
Framework for Side Channel
Analysis on Flash Memory

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software und Information Engineering

eingereicht von

Markus Hannes Fischer
Matrikelnummer 1029057

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Projektass. Dipl.-Ing. Markus Kammerstetter BSc.

Wien, 25. Februar 2015
Markus Hannes Fischer Markus Kammerstetter

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Framework for Side Channel
Analysis on Flash Memory

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software and Information Engineering

by

Markus Hannes Fischer
Registration Number 1029057

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Projektass. Dipl.-Ing. Markus Kammerstetter BSc.

Vienna, 25th February, 2015
Markus Hannes Fischer Markus Kammerstetter

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Markus Hannes Fischer
Hugo-Meisl-Weg 11/1, 1100 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Februar 2015
Markus Hannes Fischer

v

Kurzfassung

Flash-Speicher finden sich heute in nahezu jedem elektronischen Gerät. Besonders in
Mobilgeräten sind sie aufgrund ihres niedrigen Energieverbrauchs und hoher Leistung
sehr verbreitet, z.B. Speicher in Mobiltelefonen oder Solid State Disks (SSD) in Laptops.

Die grundsätzliche Funktionsweise von Flash-Speichern ist allgemein bekannt. Im
Speziellen jedoch versuchen sich die Hersteller von der Konkurrenz abzuheben, indem
sie eigene Algorithmen in den Speicher-Controllern (SPC) implementieren, die den
Speicher verwalten und zusätzliche Features bieten. Die Implementierungsdetails sind
nicht öffentlich und können daher nicht überprüft werden.

Um die Funktionsweise von SPCs durch einen Black-Box-Ansatz zu rekonstruieren und
ganz allgemein herausfinden zu können, welche Daten in einem Flash-Speicher verarbeitet
werden, ohne dabei direkten Datenzugriff zu haben, sind Seitenkanal-Attacken eine gute
Lösung.

Um eine solche Attacke durchzuführen, benötigt man einen Mess-Aufbau bestehend
aus Treiber-, Mess-, Erfassungs- und Analyse-Komponente.

Diese Arbeit befasst sich mit den benötigten Eigenschaften der jeweiligen Kompo-
nenten und präsentiert eine Implementation, die als Ausgangspunkt für komplexere
Daten-Analysen verschiedener Flash-Speicher dienen soll.

Die Ergebnisse zeigen, dass man mit diesem Aufbau unter Verwendung von entspre-
chendem Labor-Equipment verlässlich Daten über die Leistungsaufnahme des Flash-
Speicher-Chips erheben kann. Außerdem weisen die erhaltenen Daten darauf hin, dass es
eine ausreichende Korrelation zwischen der Leistungsaufnahme eines Flash-Speichers und
den verarbeiteten Daten gibt.

vii

Abstract

Flash memory is ubiquitous in today’s electronics. In particular, mobile devices rely on
them because of their low energy consumption and high performance, e.g. storage in
cellular phones and Solid State Disks (SSDs) in laptops.

The functional concepts are well researched and publicly known. However, vendors
try to be ahead of the competition by implementing custom algorithms in the Memory
Controllers (MCs) that manage the memory and provide additional features. The
implementation details of the MCs are not public and can therefore not be verified.

To reverse engineer a MC through a non-invasive black box approach and, more
generally, to be able to retrieve data being processed on a Flash Memory Chip (FMC)
without direct data access, Side Channel Attacks (SCAs) are a good approach.

To mount these attacks, a setup consisting of driver, measurement, acquisition and
analysis components is needed.

This work provides an analysis of the required properties of these components and
presents an implementation that can be used as a base for advanced power analysis
attacks and further research into different kinds of flash memory.

The results show that power consumption data can be retrieved reliably using this
framework based on relatively simple lab equipment. Furthermore, the acquired data
suggests a sufficient correlation between a flash memory chip’s power consumption and
the data being processed.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

List of Figures xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Aim of the Work . 2

2 Technical Background 3
2.1 Side Channels . 3

2.1.1 General Idea . 3
2.1.2 Simple Power Analysis . 3
2.1.3 Differential Power Analysis . 4

2.2 Flash Memory . 5
2.2.1 General Working Principles . 5
2.2.2 NAND Memory . 7
2.2.3 NOR Memory . 7
2.2.4 Single and Multi Level Cells . 7

3 State of the Art 9
3.1 Flash Memory . 9
3.2 Side Channel Attacks . 10
3.3 Side Channel Attacks on Flash Memory 11

4 Methodology 13
4.1 Design . 13
4.2 Driver . 14
4.3 Measurement . 14
4.4 Acquisition . 15

xi

4.5 Preprocessing . 15
4.6 Analysis . 16

5 Implementation 17
5.1 Design . 17
5.2 Target . 17
5.3 Driver . 19

5.3.1 Micro Controller . 19
5.3.2 Flash Memory Adapters . 19
5.3.3 Software . 19

Design . 19
Interface . 20
Memory . 21
Triggering . 22

5.4 Measurement . 22
5.5 Acquisition . 24

5.5.1 Interface . 24
5.5.2 Driver Communication . 25
5.5.3 Oscilloscope Communication 25
5.5.4 Acquisition Process . 26

5.6 Preprocessing . 27
5.6.1 Interface . 27
5.6.2 Preprocessing Process . 27

5.7 Analysis . 28

6 Results and Validation 29
6.1 Setup . 29
6.2 Demonstration . 31
6.3 Data Analysis . 32
6.4 Discussion . 36

6.4.1 Automation and User Interface 36
6.4.2 Measurement . 37
6.4.3 Acquisition . 37
6.4.4 Analysis . 37

7 Summary 39

Appendix 41
Source Code . 41

Controller . 41
main.c . 41
flash.h . 44
flash.c . 45
uart.h . 64

uart.c . 64
misc.h . 65
misc.c . 66

Acquisition . 68
measure.py . 68
batch_measure.txt . 78

Preprocessing . 79
process.py . 79

Analysis . 82
analysis.py . 82

Bibliography 85

Acronyms 89

List of Figures

2.1 SPA power trace . 4
2.2 DPA power trace . 5
2.3 Floating Gate Transistor . 6
2.4 Flash Cell Threshold Voltage . 6

5.1 Implementation Components . 18
5.2 NAND Sample Board . 18
5.3 NAND Adapter . 20
5.4 Modified NAND Sample Board . 23

6.1 Sample Setup . 30
6.2 Oscilloscope Power Trace . 31
6.3 Sample Power Trace . 32
6.4 Processed Sample Power Trace . 33
6.5 String Length Analysis 1 . 34
6.6 String Length Analysis 2 . 35
6.7 Hamming Weight Analysis 1 . 35
6.8 Hamming Weight Analysis 2 . 36

xiii

CHAPTER 1
Introduction

1.1 Motivation

Flash memory is ubiquitous in today’s electronics. Computers use Solid State Disks
(SSDs) to store non volatile data and speed up Input/Output (I/O) operations. USB
flash drives are used on a daily basis to quickly move files between computers or even as
security tokens. Mobile devices use Flash Memory Chips (FMCs) to access data despite
vibrations caused by movement and reduce power consumption. Micro Controllers (µCs)
come with on-board FMCs to store program code and data in case of a power loss.

Therefore, research into FMCs gives a broad range of applications not only in an
academic field, but also in every day usage.

1.2 Problem Statement

The basic principles on which FMCs are built on are common knowledge. Books like Inside
NAND Flash Memories[1] and Flash Memories[2] give deep insight into the functional
concepts and developments of flash memory technology.

However, a modern FMC does not only consist of the actual memory, but also of the
Memory Controller (MC) that sits between the storage and the device (flash translation
layer) performing I/O. This MC is a key component of the product and implements
complex features that result in a better usability and reliability of the FMC. Features
implemented, amongst others, may include data encryption, compression or performance
and durability increasing algorithms. [1]

One of the most important features of the MCs is wear leveling. Flash cells only
support a finite amount of write/erase cycles because of the underlying physical constraints.
This loss of durability after a certain number of write and erase operations is called wear
and causes data to not be stored and retrieved reliably anymore. Systems tend to access
certain memory regions more frequently than others increasing the wear on them. [1]

1

For instance, consider Operating System (OS) and document files. OS files will be
altered much more frequently than e.g. a text file containing a CV.

Manufacturers invest significant research into perfecting their MC algorithms and
keeping their implementations secret in order to succeed in competition with other
vendors.

However, this closed source approach has obvious drawbacks:

• In case of a hardware failure, the MC might not be working anymore but the data
would still be stored in the memory cells. Even if the raw data can be recovered,
the storage layout is unknown and the actual data cannot be recovered.

• Implementation flaws cannot be found by the public. It is more likely that bugs
go unnoticed if their effects do not occur frequently, as the source code cannot be
checked by third parties investigating the undesired effects.

• Innovation is restricted because users and third party developers cannot customize
and adapt the product according to their needs.

1.3 Aim of the Work
From a security point of view forensic analysis and identifying implementation flaws are
of great interest.

To allow a general approach not tied to a specific vendor or flash type, a black box
approach is used. This means that the output of the MC for a known input is analyzed
in order to discover how the target processes the input. In case of the MC being the
target, the output is the data written to the memory cells.

However, the memory cells are not directly accessible in a non-invasive manner.
Therefore, we must find a way to bypass the MC and read the cell data directly.

One possible approach is shown by Samyde, Skorobogatov, Anderson, et al. in
„On a New Way to Read Data from Memory“[3]. The data extraction is performed by
depackaging the chip and using laser pulses to extract the stored information from the
cells. [3] This bypass of the MC may be thwarted by utilizing protective packaging and
tamper detection sensors.

Another approach is analyzing information that is leaked by the memory while it
is operating. This leakage is referred to as a Side Channel (SC). Possible SCs include
execution time, power consumption, electromagnetic radiation, noise and temperature.

This bachelor thesis focuses on analyzing the power consumption of FMCs to infer
the data and the operation that was performed on the FMCs.

If this information can be retrieved reliably through the power analysis, it will be the
base for reverse engineering MCs and their proprietary implementations.

The goal of the thesis is to design and implement a framework to perform side channel
measurements on FMCs that is flexible and easy to adapt to different types of flash chips
and various analysis methods.

2

CHAPTER 2
Technical Background

2.1 Side Channels

2.1.1 General Idea

From a top-down view a machine usually reads some input, performs some operations on
it and then returns the output. This is true for a desktop computer reacting to keyboard
input by displaying different programs, a micro controller sampling an analog signal and
outputting a digital bit stream or a memory storing data. The storage does not deliver a
different output immediately, but when data is being read again.

Input and output are called main channels. They are where I/O operations happen
and how the user interacts with the machine.

However, if we take a closer look at the machine we notice that there are other
channels too, providing information on the machine’s state. For example, it is possible
to see if a computer is in stand-by or performing heavy duty operations by checking
its power consumption. Another side channel can be the heat produced by the PC or
the Electromagnetic Radiation (EMR) being emitted. Response times may also leak
information on the kind of processing which is being performed. A basic password
check that returns immediately once the first character of the input does not match
the password can be easily defeated by trying every character until the response time
increases a little (correct match, the machine checks the next byte). This reduces the
number of needed attempts in order to guess the correct password considerably.

The focus of this thesis is to build a framework to analyze the time needed and the
power consumed by the device, in this case FMCs, for different operations.

As a result, this work focuses on power analysis.

2.1.2 Simple Power Analysis

Simple Power Analysis (SPA) is the most basic way of analyzing the power SC. The power
consumed by the device is measured over time. Using this information it is often possible

3

Figure 2.1: Power trace of a smart card running a pseudo-random number generation
operation using 3DES and an EEPROM [4].

to distinguish between different operations inside the device. For instance, different
execution paths can be found by analyzing the time required for the next step to occur.
Once a difference has been found, the correlation between input and different execution
paths may reveal sensitive information on the inner workings of the device. It may also
be possible to reconstruct the data processed, although being significantly harder due to
the noise in the power traces. [4]

2.1.3 Differential Power Analysis

The idea behind Differential Power Analysis (DPA) is to take two power traces which
were generated with a specific difference in input e.g. the 5th bit of the input was set to
0 in the first measurement and it was set to 1 in the second. Then the difference between
the two traces is calculated. If there is a correlation between the power consumption
and the value of the 5th input bit, it will show in the difference as a spike. Since all
other parameters are unchanged the expectation is that the power traces are the same
everywhere else. [4]

To rule out other variables such as e.g. a timer randomly triggering another execution
path, it is best to generate a big set of data with random or at least varying input and
then use a selector function to pick the traces which are different in the analyzed variable
e.g. 5th bit of the input. The measurements selected this way are then averaged and are
subtracted from another. [4]
An example can be seen in Figure 2.2.

To gather a representative amount of power traces that also exhausts all present
variables, DPA requires a very high number of measurements. If the amount of traces is
limited due to time or other resources, Correlation Power Analysis (CPA) can be used to
maximize the output. In comparison to a standard DPA, CPA compares the available
traces not to each other based on a selection function, but against a leakage model that
approximates power consumption for the input and performed operations. Generally,

4

Figure 2.2: The top trace is the averaged trace of all measurements where the LSB is 1,
the middle trace is the averaged trace of all measurements where the LSB is 0 and the
bottom trace is the difference between them [4].

CPA is most efficient when the attacker has some architectural knowledge of the target
and the model is designed accordingly. Many implementations of this attack rely on the
Hamming weight or Hamming distance to predict the leakage. [4], [5]

However, if no correlation can be identified using CPA, it does not necessarily mean
that there is no SC present, but it may also be that the model is not appropriate for the
target [4].

2.2 Flash Memory

2.2.1 General Working Principles

Flash memory cells are typically based on the design of a Metal Oxide Semiconductor
(MOS) transistor, but have a gate that is completely isolated (the Floating Gate (FG)).
This design is referred to as a floating gate transistor and can be seen in Figure 2.3.

The FG is capacitively coupled to the Control Gate (CG) and acts as the storage for
the memory cell. Electrons injected into the FG though the CG remain there and affect
the conductivity of the transistor. [7]

To read the value of the memory cell, a fixed voltage is applied between CG and
source. Depending on the charge that is stored in the FG, the current flowing between
source and drain (reading current Iread) will either be zero or in the range of several

5

Figure 2.3: Layout of a floating gate transistor [6].

Figure 2.4: Offset between threshold voltage VT for FG without (left) and with charge Q
(right) [7].

micro amperes. If the cell is in the neutral state (no charge is stored in the FG) the
transistor will show a large reading current and the cell is defined to be logically "1". If
there are electrons in the FG, the reading current will be zero and the cell is defined as
logically "0". [7]

The voltage required to make the transistor conductive (VT) is applied between gate
and source. The offset of VT changes proportionally to the charge Q that is stored in the
FG. This change is labeled as ∆VT . [7]

However, the transistor curve of VT remains the same. By analyzing the offset, a
reading voltage (Vread) can be found that results in the previously described characteristics
of Iread, see Figure 2.4 [7].

In order to program and erase flash memory cells, high voltages are needed. The
erase level is around 20V and programming level approximately 18V [1], [2].

Mobile devices usually run on 3V or 5V and do not supply such high voltages. This is

6

why FMCs have to generate high voltage levels themselves via charge pumps integrated
on the chip. On modern flash devices, negative voltages are used for erasing which are
also generated using charge pumps. [7]

The basic working principle of charge pumps is charging a capacitor (or multiple) in
parallel and then reconnecting it in serial to achieve voltage doubling (multiplication).
In order to achieve high efficiency and smooth higher voltages, various circuits have been
developed and the actual implementation is manufacturer dependent.

Note that it takes time for the capacitor(s) to charge and that the supply of high
voltage may be exhausted by long write or erase operations which may make additional
charging time visible in the overall time needed by the memory chip to complete the
operation.

2.2.2 NAND Memory

In NAND flash memory the storage cells are connected in series. The chain is connected
to the bit line carrying the value of the read cell and ground with two selection transistors.
This layout allows for high density design and page oriented programming and reading.
[6]

In general, NAND memory is used for high-density storage applications. The design
supports only block oriented access i.e. consecutive data is read and written very efficiently
and multiple blocks can be erased with high speed. [6]

2.2.3 NOR Memory

In NOR flash memory the storage cells are connected to ground directly. This allows for
random access to every cell and results in a simplified addressing and I/O. [7]

NOR memory is used if random access is required and reading operations are prevailing.
While programming and erasing is slow in NOR, reading and random access reading in
particular are fast. [1], [6]

2.2.4 Single and Multi Level Cells

The development of flash memory began with chips that were able to store one bit per
cell called Single Level Cell (SLC). [6]

To increase the amount of storage, more flash cells have to be placed on the chip.
While continuing advances in miniaturization allow more cells on a chip, at some point
physical and technological constraints prevent adding more on the same die area. [6]

To be able to store more data on a chip without adding more flash cells, the obvious
solution lies in storing more data in the already existing cells. This is the idea of Multi
Level Cells (MLCs). Instead of having two levels to store one bit, four voltage levels
are introduced allowing two bits to be stored. Even more bits can be stored in a cell by
allowing more voltage levels. [1], [6]

7

The downside of MLCs is that the periphery circuits occupy more space as they need
to be able to program and measure voltage levels more accurately. This also requires
higher programming voltages resulting in bigger charge pumps. [1]

Since the programming and reading operations differ between SLC and MLC in terms
of voltage level and timing (two bits are written at once) we expect to see these differences
in the power traces, too.

8

CHAPTER 3
State of the Art

3.1 Flash Memory
When it comes to FMCs a significant amount of research focuses on measuring and
extending lifetime and reliability. The following literature suggests new techniques on
the MC level which equals the logical layer:

In „Write Endurance in Flash Drives: Measurements and Analysis“, Boboila and
Desnoyers empirically measure, analyze and provide methods of predicting the write
endurance of different FMCs. They even reverse engineer some flash drives to give more
insight into how manufacturers try to extend memory life. [8]

Desnoyers puts the focus on measuring performance and correlating it with the
wear the memory has experienced in „Empirical Evaluation of NAND Flash Memory
Performance“ [9].

Gupta, Pisolkar, Urgaonkar, et al. [10] and Chen, Luo, and Zhang[11] explore the idea
of using value locality in order to reduce write operations, save storage and thereby not
only increasing the lifetime but also performance. They use hash functions to identify data
chunks already stored in memory and prevent redundant writes effectively implementing
content de-duplication. [10], [11]

An improved wear leveling algorithm is introduced by Murugan and Du in „Reju-
venator: A Static Wear Leveling Algorithm for NAND Flash Memory with Minimized
Overhead“. The improvement comes from identifying more heavily used data and storing
it in less worn memory areas. [12]

Other research aims to improve the FMC’s hardware which equals the physical layer:
In „Graphene Flash Memory“, Hong, Song, Yu, et al. report on the integration of

graphene into FG transistors. They suggest that it allows for lower programming voltages
and higher data retention times. [13]

In „Developments in Nanocrystal Memory“, Chang, Jian, Chen, et al. examine
alternative methods of constructing the FG structures and different materials that can
be used [14].

9

Baeg, Khim, Kim, et al. explore the applicability of top-gated organic field effect
transistors to NAND memory in „High-Performance Top-Gated Organic Field-Effect
Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory“.
The efficient charge trapping and detrapping in the electret layer turn out to give superior
memory characteristics. [15]

Finally, Grupp, Davis, and Swanson try to project the future usage of FMC in SSDs.
In „The Bleak Future of NAND Flash Memory“ they conclude that while storage capacity
will continue to increase the durability and performance will stagnate or even degrade.
[16]

Due to the increased use of FMC especially in mobile devices it has become an
interesting target for forensic analysis.

Most attempts of accessing the device’s flash storage are through a programming or
debugging interface and not the memory directly. Breeuwsma, De Jongh, Klaver, et al.,
Willassen describe using the JTAG port of a µC that is connected to the memory in
order to extract the data. Additionally, they show how to read information off the flash
storage using memory chip programmers. [17], [18]

However, note that data being read by a chip programmer still goes through the MC
and is not the raw data saved in the flash cells.

Even though it is often said that data reminiscence does not exist in FMC, Skoroboga-
tov shows in „Data Remanence in Flash Memory Devices“ that this is not true. If erase
operations are not performed correctly data can be reconstructed even after up to 100
erase cycles. [19]

3.2 Side Channel Attacks

Research on Side Channel Attacks (SCAs) is very focused on cryptographic applications
and retrieving the used secret keys. Roche, Lomné, and Khalfallah use a combination of
fault injection and SCAs to efficiently extract the key used in an AES implementation in
„Combined Fault and Side-Channel Attack on Protected Implementations of AES“ [20].

In „Black-Box Side-Channel Attacks Highlight the Importance of Countermeasures“,
Moradi, Kasper, and Paar show how the bitstream encryption of Xilinx FPGAs, used to
protect the firmware when stored in memory, can be broken by extracting the secret key
with just a single start-up being analyzed [21].

Due to the dramatic success of SCAs, researchers started investigating counter
measures.

Güneysu and Moradi provides a guideline on how to thwart power SCAs on FPGAs
using noise generation, clock randomization and memory scrambling in „Generic Side-
Channel Countermeasures for Reconfigurable Devices“ [22].

While power SCAs are the most common other SCs are also used in practical attacks.
In „Side-Channel Analysis of Cryptographic RFIDs with Analog Demodulation“,

Kasper, Oswald, and Paar build a setup that uses an electro magnetic probe to measure
the RFID smart card communication field and an analog filter for isolating and amplifying
the SC signal [23].

10

Backes, Dürmuth, Gerling, et al. show that an acoustic SCA mounted against a
dotmatrix printer can recover up to 72% of the words printed. In „Acoustic Side-Channel
Attacks on Printers“, they use a sophisticated machine learning approach that works
fully automatically after an initial training phase. [24]

3.3 Side Channel Attacks on Flash Memory
Semi-invasive methods that use lasers have been shown to allow manipulation the memory
operations. Samyde, Skorobogatov, Anderson, et al. show how the raw data stored in a
flash cell can be extracted using optical or electromagnetic probing in „On a New Way
to Read Data from Memory“ [3].

In „Optical Fault Masking Attacks“, Skorobogatov shows how write and erase pro-
tection of a chosen memory region is achieved by pointing a laser at it. This is called
optical fault masking. [25]

Existing research on the power consumption of FMCs focuses on finding models to
predict and simulate power consumption for certain workloads of the systems the memory
is embedded in. Olivier, Boukhobza, and Senn in „Toward a Unified Performance and
Power Consumption NAND Flash Memory Model of Embedded and Solid State Secondary
Storage Systems“, and Mohan, Bunker, Grupp, et al. in „Modeling Power Consumption
of NAND Flash Memories Using Flashpower“ present frameworks for estimating power
consumption to aid design of memory hierarchies in [26], [27].

To the best of my knowledge, SCAs targeting the power SC of FMC have not yet
been researched.

11

CHAPTER 4
Methodology

4.1 Design

The goal of the thesis is to design and implement a framework to perform side channel
measurements on FMC that is flexible and easy to adapt to different types of flash chips
and various analysis methods.

To achieve good adaptability and clean interfaces, a modular component approach
was chosen which makes use of standardized communication interfaces and enforces clear
separation of duty. The main components identified in every power SCA are:

• Target: The device to be analyzed.

• Driver: The component instructing the target to perform the action of interest and
trigger the measurement at the appropriate time.

• Measurement: The device measuring power consumption and providing an interface
to transmit the data to the acquisition.

• Acquisition: The component that instructs the driver to generate the measurements
of interest and retrieves the data from the measuring instrument.

• Preprocessing: Noise is reduced and only raw data of the sections of interest is kept
for further analysis.

• Analysis: This is where the data analysis is performed. The type used may be a
SPA, DPA or an alternative algorithm.

The presented structure can be applied to any type of SC measurement and not only
to power analysis.

13

4.2 Driver

In case of FMC, the driver needs to support different types of NAND and NOR chips.
For NANDs, the I/O commands are standardized for the majority of manufacturers.

As of this writing, the ONFI Workgroup1 lists major flash manufacturers like Intel,
Micron and SK Hynix as members that follow the ONFI specifications.

Similar to the ONFI group for NAND, JEDEC 2 has introduced the common flash
interface (CFI) standard for NOR FMCs. Again, major manufacturers like Intel, Micron
and SK Hynix are members of the JEDEC.

A general purpose driver should implement the two standards to have a fundamental
support for different NAND and NOR chips. However, special operations may be
implemented in a non-standard, vendor specific way and therefore the driver should
always be tuned to the chips actually used.

Communication between the driver and the memory chip depends on the chip design.
For receiving data from the acquisition, any form of I/O may be used. Since the data
transferred will likely be of little size a serial bus supported by the acquisition is the
most obvious solution. The trigger of the measurement can be easily implemented by a
signal pin that changes level or sends an impulse when data recording should start.

4.3 Measurement

The measuring instrument is one of the most important components. Every effort made
here to reduce signal noise and acquire high resolution data makes further analysis more
likely to succeed and easier to implement.

SC analysis usually requires high-frequency and high-resolution measurements. If the
sampling frequency is too low, important shifts in the measured variable may simply go
undetected. Low resolution might be improved by amplifying the signal before or in the
process of measuring.

There is more to it than just a good measuring instrument though. Special care has
to be taken to ensure that there is no systematic error in the measurement setup. An
example would be two different power supplies for the FMC, one for output amplification
and one for memory logic and the amplifier’s power drain being measured, rather than
the one of the chip’s logic.

The setup can also play a key role in preventing and reducing signal noise, e.g. an EMR
SCA should always be performed inside a Faraday cage to keep out the environmental
EMR.

When it comes to power SCs the interesting variable is the power consumption at a
fixed supply voltage i.e. the current drain. Since oscilloscopes only measure voltages over
time, the usual approach is to measure the voltage drop on a resistor that is connected
in series to the target’s supply voltage.

1http://www.onfi.org/
2http://www.jedec.org/

14

http://www.onfi.org/
http://www.jedec.org/

The challenging part is finding a resistor value high enough to get a good voltage
drop and low enough not to affect the target device. A rough estimate can be found by
calculating

RSC = VCCmax − VCCmin

Imax

where RSC is the value of the side channel resistor, VCCmax the maximum and VCCmin

the minimum supply voltage of the target and Imax the maximum current drain of the
device. However, note that fine tuning may be needed and can affect the outcome of the
measurements.

4.4 Acquisition

The task of this component is to set up the driver to let the target perform the desired
operation and then retrieve the data off the measurement device.

The communication between the driver and the acquisition devices depends on the
driver and the implemented commands. However, communication between acquisition
and measurement component should be standardized as far as possible to support usage
of different measurement instruments.

The acquisition component is the lowest level on which user input can be accepted.
Depending on the level of automation and tasks at hand, the framework may also perform
preprocessing and analysis on the traces without any further user interaction. However, if
the goal is exploratory research, it is useful to also expose the lower levels of the process
giving the user a chance to try various processing and analysis methods on the data.

For testing the driver and measurement devices, an interactive and verbose User
Interface (UI) may be preferred as it provides quick feedback and the flexibility to
"test on the fly". However, once the lower components are working and the actual data
analysis starts, a script-able UI is preferably. Not only does it allow easily repeatable
measurements, but also unattended bulk data acquisition over a long period of time.

4.5 Preprocessing

In this pre-stage to the analysis, several operations may be performed to improve the
reliability and accuracy of the data analysis.

A possible preprocessing stage may consist of the following steps:

• A simple heuristic ensures that invalid power traces are removed from the data set.

• Several repeated measurements of the same target operation are synchronized to
match the begin and the end of the target’s operation.

• The synchronized power traces are averaged to reduce noise.

• The filtered signal is split into different parts to improve efficiency of the analysis.

15

This stage is where this thesis’s focus ends. It is left to future researchers to build
their analysis algorithms to process the data acquired through this framework.

4.6 Analysis
The data analysis is performed on the preprocessed data in order to further understand
the target’s operation or data being processed. A simple analysis could compare local
minima and maxima, the mean power consumption or the needed time until completion
for different inputs. More advanced analysis methods like DPA may use simulated power
models and statistical tests for analyzing the measurements.

16

CHAPTER 5
Implementation

5.1 Design

The implementation design closely resembles the components identified in Chapter 4.
The driver is implemented on an Atmel µC, an oscilloscope with a differential

probe is used as measurement instrument and a computer is used to perform acquisition,
preprocessing and analysis. Figure 5.1 visualizes the components and their communication
with each other. Details are described in the following sections.

5.2 Target

Three flash memory chips were chosen as representatives for different flash types:

• SLC NAND: Samsung K9F1G08U0C: 128MB memory, 8 bit data bus

• MLC NAND: Hynix H27UAG8T2BTR-BC: 2048MB memory, 8 bit data bus

• NOR: Spansion S29GL128P: 16MB memory, 8 or 16 bit data bus

The chips are soldered onto sample boards ordered on Ebay1. The sample boards
include the recommended capacitors and resistors and also connect the I/O pins to plug
connectors that allow easy board swapping. A photo can be found at Figure 5.2.

The memory’s supply voltage is provided by a bench top power supply. A GW Instek
PSP-405 was already in the lab and more than sufficient for the task.

1http://www.ebay.com/

17

http://www.ebay.com/

 Acquisition
& Processing

Flash

Measurement Driver

Figure 5.1: The components involved in this implementation.

Figure 5.2: The NAND sample board without the memory chip on it.

18

5.3 Driver

5.3.1 Micro Controller

The driver was implemented on a XMEGA-A1 XPLAINED prototyping board with an
ATxmega128A1 µC. The first important feature for the driver purpose is an integrated
UART-to-USB gateway that allows a computer to connect directly via USB and use a
virtual COM port to communicate with the µC. The second reason for this board are
four digital I/O ports with eight pins each to connect the FMCs to.

The µC was programmed with an Atmel AVR Dragon2 and avrdude which is included
in the WinAVR3 development bundle.

5.3.2 Flash Memory Adapters

Bridging between the driver’s XPLAINED board and the flash sample boards is done
using prototyping Printed Circuit Boards (PCBs). Since the sockets of the NOR and
NAND sample boards are very different, two separate adapters were built.

The connection to the flash chips is made using the sample board plugs. This enables
quick chip changing and easy setup.

The driver is connected to the adapter board by a 40 pin flat cable that is split into
four 10 pin cables that connect to the driver’s four I/O ports.

In addition, the adapter PCBs provide two cables to connect to the drivers supply
voltage and ground. Another cable carries the trigger signal from the driver for the
oscilloscope. A photo can be found at Figure 5.3.

5.3.3 Software

Design

The software was written in C using the AVR LibC 4 library. The main developing
OS was Windows 7 and the programming tools and libraries are installed through the
development package WinAVR. The driver implementation consists of the following:

• main.c: Deals with the computer communication, UI and system initialization.

• flash.c: Implements all FMC related tasks such as writing and reading data, as well
as triggering measurements when appropriate.

• uart.c: Contains an initialization function and implementations of putchar and
getchar for the UART bus.

• misc.c: General I/O and conversion functions.

2http://www.atmel.com/tools/avrdragon.aspx
3http://sourceforge.net/projects/winavr/
4http://www.nongnu.org/avr-libc/

19

http://www.atmel.com/tools/avrdragon.aspx
http://sourceforge.net/projects/winavr/
http://www.nongnu.org/avr-libc/

Figure 5.3: The NAND adapter board connecting the driver and the memory chip. The
chip currently installed is the Samsung K9F1G08U0C. Oh the right-hand side one can see
the 40 pin cable connecting to the driver. Above is the oscilloscope’s probe connecting to
the black striped trigger cable. On top of the NAND sample board one can see the SC
resistor RSC , the differential probe measuring the voltage drop and the power supply
cable.

Interface

For this driver implementation the flash operations of interest are read and write. Since
FMC needs to erase blocks before being able to write to them again, this function also
needs to be exposed to the acquisition device, in this case the computer.

The type of flash chip can be configured to any of the supported ones without
reprogramming the µC. The pin configuration of the driver is changed accordingly to
match the pin layout of the flash adapters described earlier.

For debugging purposes, there are also commands to toggle the measurement pin and
run a memory read/write self-check which also retrieves the manufacturer data.

The complete list of commands is printed if an unknown command is entered:

20

Commands:
r <startAddress (Dec or 0xHex)> [BytesToRead (Dec or 0xHex) - default is

↪→ 20]
w <startAddress (Dec or 0xHex)> <Data (ascii or hex string with 0x prefix

↪→ like 0x1122AAFF)*>
d [address (Dec or 0xHex) in sector to delete - no address == chip erase]
t <nand_s|nand_h|nor|undef>
x - toggles OSZI pin
test - runs diagnostics

Memory addresses may either be decimal without any prefix or hex if prefixed with a
"0x".

In an early implementation, the driver only supported ASCII strings to be written to
the FMC. However, this turned out to be too restrictive as C string functions usually use
0x00 as string terminator and not suitable therefore to e.g. write a series of 0x00 bytes
to memory. Also other bytes that are ASCII control characters turned out to be difficult
to handle for terminal applications.

Because of this, the current implementation does not only support ASCII strings but
also allows the user to write arbitrary bit patterns by entering a data string that starts
with "0x" followed by a series of two hex digits describing one byte to be written each.
For instance "w 0 0x00000000FF" will write four bytes with no bits set followed by
one byte with all bits set to memory starting at address zero. These strings are referred
to as hex-strings.

Memory

Both chosen NAND chips follow the ONFI specifications so their I/O differs just with
respect to their storage capacity and therefore their addressing. They use the same
commands and the same eight pins for the data bus and five additional lines being read
and write enable, address and command latch enable and the busy signal.

The NOR chip also uses 8 pins for the data bus but also has an extra address bus
which means more pins are used than for the NAND memory. In total, 8 data and 18
address bus pins, plus two pins for write and output enable and one pin for the busy
signal are used.

NAND memory supports block writing and reading, while NOR flash operates byte
oriented. To match different ways of setting addresses and writing data, several functions
were introduced to build an abstraction of an uniform access:

• void fl_setAddress(uint32_t addr): For NANDs, the address is written by sequential
commands. For NORs simply the address pins are set accordingly.

• void fl_setCommand(uint8_t cmd): Writes a command to a NAND and does
nothing for a NOR.

• void fl_setData(uint8_t data): Pushes the data into the NAND’s data buffer or
sets the NOR’s data pins.

21

• uint8_t fl_getData(): Reads one byte from the memory’s data bus.

Building on the basic operations above more complex functions were implemented:

• bool fl_WriteData(uint32_t addr, uint8_t data): The function takes one byte
of data and writes it to the specified address. For NANDs, calling this function
repeatedly is an inefficient way to write sequential data, for NORs this is perfectly
fine. The return value is true on success and false on error.

• Status fl_Write(uint32_t addr, char* buf): This function is optimized for writing
sequential data (strings) to memory. These strings may be regular ASCII strings or
the afore mentioned hex-strings. The return value indicates success or what kind
of error has occurred.

• uint8_t fl_ReadData(uint32_t addr): This is the counterpart to fl_WriteData. It
reads one byte from the specified memory address. Again, it is not efficient to read
sequential data from NANDs using this function.

• uint32_t fl_Read(uint32_t addr, char* buf, uint32_t readCount): The counterpart
to fl_Write reads a specified amount of bytes from the given address and saves
the result into buf. The string returned is not plain ASCII, but a hex-string. The
return value is the number of bytes read from memory.

The source code can be found in flash.c in the Appendix.

Triggering

With both types of memory, the same output pin is used to trigger the oscilloscope with
a rising edge. The time of the triggering is hard-coded into the driver’s software. For the
purpose of this thesis, the interesting operation is when the data is actually written to
the flash cells. For NORs, this is with every byte written but for NANDs the stage where
the bytes are loaded into the data buffer can be ignored. Once the persist command is
issued the oscilloscope should start the measurement.

Another question to be answered in future research is the possibility to retrieve the
processed data not only on write but also on read operations.

Therefore the trigger commands were placed in the fl_Read and fl_Write functions.
In this implementation the oscilloscope trigger pin goes high before starting the operations
of interest and goes low again after they have finished. This already gives some clues to
the timing of the power trace displayed on the oscilloscope.

5.4 Measurement

The measurement instrument used is an Agilent Technologies DSO-X 3014A oscilloscope.
It provides a sampling frequency of 200MHz and four input channels. The measurement

22

Figure 5.4: The modifications applied to the NAND sample board.

data can be retrieved using the Virtual Instrument Software Architecture (VISA) I/O
API.

To measure the power used by the chip a resistor is put in series to the memory’s
supply voltage. To reduce interferences it is best to measure the signal as close to the
chip as possible. Furthermore, power smoothening components should be removed just
like additional parts not needed for operation.

Following these guidelines the power LED and decoupling capacitor were removed
from the sample boards. The SC resistor RSC was directly soldered onto the supply
conductor. The modifications can be seen in Figure 5.4.

To measure the voltage drop on RSC as accurately as possible and without any
mathematical signal manipulation, a differential probe was used. The Hewlett Packard
1142A Probe Controller with a HP 1141A Differential Probe was already available in the
lab and therefore chosen. To allow simple disconnect of the probe, a socket was soldered
onto the resistor into which the probe can be plugged.

23

5.5 Acquisition

5.5.1 Interface

Python 3.45 was chosen as programming language because it offers libraries for many
different I/O types, works cross-platform and permits high flexibility as a scripting
language. For rendering the power trace plots the Python module matplotlib6 was used.
The implementation can be found in the file measure.py in the Appendix.

Following the recommendation from Section 4.4 two different UIs were implemented:

• Interactive: Used when experimenting with the setup and debugging.

• Scripted: Easy to gather bulk data for later analysis.

The interactive mode is used if the script is started without any command line
arguments i.e.

> python3.4 measure.py

If an instruction is entered incorrectly a help message is printed showing all implemented
commands:

Commands:
i <nand_s | nand_h | nor> - initialize flash controller to Samsung nand,

↪→ Hynix nand or nor chip
w <# of measurements> <string to be written>
r <# of measurements> <string to be written>
d - toggles debug mode
o [<mVPerDiv> <nsPerDiv> <mVTriggerLevel> <measurePoints>] - sets values

↪→ for oszi
to default or given values

e - exits the program
everything else prints this command list

Further details on the workings of the commands are given in Section 5.5.4.
To start the scripted interface the first argument to measure.py must be the instruction

file i.e.
> python3.4 measure.py batch_measure.txt

The syntax for such a file is as follows:

• A line starting with ";" is a comment line and ignored

• Empty lines are ignored

• Configuration lines start with "config:" and follow the form of
config:chip;mVPerDiv;nsPerDiv;mVTriggerLevel;measurePoints
e.g. "config:nand_s;50;10000;2000;50000"

5https://www.python.org/
6http://matplotlib.org/

24

https://www.python.org/
http://matplotlib.org/

• measurements are defined with
<w|r> <# measurements> <string used for measurement> e.g.

– "w 10 example data" will take 10 measurements of writing the string
"example data" without a terminating ’\0’ character to the flash chip.

– "r 50 0x7465737400" will write ASCII "test" followed by a null terminator
to the memory and then perform 50 measurements of reading the string.

The scripted mode only allows the commands "r" and "w" with the same parameters
as the interactive mode. An example instruction file can be found in batch_measure.txt
in the Appendix.

5.5.2 Driver Communication

The driver is connected to the PC’s USB port. The driver’s UART-to-USB bridge installs
itself as a virtual COM port on the PC which allows easy serial communication. Stock
Python already includes the serial module which was used for driver I/O. The commands
issued by the acquisition have to conform to those implemented by the driver. The
communication with the driver is hidden but can be seen by activating the debug mode.
By default debug is deactivated in scripted mode and activated in interactive mode.
However, the interactive user can toggle it using the "d" command. The output of the
driver is filtered for keywords such as "Error" to detect any problems and "data:" to
retrieve the output. The input strings are always converted to hex-strings (introduced in
Section 5.3.3) before being sent to the driver. To ensure proper setup of the driver the
"test" command is executed after every new flash chip configuration in the Python script.
Measurements can begin after the command has finished successfully.

5.5.3 Oscilloscope Communication

The Agilent oscilloscope features an Ethernet interface and supports the VISA API.
Necessary drivers and the VISA library are bundled in the Agilent IO Libraries Suite7.

The VISA API should work across different oscilloscope models, but checking the
device’s programming manual is highly recommended.

In order to use the Agilent VISA library with Python, the PyVISA8 module was
installed.

measure.py will connect to the VISA device immediately if it only finds one. If there
are more VISA devices available the user will be prompted to choose one.

Upon successful connection the oscilloscope’s ID is queried and displayed. Then the
device’s self-check is run before resetting it to its default settings.

If no errors occurred the oscilloscope initialization is complete and the memory chip
can be configured.

7http://www.agilent.com/find/iosuite
8https://github.com/hgrecco/pyvisa

25

http://www.agilent.com/find/iosuite
https://github.com/hgrecco/pyvisa

5.5.4 Acquisition Process

To begin the SC measurement, the memory chip has to be connected to the driver via an
adapter board. The driver is linked to the computer via USB and is assumed to install
as COM3 port. The last step is to make sure that the computer and the oscilloscope are
in the same network.

The measure.py script will show errors if one component is not reachable. Assuming
that all components are connected correctly calling the script without any arguments
will start the interactive mode.

The steps to perform a measurement are:

1. On startup the oscilloscope is connected and initialized.

2. Configure a FMC using the "t" command. This triggers the driver’s self test for
the chip.

3. Optionally change the default measurement settings like resolution using the "o"
command. By default they are 50mV/div, 10µsec/div, 2V trigger level and 50000
measurement points.

4. Issue a measure command i.e. "r" or "w".

Every measurement gets a unique measurement-ID. It consists of the command, the
string to be used, the string’s length and a time stamp, all separated by one space each.
If the string has more than 10 characters, only the first 10 are taken and three dots are
appended.

The procedure of both measure commands is as follows:

1. Erase the FMC with the driver’s "d" command.

2. Write the string to memory starting at address 0x00.

3. Read the characters from 0x00 and make sure they match the written string.

4. A new line is added to the "measure.log" file containing the measurement id, a time
stamp, the memory type, the command, the string as hex-string and as ASCII
string.

5. Set the oscilloscope with the configured parameters.

6. For the specified number of measurements repeat:

a) Arm the oscilloscope to wait for the trigger signal.
b) The next step depends on the issued command:

• "r": The driver will continue to read the string from 0x00 and make sure
it matches the test-string.

26

• "w": The driver will continue writing to memory at increasing addresses
to avoid overwriting previously written data.

c) Retrieve data from the oscilloscope:
i. Query waveform data from the oscilloscope.
ii. Strip the header information and save stripped data as

"<measurement-ID>#<measurement-number>_stripped.txt" into the
measurements folder.

iii. Query preamble from the oscilloscope and save it as
"<measurement-ID>#<measurement-number>_preamble.txt" into the
measurements folder.

iv. Adjust the waveform data with the information from the preamble to get
correct timing and voltage data.

v. Save the corrected waveform as Comma Separated Value (CSV) file with
the name "<measurement-ID>#<measurement-number>.csv" into the
measurements folder.

vi. Plot the power trace, save it as
"<measurement-ID>#<measurement-number>.png" into the measure-
ments folder and add it as a subplot to the measurement’s plot overview.

d) If the script was started in scripted mode it prints a success message and
continues with the next measurement. Once all are done it exits. If it was
started in interactive mode, the measurement’s overview plot is shown, followed
by a prompt for the next command.

5.6 Preprocessing

5.6.1 Interface

Like the acquisition component the preprocessing was implemented using Python 3.4.
The implementation can be found in the file process.py in the Appendix.

Since the preprocessing does not need any user input, the interface was kept very
simple and the task is fully automatized.

> python3.4 process.py

When the script is called it searches for files ending with "#0.csv". Then all measure-
ments are removed where the same filename is found but instead of ending with "#0.csv"
ends in " mean.csv". This results in a list of all measurements that have not yet been
processed. The preprocessing process is then performed on this list.

5.6.2 Preprocessing Process

The goal of the implemented preprocessing is reducing signal noise and producing a clean
power trace.

27

The first step for achieving this is synchronizing the different measurements to avoid
corrupting the power traces when averaging them.

In an earlier implementation local maxima and minima were used to find points in
the traces and to synchronize them on. However, the results showed that due to noise
and too many inconsistencies between the measurements the number of identified points
and their locations varied too much to be of any use.

The current implementation uses a very simple and efficient method of synchronizing
and averaging the power traces:

1. The maximum values for each measurement are calculated.

2. The median from these maxima is taken and divided by 4. This is the threshold
value.

3. For each measurement the offset from the first data point to the point exceeding
the threshold value is calculated.

4. Starting from these offsets the power traces are averaged using the arithmetic mean
function.

5. In the last step the averaged power trace is trimmed by finding the minimum of all
offsets and then removing the data points from 0 to this minimum offset.

The now processed data is saved to the measurement directory as
"<measurement-id> mean.csv" and a plot of the data is saved as
"<measurement-id> mean.png".

If only one measurement was processed the resulting plot is displayed to the user, if
more were processed the script simply exits.

5.7 Analysis
The data analysis can now be performed using any tool of choice. The raw power trace
data and the preprocessed data is available as in CSV file format. This data can then
be imported into regular office tools like Microsoft Excel9, special mathematics software
like Mathworks Matlab10 and R11, or programming languages like Java12 and Python.
Analysis methods can be as simple as looking at the plotted power traces, comparing the
time it takes for different operations to complete or comparing the total power consumed.
The number of voltage spikes may even reveal what data is processed. More complex
analysis may include simulated power models and statistical tests which can be used in a
DPA.

9http://products.office.com/en-us/excel
10http://en.mathworks.com/products/matlab/
11http://www.r-project.org/
12https://www.java.com/en/

28

http://products.office.com/en-us/excel
http://en.mathworks.com/products/matlab/
http://www.r-project.org/
https://www.java.com/en/

CHAPTER 6
Results and Validation

6.1 Setup

The devices used were:

• Computer (all software is for x64 architecture)

– Windows 7 SP1

– Agilent IO Libraries v. 16.3.17914.4

– WinAVR v. 20100110

– Python v. 3.4

– PyVISA v. 1.5.dev1

– matplotlib v. 1.3.1

• Oscilloscope: Agilent Technologies DSO-X 3014A

• Probe: Hewlett Packard 1142A Probe Controller with a HP 1141A Differential
Probe

• Driver: Atmel XMEGA-A1 XPLAINED with an ATxmega128A1 µC

• Programmer: Atmel AVR Dragon

• Flash memory chip: Samsung K9F1G08U0C SLC-NAND

• Power supply: GW Instek PSP-405

A photo of the setup can be found at Figure 6.1.

29

Figure 6.1: Lab setup for the demonstration. In the front is the programmer which is
connected to the driver. The flat rainbow cable connects to the adapter board on which
the memory chip sits. From the chip there is a gray bulky device going to the right of
the picture, this is the differential probe. The thin gray probe next to it is the trigger.
In the background is the power supply.

30

Figure 6.2: Oscilloscope’s display of power trace (yellow) and trigger signal (green) from
a write operation of the string "example measurement" to a NAND memory.

The NAND’s supply voltage was set to 3.5V and the resistor used for the SC
measurements was approximated to be

RSC = VCCmax − VCCmin

Imax
= 4.6V − 2.7V

35mA ≈ 54Ω

Empirically, a resistor RSC = 46, 1Ω was chosen.

6.2 Demonstration
For the demonstration, the string "example measurement" was written three times to the
NAND chip and the power traces recorded. In Figure 6.2 one of the measurements can be
seen. Assuming that everything is connected properly the steps to get this measurement
would be:

> python3.4 measure.py
> t nand_s
> w 3 example measurement

This will create a file "measure.log" with a log entry for the measurement. For each
of the three traces recorded the following files will be crated with a suffix of "#0" to
"#2": A "_preamble.txt" file, a "_stripped.txt" file with the raw data, a CSV file with
the adjusted data and a ".png" file with the plotted power trace.

31

Figure 6.3: Plot of the acquired data for a write of the string "example measurement" to
a NAND memory. file: "w ’example me...’ 19 2015.02.13-16_02_06#0.png".

For example the file "w ’example me...’ 19 2015.02.13-16_02_06#0.png" can be seen
in Figure 6.3

Once the measurement is completed, the preprocessing can be run:

> python3.4 process.py

With only three measurements the smoothing effect is not big but one can clearly see
the effects of synchronization and trimming of the preprocessing stage in Figure 6.4.

6.3 Data Analysis

A quick and not representative analysis of the sample data generated using the imple-
mented SC framework only focused on comparing write operations of different length
and Hamming weight.

The instructions file for the measurements performed is:

32

Figure 6.4: Plot of the preprocessed data for a write of the string "example measurement"
to a NAND memory. file: "w ’example me...’ 19 2015.02.13-16_02_06 mean.png".

; try different lengths
w 10 0x5B
w 10 0x5B
w 10 0x5B

↪→ 5B
↪→ 5B
↪→ 5B

; try different bits
w 10 0x00000000000000000000
w 10 0x01010101010101010101
w 10 0xffffffffffffffffffff

Each measurement was repeated 10 times and subsequently preprocessed. The analysis
is a very simple form of DPA.

The assumption is that the length of the input correlates to the amount of power con-
sumed and time taken. To explore this assumption the difference between measurements
of writing a character once and 20 times is compared. In particular the difference between
"0x5B" ("[" in ASCII) and "0x5B" is
computed.

A Python script was implemented that subtracts two power traces from one another
and displays a plot where both measurements are plotted over another and the difference
below. This script is called analysis.py and can be found in the Appendix.

33

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

Figure 6.5: Analysis result of 20 "[" characters and 1 "[" character written to the NAND
memory.

> python analysis.py "./measurements/w ’0x5B5B5B5B...’ 20
↪→ 2015.02.13-13_06_23 mean.csv" "./measurements/w ’0x5B’
↪→ 2015.02.13-12_51_44 mean.csv" res_20-1.png

The result in Figure 6.5 shows that there is definitely a difference between the two
power traces. The degree of correlation should be further investigated. The difference
between 100 "[" characters and 1 character written can be seen in Figure 6.6.
Supporting our assumption the difference in power consumption increased with the
amount of characters written. This is a strong indication for correlation of power
consumption and string length.

The second assumption is that the number of unset bits written corresponds with the
consumed power and programming time. The idea is based on the working principle of
FMC that has all bits set when the chip was cleared. The flash cells will not be altered
by programming a bit with a 1 but a 0 will take power and time to program.
Figure 6.7 shows the difference between programming 10 successive bytes with no bits
set (0x00) and 10 bytes with all bits set (0xff).
Again a difference is visible and the correlation should be further investigated.
To see just how little of a difference in Hamming weight can be seen Figure 6.8 shows
the result for writing 10 successive null bytes (0x00) and 10 bytes where just one bit is
set (0x01).
In this case no clear difference can be seen. This may be due to too much noise or because
the assumption was wrong.

34

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

Figure 6.6: Analysis result of 100 "[" characters and 1 "[" character written to the NAND
memory.

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

Figure 6.7: Analysis result of 10 0x00 bytes and 10 0xff bytes written to the NAND
memory.

35

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009
0.010

0.005

0.000

0.005

0.010

Figure 6.8: Analysis result of 10 0x00 bytes and 10 0x01 bytes written to the NAND
memory.

In all cases above, the sample set was very limited. Instead of writing the same bytes
over and over, random data should be used that only differs in one respect e.g. the string
length or the value of the 5th bit.
However, the shown differences in power consumption are indications that the assumptions
stated may be provable with more research.

6.4 Discussion

6.4.1 Automation and User Interface

The presented implementation automates the acquisition process and also attempts to
ensure correct setup and data processing. However, preprocessing and data analysis must
be triggered manually. It is no "one click" SC framework that automates the complete
procedure.
This is due to the exploratory state of research. Once different analysis techniques have
been developed to produce meaningful results they can be integrated into the framework
and the components can then be linked together to provide a "one click" solution. Until
then, the current implementation allows easy swapping of components and testing new
approaches.
The UI is purely command line oriented, the reason being simplicity of implementation.
It also allows scripting sequences of operations using e.g. shell scripts. The current target

36

users are researchers and developers which can be expected to work with a Command Line
Interface (CLI). However, if the goal was to introduce a wider public to this technology a
graphical UI would be more appropriate.

6.4.2 Measurement

The measurement tools used in this implementation were not specifically chosen for SCAs.
They were selected on a "best available" basis.
One major issue that should be improved is the limited sampling frequency of the
oscilloscope and its finite memory lowering resolution for power traces over a prolonged
amount of time. More advanced instruments offer sampling frequencies of above 5GHz
whereas the used oscilloscope only reaches up to 200MHz.
The differential probe was suited quite well for the used oscilloscope but the method of
connecting it to the power supply of the chip focused more on practicability than on a
perfect measurement. Results could be improved by placing the resistor very close to the
memory chip and soldiering the probe directly to it.
The SC resistor used was chosen empirically without trying a representative amount of
alternatives. Different qualities and types of resistors were ignored entirely.

6.4.3 Acquisition

The saved power traces start just before the persisting operation in the FMC is initiated.
The power consumption during the data transmission is not recorded. While the persis-
tence is probably more interesting to analyze, the filling of the buffer may also reveal
information about the processed data and the memory’s inner workings.
The current driver implementation only supports measurements of read and write opera-
tions. Not only may the delete operation be of interest, but FMCs may offer advanced
operations such as data encryption before saving it or different access methods. These
operations were not implemented because the focus of the framework is on read and
especially write operations.

6.4.4 Analysis

Even though a very simple data analysis method was presented in Section 6.3 this thesis
has its focus on the measurement and acquisition. The data processing and analyzing
should be investigated further.
It would be nice if an analysis framework were developed that provides core components
and tools for advanced data processing but still allows adaptation and customization for
exploratory research.

37

CHAPTER 7
Summary

First, Chapter 1 gives an introduction and motivation to why this work is a useful
contribution to research. It describes that it is often not possible to know what data is
really written to the FMC and how it can be different from the data that was sent to the
device’s MC.
A brief description of FMC in general and the different types that can be found in today’s
devices is given in Chapter 2.
Then Chapter 3 presents the current state of FMCs and side channel attacks in research.
It emphasizes that the focus of SCAs is on extracting encryption keys from µCs and no
comparable attempts to analyze the power SC of FMCs has been attempted yet.
The analysis and design of components needed to mount a power SCA on FMCs is
presented in Chapter 4. Six key components are identified and described.

A practical implementation of these components is shown in Chapter 5. Using a
µC, an oscilloscope with a differential probe and a computer, a framework is set up
that allows generation and acquisition of power traces from FMCs. The component
diagram can be found at Figure 5.1. The framework is designed to support FMC following
certain I/O standards and three chosen chips are used for reference. UIs are implemented
with the different needs in mind that arise from the scenarios of performing exploratory
research and building a big set of measurements for further data analysis. The framework
includes a driver with adapter boards for NANDs and NORs, an oscilloscope and two
Python scripts, one for generating the power traces through the driver and retrieving
the data from the oscilloscope and one script for synchronizing and averaging multiple
measurements to reduce signal noise.
Sample measurements and a simple DPA like data analysis are presented in Chapter 6.
Using a simple form of DPA it is shown that the strings written to one of the NAND
chips do affect the power consumption of the FMC. The two variables analyzed are string
lengths and the number of unset bits in a byte (Hamming weight).

Concerning the framework, further research should be directed towards implementing
a variety of standards and FMCs with their specific operations.

39

Also, the used equipment should be reviewed to improve measurement quality and
potentially find correlations that were missed in this work.
In terms of applicability of the presented framework major efforts should be put into
designing reliable and automatic power analysis methods. Once accessed data can be
retrieved from the power traces reliably, the next step would be to analyze devices
that have FMC integrated into them e.g. SSDs and to reverse engineer the algorithms
implemented in MCs.
A very interesting idea is that firmware is also stored on FMC in many devices. If one
could retrieve the data read during the device’s startup and operation, it might be possible
to reconstruct the firmware of the device. This has the potential of becoming a major
issue for manufacturers trying to protect their firmware by encrypting communication
between MC and the processor but not encrypting the stored firmware.

40

Appendix

Source Code

Controller

main.c

1 #include "defines.h"
2 #include "uart.h"
3 #include "flash.h"
4 #include "misc.h"
5 #include <stdio.h>
6 #include <avr/io.h>
7 #include <string.h>
8 #include <stdbool.h>
9 #include <stdlib.h>

10 #define BUF_LEN 1024
11 FILE uartStream;
12
13 static void init() {
14 LED_PORT.DIR = 0xff; //set LED port to be output
15 LED_PORT.OUT = 0xff; //low active -> turn LEDs off
16
17 LED_PORT.OUTCLR = 0x01; //Status display 1st LED
18
19 #if F_CPU == 32000000
20 setClockTo32MHz();
21 #endif
22 LED_PORT.OUTCLR = 0x02; //Status display 2nd LED
23 uartStream = uartInit();
24 stdin=stdout=&uartStream;
25 LED_PORT.OUTCLR = 0x04; //Status display 3rd LED
26 if (fl_Init(Undef)) {
27 LED_PORT.OUTCLR = 0x08; //done init 4th LED
28 printf("System started!\nInit success!\n");
29 } else {
30 printf("System started!\nInit error! Please set type via t-command!\n"

↪→);
31 }
32
33 }

41

34
35 int main(void) {
36 char inBuf[BUF_LEN];
37 char outBuf[BUF_LEN];
38 char* cmd;
39 char* addrStr;
40 char* dataStr;
41 uint32_t addr;
42 uint32_t i;
43 Status stat;
44 bool toggle=false;
45 long tmpHexLong=0;
46 char* tmpHexBuf="0xAA";
47
48 init();
49
50 for (;;) {
51
52 //Read out the received data
53 printf("> ");
54 in(inBuf, BUF_LEN);
55 cmd = strtok(inBuf, " ");
56 addrStr = strtok(NULL, " ");
57 dataStr = strtok(NULL, NULL);
58
59 printf("cmd: %s\naddrStr: %s\ndataStr: %s\n", cmd, addrStr, dataStr);
60
61 if (strcmp(cmd, "test") == 0) {
62 puts("TEST received!");
63
64 fl_Test();
65
66 LED_PORT.OUTCLR = 1 << PIN4_bp;
67 LED_PORT.OUTSET = 1 << PIN5_bp;
68
69 } else if (strcmp(cmd, "w") == 0) { //write command
70 if (addrStr == NULL || dataStr == NULL) {
71 puts(
72 "Error! Usage:\nw <startAddress (Dec or 0xHex)> <Data (ascii)

↪→ *>\n");
73 continue;
74 }
75
76 addr = (uint32_t) strtol(addrStr, NULL, 0);
77 stat = fl_Write(addr, dataStr);
78
79 if (stat == Success) {
80 printf("Success writing to 0x%08lx\n", addr);
81 } else {
82 printf("Error(%i) writing to 0x%08lx\n", stat, addr);
83 }
84
85 } else if (strcmp(cmd, "r") == 0) { //read command

42

86 if (addrStr == NULL) {
87 puts(
88 "Error! Usage:\nr <startAddress (Dec or 0xHex)> [BytesToRead (

↪→ Dec) - default is 20]\n");
89 continue;
90 }
91 addr = (uint32_t) strtol(addrStr, NULL, 0);
92 if (dataStr == NULL)
93 i = 20;
94 else
95 i = (uint32_t) strtol(dataStr, NULL, 0);
96
97 if (i > BUF_LEN/2-2-1) { //every byte needs 2 hex digits - 2 for "0

↪→ x" header - 1 for \0
98 printf("Error! Can read max %i bytes!\n", BUF_LEN - 1);
99 continue;

100 }
101
102 i = fl_Read(addr, outBuf, i);
103
104 printf("Read %ld bytes from 0x%08lx\n", i, addr);
105
106 for (int a = 0; a < i; a++) {
107 memcpy(tmpHexBuf+2, outBuf+2+a*2, 2);
108 tmpHexLong=strtol(tmpHexBuf, NULL, 0);
109
110 printf("0x%08lx: %c (0x%02x)\n", addr + a, (unsigned char)

↪→ tmpHexLong, (unsigned char) tmpHexLong);
111 }
112 printf("data: %s\n", outBuf);
113
114 } else if (strcmp(cmd, "d") == 0) { //delete command
115
116 if (addrStr == NULL) {
117 puts("starting chip erase...");
118 stat = fl_Erase(-1);
119 if (stat == Success) {
120 printf("Chip erase success!\n");
121 } else {
122 printf("Error(%i) erasing chip!\n", stat);
123 }
124 } else {
125 puts("starting sector erase...");
126 addr = (uint32_t) strtol(addrStr, NULL, 0);
127 stat = fl_Erase(addr);
128 if (stat == Success) {
129 printf("Sector erase success!\n");
130 } else {
131 printf("Error(%i) erasing sector 0x%08lx!\n", stat, addr);
132 }
133 }
134
135 } else if (strcmp(cmd, "t") == 0) { //type command

43

136
137 if (strcmp(addrStr, "nand_s") == 0) {
138 fl_Init(Nand_S);
139 puts("Set type to Samsung nand!\n");
140 } else if (strcmp(addrStr, "nand_h") == 0) {
141 fl_Init(Nand_H);
142 puts("Set type to Hynix nand!\n");
143 } else if (strcmp(addrStr, "nor") == 0) {
144 fl_Init(Nor);
145 puts("Set type to nor!\n");
146 } else {
147 fl_Init(Undef);
148 puts("Set type to undef!\n");
149 }
150
151 } else if (strcmp(cmd, "x") == 0) { //toggle command
152 printf("Toggle is %i\n",toggle);
153 fl_Oszi(toggle);
154 toggle=!toggle;
155
156 } else {
157 out("unknown command: ");
158 puts(inBuf);
159 puts(
160 "Commands:\n"
161 "r <startAddress (Dec or 0xHex)> [BytesToRead (Dec or 0xHex)

↪→ - default is 20]\n"
162 "w <startAddress (Dec or 0xHex)> <Data (ascii or hex string

↪→ with 0x prefix like 0x1122AAFF)*>\n"
163 "d [address (Dec or 0xHex) in sector to delete - no address

↪→ == chip erase]\n"
164 "t <nand_s|nand_h|nor|undef>\n"
165 "x - toggles OSZI pin\n"
166 "test - runs diagnostics\n"
167);
168
169 LED_PORT.OUTCLR = 1 << PIN5_bp;
170 LED_PORT.OUTSET = 1 << PIN4_bp;
171 }
172
173 }
174
175 return 0;
176 }

flash.h

1 #ifndef MY_LITTLE_CUSTOM_FLASH_H
2 #define MY_LITTLE_CUSTOM_FLASH_H
3
4 #include <stdint.h>
5 #include <stdbool.h>

44

6
7 typedef enum {
8 Nand_S, //Samsung K9F1G08U0D
9 Nand_H, //Hynix H27UAG8T2BTR

10 Nor,
11 Undef
12 } FlashType;
13
14 typedef enum {
15 Success = 0, Busy, Error, TimeOut
16 } Status;
17
18 bool fl_Init(FlashType type);
19 Status fl_Write(uint32_t addr, char* buf);
20 bool fl_WriteData(uint32_t addr, uint8_t data);
21 uint32_t fl_Read(uint32_t addr, char* buf, uint32_t readCount);
22 uint8_t fl_ReadData(uint32_t addr);
23 void fl_Test();
24 bool fl_Reset();
25 Status fl_Erase(uint32_t addr);
26 Status fl_GetStatus(uint32_t Timeout);
27 void fl_Oszi(bool enable);
28
29 #endif

flash.c

1 #include "flash.h"
2 #include "defines.h"
3 #include "misc.h"
4 #include <avr/io.h>
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include <util/delay.h>
9

10 #define NOR_BlockErase_Timeout ((uint32_t)0x00A00000)
11 #define NOR_ChipErase_Timeout ((uint32_t)0x30000000)
12 #define NOR_Program_Timeout ((uint32_t)0x00001400)
13
14 #define NAND_BlockErase_Timeout ((uint32_t)10000000)
15 #define NAND_Program_Timeout ((uint32_t) 5000000)
16 #define NAND_Read_Timeout ((uint32_t) 200000)
17
18 #define OSZI(val) bitWrite(&PORTD.OUT, 5, (val))
19
20 #define NOR_AM1(val) bitWrite(&PORTR.OUT, 1, (val & 0x01))
21 #define NOR_A7_A0(val) PORTF.OUT = ((val) & 0xff)
22 #define NOR_A11_A8(val) do{PORTC.OUTCLR=0xf0; PORTC.OUT |= ((val) & 0xf)

↪→ <<4;} while (false)
23 #define NOR_A16_A12(val) do{PORTD.OUTCLR=0x1f; PORTD.OUT |= ((val) & 0x1f)

↪→ ;} while (false)

45

24 #define NOR_RE(val) bitWrite(&PORTC.OUT, 0, (val))
25 #define NOR_WE(val) bitWrite(&PORTC.OUT, 1, (val))
26 #define NOR_DATA PORTA
27 #define NOR_BUSY (PORTR.IN & 0x01)
28
29 #define NAND_DATA PORTF
30 #define NAND_RE(val) bitWrite(&PORTA.OUT, 0, (val))
31 #define NAND_WE(val) bitWrite(&PORTA.OUT, 1, (val))
32 #define NAND_AE(val) bitWrite(&PORTA.OUT, 3, (val))
33 #define NAND_CE(val) bitWrite(&PORTA.OUT, 4, (val))
34 #define NAND_BUSY ((PORTA.IN >> 2) & 0x01)
35
36 static FlashType t = Undef;
37 static void fl_setAddress(uint32_t addr);
38 static void fl_setData(uint8_t data);
39 static uint8_t fl_getData();
40 static void fl_setCommand(uint8_t cmd);
41 static bool fl_isValidBlock(uint32_t addr);
42 bool fl_testReadWrite(uint32_t addr, char* testString, uint32_t stringLen)

↪→ ;
43
44 bool fl_Init(FlashType type) {
45 t = type;
46
47 if (t == Nand_S || t == Nand_H) { //NAND BOARD
48 bitWrite(&PORTD .DIR, 5, 1); //OSZI Pin
49
50 // latched on the rise edge
51 NAND_DATA.DIR = 0xff; //D0 to D7
52 NAND_DATA.PIN0CTRL = PORT_OPC_PULLUP_gc;
53 NAND_DATA.PIN1CTRL = PORT_OPC_PULLUP_gc;
54 NAND_DATA.PIN2CTRL = PORT_OPC_PULLUP_gc;
55 NAND_DATA.PIN3CTRL = PORT_OPC_PULLUP_gc;
56 NAND_DATA.PIN4CTRL = PORT_OPC_PULLUP_gc;
57 NAND_DATA.PIN5CTRL = PORT_OPC_PULLUP_gc;
58 NAND_DATA.PIN6CTRL = PORT_OPC_PULLUP_gc;
59 NAND_DATA.PIN7CTRL = PORT_OPC_PULLUP_gc;
60
61 bitWrite(&PORTA .DIR, 0, 1); //Read Enable
62 bitWrite(&PORTA .DIR, 1, 1); //Write Enable
63 bitWrite(&PORTA .DIR, 2, 0); //Busy
64 bitWrite(&PORTA .DIR, 3, 1); //Address Latch Enable
65 bitWrite(&PORTA .DIR, 4, 1); //Command Latch Enable
66
67 //initialize outputs
68 NAND_DATA.OUT = 0;
69 NAND_RE(1);
70 NAND_WE(1);
71 NAND_AE(0);
72 NAND_CE(0);
73
74 }
75

46

76 if (t == Nor) { //NOR BOARD
77 bitWrite(&PORTD .DIR, 5, 1); //OSZI Pin
78
79 //OUTPUTS
80 PORTF.DIR = 0xff; //A0 to A7
81 PORTC .DIR |= 0xf0; //A8 to A11
82 PORTD .DIR |= 0x1f; //A12 to A16 as output
83 bitWrite(&PORTR.DIR, 1, 1); //A-1 (LSB of address)
84 bitWrite(&PORTC .DIR, 0, 1); //Output Enable (low to enable)
85 bitWrite(&PORTC .DIR, 1, 1); //Write Enable (low to enable)
86
87 //IN-OUT
88 NOR_DATA .DIR = 0xff; //D0 to D7
89 NOR_DATA .PIN0CTRL = PORT_OPC_PULLUP_gc;
90 NOR_DATA .PIN1CTRL = PORT_OPC_PULLUP_gc;
91 NOR_DATA .PIN2CTRL = PORT_OPC_PULLUP_gc;
92 NOR_DATA .PIN3CTRL = PORT_OPC_PULLUP_gc;
93 NOR_DATA .PIN4CTRL = PORT_OPC_PULLUP_gc;
94 NOR_DATA .PIN5CTRL = PORT_OPC_PULLUP_gc;
95 NOR_DATA .PIN6CTRL = PORT_OPC_PULLUP_gc;
96 NOR_DATA .PIN7CTRL = PORT_OPC_PULLUP_gc;
97
98 //INPUTS
99 bitWrite(&PORTR.DIR, 0, 0); //Ready (busy on low, done after rising

↪→ edge)
100 PORTR.PIN0CTRL = PORT_OPC_PULLUP_gc;
101
102 //initialize outputs
103 OSZI(0);
104 NOR_AM1(0);
105 NOR_A7_A0(0);
106 NOR_A11_A8(0);
107 NOR_A16_A12(0);
108 NOR_RE(1);
109 NOR_WE(1);
110 NOR_DATA .OUT = 0;
111
112 }
113 fl_Oszi(false);
114 return fl_Reset();
115 }
116
117 /**
118 * Performs needed write cycles to store buf on the flash memory starting

↪→ at address
119 * addr.
120 * Returns status returned by flash memory.
121 */
122 Status fl_Write(uint32_t addr, char* buf) {
123 Status stat = Error;
124 uint32_t buflen = strlen(buf);
125 uint32_t i;
126

47

127 if (strncmp("0x", buf, 2)==0){
128 buflen=hexString2chars(buf);
129 if (buflen==0){
130 printf("ERROR! Could not convert hex-string to bytes!\n");
131 return Error;
132 }
133 }
134
135 if (t == Nand_S || t == Nand_H) {
136 if (!fl_isValidBlock(addr)) {
137 printf("ERROR! Invalid Block!\n");
138 return Error;
139 }
140 fl_setCommand(0x80);
141 fl_setAddress(addr);
142 //fl_Oszi(false);
143 //_delay_us(1);
144 //fl_Oszi(true); //1st action: write data to buffer
145 //printf("fl_Write...\n");
146 for (i = 0; i < buflen; i++) {
147 fl_setData(buf[i]);
148 //printf("0x%02x\n", buf[i]);
149 }
150
151 fl_Oszi(false);
152 _delay_us(1);
153 fl_Oszi(true); //2nd action: persist data
154
155 fl_setCommand(0x10);
156
157 stat = fl_GetStatus(NAND_Program_Timeout);
158
159 fl_Oszi(false); //done
160 return stat;
161
162 }
163
164 if (t == Nor) {
165 stat = Success;
166
167 //perform write
168 for (i = 0; i < buflen; i++) {
169 fl_Oszi(false);
170 _delay_us(1);
171 fl_Oszi(true); //1st action: set up
172
173 fl_WriteData(0xAAA, 0xAA); //unlock 1
174 fl_WriteData(0x555, 0x55); //unlock 2
175 fl_WriteData(0xAAA, 0xA0); //program setup
176
177 fl_Oszi(false);
178 _delay_us(1);
179 fl_Oszi(true); //2nd action: persist

48

180
181 fl_WriteData(addr + i, buf[i]); //program
182 stat |= fl_GetStatus(NOR_Program_Timeout);
183
184 fl_Oszi(false); //done
185
186 if (stat != Success) {
187 return stat;
188 }
189 }
190 return stat;
191 }
192
193 return fl_GetStatus(NOR_Program_Timeout | NAND_Program_Timeout); //Plan

↪→ C
194 }
195
196 /**
197 * Performs a write cycle writing data to addr.
198 */bool fl_WriteData(uint32_t addr, uint8_t data) {
199 if (t == Undef)
200 return false;
201
202 if (t == Nand_S || t == Nand_H) {
203 if (!fl_isValidBlock(addr)) {
204 printf("ERROR! Invalid Block!\n");
205 return Error;
206 }
207
208 fl_setCommand(0x80);
209 fl_setAddress(addr);
210
211 fl_setData(data);
212
213 fl_setCommand(0x10);
214
215 return fl_GetStatus(NAND_Program_Timeout) == Success;
216
217 }
218
219 if (t == Nor) {
220 //set address
221 fl_setAddress(addr);
222 //set data
223 fl_setData(data);
224 NOR_WE(0);
225 NOR_WE(1);
226
227 }
228
229 return true;
230 }
231

49

232 /**
233 * Sets the Address to write data to.
234 */
235 static void fl_setAddress(uint32_t addr) {
236
237 if (t == Nand_S) {
238 NAND_AE(1);
239
240 //first address cycle (Column address A0-A7)
241 fl_setData(addr & 0xff);
242
243 //second address cycle (Column address A8-A11)
244 fl_setData((addr >> 8) & 0xf);
245
246 //third address cycle (Row address A12-A19)
247 fl_setData((addr >> 12) & 0xff);
248
249 //fourth address cycle (Row address A20-A27)
250 fl_setData((addr >> 20) & 0xff);
251
252 NAND_AE(0);
253
254 }
255
256 if (t == Nand_H) {
257 NAND_AE(1);
258
259 //first address cycle (Column address A0-A7)
260 fl_setData(addr & 0xff);
261
262 //second address cycle (Column address A8-A13)
263 fl_setData((addr >> 8) & 0x3f);
264
265 //third address cycle (Page address A14-A21)
266 fl_setData((addr >> 14) & 0xff);
267
268 //fourth address cycle (Plane address A22, Block address A23 - A29)
269 fl_setData((addr >> 22) & 0xff);
270
271 //fifth address cycle (Block address A30-A31)
272 fl_setData((addr >> 30) & 0x3);
273
274 NAND_AE(0);
275 }
276
277 if (t == Nor) {
278 //set address
279 //printf("LSB: %x, PortF: %x, PortC: %x, PortD: %x\n", addr & 0x1,(

↪→ addr >> 1) & 0xff, ((addr >> 8) & 0xf) << 4, (addr >> 12) & 0
↪→ x1f);

280
281 NOR_AM1(addr & 0x1);
282 NOR_A7_A0(addr >> 1);//don’t forget the A-1 (A0 minus 1) in byte mode!

50

283 NOR_A11_A8(addr >> 9);
284 NOR_A16_A12(addr >> 13);
285
286 }
287 }
288
289 /**
290 * Sets the data to write
291 */
292 static void fl_setData(uint8_t data) {
293
294 if (t == Nand_S || t == Nand_H) {
295 NAND_DATA.DIR = 0xff;
296 NAND_DATA.OUT = data;
297 NAND_WE(0);
298 NAND_WE(1);
299 }
300
301 if (t == Nor) {
302 NOR_DATA .DIR = 0xff; //Set as input
303 NOR_DATA .OUT = data;
304 }
305 }
306
307 /**
308 * Reads readCount-1 bytes characters from memory into buf, where starting

↪→ address is addr.
309 * buf is always null-terminated -> buf[readCount-1]=’\0’.
310 * The number of read characters is returned.
311 * On error, -1 is returned.
312 */
313 uint32_t fl_Read(uint32_t addr, char* buf, uint32_t readCount) {
314 buf[0] = ’\0’;
315 uint32_t i = -1;
316
317 if (t == Nand_S || t == Nand_H) {
318 fl_setCommand(0x00);
319 fl_setAddress(addr);
320
321 fl_Oszi(false);
322 _delay_us(1);
323 fl_Oszi(true); //1st action: reading
324
325 fl_setCommand(0x30);
326
327 uint32_t timeout = NAND_Read_Timeout;
328 while ((NAND_BUSY != 0) && (timeout > 0)) {
329 timeout--;
330 }
331
332 timeout = NAND_Read_Timeout;
333
334 while ((NAND_BUSY == 0) && (timeout > 0)) {

51

335 timeout--;
336 }
337
338 fl_Oszi(false);
339 _delay_us(1);
340 fl_Oszi(true); //2nd action: fetching data
341
342 if (timeout == 0) {
343 printf("Reading timed out!!!!!\n");
344 buf[0] = ’\0’;
345 return -1;
346 } else {
347
348 for (i = 0; i < readCount; i++) {
349 buf[i] = fl_getData();
350 }
351 buf[i] = ’\0’;
352 }
353
354 fl_Oszi(false); //done
355
356 }
357
358 if (t == Nor) {
359
360 for (i = 0; i < readCount; i++) {
361 buf[i] = fl_ReadData(addr + i); //read data
362 }
363 buf[i] = ’\0’;
364
365 }
366
367 chars2hexString(buf, i);
368
369 return i;
370 }
371
372 /**
373 * Performs a read cycle returning the data stored at addr.
374 */
375 uint8_t fl_ReadData(uint32_t addr) {
376 uint8_t res = 0;
377 if (t == Nand_S || t == Nand_H) {
378 fl_setCommand(0x00);
379 fl_setAddress(addr);
380
381 fl_Oszi(false);
382 _delay_us(1);
383 fl_Oszi(true); //1st action: reading
384
385 fl_setCommand(0x30);
386
387 uint32_t timeout = NAND_Read_Timeout;

52

388 while ((NAND_BUSY != 0) && (timeout > 0)) {
389 timeout--;
390 }
391
392 timeout = NAND_Read_Timeout;
393
394 while ((NAND_BUSY == 0) && (timeout > 0)) {
395 timeout--;
396 }
397
398 fl_Oszi(false);
399 _delay_us(1);
400 fl_Oszi(true); //2nd action: fetching data
401
402 res = fl_getData();
403
404 fl_Oszi(false); //done
405
406 }
407
408 if (t == Nor) {
409 fl_setAddress(addr);
410
411 fl_Oszi(false);
412 _delay_us(1);
413 fl_Oszi(true); //1st action: reading
414
415 NOR_RE(0);
416
417 res = fl_getData();
418 fl_Oszi(false); //done
419
420 NOR_RE(1);
421 }
422
423 return res;
424 }
425
426 /**
427 * Sets data pins as input and returns data pin value.
428 */
429 static uint8_t fl_getData() {
430 uint8_t res = 0;
431
432 if (t == Nand_S || t == Nand_H) {
433 NAND_DATA.DIR = 0x00; //Set as input
434 NAND_DATA.OUT = 0xff;
435 NAND_RE(0);
436 res = NAND_DATA.IN;
437 res = NAND_DATA.IN;
438 NAND_RE(1);
439
440 }

53

441
442 if (t == Nor) {
443 NOR_DATA .DIR = 0x00; //Set as input
444 NOR_DATA .OUT = 0xff;
445 res = NOR_DATA .IN;
446 }
447
448 return res;
449 }
450
451 /**
452 * Writes command cmd to command latch of nand.
453 * Does nothing for nor and undefined.
454 */
455 static void fl_setCommand(uint8_t cmd) {
456 if (t == Nand_S || t == Nand_H) {
457 NAND_CE(1);
458 fl_setData(cmd);
459 NAND_CE(0);
460 }
461
462 }
463
464 /**
465 * Checks whether block of nand is valid.
466 * Returns true on valid block and false on invalid block, aswell as not

↪→ nand type.
467 */
468 static bool fl_isValidBlock(uint32_t addr) {
469 uint32_t page, block, tmp;
470 uint8_t val;
471
472 if (t == Nand_S) {
473 block = addr / ((2 * 1024 + 64) * 64L);
474 page = (addr - block * (2 * 1024 + 64) * 64) / (2 * 1024 + 64);
475
476 tmp = block * (2 * 1024 + 64) * 64 + 0L * (2 * 1024 + 64) + 2 * 1024;
477 val = fl_ReadData(tmp);
478 if (val != 0xff) { //1st Byte in the spare area of 1st page
479 printf(
480 "Calculated block: %ld\npage: %ld first page (0x%08lx: 0x%02x)\n

↪→ ",
481 block, page, tmp, val);
482 return false;
483 }
484
485 tmp = block * (2 * 1024 + 64) * 64 + 1L * (2 * 1024 + 64) + 2 * 1024;
486 val = fl_ReadData(tmp);
487 if (val != 0xff) { //1st Byte in the spare area of 2nd page
488 printf(
489 "Calculated block: %ld\npage: %ld second page (0x%08lx: 0x%02x)\

↪→ n",
490 block, page, tmp, val);

54

491 return false;
492 }
493
494 return true;
495 }
496
497 if (t == Nand_H) {
498 block = addr / (8 * 1024 + 448) / 256;
499 page = (addr - block * (8 * 1024 + 448) * 256) / (8 * 1024 + 448);
500
501 tmp = block * (8 * 1024 + 448) * 256 + 0L * (8 * 1024 + 448) + 8 *

↪→ 1024;
502 val = fl_ReadData(tmp);
503 if (val != 0xff) { //1st Byte in the spare area of 1st page
504 printf(
505 "Calculated block: %ld\npage: %ld first page (0x%08lx: 0x%02x)\n

↪→ ",
506 block, page, tmp, val);
507 return false;
508 }
509
510 tmp = block * (8 * 1024 + 448) * 256 + 255L * (8 * 1024 + 448)
511 + 8 * 1024;
512 val = fl_ReadData(tmp);
513 if (val != 0xff) { //1st Byte in the spare area of last page
514 printf(
515 "Calculated block: %ld\npage: %ld last page (0x%08lx: 0x%02x)\n"

↪→ ,
516 block, page, tmp, val);
517 return false;
518 }
519
520 return true;
521 }
522
523 return false;
524 }
525
526 void fl_Test() {
527 uint32_t buflen=1024;
528 char inBuf[buflen];
529 char outBuf[buflen];
530 uint32_t addr, i, slen;
531 uint8_t val;
532 int error=0;
533
534 if (!fl_Reset()) {
535 printf("Could not reset chip!\n");
536 }
537
538 if (t == Nand_S) {
539 printf("### TESTING SAMSUNG NAND ###\n");
540 fl_setCommand(0x90);

55

541 fl_setAddress(0x00);
542 printf("Manufacturer (0xEC): 0x%02X\n", fl_getData());
543 printf("Device Code (0xF1): 0x%02X\n", fl_getData());
544 printf("ID1 (0x00): 0x%02X\n", fl_getData());
545 printf("ID2 (0x15): 0x%02X\n", fl_getData());
546 printf("ID3 (0x40): 0x%02X\n", fl_getData());
547
548 printf("CHECKING FOR BAD BLOCKS...\n");
549
550 for (uint32_t block = 0; block < 1024; block++) {
551 addr = block * (2 * 1024 + 64) * 64 + 0L * (2 * 1024 + 64)
552 + 2 * 1024;
553 val = fl_ReadData(addr);
554 if (val != 0xff) { //1st Byte in the spare area of 1st page
555 printf("Invalid Block %ld at 0x%08lx\t\t(Start=0x%02x)\n",
556 block, addr, val);
557 continue;
558 }
559
560 addr = block * (2 * 1024 + 64) * 64 + 1L * (2 * 1024 + 64)
561 + 2 * 1024;
562 val = fl_ReadData(addr);
563 if (val != 0xff) { //1st Byte in the spare area of last page
564 printf("Invalid Block %ld at 0x%08lx\t\t(End=0x%02x)\n", block,
565 addr, val);
566 }
567
568 }
569 printf("DONE!\n");
570
571 printf("CHECKING ADDRESSES IN BLOCKS...\n");
572 for (uint32_t block = 0; block < 1024; block++) {
573 addr = block * (2 * 1024 + 64) * 64 + 5L * (2 * 1024 + 64) + 123;
574 val = fl_ReadData(addr);
575 if (!fl_isValidBlock(addr)) {//1st Byte in the spare area of 1st

↪→ page
576 printf("Invalid Block at address 0x%08lx\n", addr);
577 }
578 }
579 printf("DONE!\n");
580
581 }
582
583 if (t == Nand_H) {
584 printf("### TESTING HYNIX NAND ###\n");
585 fl_setCommand(0x90);
586 fl_setAddress(0x00);
587 printf("Manufacturer (0xAD): 0x%02X\n", fl_getData());
588 printf("Device Code (0xD5): 0x%02X\n", fl_getData());
589 printf("ID1 (0x94): 0x%02X\n", fl_getData());
590 printf("ID2 (0x9A): 0x%02X\n", fl_getData());
591 printf("ID3 (0x74): 0x%02X\n", fl_getData());
592 printf("ID3 (0x42): 0x%02X\n", fl_getData());

56

593
594 printf("CHECKING FOR BAD BLOCKS...\n");
595
596 for (uint32_t block = 0; block < 1024; block += 8) {
597 addr = block * (8 * 1024 + 448) * 256 + 0L * (8 * 1024 + 448)
598 + 8 * 1024;
599 val = fl_ReadData(addr);
600 if (val != 0xff) { //1st Byte in the spare area of 1st page
601 printf("Invalid Block %ld at 0x%08lx\t\t(Start=0x%02x)\n",
602 block, addr, val);
603 }
604
605 addr = block * (8 * 1024 + 448) * 256 + 255L * (8 * 1024 + 448)
606 + 8 * 1024;
607 val = fl_ReadData(addr);
608 if (val != 0xff) { //1st Byte in the spare area of last page
609 printf("Invalid Block %ld at 0x%08lx\t\t(End=0x%02x)\n", block,
610 addr, val);
611 }
612
613 }
614 printf("DONE!\n");
615
616 printf("CHECKING ADDRESSES IN BLOCKS...\n");
617
618 for (uint32_t block = 0; block < 1024; block += 8) {
619 addr = block * (8 * 1024 + 448) * 256 + 15L * (8 * 1024 + 448)
620 + 911;
621 val = fl_ReadData(addr);
622 if (!fl_isValidBlock(addr)) {//1st Byte in the spare area of 1st

↪→ page
623 printf("Invalid Block at address 0x%08lx\n", addr);
624 }
625 }
626 printf("DONE!\n");
627
628 }
629
630 if (t == Nor) {
631
632 fl_WriteData(0xAAA, 0xAA); //unlock 1
633 fl_WriteData(0x0555, 0x55); //unlock 2
634 fl_WriteData(0x0AAA, 0x90); //enter autoselect
635 printf("Manufacturer ID(0x01): 0x%02X\n", fl_ReadData(0x00));
636 printf("Device ID1(0x7E): 0x%02X\n", fl_ReadData(0x02));
637 printf("Device ID2(0x21): 0x%02x\n", fl_ReadData(0x1C));
638 printf("Device ID3(0x01): 0x%02x\n", fl_ReadData(0x1E));
639 fl_Reset();
640
641 printf("CHECKING BLOCK DELETE...\n");
642 addr = 0x1fffa;
643 fl_Erase(addr); //Erase sector
644 fl_Write(addr, "0123456789");

57

645 fl_Read(addr, inBuf, 11);
646 printf("Before delete: %s\n", inBuf);
647
648 fl_Erase(0x0); //Erase sector 0
649 fl_Read(addr, inBuf, 11);
650 printf("After delete of sector 0x0: %s\n", inBuf);
651
652 fl_Write(addr, "0123456789");
653 fl_Erase(0xffff); //Erase sector 0
654 fl_Read(addr, inBuf, 11);
655 printf("After delete of sector 0xffff: %s\n", inBuf);
656
657 fl_Write(addr, "0123456789");
658 fl_Erase(0x10000); //Erase sector 0
659 fl_Read(addr, inBuf, 11);
660 printf("After delete of sector 0x10000: %s\n", inBuf);
661
662 fl_Write(addr, "0123456789");
663 fl_Erase(0x20000); //Erase sector 1
664 fl_Read(addr, inBuf, 11);
665 printf("After delete of sector 0x20000: %s\n", inBuf);
666
667 }
668
669 printf("\n\nWriting test data...\n");
670 addr = 0x0;
671
672 printf("\nTesting printable ascii chars...\n");
673 slen=(buflen-2)/2;
674 for (i = 0; i < slen; i++) {
675 outBuf[i] = 32 + i % 95; //printable ascii chars
676 }
677 if (fl_testReadWrite(addr, outBuf, slen)) {
678 printf("TEST SUCCESS!\n");
679 } else {
680 printf("TEST FAILED!\n");
681 error=1;
682 }
683
684 printf("\nTesting complete byte range...\n");
685 for (i = 0; i < slen; i++) {
686 outBuf[i] = 1 + (i%0x100); //ascii chars
687 }
688 if (fl_testReadWrite(addr, outBuf, slen)) {
689 printf("TEST SUCCESS!\n");
690 } else {
691 printf("TEST FAILED!\n");
692 error=2;
693 }
694
695 printf("\nTesting evil string #1...\n");
696 uint32_t k = 0;
697 for (i = 0; i < slen; i++) {

58

698 if (i % 4 == 0) {
699 outBuf[i] = ’0’ + k % 10;
700 k++;
701 } else {
702 outBuf[i] = ’o’;
703 }
704
705 }
706 if (fl_testReadWrite(addr, outBuf, slen)) {
707 printf("TEST SUCCESS!\n");
708 } else {
709 printf("TEST FAILED!\n");
710 error=3;
711 }
712
713 printf("\nTesting evil string #2...\n");
714 memset(outBuf, ’o’, 80);
715 strcpy(outBuf+80, "0123456789abcdefghijklmnopqrstuvwxyz0123456789");
716 memset(outBuf+80+46, ’o’, 80);
717 if (fl_testReadWrite(addr, outBuf, 2*80+46)) {
718 printf("TEST SUCCESS!\n");
719 } else {
720 printf("TEST FAILED!\n");
721 error=4;
722 }
723
724 fl_Erase(addr);
725
726 printf("\n\nDONE!\n");
727
728 if (error==0)
729 printf ("ALL TESTS PASSED SUCCESSFULLY!");
730 else
731 printf("AT LEAST TEST %i FAILED! CHECK REPORT ABOVE!",error);
732 }
733
734 bool fl_testReadWrite(uint32_t addr, char* testString, uint32_t stringLen)

↪→ {
735
736 uint32_t i;
737 Status stat;
738 uint8_t val;
739 bool result = true;
740
741 char inBuf[2+2*stringLen];
742
743 printf("Testing Read Write with string (%ld chars):\n%s\n", stringLen,
744 testString);
745 stat = fl_Erase(addr);
746 if (stat != Success) {
747 printf("Error(%i) erasing address 0x%08lx\n", stat, addr);
748 return false;
749 }

59

750
751 chars2hexString(testString, stringLen);
752
753 stat = fl_Write(addr, testString);
754 if (stat != Success) {
755 printf("Error(%i) writing to address 0x%08lx\n", stat, addr);
756 return false;
757 }
758
759 fl_Read(addr, inBuf, stringLen);
760 printf("Multi read:\n%s\n", inBuf);
761
762 if (hexString2chars(inBuf)!= stringLen){
763 printf("Error! hexString2chars returned wrong number of bytes!");
764 return false;
765 }
766
767 printf("Single read:\n");
768 for (i = 0; i < stringLen; i++) {
769 val = fl_ReadData(addr + i);
770 printf("%c", val);
771
772 if (((char) val) != testString[i]) {
773 printf("\nMISSMATCH WITH SINGLE READ!!\n");
774 printf("%8ld: %c 0x%02x\texpected: %c 0x%02x\n", i, val, val,
775 testString[i], testString[i]);
776 result = false;
777 }
778 if (inBuf[i] != testString[i]) {
779 printf("\nMISSMATCH WITH MULTI READ!!\n");
780 printf("%8ld: %c 0x%02x\texpected: %c 0x%02x\n", i, inBuf[i], inBuf[

↪→ i],
781 testString[i], testString[i]);
782 result = false;
783 }
784 }
785
786 putchar(’\n’);
787
788 return result;
789 }
790
791 bool fl_Reset() {
792 if (t == Nand_S || t == Nand_H) {
793 fl_setCommand(0xff);
794 }
795
796 if (t == Nor) {
797 fl_WriteData(0x0, 0xF0);
798 }
799 return fl_GetStatus(100) == Success;
800 }
801

60

802 Status fl_Erase(uint32_t addr) {
803 if (t == Nand_S || t == Nand_H) {
804
805 if (addr == -1) {
806 for (uint32_t block = 0; block < 1024; block++) {
807 if (t == Nand_S) {
808 addr = block * (2 * 1024 + 64) * 64 + 0L * (2 * 1024 + 64)
809 + 2 * 1024;
810 }
811 if (t == Nand_H) {
812 addr = block * (8 * 1024 + 448) * 256
813 + 0L * (8 * 1024 + 448) + 8 * 1024;
814 }
815
816 if (fl_Erase(addr) != Success) {
817 printf("Warning! Could not erase block %ld\n", block);
818 }
819
820 }
821 return Success;
822
823 } else {
824 if (!fl_isValidBlock(addr)) {
825 printf("ERROR! Invalid Block!\n");
826 return Error;
827 }
828
829 fl_setCommand(0x60);
830
831 NAND_AE(1);
832 //set block addresses
833 if (t == Nand_S) {
834 //third address cycle (Row address A12-A19)
835 fl_setData((addr >> 12) & 0xff);
836
837 //fourth address cycle (Row address A20-A27)
838 fl_setData((addr >> 20) & 0xff);
839 }
840
841 if (t == Nand_H) {
842 //third address cycle (Page address A14-A21)
843 fl_setData((addr >> 14) & 0xff);
844
845 //fourth address cycle (Plane address A22, Block address A23 -

↪→ A29)
846 fl_setData((addr >> 22) & 0xff);
847
848 //fifth address cycle (Block address A30-A31)
849 fl_setData((addr >> 30) & 0x3);
850 }
851
852 NAND_AE(0);
853 }

61

854
855 fl_setCommand(0xd0);
856 return fl_GetStatus(NAND_BlockErase_Timeout);
857 }
858
859 if (t == Nor) {
860 //Sector border is from 0x1ffff to 0x20000
861 fl_WriteData(0xAAA, 0xAA); //unlock 1
862 fl_WriteData(0x555, 0x55); //unlock 2
863 fl_WriteData(0xAAA, 0x80);
864 fl_WriteData(0xAAA, 0xAA);
865 fl_WriteData(0x555, 0x55);
866 if (addr == -1) {
867 fl_WriteData(0xAAA, 0x10);
868 return fl_GetStatus(NOR_ChipErase_Timeout);
869 } else {
870 fl_WriteData(addr, 0x30); //erase sector
871 return fl_GetStatus(NOR_BlockErase_Timeout);
872 }
873
874 }
875
876 return fl_GetStatus(NOR_ChipErase_Timeout | NAND_BlockErase_Timeout);

↪→ //Plan C
877 }
878
879 Status fl_GetStatus(uint32_t Timeout) {
880 Status status = Busy;
881 uint32_t timeout = Timeout;
882
883 if (t == Nand_S || t == Nand_H) {
884 while ((NAND_BUSY != 0) && (timeout > 0)) {
885 timeout--;
886 }
887 timeout = Timeout;
888
889 while ((NAND_BUSY == 0) && (timeout > 0)) {
890 timeout--;
891 }
892 uint8_t reg; //status register content
893 while (status == Busy && Timeout > 0) {
894 Timeout--;
895 fl_setCommand(0x70);
896 reg = fl_getData(); //get status register content
897
898 if ((reg & 0x1) == 1) {
899 status = Error;
900
901 } else if (((reg >> 6) & 0x1) == 1) {
902 status = Success;
903 } else {
904 status = Busy;
905 }

62

906
907 }
908
909 if (timeout == 0) {
910 status = TimeOut;
911 }
912 }
913
914 if (t == Nor) {
915 uint8_t val1 = 0x00, val2 = 0x00;
916
917 /* Poll on NOR memory Ready/Busy signal

↪→ ------------------------------------*/
918 while ((NOR_BUSY != 0) && (timeout > 0)) {
919 timeout--;
920 }
921
922 timeout = Timeout;
923
924 while ((NOR_BUSY == 0) && (timeout > 0)) {
925 timeout--;
926 }
927
928 /* Get the NOR memory operation status

↪→ -------------------------------------*/
929 while ((Timeout != 0x00) && (status != Success)) {
930 Timeout--;
931
932 /* Read DQ6 and DQ5 */
933 val1 = fl_getData();
934 val2 = fl_getData();
935
936 /* If DQ6 did not toggle between the two reads then return

↪→ NOR_Success */
937 if ((val1 & 0x0040) == (val2 & 0x0040)) {
938 return Success;
939 }
940
941 if ((val1 & 0x0020) != 0x0020) {
942 status = Busy;
943 }
944
945 val1 = fl_getData();
946 val2 = fl_getData();
947
948 if ((val1 & 0x0040) == (val2 & 0x0040)) {
949 return Success;
950 } else if ((val1 & 0x0020) == 0x0020) {
951 return Error;
952 }
953 }
954
955 if (Timeout == 0x00) {

63

956 status = TimeOut;
957 }
958
959 /* Return the operation status */
960
961 }
962
963 return status;
964 }
965
966 void fl_Oszi(bool enable){
967 if (enable){
968 OSZI(1);
969 }else{
970 OSZI(0);
971 }
972 }

uart.h

1 #ifndef MY_LITTLE_CUSTOM_UART_H
2 #define MY_LITTLE_CUSTOM_UART_H
3
4 #include <stdio.h>
5
6 int uartPutchar(char c, FILE *stream);
7 int uartGetchar(FILE *stream);
8
9 FILE uartInit();

10
11 #endif

uart.c

1 #include "uart.h"
2 #include "defines.h"
3 #include <avr/io.h>
4 #include <stdio.h>
5 #include <stdbool.h>
6
7 //based on http://www.appelsiini.net/2011/simple-usart-with-avr-libc
8
9 FILE uartInit() {

10 USART_PORT.DIRSET = PIN3_bm; //Pin 3 (TXC0) as output.
11 USART_PORT.DIRCLR = PIN2_bm; //Pin 2 (RXC0) as input.
12
13 USART.CTRLC = (uint8_t) USART_CHSIZE_8BIT_gc | USART_PMODE_DISABLED_gc
14 | false; //8 Data bits, No Parity, 1 Stop bit
15
16 //Set baud rate

64

17 USART.BAUDCTRLA = (USART_BSEL & 0xff);
18 USART.BAUDCTRLB = (USART_BSCALE << USART_BSCALE_gp)
19 | ((USART_BSEL >> 8) & 0x0f);
20
21 //Set USART to asynchronous (UART)
22 //0x00 asynchronous
23 //USART.CTRLC = (USART.CTRLC & (~USART_CMODE_gm)) | 0x00;
24
25 //Enable both RX and TX
26 USART.CTRLB |= USART_RXEN_bm;
27 USART.CTRLB |= USART_TXEN_bm;
28
29 FILE stream = FDEV_SETUP_STREAM(uartPutchar, uartGetchar, _FDEV_SETUP_RW

↪→);
30
31 return stream;
32 }
33
34 int uartPutchar(char c, FILE *stream) {
35 loop_until_bit_is_set(USART.STATUS, USART_DREIF_bp);
36 USART.DATA = c;
37 if (c==’\n’)
38 uartPutchar(’\r’, NULL);
39 return 0;
40 }
41
42 int uartGetchar(FILE *stream) {
43 loop_until_bit_is_set(USART.STATUS, USART_RXCIF_bp);
44 char c = USART.DATA;
45 if (c == ’\r’)
46 c = ’\n’;
47
48 return c;
49 }

misc.h

1 #ifndef MY_LITTLE_CUSTOM_MISC_H
2 #define MY_LITTLE_CUSTOM_MISC_H
3
4 #include <stdint.h>
5 #include <stdbool.h>
6 #include <stdlib.h>
7
8
9 void setClockTo32MHz();

10 void in(char* buf, uint16_t len);
11 void out(char* buf);
12 void bitWrite(volatile unsigned char* reg, uint8_t pos, bool val);
13 uint32_t hexString2chars(char* buf);
14 void chars2hexString(char* buf, uint32_t len);
15

65

16 #endif

misc.c

1 #include "misc.h"
2 #include "defines.h"
3 #include <avr/io.h>
4 #include <util/delay.h>
5 #include <avr/interrupt.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <stdlib.h>

10
11 void setClockTo32MHz() {
12 unsigned char n, s;
13
14 // Save interrupts enabled/disabled state
15 s = SREG;
16 // Disable interrupts
17 cli();
18
19 // Internal 32/1 = 32MHz RC oscillator intern
20 // Enable the internal 32 MHz RC oscillator
21 OSC.CTRL |= OSC_RC32MEN_bm;
22
23 // System Clock prescaler A division factor: 1
24 // System Clock prescalers B & C division factors: B:1, C:1
25 // ClkPer4: 32000,000 kHz
26 // ClkPer2: 32000,000 kHz
27 // ClkPer: 32000,000 kHz
28 // ClkCPU: 32000,000 kHz
29 n = (CLK.PSCTRL & (~(CLK_PSADIV_gm | CLK_PSBCDIV1_bm | CLK_PSBCDIV0_bm))

↪→)
30 | CLK_PSADIV_1_gc | CLK_PSBCDIV_1_1_gc;
31 CCP = CCP_IOREG_gc;
32 CLK.PSCTRL = n;
33
34 // Enable the autocalibration of the internal 32 MHz RC oscillator
35 OSC.CTRL |= OSC_RC32MEN_bm;
36
37 // Wait for the internal 32 MHz RC oscillator to stabilize
38 while ((OSC.STATUS & OSC_RC32MRDY_bm) == 0)
39 ;
40
41 // Select the system clock source: 32 MHz Internal RC Osc.
42 n = (CLK.CTRL & (~CLK_SCLKSEL_gm)) | CLK_SCLKSEL_RC32M_gc;
43 CCP = CCP_IOREG_gc;
44 CLK.CTRL = n;
45
46 // Disable the unused oscillators: 2 MHz, internal 32 kHz, external

↪→ clock/crystal oscillator, PLL

66

47 OSC.CTRL &=
48 ~(OSC_RC2MEN_bm | OSC_RC32KEN_bm | OSC_XOSCEN_bm | OSC_PLLEN_bm);
49
50 // Peripheral Clock output: Disabled
51 PORTCFG.CLKEVOUT = (PORTCFG.CLKEVOUT & (~PORTCFG_CLKOUT_gm))
52 | PORTCFG_CLKOUT_OFF_gc;
53
54 // Restore interrupts enabled/disabled state
55 SREG = s;
56
57 }
58
59
60 void in(char* buf, uint16_t len) {
61 uint16_t i;
62 char c;
63
64 for (i = 0, c = getchar(); i < len && c != ’\n’ && c != EOF; i++, c =
65 getchar()) {
66 buf[i] = c;
67 putchar(c);
68 }
69
70 if (c == ’\n’)
71 putchar(c);
72
73 buf[i] = ’\0’;
74 }
75
76 void out(char* buf) {
77
78 for (uint16_t i = 0; buf[i] != ’\0’; i++) {
79 putchar(buf[i]);
80 }
81 }
82
83 void bitWrite(volatile unsigned char* reg, uint8_t pos, bool val) {
84 *reg = (*reg & ~(1<<pos)) | (val<<pos);
85 }
86
87 uint32_t hexString2chars(char* buf){
88 long tmpHexLong=0;
89 char* tmpHexBuf="0xAA";
90 size_t buflen = strlen(buf);
91 size_t i=0;
92
93 if (strncmp("0x", buf, 2)!=0){
94 return 0; //error
95 }
96
97 if(buflen%2!=0){
98 return 0;
99 }

67

100
101 buflen=(buflen-2)/2;
102
103 for (i=0; i<buflen; i++){
104 memcpy(tmpHexBuf+2, buf+2+i*2, 2);
105 tmpHexLong=strtol(tmpHexBuf, NULL, 0);
106 buf[i] = (char) tmpHexLong;
107 }
108 buf[i]=’\0’;
109
110 return i;
111
112 }
113
114 void chars2hexString(char* buf, uint32_t len){
115 uint32_t i = len-1;
116 char tmpHexBuf[3]="AA";
117
118 if (strncmp("0x", buf, 2)==0){ //already hex-string
119 return ;
120 }
121
122 buf[2+2*len]=’\0’;
123
124 for (i=0; i<len; i++){
125 sprintf(tmpHexBuf, "%02x", (unsigned char) buf[len-1-i]);
126 memcpy(buf+2+(len-1-i)*2, tmpHexBuf, 2);
127 }
128
129 memcpy(buf, "0x", 2);
130
131 return;
132 }

Acquisition

measure.py

1 import binascii
2 import datetime
3 import math
4 import os
5 import sys
6 import time
7
8 import csv
9 import matplotlib.pyplot as plt

10 import serial
11 import visa
12
13
14 MEASUREPATH = "./measurements";

68

15 if not os.path.exists(MEASUREPATH):
16 os.makedirs(MEASUREPATH)
17
18 def init():
19 ser = serial.Serial(’COM3’, 9600, timeout = 1)
20 oszi = ""
21 rm = visa.ResourceManager()
22 nmbrDevices = len(rm.list_resources())
23 if nmbrDevices == 0:
24 raise IOError("Could not find oszi!")
25 elif nmbrDevices == 1:
26 oszi = rm.get_instrument(rm.list_resources()[0])
27 else:
28 print("Found VISA devices:")
29 while not oszi:
30 for dev in rm.list_resources():
31 print("\t", dev)
32 select = input("Want to use this device? (y/n): ")
33 if select.lower() == "y":
34 oszi = rm.get_instrument(dev)
35 break
36 if not oszi:
37 print("No more devices found! Please choose one!")
38
39
40 oszi.timeout = 10
41 print("Oszi ID: " + oszi.ask("*IDN?"));
42
43 print("Running oszi self test...")
44 oszi.write("*TST?")
45 tmp = ""
46 while tmp == "":
47 tmp = oszi.read()
48
49 if int(tmp) != 0:
50 raise IOError("ERROR Oszi self test failed!")
51
52 print("Resetting oszi to default...")
53 oszi.write("*RST")
54
55 print("INIT COMPLETE!")
56
57 return ser, rm, oszi
58
59
60 def readSerial(ser):
61 global debug
62 output = []
63 errorCount = 0
64 while True:
65
66 line = bytes.decode(ser.readline(), errors = "ignore")
67

69

68 if debug:
69 print("\nDebug - received serial:\n\t" + line)
70
71 if (line == ""):
72 if (errorCount > 10):
73 output.append("ERROR! Received only empty lines!")
74 else:
75 errorCount += 1
76
77
78 if line.endswith("> "):
79 break
80
81 line = line.lstrip().rstrip()
82 output.append(line)
83
84 return "\n".join(output)
85
86
87 def sendSerial(ser, line):
88 global debug
89 ser.write(line + "\r")
90 if debug:
91 print("Debug - sent serial: " + line)
92
93 return
94
95
96 def cmdSerial(ser, line):
97 sendSerial(ser, line)
98 output = readSerial(ser)
99

100 return output
101
102 def setOszi(oszi, mVPerDiv = 50, nsPerDiv = 10000, mVTriggerLevel = 2000,

↪→ measurePoints = 50000):
103
104 oszi.write(":CHANnel1:DISPlay ON")
105 oszi.write(":CHANnel1:LABel \"Signal\"")
106 oszi.write(":CHANnel1:IMPedance FIFTy")
107 oszi.write(":CHANnel1:SCALe " + str(mVPerDiv) + "mV");
108 oszi.write(":CHANnel2:DISPlay ON")
109 oszi.write(":CHANnel2:LABel \"Trigger\"")
110 oszi.write(":CHANnel2:IMPedance ONEMeg")
111 oszi.write(":CHANnel2:SCALe 2V")
112 oszi.write(":TIMebase:REFerence LEFT ")
113 oszi.write(":TIMebase:SCALe " + str(nsPerDiv) + "E-9")
114 oszi.write(":TRIGger:EDGE:SLOPe Positive")
115 oszi.write(":TRIGger:EDGE:SOURce CHANnel2")
116 oszi.write(":TRIGger:EDGE:LEVel " + str(mVTriggerLevel) + "E-3")
117
118 oszi.write(":WAVeform:FORMat ASCii")
119 oszi.values_format = ascii

70

120 oszi.write(":WAVeform:SOURce CHAN1")
121 oszi.write(":WAVeform:POINTS " + str(measurePoints))
122
123 return
124
125 def armOszi(oszi):
126
127 oszi.write(":SINGle")
128 time.sleep(1)
129
130 return
131
132 def fetchData(measurementID, oszi, fig):
133
134 times = []
135 vals = []
136
137 print("Reading oszi data")
138
139 line = "init"
140 oszi.write(":WAVeform:DATA?")
141 while (line[-1:] != "\n" and line != ""):
142 print(’.’, end = "", flush = True)
143 line = oszi.read_raw()
144 line = line.decode(’ascii’)
145 vals.append(line)
146
147 print("")
148
149 if (line == ""):
150 print("ERROR: Received empty line!")
151
152 vals = "".join(vals)[:-1]
153
154 # strip header information
155 if vals[0] == "#":
156 l = vals[1]
157 vals = vals[2 + int(l):]
158
159 vals = vals.split(",")
160
161
162 with open (MEASUREPATH + "/" + measurementID + "_stripped.txt", "w",

↪→ newline = "") as f:
163 writer = csv.writer(f, "excel", delimiter = ";")
164 data = []
165 data.append([str(v).replace(".", ",") for v in vals])
166 writer.writerows(data)
167
168
169 pamble = oszi.ask(":WAVeform:PREamble?").split(",")
170 fmt, typ, points, count, xinc, xorig, xref, yinc, yorig, yref = [float(x

↪→) for x in pamble]

71

171 points = int(points)
172
173 f = open(MEASUREPATH + "/" + measurementID + "_preamble.txt", "w")
174 for x in pamble:
175 _ = f.write(str(x) + "\n")
176
177 f.close()
178
179
180 for i in range(len(vals)):
181 vals[i] = (float(vals[i]))
182 time = (i - xref) * xinc + xorig;
183 times.append(time)
184
185 with open (MEASUREPATH + "/" + measurementID + ".csv", "w", newline = ""

↪→) as f:
186 writer = csv.writer(f, "excel", delimiter = ";")
187 writer.writerow(["val", "time"])
188 data = []
189 data.append([str(f).replace(".", ",") for f in vals])
190 data.append([str(f).replace(".", ",") for f in times])
191 writer.writerows(zip(*data))
192
193 # Save plot as image file
194 tmp = plt.figure()
195 plt.plot(times, vals)
196 tmp.savefig(MEASUREPATH + "/" + measurementID + ".png") # ".pdf"
197 plt.close(tmp)
198
199 plt.figure(fig.number)
200
201 plt.plot(times, vals)
202
203 if (len(vals) != points):
204 print("ERROR! INCORRECT AMOUNT OF POINTS RETURNED!");
205
206 print(measurementID + " DONE!")
207
208
209 return
210
211 def flashInit(ser, flashType):
212 global debug
213
214 cmdSerial(ser, "t " + flashType)
215 output = cmdSerial(ser, "test")
216
217 if "TEST FAILED!" in output:
218 if debug:
219 print(output)
220 print(">>>> ERROR RUNNING INIT TEST!")
221
222 return

72

223
224 print("System initialized successfully!")
225
226 return
227
228 def flashReadWrite(ser, oszi, chip, action, string, nrMeasurements,

↪→ mVPerDiv = 50, nsPerDiv = 10000, mVTriggerLevel = 2000,
↪→ measurePoints = 50000, showPlots = True):

229 print("Clearing chip...")
230 output = cmdSerial(ser, "d")
231 if "Error" in output:
232 print("ERROR deleting chip!")
233 return
234
235 print("Testing write...")
236 output = cmdSerial(ser, "w 0 " + string)
237 if "Error" in output:
238 print("ERROR writing test data!")
239 return
240
241
242 stringlen = len(string)
243 if string.startswith("0x"):
244 stringlen = int((stringlen - 2) / 2)
245 expect = "data: " + string.lower()
246 else:
247 expect = "data: 0x" + binascii.hexlify(string.encode()).decode()
248
249 output = cmdSerial(ser, "r 0 " + str(stringlen))
250 if not output.endswith(expect):
251 got = output[output.rfind("data: "):]
252 print("ERROR checking test data!\nexpected: " + expect + "\ngot:" +

↪→ got)
253 return
254
255
256 errorCount = 0
257 if len(string) > 10:
258 measurementID = action + " ’" + string[:10] + "...’ " + str(stringlen)

↪→ + " " + datetime.datetime.now().strftime("%Y.%m.%d-%H_%M_%S")
259 else:
260 measurementID = action + " ’" + string + "’ " + str(stringlen) + " " +

↪→ datetime.datetime.now().strftime("%Y.%m.%d-%H_%M_%S")
261
262 logEntry = (
263 measurementID +
264 "\t\t" + datetime.datetime.now().strftime("%Y.%m.%d-%H_%M_%S") +
265 "\t\t" + chip +
266 "\t\t" + action)
267
268 if string.startswith("0x"): # hex-string comes before plain text
269 logEntry += (
270 "\t\t" + string +

73

271 "\t\t")
272 logEntry = logEntry.encode() + binascii.unhexlify(string[2:])
273 else:
274 logEntry = (
275 logEntry.encode() +
276 b"\t\t0x" + binascii.hexlify(string.encode()) +
277 b"\t\t" + string.encode())
278
279 with open(MEASUREPATH + "/measure.log", "ab") as log:
280 log.write(logEntry + b"\n")
281
282 # setup Oszi
283 setOszi(oszi, mVPerDiv, nsPerDiv, mVTriggerLevel, measurePoints)
284
285 time.sleep(3)
286 print("Starting measurement...")
287 figWidth = math.floor(math.sqrt(nrMeasurements))
288 if (figWidth * figWidth % nrMeasurements == 0):
289 figHeight = figWidth
290 else:
291 figHeight = figWidth + 1
292
293 if figWidth * figHeight < nrMeasurements:
294 figWidth += 1
295
296 fig = plt.figure()
297
298 for i in range(nrMeasurements):
299
300 # load oszi
301 armOszi(oszi)
302
303 if action == "r":
304 output = cmdSerial(ser, "r 0 " + str(stringlen))
305 if not output.endswith(expect):
306 errorCount += 1
307 got = output[output.rfind("data: "):]
308 print("ERROR reading data on #" + str(i) + "\nexpected: " + expect

↪→ + "\ngot:" + got)
309 if errorCount > 2:
310 print("ERROR more than 3 invalid reads, aborting...")
311 return
312
313 if action == "w":
314 addr = (i + 1) * stringlen
315 output = cmdSerial(ser, "w " + str(addr) + " " + string)
316 if "Error" in output:
317 errorCount += 1
318 print("ERROR writing data on #" + str(i) + ": " + output)
319 if errorCount > 2:
320 print("ERROR more than 3 invalid writes, aborting...")
321 return
322

74

323 # read & save data from Oszi
324 fig.add_subplot(figHeight, figWidth, i + 1)
325 fetchData(measurementID + "#" + str(i), oszi, fig)
326
327 print("\nMeasurements completed successfully!")
328 if showPlots:
329 plt.show()
330
331 return
332
333 def printHeader():
334 print("##")
335 print("# Side Channel Analysis of Flash Memory #")
336 print("# Data Grabber version 0.1 #")
337 print("# Markus Hannes Fischer 1029057 #")
338 print("##")
339
340 return
341
342
343 def printHelp():
344 print("Commands:")
345 print("\ti <nand_s | nand_h | nor> - initialize flash controller to

↪→ Samsung nand, Hynix nand or nor chip")
346 print("\tw <# of measurements> <string to be written>")
347 print("\tr <# of measurements> <string to be written>")
348 print("\td - toggles debug mode")
349 print("\to [<mVPerDiv> <nsPerDiv> <mVTriggerLevel> <measurePoints>] -

↪→ sets values for oszi\n\t\tto default or given values")
350 print("\te - exits the program")
351 print("\teverything else prints this command list")
352
353 return
354
355
356 #################### MAIN #######################
357 def main():
358 global debug
359
360 debug = True
361
362
363 printHeader()
364
365 ser, rm, oszi = init()
366
367 if len(sys.argv) > 1: # scripted mode
368 debug = False
369 if len(sys.argv) > 2:
370 MEASUREPATH = str(sys.argv[2])
371
372 with open(str(sys.argv[1])) as fin:
373 lines = fin.read().splitlines()

75

374
375 linecount = 0
376 for l in lines:
377 linecount += 1
378 if l.startswith(";") or not l:
379 continue
380
381 elif l.startswith("config:"):
382 chip = str(l[7:].split(";")[0])
383 mVPerDiv, nsPerDiv, mVTriggerLevel, measurePoints = [int(x) for x

↪→ in l[7:].split(";")[1:]]
384 if chip not in ["nand_s", "nand_h", "nor"]:
385 print("Invalid chip config found in config on line " + str(

↪→ linecount) + "!")
386
387 flashInit(ser, chip);
388 setOszi(oszi, mVPerDiv, nsPerDiv, mVTriggerLevel, measurePoints)
389 else:
390 tmp = l.split(" ")
391
392 action = tmp[0]
393 if action not in ["r", "w"]:
394 print("Invalid operation found on line " + str(linecount) + "!")
395 continue
396
397 count = tmp[1]
398 if not count.isdigit():
399 print("Invalid number of measurements found on line " + str(

↪→ linecount) + "!")
400 continue
401
402 count = int(count)
403 string = " ".join(tmp[2:])
404
405 flashReadWrite(ser, oszi, chip, action, string, count, mVPerDiv,

↪→ nsPerDiv, mVTriggerLevel, measurePoints, False)
406
407
408 else: # interactive mode
409
410 while True:
411 if debug:
412 print("DEBUG ON", end = " ")
413
414 line = input("> ")
415
416 cmd = line.split(" ")
417
418 if debug:
419 print("Debug - you entered: ", cmd)
420
421 if cmd[0] == "i":
422 if len(cmd) != 2 or cmd[1] not in ["nand_s", "nand_h", "nor"] :

76

423 printHelp()
424 continue
425
426 chip = cmd[1]
427 flashInit(ser, chip);
428
429
430 elif cmd[0] == "r" or cmd[0] == "w":
431 if (len(cmd) < 3):
432 printHelp()
433 continue
434 action = cmd[0]
435 count = cmd[1]
436 if not count.isdigit():
437 printHelp()
438 continue
439
440
441 string = " ".join(cmd[2:])
442 count = int(count)
443 flashReadWrite(ser, oszi, chip, action, string, count)
444
445 elif cmd[0] == "e":
446 print ("Exiting...")
447 break
448
449 elif cmd[0] == "d":
450 debug = not debug
451 if debug:
452 print("Debug is now ON!")
453 else:
454 print("Debug is now OFF!")
455
456 elif cmd[0] == "o":
457 if len(cmd) != 5 and len(cmd) != 1:
458 printHelp()
459 continue
460 if len(cmd) == 1:
461 setOszi(oszi)
462 else:
463 try:
464 mVPerDiv, nsPerDiv, mVTriggerLevel, measurePoints = [float(x)

↪→ for x in cmd[1:]]
465 except:
466 print("Could not convert all values to floats!")
467 continue
468
469 setOszi(oszi, mVPerDiv, nsPerDiv, mVTriggerLevel, measurePoints)
470 print("Oszi set!")
471
472 else:
473 printHelp()
474

77

475 oszi.close()
476 return
477
478
479 if __name__ == "__main__":
480 main()

batch_measure.txt

; test batch measurement file
; ";" is a comment line and ignored
; empty lines are ignored
; config lines start with "config:" e.g.
; config:chip;mVPerDiv;nsPerDiv;mVTriggerLevel;measurePoints
; measurements are instructed as <w|r> <# measurements> <string used for

↪→ measurement> e.g.
; w 10 measure this
; r 50 this will take some time

config:nand_s;50;10000;2000;50000

; test length for normal (half of the bits set on different positions)
↪→ bytes

w 10 0x5B
w 10 0x5B5B5B
w 10 0x5B5B5B5B5B
w 10 0x5B
w 10 0x5B5

↪→ B5B
↪→ 5B

; combine bit wandering lower nibble & checking hemming weight
w 10 0x00000000000000000000
w 10 0x01010101010101010101
w 10 0x02020202020202020202
w 10 0x03030303030303030303
w 10 0x04040404040404040404
w 10 0x05050505050505050505
w 10 0x06060606060606060606
w 10 0x07070707070707070707
w 10 0x08080808080808080808
w 10 0x09090909090909090909
w 10 0x0a0a0a0a0a0a0a0a0a0a
w 10 0x0b0b0b0b0b0b0b0b0b0b
w 10 0x0c0c0c0c0c0c0c0c0c0c
w 10 0x0d0d0d0d0d0d0d0d0d0d
w 10 0x0e0e0e0e0e0e0e0e0e0e
w 10 0x0f0f0f0f0f0f0f0f0f0f

; bit wandering upper nibble
w 10 0x10101010101010101010
w 10 0x20202020202020202020

78

w 10 0x40404040404040404040
w 10 0x80808080808080808080
w 10 0xf0f0f0f0f0f0f0f0f0f0
w 10 0xffffffffffffffffffff

; effect of different byte location
w 10 0x5B5B5B5B5B5B5B5B5B5B
w 10 0x005B5B5B5B5B5B5B5B5B
w 10 0x5B005B5B5B5B5B5B5B5B
w 10 0x5B5B005B5B5B5B5B5B5B
w 10 0x5B5B5B5B5B5B5B5B5B00

; effect of number of successive 00 bytes
w 10 0x00ffffffffffffffffff
w 10 0x0000ffffffffffffffff
w 10 0x000000ffffffffffffff
w 10 0x0000000000000000ffff

;check if ff bytes are just skipped
w 10 0x00ff00ff00ff00ff00ff
w 10 0x0000000000

Preprocessing

process.py

1 import csv
2 import datetime
3 import locale
4 import math
5 import os
6 import re
7 import time
8
9 from scipy.signal import argrelextrema

10 import matplotlib.pyplot as plt
11 import numpy as np
12
13
14
15 MEASUREPATH = "./measurements"
16
17 def readData(measurement, files):
18
19 vals = []
20 times = []
21
22 for file in files:
23 with open (MEASUREPATH + "/" + file, "r", newline = "") as f:
24 reader = csv.reader(f, "excel", delimiter = ";")
25 header = next(reader)
26 if (header[0] != "val" or header[1] != "time"):

79

27 raise Exception("csv heading is not in format <val; time>!")
28
29 v = []
30 t = []
31
32 for row in reader:
33 v.append(float(row[0].replace(",", ".")))
34 t.append(float(row[1].replace(",", ".")))
35
36 vals.append(v)
37 times.append(t)
38
39 return (measurement, times, vals)
40
41
42 def filterData(times, vals):
43 offsets = []
44
45 npTimes = np.array(times)
46 npVals = np.array(vals)
47
48 meanVals = npVals[0]
49 meanTimes = npTimes[0]
50 thresh = np.median([np.max(vals[i]) for i in range(len(vals))]) / 4
51
52 for i in range(len(npVals)):
53 a = 0
54 try:
55 while npVals[i][a] < thresh:
56 a += 1
57 except: # threshold is never reached -> faulty measurement
58 print("ERROR: Could not find threshold for measurement #" + str(i) +

↪→ "!\nDiscarding measurement")
59 a = -1
60 continue
61 finally:
62 offsets.append(a)
63
64 print("offset for #" + str(i) + ": " + str(a))
65
66 meanVals[a:] = [(meanVals[b] + npVals[i][b]) / 2 for b in range(a, len

↪→ (npVals[0]))]
67 meanTimes = [(meanTimes[b] + npTimes[i][b]) / 2 for b in range(len(

↪→ npTimes[0]))]
68
69 # truncate means
70 trunc = min(offsets)
71 meanVals = meanVals[trunc:]
72 meanTimes = meanTimes[trunc:]
73
74 return (meanTimes, meanVals, offsets)
75
76

80

77
78 def plotData(times, vals, meanTimes, meanVals, offsets):
79
80 fig1 = plt.figure()
81 fig2 = plt.figure()
82
83 for i in range(len(vals)):
84 if (offsets[i] < 0): # skip invalid measurements
85 continue
86
87 plt.figure(fig1.number)
88
89 fig1.add_subplot(5, 2, i)
90 plt.plot(times[i], vals[i])
91
92 plt.figure(fig2.number)
93 fig2.add_subplot(2, 1, 1)
94 plt.plot(times[i][offsets[i]:], vals[i][offsets[i]:])
95
96
97 plt.figure(fig2.number)
98 fig2.add_subplot(2, 1, 2)
99 plt.plot(meanTimes, meanVals)

100
101 plt.show()
102
103 return
104
105 def writeData(measurement, times, vals):
106 with open (MEASUREPATH + "/" + measurement + " mean.csv", "w", newline =

↪→ "") as f:
107 writer = csv.writer(f, "excel", delimiter = ";")
108 writer.writerow(["val", "time"])
109 data = []
110 data.append([str(f).replace(".", ",") for f in vals])
111 data.append([str(f).replace(".", ",") for f in times])
112 writer.writerows(zip(*data))
113
114 tmp = plt.figure()
115 plt.plot(times, vals)
116 plt.savefig(MEASUREPATH + "/" + measurement + " mean" + ".png") # ".

↪→ pdf"
117 plt.close(tmp)
118
119 return
120
121 def main():
122 vals = []
123 times = []
124 meanVals = []
125 meanTimes = []
126 measurement = ""
127 offsets = []

81

128 files = []
129
130
131 for (dirpath, dirnames, filenames) in os.walk(MEASUREPATH):
132 files.extend(filenames)
133
134 measurements = [s[:-6] for s in files if re.search(".*#0\\.csv", s)]
135 measurements = [f for f in measurements if f+" mean.csv" not in files]

↪→ #remove already averaged measurements
136 measurements = [(m, [f for f in files if f.startswith(m + "#") and f.

↪→ endswith(".csv")]) for m in measurements]
137
138 for i in range(len(measurements)):
139 print("processing " + measurements[i][0] + "\t#measurements: " + str(

↪→ len(measurements[i][1])))
140
141 measurement = measurements[i][0]
142 files = measurements[i][1]
143
144 (measurement, times, vals) = readData(measurement, files)
145 (meanTimes, meanVals, offsets) = filterData(times, vals)
146 writeData(measurement, meanTimes, meanVals)
147
148 if len(measurements) == 1:
149 plotData(times, vals, meanTimes, meanVals, offsets)
150
151
152 return
153
154 if __name__ == "__main__":
155 main()

Analysis

analysis.py

1 import csv
2 import sys
3 import matplotlib.pyplot as plt
4
5 def readData(file):
6
7 with open (file, "r", newline = "") as f:
8 reader = csv.reader(f, "excel", delimiter = ";")
9 header = next(reader)

10 if (header[0] != "val" or header[1] != "time"):
11 raise Exception("csv heading is not in format <val; time>!")
12
13 v = []
14 t = []
15
16 for row in reader:

82

17 v.append(float(row[0].replace(",", ".")))
18 t.append(float(row[1].replace(",", ".")))
19
20 return [t,v]
21
22
23
24 def writeData(filename, times, vals):
25 with open (filename + ".csv", "w", newline = "") as f:
26 writer = csv.writer(f, "excel", delimiter = ";")
27 writer.writerow(["val", "time"])
28 data = []
29 data.append([str(f).replace(".", ",") for f in vals])
30 data.append([str(f).replace(".", ",") for f in times])
31 writer.writerows(zip(*data))
32
33 tmp = plt.figure()
34 plt.plot(times, vals)
35 plt.savefig(filename + ".png") # ".pdf"
36 plt.close(tmp)
37
38 return
39
40
41 def diff(t1, t2, showPlot=False):
42 data=[t1,t2]
43 lens = [len(tmp[0]) for tmp in data]
44 lensmin=min(lens)
45 for tmp in data:
46 tmp[0]=tmp[0][:lensmin]
47 tmp[1]=tmp[1][:lensmin]
48
49 tmp=[]
50 for i in range(len(t1[1])):
51 tmp.append(t1[1][i]-t2[1][i])
52
53 diff=[t2[0],tmp]
54
55 if showPlot:
56 plt.subplot(211)
57 plt.plot(*t1, color="blue", label="0x00")
58 plt.plot(*t2, color="red", label="0xff")
59
60 plt.subplot(212)
61 plt.plot(*diff, color="black", label="diff")
62
63 plt.show()
64
65 return diff
66
67
68
69 def main():

83

70 if len(sys.argv) != 4:
71 print("Usage: python3.4 "+ sys.argv[0] + " <infile 1> <infile 2> <

↪→ outfile>")
72 return
73
74 x = readData(sys.argv[1])
75 y = readData(sys.argv[2])
76
77 z = diff(x,y, True)
78
79 out = sys.argv[3]
80 if out.endswith(".png"):
81 out=out[:-4]
82
83 writeData(out, *z)
84
85 return
86
87
88 if __name__ == "__main__":
89 main()

84

Bibliography

[1] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash Memories. Springer
Netherlands, 2010, isbn: 9789048194315. [Online]. Available: https://books.
google.at/books?id=vaq11vKwo%5C_kC.

[2] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories. Springer US,
1999, isbn: 9780792384878. [Online]. Available: https://books.google.at/
books?id=WES87yafag8C.

[3] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J. Quisquater, „On a new way
to read data from memory“, in Security in Storage Workshop, 2002. Proceedings.
First International IEEE, IEEE, 2002, pp. 65–69.

[4] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, „Introduction to differential power
analysis“, English, Journal of Cryptographic Engineering, vol. 1, no. 1, pp. 5–27,
2011, issn: 2190-8508. doi: 10.1007/s13389-011-0006-y. [Online]. Available:
http://dx.doi.org/10.1007/s13389-011-0006-y.

[5] E. Brier, C. Clavier, and F. Olivier, „Correlation power analysis with a leakage
model“, English, in Cryptographic Hardware and Embedded Systems - CHES 2004,
ser. Lecture Notes in Computer Science, M. Joye and J.-J. Quisquater, Eds.,
vol. 3156, Springer Berlin Heidelberg, 2004, pp. 16–29, isbn: 978-3-540-22666-6.
doi: 10.1007/978-3-540-28632-5_2. [Online]. Available: http://dx.doi.
org/10.1007/978-3-540-28632-5_2.

[6] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, „Flash memory cells-an overview“,
Proceedings of the IEEE, vol. 85, no. 8, pp. 1248–1271, Aug. 1997, issn: 0018-9219.
doi: 10.1109/5.622505.

[7] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, „Introduction to flash mem-
ory“, Proceedings Of The Ieee, 2003 Apr, Vol.91(4), pp.489-502, issn: 0018-9219.

[8] S. Boboila and P. Desnoyers, „Write endurance in flash drives: measurements and
analysis“, in FAST, vol. 10, 2010, pp. 9–9.

[9] P. Desnoyers, „Empirical evaluation of nand flash memory performance“, ACM
SIGOPS Operating Systems Review, vol. 44, no. 1, pp. 50–54, 2010.

[10] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, „Leveraging value
locality in optimizing nand flash-based ssds“, in FAST, 2011, pp. 91–103.

85

https://books.google.at/books?id=vaq11vKwo%5C_kC
https://books.google.at/books?id=vaq11vKwo%5C_kC
https://books.google.at/books?id=WES87yafag8C
https://books.google.at/books?id=WES87yafag8C
http://dx.doi.org/10.1007/s13389-011-0006-y
http://dx.doi.org/10.1007/s13389-011-0006-y
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1109/5.622505

[11] F. Chen, T. Luo, and X. Zhang, „Caftl: a content-aware flash translation layer
enhancing the lifespan of flash memory based solid state drives“, in FAST, vol. 11,
2011.

[12] M. Murugan and D. Du, „Rejuvenator: a static wear leveling algorithm for nand
flash memory with minimized overhead“, in Mass Storage Systems and Technologies
(MSST), 2011 IEEE 27th Symposium on, May 2011, pp. 1–12. doi: 10.1109/
MSST.2011.5937225.

[13] A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Kim, J. D. Fowler, J. K. Wassei, Y.
Park, Y. Wang, J. Zou, R. B. Kaner, B. H. Weiller, and K. L. Wang, „Graphene flash
memory“, ACS Nano, vol. 5, no. 10, pp. 7812–7817, 2011, PMID: 21854056. doi:
10.1021/nn201809k. eprint: http://dx.doi.org/10.1021/nn201809k.
[Online]. Available: http://dx.doi.org/10.1021/nn201809k.

[14] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, „Developments in nanocrystal
memory“, Materials Today, vol. 14, no. 12, pp. 608–615, 2011, issn: 1369-7021.
doi: http://dx.doi.org/10.1016/S1369-7021(11)70302-9. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S1369702111703029.

[15] K.-J. Baeg, D. Khim, J. Kim, B.-D. Yang, M. Kang, S.-W. Jung, I.-K. You, D.-Y.
Kim, and Y.-Y. Noh, „High-performance top-gated organic field-effect transistor
memory using electrets for monolithic printed flexible nand flash memory“, Advanced
Functional Materials, vol. 22, no. 14, pp. 2915–2926, 2012.

[16] L. M. Grupp, J. D. Davis, and S. Swanson, „The bleak future of nand flash memory“,
in Proceedings of the 10th USENIX Conference on File and Storage Technologies,
ser. FAST’12, San Jose, CA: USENIX Association, 2012, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2208461.2208463.

[17] M. Breeuwsma, M. De Jongh, C. Klaver, R. Van Der Knijff, and M. Roeloffs,
„Forensic data recovery from flash memory“, Small Scale Digital Device Forensics
Journal, vol. 1, no. 1, pp. 1–17, 2007.

[18] S. Willassen, „Forensic analysis of mobile phone internal memory“, in Advances in
Digital Forensics, Springer, 2005, pp. 191–204.

[19] S. Skorobogatov, „Data remanence in flash memory devices“, in Cryptographic
Hardware and Embedded Systems–CHES 2005, Springer, 2005, pp. 339–353.

[20] T. Roche, V. Lomné, and K. Khalfallah, „Combined fault and side-channel attack
on protected implementations of aes“, in Smart Card Research and Advanced
Applications, Springer, 2011, pp. 65–83.

[21] A. Moradi, M. Kasper, and C. Paar, „Black-box side-channel attacks highlight the
importance of countermeasures“, in Topics in Cryptology–CT-RSA 2012, Springer,
2012, pp. 1–18.

86

http://dx.doi.org/10.1109/MSST.2011.5937225
http://dx.doi.org/10.1109/MSST.2011.5937225
http://dx.doi.org/10.1021/nn201809k
http://dx.doi.org/10.1021/nn201809k
http://dx.doi.org/10.1021/nn201809k
http://dx.doi.org/http://dx.doi.org/10.1016/S1369-7021(11)70302-9
http://www.sciencedirect.com/science/article/pii/S1369702111703029
http://www.sciencedirect.com/science/article/pii/S1369702111703029
http://dl.acm.org/citation.cfm?id=2208461.2208463

[22] T. Güneysu and A. Moradi, „Generic side-channel countermeasures for reconfig-
urable devices“, in Cryptographic Hardware and Embedded Systems–CHES 2011,
Springer, 2011, pp. 33–48.

[23] T. Kasper, D. Oswald, and C. Paar, „Side-channel analysis of cryptographic rfids
with analog demodulation“, in RFID. Security and Privacy, Springer, 2012, pp. 61–
77.

[24] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder, „Acoustic side-
channel attacks on printers“, in USENIX Security Symposium, 2010, pp. 307–
322.

[25] S. Skorobogatov, „Optical fault masking attacks“, in Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2010 Workshop on, IEEE, 2010, pp. 23–29.

[26] P. Olivier, J. Boukhobza, and E. Senn, „Toward a unified performance and power
consumption nand flash memory model of embedded and solid state secondary
storage systems“, arXiv preprint arXiv:1307.1217, 2013.

[27] V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M. R. Stan, and S. Swanson,
„Modeling power consumption of nand flash memories using flashpower“, Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 32,
no. 7, pp. 1031–1044, 2013.

87

Acronyms

µC Micro Controller. 1, 10, 17, 19, 20, 29, 39

CG Control Gate. 5

CLI Command Line Interface. 36

CPA Correlation Power Analysis. 4, 5

CSV Comma Separated Value. 27, 28, 31

DPA Differential Power Analysis. 4, 13, 16, 28, 33, 39

EMR Electromagnetic Radiation. 3, 14

FG Floating Gate. 5, 6, 9

FMC Flash Memory Chip. ix, 1–3, 7, 9–11, 13, 14, 19–21, 26, 34, 37, 39, 40

I/O Input/Output. 1, 3, 7, 14, 17, 19, 21, 23–25, 39

MC Memory Controller. ix, 1, 2, 9, 10, 39, 40

MLC Multi Level Cell. 7, 8

MOS Metal Oxide Semiconductor. 5

OS Operating System. 2, 19

PCB Printed Circuit Board. 19

SC Side Channel. 2, 3, 5, 10, 11, 13, 14, 20, 23, 26, 31, 32, 36, 37, 39

SCA Side Channel Attack. ix, 10, 11, 13, 14, 37, 39

SLC Single Level Cell. 7, 8

89

SPA Simple Power Analysis. 3, 13

SSD Solid State Disk. ix, 1, 40

UI User Interface. 15, 19, 24, 36, 37, 39

VISA Virtual Instrument Software Architecture. 23, 25

90

	Kurzfassung
	Abstract
	Contents
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Aim of the Work

	Technical Background
	Side Channels
	General Idea
	Simple Power Analysis
	Differential Power Analysis

	Flash Memory
	General Working Principles
	NAND Memory
	NOR Memory
	Single and Multi Level Cells

	State of the Art
	Flash Memory
	Side Channel Attacks
	Side Channel Attacks on Flash Memory

	Methodology
	Design
	Driver
	Measurement
	Acquisition
	Preprocessing
	Analysis

	Implementation
	Design
	Target
	Driver
	Micro Controller
	Flash Memory Adapters
	Software
	Design
	Interface
	Memory
	Triggering

	Measurement
	Acquisition
	Interface
	Driver Communication
	Oscilloscope Communication
	Acquisition Process

	Preprocessing
	Interface
	Preprocessing Process

	Analysis

	Results and Validation
	Setup
	Demonstration
	Data Analysis
	Discussion
	Automation and User Interface
	Measurement
	Acquisition
	Analysis

	Summary
	Appendix
	Source Code
	Controller
	main.c
	flash.h
	flash.c
	uart.h
	uart.c
	misc.h
	misc.c

	Acquisition
	measure.py
	batch_measure.txt

	Preprocessing
	process.py

	Analysis
	analysis.py

	Bibliography
	Acronyms

