simple, all code parts that are not dependent
on the specific contract are handled by the API BaseObj class. All generated classes inherit from
BaseObj.

Listing 2.2: Generated Class

package a t . ac . t uwi en . a u t o . i o t s y s . a p i . g e n e r a t e d ;

import ob ix . ∗ ;
import a t . ac . t uwi en . a u t o . i o t s y s . a p i . ∗ ; import j a v a . u t i l . L i s t ;
import a t . ac . t uwi en . a u t o . i o t s y s . a p i . U t i l . Coding ;

/∗ ∗
∗ I o t B r i g h t n e s s A c t u a t o r
∗
∗ @author o b i x . t o o l s . Obixc
∗ @creat ion 02 Mrz 13
∗ @version $ R e v i s i o n $ $Date$
∗ /

p u b l i c c l a s s I o t B r i g h t n e s s A c t u a t o r I m p l ex tends BaseObj
{

p u b l i c I o t B r i g h t n e s s A c t u a t o r I m p l ( S t r i n g u r l S t r i n g , Coding
coding , boolean moni to r , O b j L i s t e n e r o l ) {
super ( u r l S t r i n g , coding , moni to r , o l )

}

p u b l i c I o t B r i g h t n e s s A c t u a t o r I m p l ( S t r i n g u r l S t r i n g ) {
super ( u r l S t r i n g , f a l s e , f a l s e , n u l l )

}

p u b l i c I n t v a l u e ( ) {
re turn ( I n t ) decodedObj . g e t ( " v a l u e " )

}

p u b l i c vo id v a l u e ( I n t v a l u e ) {
I n t o b j = ( I n t ) decodedObj . g e t ( " v a l u e " )
o b j . s e t ( v a l u e . g e t ( ) )
U t i l . w r i t e ( u r l S t r i n g , decodedObj , co d i ng )

}
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Figure 2.12: Compilation Process
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p u b l i c L i s t < Hi s to ryOb j < I n t >> v a l u e H i s t o r y ( i n t l i m i t , S t r i n g
from , S t r i n g t o ) {

H i s t o r y < I n t > h i s t o r y = new H i s t o r y < I n t >( u r l S t r i n g , " v a l u e
" , " I n t " , cod in g )

re turn h i s t o r y . r e a d ( { new I n t ( ) } , l i m i t , from , t o )
}

p u b l i c L i s t <Rol lupObj > v a l u e R o l l u p ( i n t l i m i t , S t r i n g from ,
S t r i n g to , S t r i n g i n t e r v a l ) {

Ro l lup r o l l u p = new Ro l lup ( u r l S t r i n g , " v a l u e " , c od ing )
re turn r o l l u p . r e a d ( l i m i t , from , to , i n t e r v a l )

}

p u b l i c Obj g e t I o t B r i g h t n e s s A c t u a t o r ( ) {
re turn ( Obj ) decodedObj

}
}
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CHAPTER 3
Evaluation

3.1 API Usage

Class Generation

Classes are generated by the modified obixc compiler based on contracts.
Let’s take the BrightnessActuator object as example. Using HttpRequester we retrieve

<obj href="/BrightnessActuator" is="iot:BrightnessActuator">
<int name="value" href="value" val="20" writable="true"/>
<ref name="value history" href="value/history" is="obix:History"/>

</obj>

By replacing the href with a contract name (which may not contain special characters) we get
a contract definition that is valid for API class generation. The contract reference in the history
ref part has to be kept, based on this information the generator will include a history retrieval
function in the generated class. Taking the example we get following contract:

<obj href="IotBrightnessActuator" is="iot:BrightnessActuator">
<int name="value" href="value" val="0" writable="true"/>
<ref name="value history" href="value/history" is="obix:History"/>

</obj>

To generate the class we call the obixc compiler with the batch script genclass.bat:
genclass.bat <contract file> <target directory> <package name>
or directly with:
java -cp ../obix-toolkit/dist/obix.jar obix.tools.Obixc <contract
file> <target directory> <package name> groovy

The generated classes can then be used together with the base API obix-api.jar in applications.
obix-api.jar can be generated from the source with ant jar.
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Creating objects, reading and writing

Creating objects, reading and writing is straight forward like for any Java POJO, see following
code snippet

def dev = new IotBrightnessActuatorImpl(url,coding,false,null)
// read a field
System.out.println("value=" + dev.value())
// write a field
dev.value (new Int (100L))

Arguments for object creation are:

Parameter Description
uri the object URI as defined in the IoT gateway, either as HTTP or as CoAP URI
coding XML | SON | EXI | OCTET-STREAM | X-OBIX-BINARY
monitor if true monitoring is enabled via observe for CoAP or watch for HTTP
ol object implementing the ObjListener interface

Lobby

The Lobby provides access to a list of objects and for each object a list of contracts, see following
code snippet

Lobby lobby = new Lobby(url, coding)
List<String> objects = lobby.getObjects()
Iterator<String> it1 = objects.iterator()
boolean objectFound = false
while (it1.hasNext()){

String href = it1.next()
println("href="+ href)
List<String> contracts = lobby.getContracts(href)
Iterator<String> it2 = contracts.iterator()
while(it2.hasNext()){

String contract = it2.next()
println("contract="+ contract)

}
}

Arguments for lobby construction are:

Parameter Description
uri the object URI as defined in the IoT gateway, either as HTTP or as CoAP URI
coding XML | JSON | EXI | OCTET_STREAM | X_OBIX_BINARY
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History

The History provides access to timestamped historic values of objects, see following code snip-
pet:

def result = dev.valueHistory(2,
"2013-02-18T21:50:50.171+01:00",
"2013-02-28T21:50:50.171+01:00")

result.each {res ->
System.out.println("abstime=" + res.abstime)
System.out.println("tz=" + res.tz)
System.out.println("value=" + res.data)

}

Arguments for history retrieval are:

Parameter Description
limit maximum number of results retrieved, 0 means no limit
from date as yyyy-MM-ddTHH:mm:ss.SSS+TZ
to date as yyyy-MM-ddTHH:mm:ss.SSS+TZ

History Rollup

The history rollup provides access to summarized timestamped historic values of objects, see
following code snippet:

def results = dev.valueRollup(2,
"2013-02-18T21:50:50.171+01:00",
"2013-02-28T21:50:50.171+01:00",
"PT1S")

results.each {res ->
System .out.println("count=" + res.count)
System .out.println("start=" + res.start)
System .out.println("startTz=" + res.startTz)
System .out.println("end=" + res.end)
System .out.println("endTz=" + res.endTz)
System .out.println("min=" + res.min)
System .out.println("max=" + res.max)
System .out.println("avg=" + res.avg)
System .out.println("sum=" + res.sum)

}

Arguments for history retrieval are:
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Parameter Description
limit maximum number of results retrieved, 0 means no limit
from date as yyyy-MM-ddTHH:mm:ss.SSS+TZ
to date as yyyy-MM-ddTHH:mm:ss.SSS+TZ
interval specification string for time intervals as defined in oBIX specification

3.2 Comparison

Listing 3.1 shows an implementation of the temperature alarm application based on usage of the
Groovy API.

Listing 3.1: Temperature Alarm
c l a s s TemperatureAlarmByApi implements O b j L i s t e n e r {

boolean a la rm = f a l s e ;
f i n a l double maxTemp = 2 8 . 5 d ;
I o t L i g h t S w i t c h A c t u a t o r I m p l l i g h t S w i t c h
I o t T e m p C o n t r o l I m p l t e m p C o n t r o l

p u b l i c vo id s t a r t ( ) {
l i g h t S w i t c h = new I o t L i g h t S w i t c h A c t u a t o r I m p l ( " coap : / /

l o c a l h o s t : 5 6 8 3 / v i r t u a l L i g h t 1 " , Coding .XML, f a l s e , n u l l )
t e m p C o n t r o l = new I o t T e m p C o n t r o l I m p l ( " coap : / / l o c a l h o s t

: 5 6 8 3 / t e m p C o n t r o l 1 " , Coding .XML, true , t h i s )
}

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
TemperatureAlarmByApi c o n t r o l l e r = new

TemperatureAlarmByApi ( )
c o n t r o l l e r . s t a r t ( ) ;
whi le ( t rue ) {

Timer . s l e e p ( 1 0 0 0 )
}

}

p r i v a t e vo id checkAlarm ( double temp ) {
i f ( temp < maxTemp && ala rm ) {

System . o u t . p r i n t l n ( " min a la rm " )
l i g h t S w i t c h . v a l u e ( new Bool ( f a l s e ) )
a l a rm = f a l s e ;

}
i f ( temp > maxTemp && ! a la rm ) {

System . o u t . p r i n t l n ( " temp a la rm " )
l i g h t S w i t c h . v a l u e ( new Bool ( t rue ) )
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a la rm = t rue ;
}

}

p u b l i c vo id l i s t e n ( BaseObj o b j ) {
I o t T e m p C o n t r o l I m p l t e m p C o n t r o l = ( I o t T e m p C o n t r o l I m p l ) o b j
double temp = t e m p C o n t r o l . t e m p e r a t u r e ( ) . g e t R e a l ( )
System . o u t . p r i n t l n ( " Tempera tu r e i s " + temp )
checkAlarm ( temp ) ;

}
}

Compared to the protocol based implementation, see Listing 1.1, the Groovy API based imple-
mentation provides full type-safe access to the oBIX objects, works independent of the used
protocol (HTTP or CoAP) and requires significantly less code to implement the functionality.

Technology Type-safe Protocol Independent Lines of Code
Pure CoAP - - 110
Groovy API X X 35

Table 3.1: Compare Groovy DSL to plain CoAP

3.3 Integration in Server based Frameworks

IoT frameworks or machine-to-machine application platforms like Cosm or M2MLabs Main-
spring typically work in a server mode where the central system is receiving messages, sending
commands and storing device data. The server would wait for incoming messages over HTTP
and not be able to poll regularly for the object status or support CoAP with its observe mech-
anism directly. This is contrary to the oBIX specification where the oBIX objects themselves
work in the server role. A solution is to use the ObjListener concept of the oBIX API for the
device status whereas device commands can be sent directly. The diagram in Fig. 3.1 shows the
approach.

3.4 Alternative Approach without Code Generation

The implementation language Groovy which extends Java with concepts of dynamic languages
enables an alternative approach to code generation. Using meta-programming it is possible to
write handlers for missing methods that perform the required functionality. In case of the oBIX
API library we can write a generic handler for the setter and getter methods of API objects
instead of generating the implementation. Listing 3.2 shows the generic API class.
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Figure 3.1: IoTFramework
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3.5 Handling Objects with Multiple Contracts

A further advantage of the meta-programming approach is that this works also if an oBIX object
implements several contracts. Since the underlying oBIX toolkit Obj is able to handle such
cases and also the dynamic methods can handle them it is only required to create one API
object for all contracts. In case of the generation approach each of the contracts will have its
own corresponding API class and the client must instantiate API objects with the same URI
separately for each of them.

Listing 3.2: Generic API Object

p u b l i c c l a s s ObixAPIObj ex tends BaseObj {

p u b l i c ObixAPIObj ( S t r i n g u r l S t r i n g , Coding coding , boolean
moni to r , O b j L i s t e n e r o l ) {

super ( u r l S t r i n g , coding , moni to r , o l )
}

d e f methodMiss ing ( S t r i n g name , a r g s ) {
S t r i n g method = " $name "
i f ( method . endsWith ( " H i s t o r y " ) ) {

S t r i n g objectName = method . s u b s t r i n g ( 0 , method . l e n g t h ( ) −
7)

H i s t o r y <Obj > h i s t o r y = new H i s t o r y <Obj >( u r l S t r i n g ,
objectName , " Obj " , c od ing )

re turn h i s t o r y . r e a d ( a r g s [ 0 ] , a r g s [ 1 ] , a r g s [ 2 ] )
}
i f ( method . endsWith ( " Ro l lup " ) ) {

S t r i n g objectName = method . s u b s t r i n g ( 0 , method . l e n g t h ( ) −
6)

Ro l lup r o l l u p = new Ro l lup ( u r l S t r i n g , objectName , c od ing )
re turn r o l l u p . r e a d ( a r g s [ 0 ] , a r g s [ 1 ] , a r g s [ 2 ] , a r g s [ 3 ] )

}
i f ( a r g s . l e n g t h == 0) {

re turn decodedObj . g e t ( " $name " )
}
i f ( a r g s . l e n g t h == 1) {

Obj o b j = decodedObj . g e t ( " $name " )
o b j . s e t ( ( ( Obj ) a r g s [ 0 ] ) . g e t ( ) )
U t i l . w r i t e ( u r l S t r i n g , decodedObj , co d i ng )
re turn

}
}

}
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Usage of the API is similar to the generated API, also providing a type-safe usage but meth-
ods not provided by the accessed IoT object obviously can only be detected at runtime. Listing
3.3 shows the usage of the generic API object.

Listing 3.3: Generic API Object

d e f dev = new ObixAPIObj ( u r l , coding , f a l s e , n u l l )
System . o u t . p r i n t l n ( " a c t P o s S e t p E x t r a c t A i r V a l u e =" + dev .

a c t P o s S e t p E x t r a c t A i r V a l u e ( ) )
dev . a c t P o s S e t p E x t r a c t A i r V a l u e ( new I n t (100L ) )

3.6 Related Work

Actinium

Apps as Resources

Actinium [14] provides a framework that directly uses the RESTful interfaces of devices to
write applications which are realized as scripts running on a container within a central server.
Not only the devices offer RESTful interfaces but also the container itself is RESTful. Scripts,
called Actinium apps, are designed as resources according to the RESTful paradigm. Apps
provide their results through GET handlers, can be triggered by POST and can be configured by
PUT. Furthermore, the apps can be combined to larger applications via their REST interfaces.

Runtime Container

The container is an application server that allows dynamic installation, updates and removal of
scripts. The same app may be required several times, for instance a heating controller has to be
instantiated for each room. It is distinguished between installed apps, which is the program code
stored under /installed and instances created by posting an individual configuration to an
installed app. Instances are then stored in /instances.

Mashups

The concept that is very successful in the World Wide Web web is to combine several web
services to a higher level service. To mash up devices the app has to take a client role. CoAP
requests, similar to XMLHttpRequests, are used to communicate with the devices. In addition
to CoAP, also HTTP requests are supported to include standard web services in the mashups.
The following code snippet taken from [14] shows a sample CoAP request.

var req = new CoapRequest();
// request the PIR sensor resource of a mote via CoAP
req.open("GET", "coap://mote1.example.com/sensors/pir",

false /*synchronous*/);
// with an application/json response
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req.setRequestHeader("Accept", "application/json");
req.send(); // blocking
// and log it to the console after send() returns
app.dump(req.responseText);

Implementation

Californium, which is written in Java, is used as CoAP protocol handler implementation. Javascript
has been selected as implementation language for the apps due to its widespread user base and
the easy support for web service invocation. The Rhino Javascript engine, written in Java, is
used to run the scripts, the application server itself is a plain Java implementation.

ThingML

ThingML (Thing Modelling Language) is a high level modelling and imperative action language
for constrained devices such as micro controllers that intends to replace traditional ways of soft-
ware development for microcontrollers such as assembly language or C. It is based on concepts
of model-driven engineering (MDE) and model driven architecture (MDA). Things represent
software components or software wrappers of hardware components. They provide a blueprint
so that behaviour defined for a thing is defined for all its instantiations. The behaviour of things
is defined by a state machine, communication is done through ports by exchanging messages as
shown in the following sample taken from [18].

thing LedExample includes LedMsgs, TimerMsgs{
required port Led{
sends led_toggle

}
required port Timer{

sends timer_set
sends timer_start
receives timer_timeout

}
statechart LedBlinker init blink{

state blink{
on entry Timer!timer_start(500)

transition -> blink
event Timer?timer_timeout
action Led!led_toggle()

}
}

}

The platform specific model binds the program to the platform it will run on and is called a
configuration in ThingML. It defines specific hardware I/O for the ports and specific implemen-
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tation of the platform functions as shown in the following example for a configuration for an
Arduino board.

configuration Blink{
instance app : LedExample
instance timer : TimerArduino
connector app.Timer => timer.timer
group led : LedArduino
set led.io.digital_output.pin = DigitalPin:PIN_10
connector app.Led => led.led.Led

}

ThingML works as pre-processor generating and being able to mix-in code from C, Java, Scala
and other languages.

3.7 Summary

A library implementing a domain specific API for access to oBIX objects handled by an IoT
gateway was presented. Using the library it is much simpler to access the IoT objects because
the library handles all the communication details and behaves to the client like a local proxy.
The proxy contains domain specific methods, either generated from the oBIX contracts or im-
plemented by Groovy meta-programming to provide to the client domain specific and type-safe
access. In addition, the API objects provide an encapsulation of the object updating mechanism
via observe or the watch functionality so that the client always sees a local, updated proxy ob-
ject. Clients can handle these proxy objects like standard Java objects. A lobby object provides
access to a list of objects and their contracts to allow simple object detection and API object
instantiation. Compared with traditional approaches like direct usage of the REST interfaces of
the generic SOAP interface this makes usage of the IoT objects much easier and faster.
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