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Abstract

In this Bachelor’s thesis, we explore in-memory fuzz testing of TCP server binaries. We
use the Pin instrumentation framework to inject faults directly into application buffers
and take snapshots of the program state. On a simple testing binary, this results in
a 2.7× speedup compared to a naive fuzz testing implementation. To evaluate our
implementation, we apply it to a VNC server binary as an example for a real-world
application. We describe obstacles that we had to tackle during development and point
out limitations of our approach.
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CHAPTER 1
Introduction

Fuzz testing is a well-established technique for finding bugs in programs and can be
applied even without access to the source code. This makes it a useful tool for security
researchers to identify interesting parts of a program.
While it is easy to write a simple fuzzer, there is a computational overhead attached to
how the fuzzed data enters the application. In our case, we focus on server applications.
In-memory fuzz testing is a technique that allows us to reduce this overhead. We develop
an approach to modify buffers directly in application memory. We take a look at the Pin
framework, which allows us to dynamically instrument application binaries, and use it to
take snapshots of the program state.
Finally, we evaluate our proof-of-concept tool on real-world binaries, and perform a
performance comparison with a more traditional protocol fuzz testing approach.
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CHAPTER 2
Fuzz Testing

Fuzz testing or fuzzing is a technique that attempts to find bugs and security vulnerabilities
in applications by providing invalid input [Oeh05; Wan11]. Typically, such input is
generated randomly. When a particular input causes the program to hang or crash, this
indicates a potential bug [Wan11]. These inputs are then recorded for detailed manual
inspection.
Sophisticated techniques have been developed to choose such program inputs. In this
work, we focus on mutating previously captured messages randomly, which is the simplest
method to generate test data.
To perform fuzz testing on a program, we need to be able to continuously execute a small
region of it. In particular, we want to repeatedly run methods that deal with parsing the
application protocol. In each iteration, we want to use a slightly different argument.

2.1 Naive Protocol Fuzz Testing
A naive approach is to initiate connections sequentially. While simple and somewhat
robust, there are some drawbacks to this approach:

TCP overhead: Lots of connections are established and then torn down.

Protocol overhead: If the program needs a long sequence of data exchange initially
to get to the interesting region, this initial data exchange has to be performed for
every new connection.

Side effects: If the program crashes e. g. due to a memory corruption vulnerability, the
actual cause might have come from a previous connection.

Specifically, the overhead is high when only a small part of the program should be fuzzed,
but the initial sequence to get to this point in the program is long in comparison.
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2.2 In-Memory Fuzz Testing
Instead of executing the program completely with all network handling code for each
iteration, in-memory fuzz testing limits execution to the parsing routine. This can be
achieved by taking a snapshot of the program state, injecting a fault, and restoring it
later for the next iteration [Sut07, p. 42].
Instead of sending packets, we directly modify the application’s buffer in memory and
repeatedly execute the parsing code on it. The modified control flow is illustrated in
Figure 2.1.
In most cases, the function under test will modify some state variables, so that simply
executing the function repeatedly will not provide the desired effect. We need to save the
program’s state upon entry to the region to be fuzzed. Later, upon leaving the interesting
region, we can reset the program state to the snapshot we took before.
There are several ways to capture the program state. In our approach, we instrument
all memory writes in the program so that we can save memory contents before they
are modified. This is somewhat naive, as all other aspects of the program state are not
captured. In particular, system calls are not intercepted, thus any side-effects on file
handles or memory management will leak between iterations and potentially interfere
with the operation of the fuzzer, leading to false positives.
More sophisticated possibilities to take snapshots include the following:

• Use a virtual machine to take snapshots of not only the program, but the whole
operating system. This is the most transparent method, but also potentially incurs
high overhead and might even be more costly than a naive fuzz testing tool with a
new connection for each attempt.

• Use fork() to create a copy of the process with its own memory space for each new
iteration. This has the advantage that the Linux kernel implements fork() with
copy-on-write semantics, thus potentially reducing overhead. Shared file descriptors
could still pose a problem, and the operation is not transparent to the fuzzed
process. Coordinating processes would be more complex in the tool as well.

The snapshotting mechanism employed by our tool is described in detail in Section 4.1.
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Figure 2.1: High-level overview of the control flow in the naive (left) and in the in-memory
protocol fuzz testing approach (right). In this example, we are interested in testing
the code for a particular message k. In the naive approach, connection setup and
initial communication are repeated for each iteration. With in-memory fuzz testing,
this is only done in the first iteration. In subsequent iterations, only the interesting
program region is executed.
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CHAPTER 3
The Pin Framework

Pin [Luk05] is a framework for dynamic binary instrumentation, i. e. the analysis and
modification of programs at runtime. The framework is developed by Intel.
While the software is proprietary, it is available free of charge for non-commercial purposes
and can be obtained from the Intel website [PinWeb].
Dynamic instrumentation has a range of applications. It enables analyses that cannot
feasibly be performed statically. Simple analyses might gather statistics about program
execution (profiling). However, instrumentation also allows for more complex inspection
of a program, such as memory sanity checking.
The Pin framework stands out due to its versatility and its aim for good performance.

3.1 Terminology and Concepts

Pin is the name of the instrumentation framework. pin is also the name of the program
that one runs to executes a target binary under the supervision of the Pin framework.
A Pintool is a shared library that the Pin framework can load and execute. Through
calls to the Pin API, Pintools define how the target application is instrumented and
provide the actual functionality of interest.
To do this, a Pintool can use the API to register so-called instrumentation functions.
Instrumentation functions can be registered on multiple levels, e. g. on the routine
(RTN), basic block (BBL) or instruction (INS) level, depending on how fine-grained the
instrumentation needs to be.
When running the target binary, Pin will perform just-in-time compilation (JIT) to
instrument it. This means that whenever a certain region of the program is called for the
first time, it re-compiles the original code, inserting instrumentation code and possibly
changing register allocations along the way. Future calls to the program region will
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directly use the compiled block. The mechanism and optimizations are described in
[Luk05].
To determine how instrumentation should be performed, the JIT compiler calls the
instrumentation functions registered by the Pintool. The instrumentation function can
then choose to inject code into the binary. In Pin terminology, code injected this way is
called an analysis function.
While analysis functions are defined as regular C functions in the Pintool, inserting them
does not automatically mean that there will be a function call. The JIT compiler will
analyze the binary and can inline simple analysis functions into the target application’s
sequence of instructions. This means that the overhead from adding instrumentation can
be kept low.
Since the code in analysis functions is run every time a certain program region executes,
but code in the instrumentation function is only run once per program region, it is
advisable to shift computations and branches to the instrumentation function whenever
possible [PinGuide, Section “Performance Considerations”].
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CHAPTER 4
Implementation

4.1 Snapshotting Mechanism
To provide the ability to snapshot the program state and restore it later, we use Pin
to instrument all memory writes in the program. For each memory write, we store the
address and the previous value at that address, so that we can later restore the original
memory contents and effectively undo the modifications.
This functionality is implemented in snapshot.cpp. We define a structure to store
information about each memory write that takes place, shown in Listing 4.1.
We assume that most memory writes will be 64 bit wide. Operations with memory
operands that are 8 byte or smaller in size are stored directly in one entry. For memory
writes larger than 8 bytes, we store multiple 8-byte entries.
To enable Pin to inline our analysis functions, we want to keep them simple as possible.
To this effect, we define separate functions for each memory operand size. The analysis
function for memory operands of 8 bytes or smaller is shown in Listing 4.2.
Later, we use INS_InsertPredicatedCall to instrument all memory write instructions
with these functions, as shown in Listing 4.3.
By keeping logic in the instrumentation method, we reduce overhead. Another possible
optimization would be to eliminate the call to NextMemwriteTrace. In most cases, this
method only needs to return the next available slot. However, it might be necessary to
grow the buffer. One could use INS_InsertIfCall and INS_InsertThenCall to inline this
check and eliminate the overhead of a function call in most cases.
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12 struct memwrite_trace {
13 UINT64 addr;
14 UINT64 val;
15 UINT8 len;
16 };

Listing 4.1: Definition of the structure to record memory writes. addr stores the memory write
address, val stores the previous value at that address, and len indicates the size of
the memory write in bytes. Memory operands of instructions can vary in size (e. g.
store byte/store word).

34 #define DEFINE_OnMemoryWriteA(n) \
35 static void OnMemoryWrite ## n (ADDRINT addr) { \
36 struct memwrite_trace* trace = NextMemwriteTrace(); \
37 trace->addr = addr; \
38 PIN_SafeCopy(&trace->val, (void*)addr, n); \
39 trace->len = n; \
40 }

Listing 4.2: Analysis function for memory operands that are 8 bytes or smaller in size.

65 static VOID Instruction(INS ins, VOID* unused) {
66 if (INS_IsMemoryWrite(ins)) {
67 for (UINT32 i = 0; i < INS_MemoryOperandCount(ins); i++) {
68 if (INS_MemoryOperandIsWritten(ins, i)) {
69 AFUNPTR fun(nullptr);
70 switch (INS_MemoryOperandSize(ins, i)) {
71 case 1: fun = AFUNPTR(OnMemoryWrite1); break;
72 case 2: fun = AFUNPTR(OnMemoryWrite2); break;
73 case 4: fun = AFUNPTR(OnMemoryWrite4); break;
74 case 8: fun = AFUNPTR(OnMemoryWrite8); break;
75 case 16: fun = AFUNPTR(OnMemoryWrite16); break;
76
77 default:
78 fprintf(stderr,
79 "pinfuzz: not implemented: memory operand of " \
80 "size %d\n",
81 INS_MemoryOperandSize(ins, i));
82 PIN_ExitProcess(1);
83 }
84 INS_InsertPredicatedCall(ins,
85 IPOINT_BEFORE,
86 fun,
87 IARG_MEMORYWRITE_EA,
88 IARG_END);
89 }
90 }
91 }
92 }

Listing 4.3: The instrumentation function that enables memory snapshotting.
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4.2 Snapshots and Parallelism

Server applications may spawn multiple processes or threads to handle a request. Fre-
quently, a new thread or process is spawned when a new connection is established. The
child thread or process is then responsible for handling communication on this connection.
In more complex applications, communication between different threads might be required
to process a request. In simple multithreaded applications where the connection-handling
thread does not communicate with other threads, it might be possible to modify the
application binary to keep running in a single thread, e. g. by patching out a fork()

call. Nevertheless, it is desirable to be able to use the application binary as-is without
requiring manual modifications.
Our in-memory fuzz testing approach uses snapshots to reset application threads to a
state reached at an earlier point in time. When multiple threads communicate with each
other, we will generally need to snapshot and reset not only the thread handling the
connection, but all application threads. Moreover, as communication might also take
place across process boundaries, we need a way to snapshot all application threads across
all processes.
Pin provides a set of functions for stopping other threads and examining their current
register values. PIN_StopApplicationThreads can be used to stop application threads.
However, each of the application threads finishes the currently-running trace first, i. e.
threads are only stopped on the next branch or return instruction. This means that if a
thread is executing a blocking system call, PIN_StopApplicationThreads might block
indefinitely. While this might be acceptable for some computationally heavy applications
that do not interact with the operating system frequently, it is not very well-suited for
our use case.
We also need a way to handle the case where an application spawns multiple processes.
Following child processes is rather easy with Pin, and it provides a way to register hook
functions for the fork() system call. However, facilities for inter-process communication
are not provided by Pin and have to be implemented.
Multiple options are available for implementing this. TCP or Unix-domain local sockets
are straightforward, but not well-suited since we would like to measure the overhead of
socket communication as well. Pipes as well as sockets become complex to deal with as
soon as more than two processes are involved, since some way of broadcasting information
to other processes is required. Instead, we establish a shared memory area which can be
accessed from all processes. While this should result in a low overhead and allows for
broadcasts to all listeners, it has its drawbacks as well. Most notably, the logic becomes
more complex and synchronization between threads is non-trivial.
It turns out that introducing a per-process control thread simplifies the control flow a
bit. An example is shown in Figure 4.1. Control threads are internal threads in Pin
terminology, as they exist independently of any application threads. A hook is installed
to spawn a new control thread upon process creation.
The control thread collects information about the application threads in its own process,
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Figure 4.1: Snapshotting mechanism for multi-threaded, multi-process applications. A thread
hits a breakpoint and sends a request to the control threads using the shared
memory area. In each process, the control thread receives the request and signals
the application threads in the process (except for the thread that initiated the
request). When all threads have switched context to the signal handler and no
application code is running anymore, the request is carried out. After completion,
control returns to the application code.

such as the number of application threads and their thread IDs. With this information,
the control thread then handles requests from other processes and signals the application
threads in its own process.
The advantage of this approach over one where any thread can signal all other threads
across processes directly is that management of the shared memory area becomes easier.
Instead of having to resize the shared memory area or needing to ensure that it is big
enough from the beginning to be able to hold information about all application threads,
this information is stored per-process, where memory management is an easy task. The
shared memory area has a fixed size which is sufficient for communication with control
threads in an arbitrary number of processes.
Once the control thread has received a request, it needs a way of interrupting application
threads and running code from the Pintool. Under Linux, we use the tgkill system
call to send a SIGUSR1 signal to a specific thread. The signal is caught by a previously
installed handler, which then performs the desired action.
Under Linux, signals can interrupt system calls, so this approach will work even when
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the application thread is in the middle of an operation. This comes with some caveats,
however. When the application resumes with unchanged context, the system call will
return an errno with errno set to EINTR: Interrupted system call. Depending on how the
application handles EINTR, this can lead to unexpected results. This could be improved
in the future.
For Windows, no interruption mechanism has been implemented yet. Potentially, Asyn-
chronous Procedure Calls (APCs) or debugging functionality in the WinAPI could be
used to implement such a facility. As of now, only single-threaded processes are handled
correctly under Windows.

4.3 Address Expressions
For our Pintool to be able to modify a buffer in the application, we need to know its
address and its length. The application buffer might be located either in the data segment,
on the heap or on the stack. In general, its address cannot be predicted and it might be
necessary to examine memory at runtime to determine its location.
In order to avoid having to recompile the Pintool for different applications, all aspects of
the operation of our tool need to be configurable. Hence, we need a way to dynamically
specify the address of the message buffer.
Since we might not know the address in advance, we want to allow the address to depend
on memory and register contents. In other words, we would like to be able to evaluate
simple mathematical expressions depending on registers and memory contents.
Several alternatives were considered to implement this. The Lua scripting language
seemed like a good candidate, since it is lightweight and designed to be embedded in
applications. However, Lua stores all values as double-precision floating point values
internally. Since this is problematic when doing calculations with 64-bit addresses, Lua
was no viable option.
The Python scripting language can also be embedded in applications, but it is more
heavy-weight with a considerably larger runtime.
Hence, a simple custom expression parser was implemented using the standard tools
yacc and bison. The supported syntax is shown in Table 4.1.
The simple language supports basic arithmetic on its operands, which can be integer
literals or values coming from registers. Register names are looked up in the Pin register
table dynamically, resulting in platform-independent code.
As an additional operator, unary * is provided as a C-like memory dereference operator.
This operator returns the value at the memory address specified by its argument, by
accessing application memory using PIN_SafeCopy. The expression parser represents all
values as 64-bit integers internally and memory reads fetch a 64-bit value from memory.
This might be adapted to better suit 32-bit systems in the future.
With this expression language, the specification of buffer addresses becomes rather easy.
A buffer on the stack might be specified as rbp - 0x40, or a buffer whose address is
stored in a stack variable could be referred to as *(rbp - 12).
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N. . . Decimal literal, e. g. 0, 42
0xN. . . Hexadecimal literal, e. g. 0x1, 0xFF
register Register access by name, e. g. eax, rbp

expr + expr Add
expr - expr Subtract
expr * expr Multiply
expr / expr Integer divide

(expr) Grouping
*expr Memory dereference (64-bit)

Table 4.1: Syntax for address expressions in the configuration file. Every item listed here is a
valid subexpression, referred to as expr.

4.4 Crash Handling
Whenever the program under test produces a crash, we want to record the location as
well as the cause of the crash, and return the application to a functional state. Typically,
crashes are caused by specific inputs sent by the fuzz testing tool, so that restoring
memory contents is sufficient to recover from a crash.
To do this, Pin allows us to register context change callbacks. We can use these to
intercept signals on Linux and Exceptions on Windows. From the callback, we can
inspect and modify the program state. Under Linux, this is not sufficient since the
context change callback is only called after the program has already terminated. Thus,
we specifically intercept the SIGSEGV signal to intercept segmentation faults before they
lead to program termination.

4.5 Reporting Exceptional Application Behaviour
Whenever a certain packet seems to make the application behave in an unexpected way,
we want to record the precise circumstances and the packet that caused the unexpected
behaviour. In particular, we can catch the following situations:

• When the application crashes, in particular when it produces a segmentation fault.

• When the application does not reach the end of the specified program region within
a specified amount of time.

As soon as one of these situations occur, information about the situation is written to
the logfile. In addition, we need to record the packet that triggered the failure. We chose
to write a packet capture file in the Pcap file format as tools are readily available for this
file format.
Since only the actual payload is of interest, Pcap files written by the tool have fake IP
and TCP headers to keep the implementation simple.
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CHAPTER 5
Usage Instructions

A few preparatory steps are necessary to use our fuzz testing tool. The environment
needs to be set up to build the tool and information about the target binary needs to be
provided in a configuration file. These steps are described in this chapter.

5.1 Setup on Linux
On Linux, compilation is pretty straightforward. Most distributions ship the dependencies
in packages. On an Ubuntu system, apart from standard development packages, the
following packages are required:

• libboost-chrono-dev

• libboost-dev

• libpcap0.8-dev

By default, the Clang++ compiler based on the LLVM framework is used to compile the
Pintool. Clang supports thread safety annotations, which are used in the code to guard
against thread programming erros. However, the tool can also be compiled using GCC.
The build process is invoked by executing make in the src subdirectory.
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5.2 Setup on Windows
In the following sections, we describe the process to build the Pintool on Windows. We
used a Windows XP instance for testing.
The following software packages are required to build the tool on Windows:

• Pin

• Microsoft Visual C++

• MinGW

• MSYS

• Boost

• WinPCap

MinGW (Minimalist GNU for Windows) and MSYS provide a basic set of Unix tools that
are required in the build process, most notably GNU make. Installation is straightforward
with the provided installer.
After having MinGW and MSYS installed, we need to include their bin/ directories in
our PATH. Since we want to use the toolchain from Visual C++, we need to include these
binaries in our PATH as well. We can use the vcvarsall.bat script provided by Visual
C++ for this.
The commands to set up environment variables can be seen in Listing 5.1.
Some parts of Boost need to be compiled in order to use them, so we need to build them
as well, as shown in Listing 5.2.
Pin and WinPCap ship with binaries included, so no compilation steps are needed for
them.
Once all prerequisites are in place, the build process can be started by executing make in
the src subdirectory.

1 PATH=C:\MinGW\bin;C:\MinGW\MSYS\1.0\bin;%PATH%
2 call "C:\Programme\Microsoft Visual Studio 10.0\vc\vcvarsall.bat" x86

Listing 5.1: Commands to prepare the environment for building a pintool on Windows.

1 cd third-party\boost_1_57_0
2 bootstrap
3 b2 --build-type=complete --with-system

Listing 5.2: Compiling Boost under Windows.
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5.3 Target Binary Analysis
Some knowledge about the target binary is required before fuzz testing can be performed.
Typically, one will perform basic analysis of the binary with a disassembler. As part of
this analysis, the following items need to be identified:

• how the application accepts connections,

• how the application processes messages.

In particular, one needs to identify the region of the program code that should be subject
to fuzz testing. The tool will loop over this region in every iteration, mutating the
memory buffer as specified.
The structure of a typical program and where breakpoints need to be set is shown in
Listing 5.3. Breakpoints are described in more detail in Section 5.4.
In addition to the binary analysis, a packet capture has to be prepared that contains a
regular request to the target binary that will then be replayed. The packet capture needs
to be in pcap format and can be produced using tools such as tcpdump or Wireshark.

1 server_loop() {
2 server = socket(...);
3 bind(server, ...);
4 listen(server, ...);
5bkpt_listening→ ...
6 while (1) {
7 accept(server, ...);
8bkpt_established→ client = socket returned by accept;
9 ...

10 client_handler(client);
11 }
12 }
13
14 client_handler(client) {
15 while (1) {
16bkpt_region_end→ recv(client, ...); // read header and length
17 recv(client, ...); // read complete message
18bkpt_region_start→ ...
19 process_message(...);
20 if (error) {
21bkpt_region_end→ close(client);
22 return;
23 }
24 }
25 }

Listing 5.3: Typical structure of a server program, illustrating how breakpoints should be
placed. We set bkpt_listening and bkpt_established to instructions after the
socket has been set up for listening or a connection has been accepted, respectively.
bkpt_region_start is set on an instruction after the full message has been received.
bkpt_region_end is set before the next message is read. We also set it on the error
handler before the socket is closed.
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5.4 Configuration
Parameters controlling tool operations are specified in a configuration file in the INI file
format. An example configuration file is shown in Listing 5.4.

1 [FuzzConfig]
2 pcap = pcap001.pcap
3 logfile = pinfuzz.log
4
5 [pinfuzz]
6 sequence = connect, 4, r, A, 6, B, r, 8, r, 10, r, 12, r, 14, r
7 port = 2000
8 bkpt_listening = 0x400d84
9 bkpt_established = 0x400a98

10 bkpt_region_start = 0x400ae3
11 bkpt_region_end = 0x400b24, 0x400b99
12 regionfuzz_buffer = rbp - 0x40
13
14 [Packet4]
15 range = 8-10
16
17 [Packet6]
18 nofuzz = True

Listing 5.4: Example configuration file for our tool.

The following configuration parameters are defined:

[FuzzConfig] section

pcap=
The packet capture file to read packets from.

logfile=
The logfile where information about crashes is written to.

[pinfuzz] section

sequence=
The comma-separated sequence of actions to be performed by the fuzzer. Actions
can be:
connect Open a TCP connection to the server.
A Start of the in-memory fuzz testing region.
B End of the in-memory fuzz testing region.
N Send packet number N from the pcap file.
r Receive a packet from the server.

port=
The TCP port to connect to.

18



Breakpoints: Breakpoints are set by specifying an instruction address, and are typically
specified in hexadecimal notation. All breakpoints apply just before the instruction at
the given address is executed. See also the example in Listing 5.3.

bkpt_listening=
Breakpoint where the application is listening for incoming connections.

bkpt_established=
Breakpoint after the connection has been accepted.

bkpt_region_start=
Start of the program region to be fuzzed.

bkpt_region_end=
End of the program region to be fuzzed.

skip_region_start=
How many crossings of bkpt_region_start should be skipped. Defaults to 0.

regionfuzz_buffer=
Specifies the memory location of the buffer to be fuzzed. This is an expression
that can access register contents and dereference memory locations, as described in
Section 4.3. The expression is evaluated at the point specified by bkpt_region_start.

[PacketN] section

This section may be present multiple times. N in the section name is the index of the
packet that it applies to.

nofuzz=True
Do not change any bytes in this packet.

range=
The range of bytes that can be fuzzed, 0-based. e. g. 0–3,12
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5.5 Running the Tool
When the Pintool has been compiled as a shared library file, a target executable has been
selected and a configuration file has been created, you can start the fuzz testing process.
The command line for Linux and Windows is shown in Listings 5.5 and 5.6 respectively.

1 third-party/pin-linux/pin
-tool_exit_timeout -1
-t src/obj/pinfuzz.so
-c CONFIGFILE -- CMDLINE...

Listing 5.5: Linux command line.

1 third-party\pin-windows\pin
-t src\obj-win\pinfuzz.dll
-c CONFIGFILE -- CMDLINE...

Listing 5.6: Windows command line.

The CONFIGFILE parameter specifies the path to a Pinfuzz configuration file as described
in Section 5.4. CMDLINE is the command line that you would normally use to run the
program under test, i. e. the path to the executable and any arguments.
In multi-process applications, the fuzz testing control logic is handled inside a thread
in the main process. When this process terminates, Pin would kill our control thread
after some time. This is why we use the -tool_exit_timeout parameter on Linux. On
Windows, only single-process, single-threaded targets are supported.

20



CHAPTER 6
Evaluation

6.1 Experiments with VNC Server
In order to test our approach on real-world software, we picked a VNC server application
on which to perform fuzz testing. The VNC protocol was chosen as a target since it is a
binary protocol with a relatively simple structure.
For our experiments, we used the x0vnc4server binary from the vnc4server Ubuntu
package, version 4.1.1+xorg4.3.0-37ubuntu5.0.1. This is the open source version of
the VNC software distributed by RealVNC [RealVNC].
The x0vnc4server program listens on port 5900 for incoming connections. When a con-
nection is established, client and server perform protocol negotiation and authentication.
Following this, the VNC server connects to an already-running X server and shares the
display contents over the VNC connection.
We analyzed the binary without looking at the source code to simulate a black-box
binary analysis situation. Some reverse engineering effort was needed to find out how the
program processes incoming network connections.
The core functionality for reading from the network connection is shown in Figure 6.1.
An SConnection object is created to handle incoming connections. The SConnection

object has an instance of FdInStream, which handles reading and buffering of messages.
By examining the FdInStream functionality, we found where the message buffer is located
and how it is filled. This information is provided to the fuzz testing tool through its
configuration file.
Messages are handled in SConnection::processMsg(), shown in Figure 6.2. This method
is our target region for fuzz testing.
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Figure 6.1: Region of the VNC server where messages are read and processed.

Figure 6.2: The first instructions of the SConnection::processMsg() function.

With this knowledge we can create the configuration file shown in Listing 6.1. The
listening and established breakpoints are points that are easy to find in the target binary.
The region start breakpoint is set to the first instruction in SConnection::processMsg().
Finally, the region end breakpoints are set at various places where we want to stop
execution and return to the start.
The region end breakpoints include:

• normal return from SConnection::processMsg(),

• points where an exception is thrown,

• the point where an exception from subroutines is caught higher up in the stack,

• the point where communication with the X server is initiated.

We need to include all of these points in order to limit changes to the global state that
occur within the fuzz testing region. For example, we deliberately exclude communication
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1 [FuzzConfig]
2 pcap=vnc-1-small.pcap
3 logfile=vnc-1.log
4 dumpdir=dumps
5
6 [pinfuzz]
7 port=5900
8 ;sequence=connect, r, 6, r, 9, r, 11, r, A, 13, B
9 sequence=connect, r, A, 6, B

10
11 bkpt_listening = 0x404eb2
12 bkpt_established = 0x40530c
13
14 ; SConnection::processMsg
15 bkpt_region_start = 0x41bd08
16 skip_region_start = 0
17 bkpt_region_end = 0x41be58, 0x41bdb9, 0x41bdec, 0x421bf5, 0x406372
18
19 ; rdi ... SConnection instance, FdInStream at 0x80
20 ; in FdInStream, start of buffer is at 0x8
21 regionfuzz_buffer = *(*(rdi + 0x80) + 0x8)
22
23 [Packet6]
24 ;range = 0-8

Listing 6.1: Configuration file for fuzz testing the VNC server with our tool.

with the X server, since this communication protocol uses sequence numbers. With
our in-memory fuzz testing approach, sequence numbers would only match in the first
iteration and produce errors later.
Similarly, we stop the program before a higher-level exception handler is executed, since
this has unwanted side-effects that we cannot easily reverse. In particular, the server
closes the client socket when an error occurs, and this would break calls to select() in
future iterations.

6.2 Speed Comparison

Performing fuzz testing in-memory instead of opening new connections for each attempt
has a potential speed advantage. Within this work, we try to compare it with different
approaches. This is not an extensive benchmark, but the numbers should provide a rough
idea of the performance relative to other approaches.
When testing this on Linux, a major limiting factor for TCP-based approaches is that
sockets will linger in wait states for a while. We thus enable two kernel tuning options to
allow reusing sockets earlier, as shown in Listing 6.2.

Setup 1. For testing, we use a simple non-forking TCP server which reads and parses
messages. To establish a baseline for the comparison, we use a simple C client program
opening a connections, sending a short message and closing it again. This should allow
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1 sysctl net.ipv4.tcp_tw_reuse=1
2 sysctl net.ipv4.tcp_tw_recycle=1

Listing 6.2: Tuning commands for the Linux TCP stack.

us to get an idea of how much overhead we have just by repeatedly opening/closing TCP
connections.

Setup 2. A simple fuzz testing tool written in Python that is in use at our institute is
used to perform testing on the same binary.

Setup 3. The in-memory fuzz testing tool implemented as part of this thesis is used to
test the message handling part of the binary.

Setup Iterations Time [s] Rate [it/s] Relative
Setup 1: Connection only 50 000 19.2 ≈ 2 600 1.0×
Setup 2: Python fuzzing 9 172 5.0 ≈ 1 830 0.7×
Setup 3: In-memory fuzzing 69 521 10.0 ≈ 6 950 2.7×

Table 6.1: Measurements comparing the speed of different fuzz testing setups. All measurements
were taken on Linux with a simple example server program.

Measurement results are shown in Table 6.1. We can see that the C program just opening
as many connections as possible is only slightly faster than the Python fuzzer. This
suggests that the TCP connection overhead occuring in the operating system is indeed a
major limiting factor.
The in-memory fuzzer using Pin is doing quite well, being 2.7 times as fast as the C
program opening TCP connections. For one, the TCP connection overhead is eliminated
with the in-memory approach. Also, only a smaller region of the program is run in each
iteration.
There are limitations to this experiment. First of all, the example program we used has
very simple message parsing logic, which might potentially give some advantage to the
Pin fuzzer. When the region of the program that should be fuzzed is smaller, less code
needs to be executed and less memory writes need to be traced and restored.
Our benchmark also does not account for the fact that when the fuzzer actually finds
bugs, it might take more time to recover from crashes and thus be slower.
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CHAPTER 7
Conclusion and Outlook

In this thesis, we demonstrated that performing in-memory fuzz testing using the Pin
framework is feasible. We implemented a memory snapshotting approach and explored
mechanisms to deal with parallelism in target programs.
Evaluating our proof-of-concept tool, we found that applying it to real-world programs
is possible with limitations. A comparison showed that performance of the in-memory
fuzzer surpasses the naive network fuzz testing strategy.
The obstacles we hit lie mostly in the snapshotting mechanism. Since our tool can only
capture memory contents, all other aspects of the program state leak through between
iterations. In particular, I/O functions are problematic and in some cases need to be
isolated first to be able to use the tool. This could be worked around by catching some
system calls and handling them appropriately, but this gets very complex very quickly.
Performance-wise, more experiments could be conducted on larger programs to get more
reliable results. More optimizations could be made, in particular in the implementation
that records memory writes. Also, one might experiment with reducing thread synchro-
nization overhead by disabling some parts of the synchronization protocol when dealing
with single-threaded target binaries.
The tool in its current shape is a proof of concept. For real-world use, usability improve-
ments could be made such as better error messages and more robust handling of timeouts
and termination. It might also be desirable to be able to use custom scripts to modify
data before it is injected into the application, to be able to handle checksums, sequence
numbers and similar features of application protocols.
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