
A Java API and Web Service
Gateway for wireless M-Bus

Bakkalaureatsarbeit

zur Erlangung des akademischen Grades

Bakk. techn.

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Ralph Hoch
Matrikelnummer 0405156

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof.Dr. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Markus Jung

Wien, 24. Oktober 2013
(Unterschrift Verfasser/in) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

A Java API and Web Service
Gateway for wireless M-Bus

Bachelor Thesis

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Ralph Hoch
Registration Number 0405156

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof.Dr. Wolfgang Kastner
Assistance: Dipl.-Ing. Markus Jung

Vienna, 24. Oktober 2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Ralph Hoch
Neulerchenfelder Strasse 87/33, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser/in)

i

Abstract

M-Bus Systems are used to support the remote data exchange with meter units through a net-
work. They provide an easy extend able and cost effective method to connect many meter
devices to one coherent network. Master applications operate as concentrated data collectors
and are used to process measured values further. As modern approaches facilitate the possibility
of a Smart Grid, M-Bus can be seen as the foundation of this technology. With the current focus
on a more effective power grid, Smart Meters and Smart Grids are an important research topic.

This bachelor thesis first gives an overview of the M-Bus standard and then presents a Java
library and API to access M-Bus devices remotely in a standardized way through Web Services.
Integration into common IT applications requires interoperable interfaces which also facilitate
automated machine-to-machine communication. The oBIX (Open Building Information Ex-
change) standard provides such standardized objects and thus is used to create a Web Service
gateway for the Java API.

iii

Contents

1 Introduction 1

2 M-Bus Standard 3
2.1 Introduction . 3
2.2 History . 3
2.3 Purpose . 5
2.4 Related Standards . 14
2.5 Conclusion . 15

3 oBIX Standard 17
3.1 Introduction . 17
3.2 oBIX functions . 18
3.3 oBIX examples . 19

4 Wireless M-Bus Java Library and API 21
4.1 Java Library Architecture . 22
4.2 Telegram structure . 26
4.3 Java Library Usage . 28
4.4 Integration into oBIX based IoTSyS framework 32

5 Conclusion 37

List of Figures 38

List of Tables 38

Listings 38

Bibliography 41

v

CHAPTER 1
Introduction

Current power supply systems do not allow a fast and flexible adaptation and are therefore
not able to cope with modern approaches for energy conservation. Smart meter devices are the
foundation of a newer, smarter energy grid and facilitate the power authorities to deal with on-
demand, real-time power consumption values. In Austria, a legal ordinance has been published
were general conditions are specified. These conditions include that 70% of all domestic homes
have to be equipped with smart meters by the year 2017 and that power suppliers have a mon-
itoring and reporting obligation (Intelligente Messgeräte - Einführungsverordnung (IME-VO)
and Intelligente Messgeräte - Anforderungs VO (IMA-VO)) [6–8].

Data exchange between house holds (smart meter) and transaction server components (energy
supplier) is realised via power line communication (PLC) using a standard on advanced metering
infrastructure [31].

However, PLC only allows a very static data handling approach and it is difficult to apply
security arrangements that satisfy modern technology standards. Considering that there are also
other issues, like interference with PLC frequency bands, another approach would be desirable.

Additional modules for smart meter devices allow communication via the M-Bus wireless
standard [20]. This enables the utilization of TCP/IP technology standards and furthermore
allows a near real-time data processing [29]. This is, especially for end consumers, a major
advantage, because it provides the opportunity to see effects and results of electronic devices
almost immediately. For the energy supplier, a reduction of communication complexity as well
as reusing or adapting already existing security mechanism would allow a simpler and more
efficient integration with other parts of the energy system. As a bonus it would enable the near
real-time tracking of energy consumption data.

To achieve this task, a framework is needed that establishes secure data exchange between
smart meter devices and high-end systems utilizing the advanced metering infrastructure.

This bachelor thesis presents a JAVA library and API that enables remote interaction with
wireless M-Bus devices. Various functions, such as retrieving and storing values from data

1

endpoints or support of different telegram types, are supported by the API. In addition, encrypted
as well as plain data telegrams are supported. Furthermore, a Restful Web Service has been
implemented. It makes use of oBIX (Open Building Information Exchange) [28] to represent
the wireless M-Bus meters and serves as a gateway between applications and the meter itself.

The remaining parts of this bachelor thesis are organized in the following manner. Section 2
gives an overview on the current M-Bus standard and especially puts focus on how communi-
cation between devices is realized. In addition, a short introduction to the lower level parts of
the standard is given. Section 3 shows the oBIX standard and describes how communication
can be realized following this approach. In Section 4, the final prototype and its functionality is
specified, including examples on how it can be used to interact with meter devices. Additionally,
a description of how telegrams are transferred in a specific set up is given. Finally, Section 5
provides a conclusion for this thesis.

2

CHAPTER 2
M-Bus Standard

2.1 Introduction

M-Bus or Meter-Bus is a standardized system which was developed to support the remote,
through a network, read-out of various utility meter systems. These meter systems include heat,
electricity and various other units. Remote access allows an M-Bus master to access and retrieve
the measured values of the meters. End devices such as laptops or tablets are then used to further
process the retrieved data.

2.2 History

In the early 1990s, since there was no system available that enabled remote access of meter
device read-outs, a new approach had to be specified. Professor Dr. Horst Ziegler of the Univer-
sity of Paderborn developed an idea for a distributed metering bus system. In cooperation with
companies such as Texas Instruments Germany GmbH and Techem GmbH a first prototype was
developed. Initially, the idea was to provide a specific physical definition on how the meters can
be accessed as well as a protocol specification on how the data should be interpreted.

This effort was later standardized and became a European Standard. The standard can be
found under EN 13757: Communication systems for meters and remote reading of meters
and consists of several parts. The following list gives a short introduction:

• EN 13757-1: Data exchange [14]
The first part of the standard describes the data exchange and communication of meters as
well as the remote read-out of meter data. It provides application specific information and
gives an overview of the used communication model.

3

Figure 2.1: M-Bus Standard Setup

• EN 13757-2: Physical and Link Layer [15]
In this part the physical and link layer are covered. It describes how baseband communi-
cation in meter systems is realized over twisted pair media.

• EN 13757-3: Dedicated application layer [16]
An application protocol on how meter read-outs have to be interpreted is defined. This
protocol makes meters from different vendors interoperable. The application layer utilizes
the physical and link layer described by EN 13757-2.

• EN 13757-4: Wireless meter readout (Radio meter reading for operation in the 868 MHz
to 870 MHz SRD band) [13]
As modern approaches often use wireless communication, a standard has been defined to
support this approach. It defines the physical and link layer for wireless devices and refers
to EN 13757-2.

• EN 13757-5: Wireless Relaying [12]
This part can be seen as an extension to EN 13757-4 and describes how routed wireless
networks for meter read-outs can be established. As meter and bus master devices can be
physically located far apart from each other, a relaying can be necessary.

4

• EN 13757-6: Local Bus [11]
This standard describes parameters of the electronic link layer of a local bus system for
the communication with meters within the bus system.

The M-Bus standard is closely related and based on the ISO-OSI reference model. An
advantage to base this new system on an already existing, standardized open system is that it
allows an incorporation with various already established network protocols. For further details,
please refer to Section 2.3.

2.3 Purpose

The key goal of meter bus systems is to provide an easy extendable, stable and cost effective
way to interconnect many devices (slaves) over a long distance with a master application like a
data center. [31]

From the existing network topologies (star, ring, bus) only a bus system is suitable for this
task as it allows serial transmission of data over a common used transmission medium as well
as easy addable new devices. Meter systems are used to measure the consumption of various
resources like heat or electricity. Furthermore, they deal with end user data which is often
used to provide billing and therefore the receiving of accurate data is indispensable. Thus,
transmission integrity is very important and the bus system needs to be insusceptible against
external interference such as inductive interference. [21]

As there are probably many end devices used in such a bus system it is imperative to keep
the operating costs as well as the installation costs as small as possible. In calculating the costs,
it is necessary to keep in mind that the transmission distance may be very long and thus the
transmission medium needs to be cost effective (e.g. standard medium, no additional shielding).
Complexity of installation of new end devices should be kept simple, as it might be necessary to
add devices or facilities during bus system operation. Remote powering enables meter slaves to
be independent.

Inaccuracies in the existing standard enabled manufactures to develop slightly different me-
ter device specifications and as a result incompatible units were produced. Installation of new
devices had to be approved and tested for compatibility with the existing system and devices.

During the smart-metering initiative of the European Union these inaccuracies led to the or-
ganization of an Open Metering System. An Open Metering Specification (OMS) was defined
where the standard interpretation from different manufactures had been specified to make them
interoperable. Additionally, a 128-Bit AES encryption was introduced for the powerline com-
munication as well as the wireless transmission. As of 2009, OMS has been proposed to the
European Committee for Standardization as a supplement to the existing standard.

The ability of the M-Bus system to deal with many meter devices makes it the foundation of
modern energy grids. The bi-directional communication method enables remote control of the
meter slaves that are in place. The near-field communication of modern meters is often realized
utilizing the M-Bus system.

5

In combination with Smart Meters a near real-time transmission of power consumption data
to power supply companies can be established. The term “Smart Meter” usually refers to elec-
tricity meters, but can be used for other energy sources like water or gas as well. Using Smart
Meter devices has multiple benefits for both the consumer and the power supply industry (power
supplier, grid company, service providers).

On consumer side, it gives more transparency on actual costs and it can provide near real-
time consumption data for single household appliances like TVs or computers. This up-to-date
measurement data supports the consumer in a more efficient usage and control of his energy
use. Furthermore, it can be used to identify high energy consumption devices and help to reduce
the overall energy wastage. Another advantage is that the consumer doesn’t have to rely on
statistically calculated billing information. The always up-to-date power usage data allows an
exact billing information on the actual energy consumption and thus gives the consumer more
transparency on costs.

The power supply industry shares some benefits with the consumer as they can act on the
effective power consumption of each consumer individually. Monitoring energy consumption
provides them with a better understanding of the actual total power consumption in their region.
Considering systems that monitor and compare data with statistically evaluated data, it is pos-
sible to develop a remote fraud detection system and help to increase the safety of consumers.
Especially useful for power suppliers is the combination of smart meters with an advanced me-
tering infrastructure (AMI) as it allows two-way communication [30].

This type of communication supports the remote activation or deactivation of devices as
meters can receive commands through a network. Remote access allows a variable, adaptable
through-put of meters to react to specific energy demands. The remote activation of meters also
makes it more cost effective as no physical installer is necessary and electricity contracts can
easily be switched between customers.

Custom pay rates, similar to telecommunication networks, and dynamic pricing based on
time or supply constraints and introduction of new value added services are possible.

Utilizing the advanced metering infrastructure, an accumulation of energy grid participants,
including power suppliers, grid companies, service providers and consumers, can build a Smart
Grid. Through the behaviour and the resulting information of all involved parties an intelligent
energy grid can be developed that is able to react according to energy demands or availability.
In the process, a more stable, reliable, effective and efficient energy network is formed. [18]

Protocol Overview

The M-Bus protocol stack is based on the OSI-Model (Open Systems Interconnection) of the
International Organization of Standardization (ISO). This model standardizes a communication
system by using several abstraction layers where each layer adds information to the previous
layer. The OSI-Model consists out of seven layers that form a protocol stack where each layer
utilizes the layer underneath it. Since M-Bus does not provide all features of an ISO-OSI com-
puter network, only a subset of this protocol stack needs to be used [4]. The M-Bus protocol

6

stack, thus, only uses three layers and builds upon the standard defined by IEC EN 61334-4-1.
Table 2.1 gives an overview of the stack.

Number Layer Function Standard
7 Application 5 EN 13757-3
2 Data Link 8 EN 13757-2 or EN 13757-4
1 Physical 4 EN 13757-2 or EN 13757-4

Table 2.1: M-Bus Protocol Stack

An advantage of utilizing this protocol stack is that higher protocol layers are independent from
their low level counterparts as communication is only realized between layers of the same level.
This means that the implementation of the lower level layers can be changed and the functional-
ity of the system is not compromised. Applying this configuration allows for example the usage
of wired (EN 13757-2) as well as wireless (EN 13757-4) communication media without any
changes to the actual application. Defining a protocol for these layers allows interchangeability
of meters. Special gateways/bridges are in place to connect network parts with different protocol
implementations.

Communication

Communication is always established between two types of devices. In case of M-Bus this is
the master and the slave (meter device). Usually, the master (caller) calls the slave (called) to
retrieve the measured data and during communication each side keeps their function, hence is
caller or called. Using this kind of denotation is analogue to the common client/server architec-
ture that is commonly used in network systems. In most cases the caller can be seen as the client
that requests a functionality from the server (called). However, it does not necessarily need to be
this way. The bi-directional communication enables the meter device (server) to call the master
bus (client). In case of a malfunction, an error or an alert the meter can therefore inform the
master on this unexpected behaviour.

As communication can last over a longer period of time the partition into transactions is
reasonable. Each transaction can be viewed as a request from the caller to the called. During
transactions caller and called alternately receive and transmit data. The following example will
demonstrate this behaviour schematically:

• Client (caller) sends (transmits) a request command to the server (called)

• Server listens for incoming commands and receives them as soon as something is trans-
mitted

• Server responds (transmits) the result of the executed command

• Client listens for response (receive)

7

Physical Layer

The physical layer specifies the lowest protocol level and deals with how data is actually trans-
mitted over the transfer medium. It is possible to have different kind of transports at this level
and thus it is necessary to define how bits are represented and interpreted by the communication
participants. The preferred method that is proposed by the EN 13757-2 standard [15] is base-
band communication over twisted pair (M-Bus). Figure 2.2 shows the physical layer definition
of [15].

Figure 2.2: Physical Layer - Bit representation

As shown in Figure 2.2, transfer of bits is accomplished by voltage level changes on the master
side. Transferring a logical 1 from the master to the slave is realized by using a nominal voltage
level of +36 volts, a logical 0 is represented by +24 volts. Slaves or meters are powered remotely
and take the required current from the bus system. The defined protocol allows a two-way
communication, however, at the same time transmission is only possible in one direction. If
the slave initiates a transfer it is accomplished by modulating the consumption (current) of the
slave device. Current up to 1.5 mA represent a logical “1” (Mark) in this case and a logical “0”
(Space) is represented by an additional current consumption of 11-20 mA. For a full in depth
description of the bit representation and transportation in the physical layer, please refer to [9]
and [15, p. 8].

8

The implementation of the physical layer can change and therefore it is possible to exchange
the underlying transfer medium with another medium. As the data link layer is closely related
to the physical layer, both of them are described in the same standard.

As a matter of principle, it is possible to use a different implementation of the layers defined
in [15]. For further details please refer to alternatives discussed in EN 13757-1 [14].

Data Link Layer

Communication is realized by using several transactions. As mentioned before transfer is only
possible into one direction at a time, thus a method to synchronize communication is essential.
Furthermore, as an M-Bus system can contain several slaves, it is necessary to somehow identify
(address) the participating meters.

This layer specifies a controlled connection between a master and a slave and is closely
related to the physical layer. Transmission of data is carried out by serial, asynchronous bit
transfer. Synchronization can be achieved by defining how characters are transferred. Characters
are transmitted one at a time and always consist out of eleven bits. Each character begins with
a start bit (space) and is followed by eight data bits, a parity bit (check for equality) and a stop
bit (mark). The start and stop bits mark the beginning and the end of a character and support
synchronization. [15]

To send meaningful data, characters are organized in defined telegrams which are shown in
Table 2.2.

Single Character Short Frame Control Frame Long Frame
E5h Start 10h Start 68h Start 68h

C Field L Field = 3 L Field
A Field L Field = 3 L Field
Check Sum Start 68h Start 68 h
Stop 16h C Field C Field

A Field A Field
CI Field CI Field
Check Sum User Data (0-252 Byte)
Stop 16h Check Sum

Stop 16h

Table 2.2: Data Link Layer - telegram formats M-Bus

Each row of Table 2.2 represents one byte (plus the bits for start, parity and stop). Some of
these bytes can have special meanings and are used to control transfer or address participants:

• C (Control) Field
supports determination of communication direction. Additionally, it encodes the function

9

of the telegram. For a complete list of functions please refer to [4] as this field is quite
comprehensive. An example for a control value is:
SNDNKE: 40h short frame - initializes slave

• A Field (primary address)
has the purpose to identify (address) the communication endpoint and is used by both the
sender and the receiver. As this field is only one byte long it is theoretical possible to
address 256 communication participants at max. However some addresses have a special
purpose and can’t be used for devices [16, p. 67]. This limits the directly addressable
devices to 250.

• CI Field (Control Information Field)
is from high importance for the application layer and is used to distinguish between long
and short frame telegrams.

• L (Length) Field
defines number of bytes of the meter data (including C, A and CI Fields).

• Check Sum
checks if the transmission has been correct. It is configured by specific parts of each tele-
gram and serves as an additional protection for synchronization or transmission failures.
The standard defines CRC (cyclic redundancy check) as the used method.

In addition, a short explanation of the different telegram formats is given:

• Single Character
a single chracter is used to acknowledge that the telegram has been received (ACK: E5h).

• Short Frame
a short frame has a fixed size of five bytes and has a specific format. The function is
controlled via the C field and participant is resolved by the A field. For example, it is used
by the master to initialize transmission of measured values from a participating meter.

• Control Frame
conforms to long frames. However, no user data is transferred.

• Long Frame
compared to the short frame a long frame can also contain user data of variable length.
Control and address fields are used synonymously as in the short frame and also a check
sum is calculated based on the contained fields.

Application Layer

The application layer serves as the final tier for the user. Custom applications need to un-
derstand the protocol at this level to be able to extract meaningful data from consumer utility
meters.

10

Usually applications work similar to client/server applications where the master device, this
could for example be a computer, tablet or laptop, acts as a client and the utility meter acts as
a server. This means that applications send requests to the server and then await the response.
Although it is possible to have communication initialized by the utility meter, the other way
around is the standard communication pattern.

As mentioned in Section 2.3 telegrams consist out of several fields - depending on the tele-
gram. For this layer, the CI-Field is particular interesting as it encodes the type and sequence of
the data that is transferred in the telegram. There are two modes in operation and depending on
how the mode bit is set, the data gets interpreted (if the mode bit is set the most significant byte
gets transferred first, otherwise the least significant bit is transferred first).

Additionally the CI-Field defines what is currently transmitted. As all telegrams in the appli-
cation (and higher level) layers are based upon variable user data the length has to be specified
in the frame of the transmission (data link) layer. Data is transferred as a telegram inside the
frame from the lower protocol level and consists out of a telegram header and the actual data.
The telegram header can be set in different formats depending on the purpose of the transmis-
sion [16]. Depending on the header several control values can be set and used to address different
kinds of operations. For example, it is possible to specify secondary addresses to identify the
slave entity (in this case the meter device) or mark a synchronization package. As only 250
devices are directly accessible, the secondary address allows to expand the address space. In
case a secondary address is used, the device with this “unkown” primary address gets bound to
the primary address 250 which is specifically for this purpose. This allows basically to address
an arbitrary amount of devices [16, p. 47]. Furthermore, single fields can set the encryption
method (signature field) of the telegram or report an alarm notification. Part of the header is also
an identification, manufacturer and other numbers for additional information. For a complete list
of possible operations see the official specification [16]. Another important task of the header is
to denote if the telegram is a request or response.

Lately, there has been a lot of effort to move M-Bus systems towards a wireless based com-
munication topology. As the current official norm only has rudimentary support of wireless
communication systems a new draft of the norm had to be formulated. As of 2012, this draft
is currently under review and waiting for approval. Several changes in the specification layer
have been introduced and some of them are targeting specifically the Wireless-M-Bus systems.
A specific header configuration is necessary for wireless communication and this header must
contain at least:

• status byte

• configuration word

• access number

Other changes include (among others):

• additional encryption formats

• telegram headers for wireless communication systems

11

• more data points for electrical measurement units

Applications for end users (consumers) should build upon this level and provide a simple
interface to query data and display it accordingly. This layer is the final layer of the protocol
stack but it has to be kept in mind that only the protocol is defined and applications for end
consumers have to implement this protocol.

As the application layer protocol is quite complex there is not enough space to discuss it
here. For a complete evaluation please refer to [16] and [4].

Wireless M-Bus

Using the OSI-Model as an reference model has the advantage that implementations of layers
can be changed and the overall system still is operational. This allows new technologies to be
put into place to replace existing ones. Furthermore, it is possible to interconnect different kinds
of implementations by providing a bridge for each network part so that communication can be
established throughout the network.

Modern approaches often rely on wireless connection of devices as it is very cost effective.
The same applies also for M-Bus systems and thus a specification for a Wireless-M-Bus system
has been formed and its result has been accepted as an European norm. The norm specifies how
the physical and data link layer for wireless communications operate and is specifically targeting
short range devices in unused frequency bands [13].

Wireless-M-Bus systems allow communication between measurement entities and non sta-
tionary units (for example, master devices such as a laptop as a data collector). To achieve
the communication, several operation types are specified (all operation types are identified by a
name and a number):

• stationary operation method (S):
This method is used for the unidirectional or bidirectional data transmission between mea-
surement units and flexible master devices. Sub-methods of this type include optimized
methods for long message headers (S1) and mobile devices (S1-m).

• frequent send operation method (T):
Here small telegrams are used to transfer data in very short time frames (seconds). This
allows to track measurement data in a very short time and is utilized by mobile devices
that are not constantly in range of the meter itself. Furthermore, this method allows to
create a measurement graph on almost real-time data.
Sub-methods include operations for only sending data in periodic time frames or at ran-
dom (T1) and a bidirectional method that uses a short initialization telegram to create a
transmission channel (T2).

• time frequent receive operation method (R):
A measurement unit listens for incoming messages (in a frequent interval). If it receives
one it issues a transmission channel with the sender. This method allows the master device
to query several meter units at the same time as all of them use a separate frequency
channel.

12

It is possible to combine these operation types and therefore use more than one at once. The
devices must be built to support all types if they are used in different systems.

Often these operation types share the same configuration of the physical and data link layer to
allow interoperable applications. However, specific configuration for these layers as for example
encoding methods can occur and are specified in the European norm [13].

Different types of operation have different constraints. This means that for all methods other
operations of establishing a connection apply and also that they have varying time frames during
transmission. Meter devices usually have a specific delay after a response until they are able to
process the next incoming request.

Figure 2.3: Wireless-M-Bus communication - Simplified bidirectional communication (as in T2)

13

Figure 2.3 shows an example for a data exchange between a master and a slave unit. The com-
munication mode used is a bidirectional method that is based on a short initialization frame
(ADR - Access Demand Request) that is sent in periodical intervals (T2). This frame is sent
out by the meter (slave) to be detectable for retrieval devices (master). After the slave device
sends such an ADR it waits for a specific time frame to receive an acknowledgement packet
(ACK-Time). If such an acknowledgement is received a bidirectional communication channel
is opened, otherwise the slave issues a time-out until the next ADR is sent. In case an acknowl-
edgement packet is received at a master device the slave is ready to receive requests from the
user side (master). After receiving a request the slave answers with the corresponding response
and continues with its normal operation. This example simplifies the process as there are sev-
eral additional constraints that apply for the communication like considering response time or
time-outs for not receiving requests after an acknowledgement [32] [13].

The current standard only covers the basic operation methods described above and is not suf-
ficient for modern purposes any more. Thus, a new standard has been described and is currently
under review and will replace the existing European norm.

The new norm introduces several additional operation types that allow new implementation
fields (meter devices which operate mainly as receivers of commands for example). Further-
more, a more detailed definition of how the physical layer operates is given. Additionally, the
data link layer, and especially how the frames including their control headers are built, is de-
scribed in more detail.

2.4 Related Standards

The protocol specification described in DIN EN 13757 is not the only approach to standardize
interaction between meter and master devices. Another approach is laid down in IEC 62056
where several standards for Electricity metering – Data exchange for meter reading, tariff and
load control are combined. The IEC 62056 standard is the international standard version of the
open DLMS/COSEM (Device Language Message Specification/Companion Specification for
Energy Metering) specification and is issued by IEC (International Electrotechnical Commis-
sion). It is maintained by the DLMS User Association and is split into several specifications
which are published as books. The COSEM provides specifications for the Transport and Appli-
cation Layer based upon the DLMS protocol [5]. This standard is also available as an European
Standard under DIN EN 62056-21 [22].

SML (Smart Message Language) provides a communication protocol for meter devices and
allows data exchange in between them and retrieval devices [33]. Several meter devices support
this communication protocol such as SyM2 (synchronous actual usage meter), eHZ (electrical
household meter) where SyM2 is based on an Ethernet connection and eHZ uses an infrared
interface according to the standard described above, DIN EN 62056-21. Communication is
realized based on small messages which are called files. All messages consist of a start and end
sequence. The messages themselves have data stored (e.g. data values or commands). Messages
can be sent in a standard text format or in a compressed binary format [25] [24].

A comparison between DLMS/COSEM and SML can be found in [17].

14

In the North American market often a standard published by the American National Standards
Institute (ANSI) is used. ANSI C12.18 describes a communication protocol that is used in a two-
way communication with meter devices. This particular standard describes the lower protocol
levels and how communication via an ANSI Type 2 Optical Port can be realized. Subsequently,
other standards or extensions have been published which extend the original standard by other
technologies like for example modems (ANSI C12.21) which are better suited for automatic
meter reading. The ANSI C12.22 standard describes a protocol for transporting data specified in
ANSI C12.19 (table data) over networks. The purpose is to enable interoperability in between
master and meter devices. ANSI C12.22 also supports data transport via TCP or UDP. For
detailed information please refer to [2, 3].

2.5 Conclusion

Modern approaches that enable a more economic use of resources are a vibrant alternative to
currently established inflexible systems. Smart Grids make a dynamic use of resources possible
as they allow to use them on an “as needed” basis. This helps to cut costs which not only the
electrical network supplier but also the customers benefit from. A more transparent view on the
actual usage of energy provides the customers with the possibility to have more control over
their energy consumption and to reduce or eliminate unnecessary units from their daily use.

This is a big advantage and makes home automation possible. Single devices can be ad-
dressed individually and even controlled by the consumers themselves. To enable such an au-
tomation a technology is necessary that creates the opportunity to communicate with devices
through a network. Manual steps, such as reading meter values, are not necessary any more.

M-Bus systems provide such an infrastructure and are an integral part of home automation
and thus also a modern Smart Grid. Smart Meter devices are very flexible as they are able to
receive commands over a network and operate accordingly. Not only is it possible to receive
near real-time energy measurement data but also to control single devices. Applications can
be built for various purposes and in doing so allow consumers access to devices that they can
control through a simplified user interface.

The idea of such an easy extendible, flexible and cost effective infrastructure has been
formed, refined and reached the status of an European norm which now enables interoperability
between different vendors. Wireless communication methods are included as well for seminal
application scenarios with mobile devices. Refined versions of the EN 13757 norm are already
under review and will expand the possible scenarios even more.

However, since this is a relatively new infrastructure, several points remain that need to be
clarified. Security mechanisms have to be put into place to help to prevent fraud and ensure the
consumer security. Newer versions of the EN 13757 norm already include modern encryption
methods that help to secure the data that is transmitted through the infrastructure. How larger-
scale applications deal with other security issues related to Smart Grid technologies remains to
be seen.

Another point is that currently the infrastructure, from a hardware perspective at the con-
sumer side, is not available. The next step is to bring this infrastructure to the consumer. This
will be an ongoing process over a longer period of time.

15

In conclusion, it may be said that the M-Bus infrastructure can be seen as the foundation of
home metering environment and later on of a modern Smart Grid. Smart Meter devices facilitate
the possibility of a more economic energy consumption in a modern Smart Grid environment.

16

CHAPTER 3
oBIX Standard

3.1 Introduction

With the development of modern Internet technologies, the term ubiquitous computing is be-
coming more and more common. Consumers want to be able to access and control various
devices, for example, a home heating system, through gadgets like mobile phones. This means
that devices or systems must be remotely accessible through a common infrastructure that sup-
port controlling these devices. All these requirements are often subsumed under the term Internet
of Things [10, 19].

Only a small amount of systems provide built in remote access and if they do they often
rely on custom and proprietary communication infrastructures. Furthermore, low level commu-
nication protocols, for example, the M-Bus standard, are very common and prevent an easy to
use data exchange between various devices. However, these low level communication protocols,
such as the M-Bus standard, provide the foundation for and are used to build applications upon
them. Systems such as smart grids are an example for this [34].

To facilitate an easy to use communication between devices a common communication in-
frastructure is necessary. Web Services are widely accepted and can be used to accomplish this
task. In addition, devices that communicate with each other need to “speak” the same language,
which means that they have to communicate using a standardized protocol. The oBIX (Open
Building Information Exchange) standard tries to fill in this gap with a proposal for a stan-
dardized communication protocol for devices. The standard is implemented as a RESTful Web
Service infrastructure and uses technologies like XML, HTTP and URIs [28].

Devices that participate in oBIX-based communication can be called oBIX entities and can
exchange information with each other through Web Service calls. This means that also automatic
machine-to-machine communication can be accomplished which helps the task of home automa-
tion in general and smart grids in particular [23]. Since communication is realized through Web
Service calls, interaction can be realized with various devices. As an example we can imag-
ine a Web Service that allows the administration of a home heating system throughout modern

17

smartphones. New devices can be made public by registration in an oBIX based system and then
provide additional functionality [27].

3.2 oBIX functions

The main focus of oBIX is to provide a way to communicate with devices. oBIX supports
three different types of interaction through a REST based infrastructure: read an object, write an
object and invoke an operation. The payload transferred is an XML representation of the oBIX
standard. To identify entities or objects URIs (Uniform Resource Identifier) are used that can
also be used to mark the location of a device which means that they can also be seen as URLs
(Uniform Resource Locator). For an example, please see Section 3.3.

Basically, the oBIX specification provides a small fixed set of object types which can be
mapped to XML structures. An oBIX object of type obj (which serves as the root element of all
oBIX objects), for example, defines several properties like name or href, to identify the object,
among others. All other types are derived from this basic type.

Another key concept of oBIX are the Contracts. Contracts can be seen as a template ob-
ject that other objects reference to through an is attribute. Properties that reference to such a
contract can be accessed according to the contract specification and thus provide methods ac-
cordingly. Furthermore contracts can be used to define new types and also allow abstraction
through inheritance. This allows you to introduce new types which enrich base types with ad-
ditional functionality. An object can reference more than one template and templates can have
multiple inheritance. This mechanism makes oBIX easy to use as well as easy extendible.

As already mentioned objects can reference each other through URIs. Beside that it is also
possible to have nested objects. As an example, we will refer to a home heating system again
where the heating system could be presented by an oBIX object which has several heaters as
containment properties. These heaters are themselves oBIX objects. In this case, also all objects
would follow a contract specification.

In home automation usually certain aspects of the systems are of interest. In our home
heating example we could have several heaters and of each of them their current temperature
setting could be from interest. These values of sensors or similar devices are often referred to as
endpoints. In case of oBIX they are identified as points and are represented as a contract named
obix:Point. Each point has a specific type (bool, real. . .), a value and a unit. An example can be
seen in Section 3.3.

Besides the features mentioned above oBIX provides more complex tasks as well. For exam-
ple, a concept named watches is used to provide real-time information on objects. It is possible
to register a service at a watchService and receive data updates in near real-time. Another exam-
ple is the history concept which supports querying objects for values from a specific time frame.
In case a query is made an XML presentation of a query is send to the service containing the
timeslot. The service then answers accordingly (please see 3.3).

Since the main focus of this thesis is not on the oBIX standard only a short overview is
provided. oBIX provides more features cannot be covered here. For further details please refer
to [28]

18

3.3 oBIX examples

To give a better understanding of the oBIX communication protocol a few short examples are
given here. These examples are chosen to show certain aspects of the oBIX standard and do not
intend to cover the whole communication process.

1 <obj href="/smartMeter" is="iot:SmartMeter">
2 <real name="energy" href="energy" val="0.458041666666664" unit="obix:units/←↩

kilowatthours"/>
3 </obj>

Listing 3.1: oBIX object SmartMeter which holds an endpoint

Listing 3.1 shows an example of a simple oBIX object. All oBIX objects can be accessed
by a unique URI which means that a call of http://localhost:8080/smartMeter
(assuming that the Web Service is running on localhost with port 8080) would give the result
shown in Listing 3.1. In this example it is shown how a certain object, in this case a smart meter
object, can be accessed. The object references a contract iot:SmartMeter through the is attribute
and holds itself a value with the name energy which is represented as a floating point with value
0.46 and the unit obix:units/kilowatthours.

1 <obj href="/smartMeter" is="iot:SmartMeter obix:History">
2 <bool name="switchOnOffValue" href="switchOnOffValue" val="false" writable="true"/>
3 <real name="power" href="power" val="0.0" unit="obix:units/watt"/>
4 <real name="energy" href="energy" val="0.458041666666664" unit="obix:units/←↩

kilowatthours"/>
5 <ref name="power history" href="power/history" is="obix:History"/>
6 <ref name="energy history" href="energy/history" is="obix:History"/>
7 <ref name="power groupComm" href="power/groupComm" is="iot:GroupComm"/>
8 <ref name="energy groupComm" href="energy/groupComm" is="iot:GroupComm"/>
9 </obj>

Listing 3.2: complex oBIX object

In an oBIX object, several entities can be registered and accessed through their respective
URIs. In this case the URIs also serve as a relative URL and thus allow easy navigation through
a common web browser. All entities are accessible through a standardized oBIX interface and
provide operations according to their contracts. The smart meter device references the contract
iot:SmartMeter and can be accessed through the /smartMeter URI. Listing 3.2 shows an example
for such a call. The object is a little bit complexer than the one described in Listing 3.1 and
provides several endpoints which can be accessed. In addition, it shows some references to
other/included objects. Some of the endpoints in this example are writeable. Writeable endpoints
specify that values can be set through a Web Service call (PUT request). Listing 3.3 shows an
example on how we can interact with this object.

1 <bool name="switchOnOffValue" href="/smartMeter/switchOnOffValue" val="true" writable←↩
="true"/>

Listing 3.3: oBIX writeable object

19

http://localhost:8080/smartMeter

After sending the code snippet shown in Listing 3.3 via a PUT request the value of switchOnOffValue
is set to true.

1 <obj name="history" href="/smartMeter/energy/history">
2 <int name="count" href="count" val="100"/>
3 <abstime name="start" href="start" val="2013-05-22T21:43:30.298+02:00" tz="Europe/←↩

Vienna"/>
4 <abstime name="end" href="end" val="2013-05-22T21:48:27.355+02:00" tz="Europe/←↩

Vienna"/>
5 <op name="query" in="obix:HistoryFilter" out="obix:HistoryQueryOut"/>
6 <op name="rollup" in="obix:HistoryRollupIn" out="obix:HistoryRollupOut"/>
7 </obj>

Listing 3.4: oBIX history object

In Listing 3.2, it is shown that an object in oBIX can also hold a reference to a history
object. An example for an oBIX history object can be seen in Listing 3.4. The object specifies
how many entries are currently stored in the history (count attribute, in this case 100) and from
which timeslot (attribute start and end). In addition, this example also shows how an oBIX object
can provide an operation through which specific data can be requested (operation query).

oBIX objects can be quite complex and also provide mechanism for nested objects. This
thesis only aims at giving an overview, for an exhausting description of the oBIX specification
please see [28].

20

CHAPTER 4
Wireless M-Bus Java Library and API

The main goal of the implemented prototype was to provide a higher level of abstraction
and in doing so providing an API (Application Programming Interface) that is easy to use and
allows interacting with a meter device. Thus, the API should provide methods to receive and
write telegrams as well as automatically process them. The API allows applications to inter-
act with wireless M-Bus meter devices and process their telegrams in an automatic way. Data
extraction functions have been put into place to provide telegram parts in a more meaningful
way. In addition, support for encryption and decryption of the communication via the AES
(Advanced Encryption Standard) standard has been added. Telegram headers can be parsed and
their payload can be processed accordingly. Using this functionality it is also possible to process
telegrams with various header formats. Since the idea was only to interact with meter devices
only a subset of the entire M-Bus standard has been implemented.

Figure 4.1 gives a schematic overview of the API. It shows the main packages or components of
the API and how they are related to each other. The main components are:

• Manager-Component
This component is used to set up and initialize the overall API. Its basic functionality is to
initialize the connector and the telegram manager itself. Although all other components
can be used standalone, this component provides an easy way to initialize the API.

• Connector-Component
To establish communication with a meter device a connector is necessary. This component
establishes a connection via a COM-Port and listens in a periodic interval for incoming
messages. The messages are then handed to the telegram manager and processed from
there.

21

Figure 4.1: Package diagram that provides a schematic overview of the API

• Telegram Manager-Component
Retrieves incoming telegrams from the connector and initializes the parsing process. Tele-
grams are stored in raw format as well as in parsed format. In addition, the telegram
manager provides several API functions that make the telegram values easy accessible.

• Wireless M-Bus Device Loader-Component
As the API also provides integration into the IoTSyS framework (Internet of Things inte-
gration middleware) it has to provide necessary connecting interfaces. This loader com-
ponent is used to map meter telegrams according to the oBIX standard so that they can be
used in the IoTSyS framework [26].

This schematic overview will be discussed in more detail throughout Section 4.1.

4.1 Java Library Architecture

The prototype has been implemented in the JAVA programming language and provides a test
suite as well as a configurable set up for meter devices. To access the virtual COM-Port a third
party library RXTX has been used which takes care of handling communication over COM-
Ports. To use RXTX, a library has to be registered in the JAVA_HOME/lib folder as well as the

22

corresponding jar-File needs to be on the classpath. For further installation instructions, please
refer to [1].

1 Packages:
2 at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.reader
3 at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.telegrams
4 at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.telegrams.body
5 at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.telegrams.header
6 at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.telegrams.util
7 at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.test
8 at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.util

Listing 4.1: java prototype package structure

Listing 4.1 shows the overall package structure of the prototype and each package may
contain multiple classes. The package reader contains all classes necessary to receive and send
data to a smart meter device. In particular, this means that it listens on a configurable COM-Port
for incoming messages. It is realized as a thread based implementation so that messages can
be received asynchronously from the overall application. Through a specific listener interface
the application is then notified upon the arrival of new information/telegrams. The telegrams
package consists out of several POJOs (Plain Old Java Objects) among other classes. These
classes represent the telegram structure as JAVA objects and provide meaningful methods for
accessing distinct parts of the telegram itself. Several of these objects are nested as a telegram
consists out of both a header and a body where the body itself consists out of several objects.
Since a lot of the fields in the classes correspond to specific parts in the telegram a util package
has been introduced which takes care of conversion or calculation operations. Additionally, it is
used to construct an output that can be easily processed by consumers. Last but not least a test
package is part of the prototype. Through this package several test cases can be tested without
relying on the actual connection to the meter device itself. These tests include conversion,
calculation, output and telegram construction. Beside that there are also tests available with
an actual meter device.

To give a more detailed view into the internal structure of the API several class diagrams are
included in this thesis. Since the overall structure is quite complex the class diagram has been
split into several diagrams where each diagram focuses on a particular part.

Figure 4.2 gives an overview of how telegrams are constructed in the API. Telegrams itself are
a quite complex construct since they can vary in length and field definitions depending on the
header and several other field (more on this can be found in Section 4.2). Telegrams consists
out of several distinct parts but in any case they have a header of a specific length (which can
variable) and a body. The body usually consists out of another header and the payload which
contains the actual data values. Each field is represented through a class TelegramField. As there
are multiple fields with different functions the TelegramField class can be seen as a template
class for several other, more specific, classes. The payload of the body usually is made up out
of variable data records presented as TelegramVariableDataRecord.

23

Figure 4.2: Class diagram that provides an overview of the telegram part of the API

24

In addition to the telegram structure, a manager is necessary to control and store all telegrams.
This manager is used to connect to the actual meter device as well as parse telegram values. The
manager can be used to observe the connector itself and react to incoming telegrams from the
meter device. Figure 4.3 gives an overview.

Figure 4.3: Telegram Manager class diagram

To instantiate a telegram manager, the interface TelegramManagerInterface has to be imple-
mented. This interfaces already provides the necessary methods to process incoming telegrams.
Incoming telegrams are received in the ComPortReader class and are then handed over to the
class that implements TelegramManagerInterface (in this case WMBusConnector). The interface
enables the creation of custom telegram managers. The telegram manager is also responsible to
encrypt and decrypt telegrams as well as parse them as soon as they are decrypted. Both values,
raw and parsed, are stored in the telegram manager.

This concludes the overview of the API and the short introduction of its internal structure.
As the API is also used and integrated into the IoTSyS framework there is also a description in
Section 4.4. Please consider that not all aspects are covered in full detail here since this would
go beyond the scope of this paper.

25

4.2 Telegram structure

In this section, there is an example given for the telegram structure for the configuration of the
meter device mentioned above. Please note that other configurations or meter devices can send
telegrams with a different structure and although support for various telegram structures has
been implemented in the prototype, not all available telegrams might be interpreted erroneous.

The prototype set up was configured to send telegrams with a long header every 60 seconds
as a SND_NR telegram. The structure contains first a header and then a body. The body part
itself can be split into its header and its payload. The telegram structure is shown in Listing 4.2.

1 Telegram Header:
2 L-Field: 1 Byte (length of telegram)
3 C-Field: 1 Byte (control field)
4 M-Field: 2 Byte (manufacturer field)
5 A-Field: 6 Byte (address field)
6
7 Telegram Body:
8 Header:
9 CI-Field: 1 Byte (control input field)

10 Acc-Field: 1 Byte (access number field)
11 S-Field: 1 Byte (status field)
12 Sig-Field: 2 Byte (signature field)
13 Body:
14 Payload: value of L-Field minus header length bytes

Listing 4.2: prototype meter device telegram structure

The fields described in Listing 4.2 encode various configuration settings in one single field-
/byte (for example, the Sig-Field encodes information about the encryption as well as the type
of communication). Thus, it is necessary to have algorithms in place to extract the information
needed and process them accordingly. There is already an overview on these fields given in
Section 2 and therefore only an explanation on some fields is provided here.

Figure 4.4: An example for a wireless M-Bus telegram

Figure 4.4 shows an example for a telegram and how it is split into several parts (header, body
header and body payload). To give a better understanding of how such a telegram is processed
this example telegram is analysed in more detail in Listing 4.3.

26

1 Telegram Header:
2 L-Field: 3E (length of the telegram 62 Byte)
3 C-Field: 44 (value 44 means send with no answer)
4 M-Field: 2C 4C (manufacturer converts to "SAM")
5 A-Field: 74 44 00 15 1E 02
6 SerialNr: 74 44 00 15 (translates to 15004474)
7 Version: 1E (version 30)
8 Type: 02 (type 02 electricity)
9

10 Telegram Body:
11 Header:
12 CI-Field: 7A (7A marks a 4 byte header)
13 Acc-Field: 07 (current access number)
14 S-Field: 00 (indicating no errors)
15 Sig-Field: 30 85 (30 85 indicates an AES encrypted telegram)
16 Body:
17 Encryption: 87 01 (encryption verification)
18 Payload: (encrypted payload)
19 B1 B2 D2 97 F3 7A 9A DB 75 31 11...

Listing 4.3: prototype meter device telegram example

Since the telegram shown used in the prototype is quite long only the interesting parts are
shown in Listing 4.3. Some of the fields, like for example the M-Field, require a more complex
calculation to retrieve the correct value. These calculations are omitted here and can be found
in [16]. The body payload itself is encrypted and basically consists of several blocks. Each
block starts with a DIF field and is followed by a VIF field. Depending on the value of these
two fields the rest of the block is organized. There are multiple options on how such a block can
be constructed and therefore only the overall structure is shown here.

As the setup during the prototype implementation used an AES encryption the body payload
of the telegram has been encrypted. To encrypt and decrypt telegrams a 16-Byte key along with
a CBC (Cipher Block Chaining) initialization vector is required. The method used for the AES
encryption might differ and thus no initialization vector is necessary. However, a short example
on how such a key is constructed is given in Listing 4.4. Please note that the telegram header
itself is not encrypted.

1 AES-Key:
2 66 77 66 77 66 77 66 77 66 77 66 77 66 77 66 77
3
4 CBC Initialisation vector:
5 = M-Field + A-iFeld + 8 Byte-AccessNr
6 = 2D 4C 74 44 00 15 1E 02 07 07 07 07 07 07 07 07

Listing 4.4: construction of telegram encryption key

Using the setting from Listing 4.4 the telegram can now be decoded.

1 RAW:
2 3E 44 2D 4C 74 44 00 15 1E 02 7A 07 00 30 85 87 01
3 B1 B2 D2 97 F3 7A 9A DB 75 31 11 25 14 93 FA 8C 4A
4 82 CD E1 F2 BB C9 F5 30 E9 A2 3F 1D 2B A7 5D B6 CA
5 E4 4A 39 5D 4F 12 E2 12 1E 60 70 43
6

27

7 Decrypted:
8 3E 44 2D 4C 74 44 00 15 1E 02 7A 07 00 30 85 2F 2F
9 06 6D 09 87 C0 A1 01 34 04 03 2A ED 10 00 04 83 3C

10 00 00 00 00 04 2B 18 00 00 00 04 AB 3C 00 00 00 00
11 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F
12
13 Parsed:
14 44h SAM 15004474 30 02h 7Ah Response from device,
15 HL = 4, M-Bus
16 4 00h 3085h 1 04h 03h 4 0 0
17 Instantaneous value 0 1109289 10^0 Wh Energy

Listing 4.5: Example telegram in different states

The examples given in this section only provide a basic overview on how telegrams can be
processed. For an expletive description please see Section 2.3 or refer to [16].

4.3 Java Library Usage

To give a better understanding of the Java Library Architecture described in Section 4.1 a
short example on how the API can be accessed and used in an application is provided here.
The main focus is to show how values of telegrams received by a smart meter device can be
retrieved. In addition, a sample implementation for the TelegramManagerInterface is given that
demonstrates how telegrams can be processed. The implementation of the TelegramManager
can vary depending on the application. The API provides a TelegramManager for the standard
use case of receiving and processing smart meter telegrams.

The first part of this section will focus on the TelegramManager itself and the latter part will
demonstrate how it can be used in an application. Please keep in mind that only a simple example
can be shown here because the use cases can be quite complex and be embedded in larger scale
applications.

1 package at.ac.tuwien.auto.iotsys.gateway.connector.wmbus;
2
3 import java.util.List;
4
5 import at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.telegrams.Telegram;
6
7 public interface TelegramManagerInterface {
8
9 /**

10 * Processes the passed telegram and adds it to its internal storage
11 * @param telegramString String representation of the telegram to be added
12 */
13 public abstract void addTelegram(String telegramString);
14
15 /**
16 * Processes the passed telegram and adds it to its internal storage
17 * @param telegram The telegram to be added
18 */
19 public abstract void addTelegram(Telegram telegram);
20
21 /**

28

22 * Registers the serialNr of the smart meter and the AES key that is used
23 * to encrypt telegrams
24 * @param serialNr The serialNr of the smart meter
25 * @param aesKey The AES Key used for the encryption
26 */
27 public void registerAESKey(String serialNr, String aesKey);
28
29 /**
30 * Returns a list of telegrams currently stored
31 * @return the list of telegrams
32 */
33 public List<Telegram> getTelegrams();
34
35 }

Listing 4.6: the interface that telegram manager need to implement

Listing 4.6 shows the interface that each TelegramManager has to implement. The imple-
mentation can be different depending on the use case and the API provides only a reference
implementation. The following listings will only focus on the more interesting parts of the
TelegramManager and demonstrate how such a TelegramManager could operate.

1 /**
2 * Processes the passed telegram and adds it to its internal storage
3 * @param telegramString String representation of the telegram to be added
4 */
5 @Override
6 public void addTelegram(String telegramString) {
7 Telegram telegram = this.createTelegram(telegramString);
8 if(telegram != null) {
9 this.telegrams.add(telegram);

10 }
11 }
12
13 /**
14 * Based on the passed string a telegram is created (if possible). The telegram
15 * is, if necessary, decrypted and parsed. The final telegram is then returned
16 * @param telegramString String representation of the telegram to be parsed
17 * @return the created telegram
18 */
19 private Telegram createTelegram(String telegramString) {
20 Telegram telegram = new Telegram();
21 telegram.createTelegram(telegramString, false);
22 if(telegram.decryptTelegram(aesKey) == false) {
23 log.severe("Decryption of AES telegram not possible.");
24 return null;
25 }
26 telegram.parse();
27
28 return telegram;
29 }

Listing 4.7: the add method of a TelegramManager

Listing 4.7 shows the methods that are of interest to process a telegram. It is assumed that the
TelegramManager has an internal storage for incoming telegrams represented as a java.util.List.

29

Furthermore, it is assumed that the necessary set up (including the key to decrypt telegrams) has
been provided.

The first method overrides the corresponding method from the TelegramManagerInterface
and simply calls an internal method that is used to construct a telegram from the passed string.
The resulting telegram is then, if not null, added to the internal storage, in this case a java.util.List
variable, and then the method returns. The second method constructs the telegram itself from a
string that represents a telegram. In this case, the construction is rather simple as it is assumed
that the variable telegramString provides a valid representation of the telegram. In addition,
the telegram is then decrypted and parsed right away. The decryption and parsing methods are
provided by the Telegram class of the API and is automatically only performed if necessary. The
resulting telegram is then returned to the caller. Please keep in mind that this just provides a
simple example on how such a telegram can be processed. In other use cases, more elaborate
checks or steps may be necessary.

Now that the functionality of the TelegramManager has been established, an overview on how
to use the API and in particular this TelegramManager can be provided. For a better understand-
ing, first a step by step description is given and in conclusion the full listing is shown. The goal
is to receive smart meter telegrams and extract power and energy values out of them.

1 // first the telegram manager is initialized
2 // and the corresponding serial number and AES key (if necessary) is set
3 TelegramManagerInterface tManager = new TelegramManager();
4 tManager.registerAESKey(SmartMeterStarter.SERIAL_NR, SmartMeterStarter.AES_KEY);

Listing 4.8: initializing the TelegramManager

The first step is to initialize the TelegramManager and use the correct serial numbers and
AES key for its set up. Listing 4.8 shows how such a set up is accomplished.

1 // find the COM-Port under which the wireless M-Bus USB stick can be accessed
2 CommPortIdentifier portId = ComPortReader.lookupPorts("/dev/ttyUSB0");
3 // and initialize the connector with these values
4 ComPortReader reader = new ComPortReader(portId, tManager);

Listing 4.9: initializing the ComPortReader

The second step is to initialize the connector ComPortReader. The ComPortReader is used
to establish a connection through a COM-Port (in this set up a wireless M-Bus USB stick has
been used). First, the correct port is identified by providing a device URI and a lookup and
afterwards the ComPortReader itself can be initialized. While initializing the ComPortReader
receives a reference to the previously generated TelegramManagerInterface stored in the vari-
able tManager. This is necessary so that the ComPortReader can notify the TelegramManager-
Interface via its addTelegram method. As soon as the ComPortReader is initialized it listens to
incoming telegrams and, if it receives one, passes it to the TelegramManagerInterface.

After the ComPortReader has been initialized the set up is done and the API is already re-
ceiving incoming telegrams and parsing them. Everything that is now missing is to extract some

30

values of the incoming telegrams. Since this is a simplified example it is assumed that, after
initialization, the TelegramManager immediately receives some telegrams. Usually, the applica-
tion logic would be placed between the initialization and the data extraction, or even more often
the TelegramManager itself would be used directly in the application logic.

1 // retrieve a list of currently stored telegrams
2 List<Telegram> telegrams = tManager.getTelegrams();
3
4 if(telegrams != null) {
5 for(Telegram telegram : telegrams) {
6 System.out.println("Energy Value: " + telegram.getEnergyValue());
7 System.out.println("Power Value: " + telegram.getPowerValue());
8 }
9 }

Listing 4.10: retreiving telegrams from the TelegramManager

Listing 4.10 shows how data can be extracted from telegrams. First, a list of telegrams is re-
ceived from the TelegramManager via the getTelegrams method. Afterwards, each telegram gets
processed in a loop and the values are easily extracted by the getEnergyValue and getPowerValue
methods of the API.

1 // finally close the port which is connected to the smart meter
2 reader.closePort();

Listing 4.11: closing the connection of the ComPortReader

To close the connection to the smart meter, the open connection in the ComPortReader has
simply to be closed. Listing 4.11 shows how this is accomplished.

The code fragments from the previous listings can be combined to form a simple application
and is showing as a full code segment in Listing 4.12.

1 package at.ac.tuwien.auto.iotsys.gateway.connector.wmbus;
2
3 import gnu.io.CommPortIdentifier;
4
5 import java.util.List;
6
7 import at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.reader.ComPortReader;
8 import at.ac.tuwien.auto.iotsys.gateway.connector.wmbus.telegrams.Telegram;
9

10 public class SmartMeterStarter {
11 /**
12 * serial number of the smart meter
13 */
14 private static String SERIAL_NR = "15004474";
15
16 /**
17 * the AES key that is used to encrypt meter telegrams
18 */
19 private static String AES_KEY = "66 77 66 77 66 77 66 77 66 77 66 77 66 77 66 77";
20

31

21 public static void main(String[] args) {
22 // first the telegram manager is initialized
23 // and the corresponding serial number and AES key (if necessary) is set
24 TelegramManagerInterface tManager = new TelegramManager();
25 tManager.registerAESKey(SmartMeterStarter.SERIAL_NR, SmartMeterStarter.AES_KEY)←↩

;
26
27 // find the COM-Port under which the wireless M-Bus USB stick can be accessed
28 CommPortIdentifier portId = ComPortReader.lookupPorts("/dev/ttyUSB0");
29 // and initialize the connector with these values
30 ComPortReader reader = new ComPortReader(portId, tManager);
31
32 // retrieve a list of currently stored telegrams
33 List<Telegram> telegrams = tManager.getTelegrams();
34
35 if(telegrams != null) {
36 for(Telegram telegram : telegrams) {
37 System.out.println("Energy Value: " + telegram.getEnergyValue());
38 System.out.println("Power Value: " + telegram.getPowerValue());
39 }
40 }
41
42 // finally close the port which is connected to the smart meter
43 reader.closePort();
44 }
45
46 }

Listing 4.12: full code example for a smart meter reader class

4.4 Integration into oBIX based IoTSyS framework

In addition to the standalone prototype described in Section 4.1, a plugin for a the IoTSyS
framework has been developed. IoTSyS aims at providing an integration middleware for the
Internet of Things and allows interoperability between different devices. IoTSyS makes use of
OSGi (Open Services Gateway initiative) and thus an approach for modularization via standard
APIs has been implemented. This means that single connectors can be bundled and integrated
into the framework without changes on the actual source code. The communication stack in-
cludes embedded devices based on IPv6, Web Services and the oBIX standard to enable simple
and efficient information exchange in a smart grid environment [26].

The basic idea was to include the prototype implementation for the smart meter reader as a plugin
into the existing framework. To accomplish this task, a couple of new classes has been intro-
duced to the prototype. IoTSyS provides a web server that allows to access registered entities
throughout a common interface - oBIX. Figure 4.5 gives an overview on how the communication
flow is realized.

The interaction with the IoTSyS framework is already built into the Java library and connec-
tors and device loaders have been put into place. Figure 4.6 shows a class diagram for this mat-
ter. Please note that the wMBusConnector class is only an abstract class which stands for a more
complex build up described in Section 4.1. The SmartMeter interface provides the mapping for

32

Figure 4.5: Schematic overview of oBIX framework with wMBus plugin

oBIX objects and is specified according to the defined contract. The WMBusBundleActivator
is used as an entry point from the IotSyS framework and activates the device implementation
through which the actual WMBusConnector is then initialized. The WMBusWatchDog interface
allows to register a watch dog which is used to notify about new incoming data values.

Figure 4.6: Class diagram of WMBusConnector and IoTSyS framework

33

Since all registered entities operate according to the oBIX standard interoperability is achieved.
A list of registered devices can be accessed by calling the start URL of the web server (in this
case http://localhost:8080). To discuss the integration of the API into the IoTSyS
framework it is necessary to revisit Listing 3.4 from Section 3.3 (for convenience the listing is,
slightly simplified, included here as well and can be seen in Listing 4.13).

1 <obj name="history" href="/smartMeter/energy/history">
2 <int name="count" href="count" val="50"/>
3 <abstime name="start" href="start" val="2013-05-22T21:43:30.298+02:00" tz="Europe/←↩

Vienna"/>
4 <abstime name="end" href="end" val="2013-05-22T21:48:27.355+02:00" tz="Europe/←↩

Vienna"/>
5 <op name="query" in="obix:HistoryFilter" out="obix:HistoryQueryOut"/>
6 </obj>

Listing 4.13: Simplified oBIX history object

The operation specified in the history contract can be invoked via a POST request.

1 <obj name="query" is="obix:HistoryFilter">
2 <int name="limit" val="5" />
3 <abstime name="start" null="true" />
4 <abstime name="end" null="true" />
5 </obj>

Listing 4.14: query for an oBIX history object

To invoke such an operation, a POST request is necessary. The content of this request
is another oBIX object with a specific contract (for the query operation we have to use the
obix:HistoryFilter contract). The history object is queried via the URL http://localhost:
8080/smartMeter/energy/history. Listing 4.14 shows the content of such a query
POST request. The attribute name specifies which operation is to be invoked and the following
possible values (limit, start and end) are specified in the contract used (obix:HistoryFilter). In
this case, there is no time constraint given but the number of results is limited to five.

1 <obj is="obix:HistoryQueryOut">
2 <int name="count" href="count" val="5"/>
3 <abstime name="start" href="start" val="2013-05-22T22:08:15.602+02:00" tz="Europe/←↩

Vienna"/>
4 <abstime name="end" href="end" val="2013-05-22T22:08:27.605+02:00" tz="Europe/←↩

Vienna"/>
5 <list of="obix:HistoryRecord">
6 <obj>
7 <abstime val="2013-05-22T22:08:15.602+02:00" tz="Europe/Vienna"/>
8 <real val="1.0380416666666723"/>
9 </obj>

10 <obj>
11 <abstime val="2013-05-22T22:08:18.603+02:00" tz="Europe/Vienna"/>
12 <real val="1.0388750000000055"/>
13 </obj>
14 <obj>
15 <abstime val="2013-05-22T22:08:21.603+02:00" tz="Europe/Vienna"/>
16 <real val="1.0397083333333388"/>

34

http://localhost:8080
http://localhost:8080/smartMeter/energy/history
http://localhost:8080/smartMeter/energy/history

17 </obj>
18 <obj>
19 <abstime val="2013-05-22T22:08:24.604+02:00" tz="Europe/Vienna"/>
20 <real val="1.040541666666672"/>
21 </obj>
22 <obj>
23 <abstime val="2013-05-22T22:08:27.605+02:00" tz="Europe/Vienna"/>
24 <real val="1.0413750000000053"/>
25 </obj>
26 </list>
27 </obj>

Listing 4.15: result for a queried oBIX history object

Listing 4.15 shows the result for the query in Listing 4.14. The count attribute indicates that
are only five values contained in the result set (which is according to the contract obix:HistoryQueryOut).
The results themselves can be found in a contract of obix:HistoryRecord which holds multiple
values (in this case five). This listing also shows an example for nested objects in oBIX.

In addition, it is possible to register at a watchService and get value changes in near real-
time. An optional history object for the smart meter implementation is provided as well. This
watchService allows the monitoring of meter devices and provides a near-real time reporting
functionality on energy consumption. Utilizing this feature it is possible to meet the legal ordi-
nance issued by the Austrian Government (IMA-VO and IME-VO).

For a full list of features please refer to [26].

35

Evaluation

In the overall setup there are two parts of interest. First the actual meter device which is a
Siemens AMIS Smart Meter with an additional Amber wireless M-Bus module which enables
communication via the wireless M-Bus standard. The configuration of the meter can be seen
in Listing 4.16. This device operates as slave during the interaction. Second the receiver itself
which is an Amber AMB8425-M wireless M-Bus USB stick which simulates a virtual COM-
Port that allows a transparent access similar to normal M-Bus devices. In this setup the USB
stick is used as the master and is connected to a device that is used to receive or interact with the
meter itself. Basically this stick can be used on each device that provides the necessary drivers.

1 Smart Meter:
2 ID: 15007774
3 MAN: SAM
4 Type: 02 (Electricity)
5 Version: 30

Listing 4.16: smart meter configuration

The meter has been configured to send its values in a periodic interval (every 60 seconds) as
an SND_NR telegram.

The overall set up has been tested on a Windows 7 and a Linux installation.

36

CHAPTER 5
Conclusion

Modern technologies facilitate the usage of various devices to control and administrate sys-
tems remotely. Consumers wish to be able to have access to data everywhere and at any time.
Ubiquitous computing is a common term and describes the need of interoperability between dif-
ferent kinds of devices, often also referred to the Internet of Things. These technologies provide
us with the chance to build complex and easy to use home automation systems that can be part
of a smart grid infrastructure. Smart meter devices are the foundation of this infrastructure and
can be used to access and supervise devices in home automation systems. However, not all of
the questions surrounding this task have yet been solved.

This bachelor thesis therefore presents a JAVA library for the M-Bus standard that provides
an easy to use and extendible API. Building upon this prototype, higher level applications can
be built that utilize the M-Bus communication protocol without the need of all the lower level
complexity of it. The prototype implemented provides a configurable setup and can be used
on various platforms. In addition, it allows encrypted telegrams to be processed so that data
exchange can be realized in a secure way. The approach used has shown that such an abstract API
can be realized and that M-Bus telegrams can be processed in near real-time. This enables the
consumer to have accurate and up-to-date information about devices connected to a smart meter.
Further implementations can provide control mechanisms with a UI so that the information can
be visualized in a more graphic way.

Furthermore, the prototype has been integrated into an oBIX server where the meter values
can be accessed through a common Web Service infrastructure. This supports the interoperabil-
ity of the device through a common standardized communication protocol - the oBIX standard.
oBIX proposes an XML based Web Service infrastructure and allows access to devices through
simple Web Service calls. The IoTSyS framework makes use of the oBIX standard and supplies
standardized OSGi bundles that can be integrated. By doing so they can be accessed through a
Web Service and communicate via the oBIX standard and thus are able to accomplish machine-
to-machine interaction and moreover automatically process information in between them.

37

List of Figures

2.1 M-Bus Standard Setup . 4
2.2 Physical Layer - Bit representation: Page 6 of [15] 8
2.3 Wireless-M-Bus communication - Simplified bidirectional communication (as in T2) 13

4.1 Package diagram that provides a schematic overview of the API 22
4.2 Class diagram that provides an overview of the telegram part of the API 24
4.3 Telegram Manager class diagram . 25
4.4 An example for a wireless M-Bus telegram . 26
4.5 Schematic overview of oBIX framework with wMBus plugin 33
4.6 Class diagram of WMBusConnector and IoTSyS framework 33

List of Tables

2.1 M-Bus Protocol Stack . 7
2.2 Data Link Layer - telegram formats M-Bus . 9

Listings

3.1 oBIX object SmartMeter which holds an endpoint 19

38

3.2 complex oBIX object . 19
3.3 oBIX writeable object . 19
3.4 oBIX history object . 20
4.1 java prototype package structure . 23
4.2 prototype meter device telegram structure . 26
4.3 prototype meter device telegram example . 27
4.4 construction of telegram encryption key . 27
4.5 Example telegram in different states . 27
4.6 the interface that telegram manager need to implement 28
4.7 the add method of a TelegramManager . 29
4.8 initializing the TelegramManager . 30
4.9 initializing the ComPortReader . 30
4.10 retreiving telegrams from the TelegramManager 31
4.11 closing the connection of the ComPortReader 31
4.12 full code example for a smart meter reader class 31
4.13 Simplified oBIX history object . 34
4.14 query for an oBIX history object . 34
4.15 result for a queried oBIX history object . 34
4.16 smart meter configuration . 36

39

Bibliography

[1] RXTX - SerialPort Interface. http://rxtx.qbang.org/wiki/index.php/
Main_Page. [Online; accessed 03-March-2013].

[2] ANSI - American National Standards Institute. Protocol Specification for ANSI Type 2
Optical Port C12.18, 2006.

[3] ANSI - American National Standards Institute. Protocol Specification for Interfacing to
Data Communication Networks C12.22, 2008.

[4] Carsten Bories. Einrichtung einer intelligenten Ausleseeinheit für Verbrauchsmesszähler.
Master’s thesis, Fachbereich Physik Universität - GH Paderborn, 1995.

[5] P. Bredillet, E. Lambert, and E. Schultz. Cim, 61850, COSEM Standards Used in a Model
Driven Integration Approach to Build the Smart Grid Service Oriented Architecture. In
2010 First IEEE International Conference on Smart Grid Communications (SmartGrid-
Comm), pages 467–471, 2010.

[6] Bundeskanzleramt Österreich. Intelligente Messgeräte - Anforderungs VO - IMA-VO
2011. http://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/
20007497/IMA-VO%202011%2c%20Fassung%20vom%2012.07.2013.pdf.
[Online; accessed 24-June-2013].

[7] BUNDESMINISTERIUM für WIRTSCHAFT, FAMILIE und JUGEND. Aktuelle
Rechtsvorschriften - Österreich. http://www.bmwfj.gv.at/ministerium/
rechtsvorschriften/kundgemachte_rechtsvorschriften/seiten/
listeaktuellerrechtsvorschriftenab112009.aspx. [Online; accessed
24-June-2013].

[8] BUNDESMINISTERIUM für WIRTSCHAFT, FAMILIE und JUGEND. In-
telligente Messgeräte - Einführungsverordnung IME-VO. http://www.
bmwfj.gv.at/Ministerium/Rechtsvorschriften/kundgemachte_
rechtsvorschriften/Documents/Intelligente%20Messger%C3%A4te.
pdf. [Online; accessed 24-June-2013].

[9] Christof Hoentzsch. The M-Bus: A Documentation Rev. 4.8. http://www.m-bus.
com/mbusdoc/md4.php. [Online; accessed 24-June-2013].

41

http://rxtx.qbang.org/wiki/index.php/Main_Page
http://rxtx.qbang.org/wiki/index.php/Main_Page
http://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20007497/IMA-VO%202011%2c%20Fassung%20vom%2012.07.2013.pdf
http://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20007497/IMA-VO%202011%2c%20Fassung%20vom%2012.07.2013.pdf
http://www.bmwfj.gv.at/ministerium/rechtsvorschriften/kundgemachte_rechtsvorschriften/seiten/listeaktuellerrechtsvorschriftenab112009.aspx
http://www.bmwfj.gv.at/ministerium/rechtsvorschriften/kundgemachte_rechtsvorschriften/seiten/listeaktuellerrechtsvorschriftenab112009.aspx
http://www.bmwfj.gv.at/ministerium/rechtsvorschriften/kundgemachte_rechtsvorschriften/seiten/listeaktuellerrechtsvorschriftenab112009.aspx
http://www.bmwfj.gv.at/Ministerium/Rechtsvorschriften/kundgemachte_rechtsvorschriften/Documents/Intelligente%20Messger%C3%A4te.pdf
http://www.bmwfj.gv.at/Ministerium/Rechtsvorschriften/kundgemachte_rechtsvorschriften/Documents/Intelligente%20Messger%C3%A4te.pdf
http://www.bmwfj.gv.at/Ministerium/Rechtsvorschriften/kundgemachte_rechtsvorschriften/Documents/Intelligente%20Messger%C3%A4te.pdf
http://www.bmwfj.gv.at/Ministerium/Rechtsvorschriften/kundgemachte_rechtsvorschriften/Documents/Intelligente%20Messger%C3%A4te.pdf
http://www.m-bus.com/mbusdoc/md4.php
http://www.m-bus.com/mbusdoc/md4.php

[10] L. Coetzee and J. Eksteen. The Internet of Things - promise for the future? An introduction.
In Proceedings of IST-Africa Conference 2011, pages 1–9, 2011.

[11] DIN Deutsches Institut für Normung e. V. Lokales Bussystem, DIN EN 13757-6, 2003.

[12] DIN Deutsches Institut für Normung e. V. Weitervermittlung, DIN EN 13757-5, 2003.

[13] DIN Deutsches Institut für Normung e. V. Zählerauslesung über Funk (Fernablesung von
Zählern im SRD-Band), DIN EN 13757-4, 2003.

[14] DIN Deutsches Institut für Normung e. V. Kommunikationssysteme für Zähler und deren
Fernablesung, DIN EN 13757-1, 2005.

[15] DIN Deutsches Institut für Normung e. V. Physical und Link Layer, DIN EN 13757-2,
2005.

[16] DIN Deutsches Institut für Normung e. V. Spezielle Anwendungsschicht, DIN EN 13757-
3, 2005.

[17] S. Feuerhahn, M. Zillgith, C. Wittwer, and C. Wietfeld. Comparison of the communication
protocols DLMS/COSEM, SML and IEC 61850 for smart metering applications. In Smart
Grid Communications (SmartGridComm), 2011 IEEE International Conference on, pages
410–415, 2011.

[18] A. Flammini, S. Rinaldi, and A. Vezzoli. The sense of time in open metering system. In
Smart Measurements for Future Grids (SMFG), 2011 IEEE International Conference on,
pages 22–27, 2011.

[19] Bin Guo, Daqing Zhang, and Zhu Wang. Living with Internet of Things: The Emergence
of Embedded Intelligence. In Internet of Things (iThings/CPSCom), 2011 International
Conference on and 4th International Conference on Cyber, Physical and Social Computing,
pages 297–304, 2011.

[20] Wolfgang Hascher. Wireless-M-Bus – der neue Smart-Metering-
Standard? http://www.elektroniknet.de/kommunikation/
technik-know-how/kommunikations-module-u-systeme/article/
1530/0/Wireless-M-Bus__der_neue_Smart-Metering-Standard/,
2009. [Online; accessed 10-March-2013].

[21] Horst Ziegler, Carsten Bories. M-bus: Ausdehnung des Netzes bei unterschiedlichen Bau-
draten. Fachbereich Physik Universität - GH Paderborn, dec 1995.

[22] International Electrotechnical Commission. Electricity metering - Data exchange for meter
reading, 2002.

[23] H. Jarvinen, A. Litvinov, and P. Vuorimaa. Integration platform for home and building
automation systems. In Consumer Communications and Networking Conference (CCNC),
2011 IEEE, pages 292–296, 2011.

42

http://www.elektroniknet.de/kommunikation/technik-know-how/kommunikations-module-u-systeme/article/1530/0/Wireless-M-Bus__der_neue_Smart-Metering-Standard/
http://www.elektroniknet.de/kommunikation/technik-know-how/kommunikations-module-u-systeme/article/1530/0/Wireless-M-Bus__der_neue_Smart-Metering-Standard/
http://www.elektroniknet.de/kommunikation/technik-know-how/kommunikations-module-u-systeme/article/1530/0/Wireless-M-Bus__der_neue_Smart-Metering-Standard/

[24] Wang Jiahui, Liu Xiaodan, Zeng Lei, and Hou Weiyan. The design and implementation
of a wireless meter reading system. In 2011 10th International Conference on Electronic
Measurement Instruments (ICEMI), volume 1, pages 115–120, 2011.

[25] I. Kunold, M. Kuller, J. Bauer, and N. Karaoglan. A system concept of an energy informa-
tion system in flats using wireless technologies and smart metering devices. In Intelligent
Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th Interna-
tional Conference on, volume 2, pages 812–816, 2011.

[26] Markus Jung. IoTSyS - Internet of Things integration middleware. http://code.
google.com/p/iotsys. [Online; accessed 22-March-2013].

[27] M. Neugschwandtner, G. Neugschwandtner, and W. Kastner. Web Services in Building
Automation: Mapping KNX to oBIX. In 2007 5th IEEE International Conference on
Industrial Informatics, volume 1, pages 87–92, 2007.

[28] OASIS Open Building Information Exchange TC. OBIX Version 1.1, Working Draft 06,
2010.

[29] M.M. Rahman and A. Mto. Technologies required for efficient operation of a smart meter
network. In Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference
on, pages 809–814, 2011.

[30] C. Selvam, K. Srinivas, G. S. Ayyappan, and M. Venkatachala Sarma. Advanced metering
infrastructure for smart grid applications. In Recent Trends In Information Technology
(ICRTIT), 2012 International Conference on, pages 145–150, 2012.

[31] Siemens AG. Smart Metering Infrastructure. http://www.energy.siemens.
com/co/en/energy-topics/smart-grid/smart-consumption/
smart-metering-infrastructure.htm. [Online; accessed 24-November-
2011].

[32] Steinbeis Transfer Center - Embedded Design and Networking. Wireless M-Bus Docu-
mentation. http://www.stzedn.de/wireless-m-bus-stack.html. [Online;
accessed 24-April-2012].

[33] Hou Weiyan, Wang Jiahui, and Zhang Fangchang. A scheme for the application of smart
message language in a wireless meter reading system. In 2011 Third International Con-
ference on Measuring Technology and Mechatronics Automation (ICMTMA), volume 1,
pages 254–257, 2011.

[34] Ling Zheng, Shuangbao Chen, Shuyue Xiang, and Yanxiang Hu. Research of architecture
and application of Internet of Things for Smart Grid. In 2012 International Conference on
Computer Science Service System (CSSS), pages 938–941, 2012.

43

http://code.google.com/p/iotsys
http://code.google.com/p/iotsys
http://www.energy.siemens.com/co/en/energy-topics/smart-grid/smart-consumption/smart-metering-infrastructure.htm
http://www.energy.siemens.com/co/en/energy-topics/smart-grid/smart-consumption/smart-metering-infrastructure.htm
http://www.energy.siemens.com/co/en/energy-topics/smart-grid/smart-consumption/smart-metering-infrastructure.htm
http://www.stzedn.de/wireless-m-bus-stack.html

	Introduction
	M-Bus Standard
	Introduction
	History
	Purpose
	Related Standards
	Conclusion

	oBIX Standard
	Introduction
	oBIX functions
	oBIX examples

	Wireless M-Bus Java Library and API
	Java Library Architecture
	Telegram structure
	Java Library Usage
	Integration into oBIX based IoTSyS framework

	Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography

