
Seamless Integration of BACnet
Devices into oBIX

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software and Information Engineering

eingereicht von

Robert Horvath
Matrikelnummer 1025519

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Dipl.-Ing. Markus Jung
Mitwirkung: Ao. Univ. Prof. Dr. Wolfgang Kastner

Wien, 04.08.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Seamless Integration of BACnet
Devices into oBIX

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software and Information Engineering

by

Robert Horvath
Registration Number 1025519

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Dipl.-Ing. Markus Jung
Assistance: Ao. Univ. Prof. Dr. Wolfgang Kastner

Vienna, 04.08.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Robert Horvath
Hauptstrasse 200, 7212 Forchtenstein

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

The Internet of Things (IoT) is the idea of a world with billions of interconnected devices. Build-
ings can be made smarter and more efficient by sharing information intelligently. Therefore it is
desirable to integrate already widely deployed Building Automation Systems, such as BACnet,
with the IoT.

Building Automation Systems with various communication technologies are already widely
deployed. Several approaches exist to establish connectivity between them and the Internet of
Things, such as gateway systems or field-to-IP routers.

To fulfill the vision of the Internet of Things, the connected devices need to be able to inter-
operate with one another, but the various Building Automation Systems usually communicate in
their own custom protocols.

Several potential solutions to the interoperability problem have been proposed. One such
approach is oBIX, a standard for building exchange. It defines a platform-independent model
for device information and a standardized REST Web service interface for communication.

In this thesis, a generic mapping for BACnet devices to oBIX objects is described, as well as
a way to automatically discover BACnet devices. This eases the provisioning and commissioning
of BACnet devices for oBIX servers and thereby allowing them to take part in the Internet of
Things.

As a proof of concept, the described techniques have been implemented in an open source
gateway system called IoTSyS, resulting in less effort required to integrate BACnet devices in
the IoT through the gateway.

iii

Kurzfassung

Das Internet der Dinge (Internet of Things, IoT) verfolgt die Idee einer Welt mit Milliarden
von miteinander verbundenen Geräten. Gebäude können durch Teilen von Informationen effi-
zienter und intelligenter gemacht werden, daher ist es wünschenswert, bereits weit verbreitete
Gebäudeautomationssysteme, wie BACnet, in das IoT zu integrieren.

Gebäudeautomationssysteme mit verschiedenen Kommunikationstechnologien sind bereits
weit verbreitet. Verschiedene Ansätze zur Herstellung von Konnektivität zwischen ihnen und
dem IoT existieren bereits, wie Gateway-Systeme oder Field-to-IP-Routers.

Um die Vision des IoT zu erfüllen, müssen die verbunden Geräte auch miteinander interagie-
ren können, jedoch verwenden verschiedene Gebäuteautomationssysteme üblicherweise eigene
Protokolle zur Kommunikation.

Mehrere Lösungsansätze für das Interaktionsproblem wurden vorgestellt. Ein Ansatz ist
oBIX, ein Standard zum Gebäudeinformationsaustausch. oBIX definiert ein platformunabhän-
giges Modell für Gerätinformationen und ein standardisiertes REST Web Service Interface zur
Kommunikation.

In dieser Arbeit wird eine Methode zur generischen Abbildung von BACnet Geräten auf
oBIX vorgestellt, sowie eine Methode zur automatischen Entdeckung von BACnet Geräten. Dies
vereinfacht die Inbetriebnahme von BACnet Geräten in oBIX Servern und erlaubt es ihnen am
IoT teilzunehmen.

Die beschriebenen Techniken wurden in einem Open Source System namens IoTSyS imple-
mentiert und evaluiert. Der benötigte Aufwand zum Einbinden von BACnet Geräten in das IoT
durch das Gateway-System konnte dadurch reduziert werden.

v

Contents

1 Introduction 1
1.1 Building Automation System Trends . 1
1.2 The Internet of Things . 2
1.3 IoT Gateways . 2
1.4 Goals, Methodology and Structure of the Thesis 3

2 State of the Art 5
2.1 Internet of Things . 5
2.2 CoAP . 6
2.3 oBIX . 7
2.4 BACnet . 11

3 Generic oBIX mapping for BACnet devices 15
3.1 Mapping of Present_Value . 15
3.2 Mapping the object identifier to a URI . 16
3.3 Mapping read and write requests . 17
3.4 Check if BACnet object is writable . 19
3.5 Additional properties . 19
3.6 Completed oBIX object . 22

4 Auto-discovery of BACnet devices 23
4.1 BACnet’s Remote Device Management Services 23
4.2 BACnet/IP broadcast management devices . 24
4.3 Automatic configuration for oBIX servers . 25

5 Case Study 27
5.1 The IoTSyS Gateway . 27
5.2 Architecture of IoTSyS . 28
5.3 Implementation in IoTSyS . 30
5.4 Evaluation . 35

6 Conclusion 39

Bibliography 41

vii

CHAPTER 1
Introduction

1.1 Building Automation System Trends

The field of Building Automation Systems (BAS) is currently experiencing major changes. Ac-
cording to research [4], the market is expected to grow from $72 billion in 2012 to $146 billion
by 2021.

Currently, about 23% of global electrical energy consumption is due to commercial buildings
[4]. HVAC (Heating, Ventilation, Air Conditioning) systems are a particularly significant factor
in building energy consumption, responsible for about 50% of building energy consumption,
and 20% of total consumption in the US [11]. Building stock is growing rapidly, so aggressive
energy goals have been set.

BAS are part of current trends transforming the building industry. They provide a way to
make buildings more energy efficient. Four general approaches for reducing energy consumption
in buildings have been identified [3]: Energy awareness, elimination of stand-by consumption,
scheduling of flexible tasks, and adaptive control of electrical appliances. The most common
ways BAS help to cut energy costs include scheduling (turning equipment on or off depending
on the time of day) and preventing turning on of equipment when it is unnecessary (e.g. turn-
ing off cooling when the outside air falls below a certain temperature). Additional inputs (e.g.
occupancy) can be used to control operational parameters of lighting and HVAC systems.

The technology used in building automation is also changing. Non-IP communication based
on twisted pair, power line or radio frequency technologies is prevalent among BAS [7]. Nowa-
days, the industry is moving towards IP-based systems. Building automation controls and field
devices are being fitted with IP capability [4]. This makes it possible to use the existing IT-
infrastructure and protocols for building data networks and will lead to better standardization.
The advances made in IT in the last decade also provides improved network security and relia-
bility for BAS [4].

1

1.2 The Internet of Things

The Internet of Things (IoT) is a vision of billions of devices connected through the Inter-
net. These devices may come from many different domains, including product supply chains,
telecommunications, home and building automation and smart grid infrastructures.

Integrating building automation devices with the IoT opens up new possibilities. For exam-
ple, device maintenance could be made more efficient with devices that report that they need
maintenance. Often such errors are only indicated by a blinking light on the device, but instead
a device connected to the IoT could automatically place an order for a spare part or arrange a
service appointment and take the availability of the home owner or responsible system operator
into account using information stored in an online calendar [7]. Smart and sustainable build-
ing operation can be realized, for example with automatic HVAC settings based on occupancy,
external temperature, the number of people in room, or scheduled sessions and more.

Another possibility enabled by the Internet of Things is the smart grid, a new kind of intelli-
gent power system. By using automation and IT technologies, the operation and management of
the electrical power grid can be optimized. It can improve the transmission and distribution on
our power infrastructure, as well as improve the safety and reliability of the grid [9]. Sensors and
power equipment in the IoT form a real-time network that allows to improve the efficiency of the
integrated power grid. The principal characteristics of a smart grid include self-healing, mutual
operation and participation of the users, perfect electricity quality, distributed generations and
demand response, sophisticated market and effective asset management [15].

For the interconnection of the devices on the IoT, a trend towards Web service based com-
munication, resting on HTTP and XML can be seen [8].

1.3 IoT Gateways

There are multiple possible approaches to integrating building automation in the Internet of
Things. The main approaches regarding connectivity [7] are:

1. A centralized server using a single IP address on the IP backbone of a BAS can act as a
central gateway. The BAS specific protocols are hidden by the server.

2. Field-to-IP-routers can be used as proxies. Native IP support of field devices is imitated
by emulating IP addresses for the connected field devices.

3. Field devices can directly be connected to the IoT by using IP as network layer transport-
ing higher-level protocols. This comes with a high cost of having to implement an IP stack
within every single device.

4. Web service interfaces can be emulated with separate IPv6 addresses at either a centralized
server or at a field-to-IP-router acting as a transparent gateway.

2

An arguably bigger challenge than connectivity is the problem of interoperability as existing
BAS use their own custom protocols to communicate. Different approaches to solving this prob-
lem already exist for the centralized server integration scenario, like BACnet/WS, oBIX or OPC
UA. These standards propose a centralized server that offers platform independent interfaces
like Web services or RESTful APIs to access the underlying BAS [7].

1.4 Goals, Methodology and Structure of the Thesis

Large BACnet networks may consist of hundreds of BACnet devices. In order to make them
accessible through an oBIX server to the IoT, these devices need to be mapped to oBIX objects.
Manually performing the mapping requires considerable human effort.

The goal of this thesis is to make the provisioning and commissioning of BACnet devices
for oBIX servers easier. Provisioning BACnet devices can be automated using BACnet Remote
Management Services to automatically discover devices. In order for BACnet devices to be
accessible in oBIX servers, they need to be mapped to oBIX objects, so a generic mapping of
BACnet devices to oBIX objects is described.

In the following section, the current state of the art regarding BACnet, the IoT and relevant
technologies is discussed.

A mapping of BACnet devices to oBIX objects is described in section 3, using several BAC-
net properties to create oBIX representations. Read and write requests are also mapped to create
fully interactive oBIX objects that transparently forward requests to the BACnet devices.

In section 4, a way to automatically provision BACnet devices in a BACnet network using
BACnet Remote Management Services for autodiscovery is described.

The presented techniques have been implemented in an open source IoT gateway project
called “IoTSyS” [6]. The implementation is detailed and an evaluation is given in section 5.

3

CHAPTER 2
State of the Art

2.1 Internet of Things

The idea of the Internet of Things (IoT) is to connect things - such as sensors, actuators, mobile
phones or Radio-Frequency Identification (RFID) tags - and through unique addressing schemes
let them be able to interact with each other [2]. It is currently exponentially growing towards an
ecosystem of tens of billions of smart things [16].

The ongoing miniaturization and cost reduction of electronic devices makes it possible to
create smart things - everyday physical objects enhanced by a small electronic device that pro-
vides a computational component and connectivity to the Internet. Equipping many objects in
the world with such devices would lead to an Internet of Things.

The IoT is a transformative technology that will have a large impact on the everyday-life
of its users. For private users, the IoT will be noticeable in home automation, assisted living,
e-health, enhanced learning and more. For business users, the IoT will be applicable in au-
tomation and industrial manufacturing, logistics, business/process management and intelligent
transportation of people and goods [2].

The need for IPv6 and related new protocols

The number of humans currently using the Internet is estimated to have recently surpassed three
billion, up from 2.7 billion at the end of 2013 [14]. The number of objects connected to the
Internet has already surpassed the number of human Internet users and is expected to expand to
20 to 50 billion smart things [16].

The most common protocol currently used at the network layer, the Internet Protocol version
4 (IPv4), was not designed with the Internet of Things in mind and is limited to only about 4
billion addresses. This limited number of addresses is already being exhausted, so to meet the
growing demand for addresses IPv6 has been adopted by IANA.

5

IPv6 provides a much larger address space, about 3.4 × 1038 addresses. This corresponds
to over 6.67 × 1017 unique addresses per square millimeters of Earth surface, thereby having a
large enough address space to support a globally connected Internet of Things.

The Internet Protocol is already used by many devices such as printers, sensors, lighting
systems, mobile phones, TVs, and more. IPv6-related standards designed for the IoT, such
as 6LoWPAN, CoAP and CoRE, have also enabled highly constrained devices to become IP
compliant [16].

2.2 CoAP

The Constrained Application Protocol (CoAP) is a specialized Web transfer protocol. It is de-
signed for use in constrained environments, such as constrained nodes (e.g., microcontrollers
with small amounts of RAM and ROM) and networks (low-power, high packet error rates, e.g.
6LoWPAN). Constrained nodes may be low power sensors, switches, or similar components
that need to be remotely monitored and controlled. Targeted application areas are machine-to-
machine (M2M) applications, including building automation [12].

A design goal for CoAP is that it should be easily translatable to HTTP for integration with
the Web while meeting specialized requirements for M2M applications such as multicast support
and very low overhead [12].

CoAP uses a client/server interaction model very similar to HTTP. However, for its intended
use in M2M communication, nodes will typically assume both client and server roles. A request
contains a request code, specifying an action (GET, PUT, POST, DELETE - equal to HTTP’s
actions) to be performed on a resource identified by a URI.

A difference to HTTP is the used transport layer protocol. Whereas HTTP requires a reliable,
connection-oriented communication, mostly using TCP, CoAP uses a datagram-oriented trans-
port like UDP. Transport over UDP is more efficient than TCP for non-reliable, asynchronous
or group communication. Optional reliability is supported by CoAP, in the form of confirmable
messages and acknowledgments.

In the OSI model, CoAP is positioned above the transport layer, as seen in Figure 2.1. CoAP
can be viewed as following a two-layer approach, with a messaging layer, dealing with the
asynchronous communication and UDP, and a request/response layer above, dealing with inter-
actions using method and response codes. But these layers are part of a single CoAP protocol,
and requests/responses are just features of the CoAP header.

CoAP is tailored to a polling interaction model, but a protocol extension allows clients to
“observe” resources on a CoAP server. Clients can specify the “observe” option on GET re-
quests to receive the updated state of the requested resource whenever it changes, eliminating
the need for constant polling. A best-effort approach is used for sending new representations
to clients, and provides eventual consistency between the state observed by each client and the
actual resource state at the server [5].

The low overhead, multicast support, and observing of resources makes CoAP a good fit for
a protocol for the Internet of Things.

6

+----------------------+
| Application |
+----------------------+
+----------------------+ \
| Requests/Responses | |
|----------------------| | CoAP
| Messages | |
+----------------------+ /
+----------------------+
| UDP |
+----------------------+

Figure 2.1: Abstract layering of CoAP [12]

2.3 oBIX

As M2M and the IoT become ever more prevalent, new standards are needed to allow the ma-
chines to communicate autonomously and effectively with each other. oBIX (Open Building
Information eXchange) is a standard developed by the Organization for the Advancement of
Structured Information Standards (OASIS). It uses existing standard technologies like XML,
HTTP and URIs to define a standard Web service protocol to enable such communication for
building control systems [10].

oBIX object model

oBIX has a simple object model, based on a small set of object types corresponding to primitive
values types (e.g. integer, string, real) Figure 2.2 shows a summary of the object model. The
boxes show the object types, as well as a list of attributes (or “facets”) the object supports.

There are 17 generic object types: obj, str, int, real, bool, and more. The base
object type is “obj”. Every other object type is derived from “obj”. Therefore, every object
in oBIX inherits the base facets name, href, is, null, icon, displayName, display,
writable and status. The object model can be extended by the use of “contracts”, which
define a subclassing relation between object types.

This generic object model is able to represent information from diverse M2M systems
through a standardized XML format. An example of an oBIX object in XML syntax can be
seen in Figure 2.3.

Everything in oBIX is modeled as an object, and to identify objects, oBIX uses URIs (Uni-
form Resource Identifiers). URIs are the standard way of identifying resources on the Web and
are already well established.

The oBIX specification also provides a normalized representation for common concepts in
BAS: points, histories and alarms. Points represent a single scalar value and its status. They
usually map directly to sensors, actuators or setpoints. Each value is a separate object in oBIX.
Histories and alarms are available as oBIX services.

7

obj

name: str
href: uri
is: contract
null: bool
icon: url
displayName: str
display: str
writable: bool
status: status

val

val: <type>

list

of: contract
min: int
max: int

op

in: contract
out: contract

feed

in: contract
out: contract

ref err

bool

range: uri

int

min: int
max: int
uint: int

real

min: real
max: real
uint: uri
precision: int

str

min: int
max: int

enum

range: uri

uri

abstime

min: abstime
max: abstime
uint: str

reltime

min: reltime
max: reltime

date

min: date
max: date
tz: str

time

min: time
max: time
tz: str

Figure 2.2: oBIX object model [8] [10]

oBIX also allows to represent available operations on objects. Operations are also repre-
sented as objects - the “op” object defines such operations. An operation takes an oBIX object
as input and returns an oBIX object. The type of allowed input and output objects are specified
through contracts using the operation’s “in” and “out” facets.

Contracts

The “is” facet specifies the contracts that the object adheres to by their URIs. Multiple contracts
can be specified by separating them with whitespace. Contracts are a mechanism of inheritance
and allow “subclassing” in the oBIX object model. A contract itself is specified as an object,
and can be expressed in XML syntax.

8

<obj href="http://bradybunch/people/Mike-Brady/">
<obj name="fullName">

<str name="first" val="Mike"/>
<str name="last" val="Brady"/>

</obj>
<int name="age" val="45"/>
<ref name="spouse" href="/people/Carol-Brady"/>
<list name="children">

<ref href="/people/Greg-Brady"/>
<ref href="/people/Peter-Brady"/>
<ref href="/people/Bobby-Brady"/>
<ref href="/people/Marsha-Brady"/>
<ref href="/people/Jan-Brady"/>
<ref href="/people/Cindy-Brady"/>

</list>
</obj>

Figure 2.3: Example oBIX XML [10]

A contract defines the child objects that an object implementing the contract contains. An
object conforming to the contract can override a child object’s value by explicitly specifying an
object with the same name as the object to be overwritten from the contract. If an object from the
contract isn’t specified, it implicitly inherits the object, using the default value from the contract.

<obj href="/def/television">
<bool name="power" val="false"/>
<int name="channel" val="2" min="2" max="200"/>

</obj>
<obj href="/livingRoom/tv" is="/def/television">

<int name="channel" val="8"/>
<int name="volume" val="22"/>

</obj>

Figure 2.4: Example oBIX contract and an implementation [10]

Figure 2.4 shows an example of how contracts are used. A contract with the URI
“/def/television” is defined. It specifies that televisions have a boolean object called
“power” and an integer value between 2 and 200 (with a default value of 2) named “channel”.
Next it shows an object with the URI “/livingRoom/tv” being defined. Using the is-facet
it extends the previously defined contract. It overwrites its channel value with 8 and defines an
additional integer value called “volume”. The “power” object isn’t explicitly defined in the
tv object, but it is inherited from the contract. The default value for “power” of the object tv
is set to false.

Contracts can be used to define the data points offered by different types of devices, such as

9

temperature sensors or fan speed actuators [8]. One such contract is shown in Figure 2.5. It is
the contract for a push button, which has only one binary data point. Since the state of a button
is not writable, the writable facet can be omitted since it defaults to false.

More complex devices may have multiple data points. A dimming push button, for example,
could have an additional integer value representing the current amount of dimming.

<obj href="iot:PushButton" is="iot:Sensor">
<bool name="value" val="false"/>

</obj>

Figure 2.5: PushButton contract [8]

oBIX Services

These operations allow the implementation of services in oBIX. The standard defines several
services like the Watch-service, History-service and Alarm-service.

The Watch-service is used to create watches that enable a client to observe changes to speci-
fied objects. The client can poll for changes in objects registered with the watch. Several objects
can be added to a watch at once, so that they can be polled together. Only objects that have been
modified since the last poll request are returned when polling.

Many automation systems provide a mechanism to create historical archives of point data.
oBIX provides a standardized way to model and query such time sampled data using the History-
service. A rollup of summarized data can be generated, containing the minimum, maximum and
average values of numeric data points, for use in higher level applications.

The alarming feature provides a normalized way to query, watch, and acknowledge alarms.
An alarm indicates a condition which requires notification of a user or another application. For
that reason, alarms require acknowledgment to indicate that someone has taken action to resolve
the alarm condition.

RESTful

oBIX provides a RESTful transfer mechanism for its XML documents. REST stands for REpre-
sentational State Transfer and is an architectural style for Web services. There are three generic
request types for oBIX requests: read, write, invoke. They allow to read object values, write
object values, and invoke operations.

A mapping of HTTP requests to oBIX requests is defined in the oBIX standard [10]. This
mapping can be seen in Table 2.1. Another protocol binding is defined for SOAP (Simple Object
Access Protocol).

10

HTTP request method oBIX request
GET read
PUT write
POST invoke

Table 2.1: Mapping of HTTP requests to oBIX requests

Object discovery

In order to facilitate object discovery, oBIX servers implement a “lobby”. This is the central
entry point and lists the URIs for objects defined by the oBIX standard, such as an “about” object
and the Watch-service object. The lobby is where vendor specific data and service discovery
objects should be placed. Conventionally the URI for the lobby is /obix.

2.4 BACnet

BACnet (Building Automation and Control Network) is a data communication protocol de-
veloped by the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) [1]. It is an American national standard, a European standard and an ISO global
standard.

Development of the standard began in 1987, and is under continuous maintenance by the
ASHRAE Standing Standard Project Committee 135 (SSPC 135). It was motivated by the desire
for interoperability between building automation devices from different vendors. The standard
defines how automation and control systems can interoperate with other BACnet systems. Mul-
tiple BACnet systems on the same network are able to communicate and to request functions
from another.

BACnet networking architecture

BACnet can communicate over local area networks such as Ethernet, ARCnet, MS/TP, PTP and
LonTalk. The data on the BAS can also be routed through some IP (Internet Protocol) routers,
so that remote monitoring and control can then become possible (via a BACnet/IP device).

The BACnet standard adheres to a collapsed version of the ISO OSI model of a layered
communication architecture, seen in Figure 2.6. Therefore, various network access methods and
physical media may be used to exchange messages.

BACnet object model

BACnet follows an object oriented approach in modeling its devices and data points. A BACnet
device can be seen as a collection of objects. Each device must have the special “device”-object
that provides additional information about itself, including its device identifier, its name, and a
list of all objects available on the device.

11

Equivalent
OSI Layers

ARCNET EIA-485
ISO 8802-3
(IEEE 802.3)

ISO 8802-2 (IEEE 8802.3)
Type 1

EIA-232

MS/TP PTP

LonTalk

BACnet Network Layer

BACnet Application Layer

BACnet Layers

Application

Network

Data Link

Physical

Figure 2.6: BACnet networking architecture [1]

The BACnet standard defines a number of object types [1]. These objects represent hard data
points or describe soft data points such as setpoints. The “Program” object type, for example,
represents a process running within a BACnet device.

Hard data points can be modeled using generic object types for binary and analog val-
ues. There are also separate object types for input, output and value objects, resulting in a
total of 6 object types: AnalogInput, AnalogOutput, AnalogValue, BinaryInput,
BinaryOutput, BinaryValue.

Input objects receive their value from an external source (like sensors) and therefore are not
writable. Output objects are writable and represent control outputs. Value and output objects
can be used as setpoints (for example, the target temperature in a heating system).

Each object has a collection of properties. Among these properties are name and type of the
object, as well as a description. For analog objects, a property provides a way to specify the
units of the value. There are a number of other properties, and each object type has its own set
of properties that are specific to that type.

Object Identifier

Objects within a device are identified through their object identifier. This identifier consists of
two parts: The object type and an instance number. In order to uniquely identify a property of
an object inside a BACnet network four values are required: the device identifier of the device
the object is residing on, the object identifier (object type and instance number) and the property
identifier.

Present_Value

Arguably the most important property is the “Present_Value”. As the name suggests, the
property stores the current value of an object. It might represent the temperature in degrees
Celsius in the case of a temperature sensor, for example.

The Present_Value is not necessarily writable on all objects. If this property is writable,
then the properties “Priority_Array” and “Relinquish_Default” are also present on
the object. These properties are part of the prioritization mechanism.

12

The priority array is an array of 16 values which correspond to 16 available levels of priority.
The elements are in order of decreasing priority, so the first element (priority 1) has the highest
priority. An entry in the priority array can be either a value or NULL. The value with highest
priority that is not NULL is used as the “Present_Value” property. If all entries in the
priority array are NULL, then the value of the “Relinquish_Default” property is used as
a fallback.

The priority array property cannot be written to directly. To set an entry in the priority array, a
WriteProperty request including the priority to override is issued on the Present_Value
property instead. To clear entries, the value of the WriteProperty request shall be NULL. If
no priority is specified on the request, a default priority of 16 (the lowest priority) is assumed.

BACnet Interoperability Building Blocks

BACnet assures interoperability between devices from different vendors if they agree to imple-
ment a set of BIBBs (BACnet Interoperability Building Blocks). BIBBs are collections of BAC-
net services, that are prescribed in terms of an “A” (client) and “B” (server) device. Together they
define what services have to be supported on two devices to enable successful interaction be-
tween them [1]. A device’s PICS (Protocol Implementation Conformance Statement) identifies
the BIBBs that are implemented.

13

CHAPTER 3
Generic oBIX mapping for BACnet

devices

A way to represent a BACnet network and its devices and objects inside an oBIX server is desired
in order to be able to access and manipulate them through an oBIX representation. To achieve
this, BACnet objects can be mapped to oBIX objects. In this thesis, only the mapping of the
BACnet object types AnalogInput, AnalogOutput, AnalogValue, BinaryInput,
BinaryOutput and BinaryValue to oBIX objects is discussed, as they are sufficient to
model a wide variety of devices and applications, including sensor and actuator values, as well
as setpoints. Other object types can be mapped in a similar fashion if needed.

3.1 Mapping of Present_Value

The group of analog object types in BACnet have a present value with data type REAL, which
can be directly mapped to the oBIX object type real. BACnet’s binary object types have the
data type BACnetBinaryPV, which can take the values active and inactive. These
values can be mapped to true and false of the oBIX object type bool, respectively. Values
of the BACnet priority array can also take the value NULL. Such null values can be expressed in
oBIX by setting the value object’s null facet to true.

To create a functional mapping, that allows reading and writing values from and to devices,
the present value is the only property required to be mapped, other properties like the description
are not essential. Therefore, we can already define basic oBIX contracts corresponding to the
BACnet objects. These contracts are shown in Figure 3.1. BACnet’s input objects are by default
not writable; output objects are writable by default. This is reflected in the contract definition.

15

<obj href="iot:AnalogInput">
<real name="value" val="0" writable="false"/>

</obj>
<obj href="iot:AnalogOutput">

<real name="value" val="0" writable="true"/>
</obj>
<obj href="iot:AnalogValue">

<real name="value" val="0"/>
</obj>
<obj href="iot:BinaryInput">

<bool name="value" val="false" writable="false"/>
</obj>
<obj href="iot:BinaryOutput">

<bool name="value" val="false" writable="true"/>
</obj>
<obj href="iot:BinaryValue">

<bool name="value" val="false"/>
</obj>

Figure 3.1: Basic oBIX contracts corresponding to BACnet object types

3.2 Mapping the object identifier to a URI

To uniquely identify objects, BACnet uses the object identifier, while oBIX uses URIs. A struc-
tured approach for constructing the URI of the mapped object is proposed. This structure orga-
nizes the oBIX objects in a hierarchy, making it easy to use and browsable.

An oBIX server may contain devices from multiple BACnet networks, however object iden-
tifiers are only unique within the network. To distinguish devices from different networks, an
object representing the network is created. This object is the root of the object tree we are creat-
ing and might be published through the oBIX lobby directly. Its name and href facets should
correspond to the name of the network. Figure 3.2 shows an example network object.

<obj name="BACnet Lab" href="/BACnetLab/">
<ref name="2098177" href="/BACnetLab/2098177"/>

</obj>

Figure 3.2: Example network object

The next layer in the object hierarchy contains the devices within the BACnet network.
BACnet devices are identified by their device instance number, therefore each device is repre-
sented by an oBIX object whose href corresponds to the instance number. Figure 3.3 shows
an example device object.

Finally, the layer below the device objects contains the actual BACnet objects that are
mapped to functional oBIX objects. Their href is a concatenation of their object type and
instance number, such as “AnalogInput0”. Figure 3.3 shows some example hrefs.

16

<obj href="/BACnet/2098177/">
<ref href="/BACnet/2098177/BinaryOutput0"/>
<ref href="/BACnet/2098177/BinaryInput0"/>
<ref href="/BACnet/2098177/BinaryValue0"/>
<ref href="/BACnet/2098177/AnalogInput0"/>
<ref href="/BACnet/2098177/AnalogOutput0"/>
<ref href="/BACnet/2098177/AnalogOutput1"/>

</obj>

Figure 3.3: Example device object

The oBIX objects from each layer only contain references to the objects of the layer below,
using the ref object type and specifying the href facet to point to the objects. This has
multiple advantages. For one, less information has to be transmitted when a higher level object
is read. Only the layer requested needs to be transmitted, clients can then follow the references to
request objects of the next layer. It is also easier to handle for a human operator, as the structure
allows easy browsing and does not showing unnecessarily detailed information. Finally, if the
complete object tree would be requested, each BACnet object represented in this tree would have
to be read. In large networks, this would lead to a lot of unnecessary BACnet traffic.

3.3 Mapping read and write requests

If the object identifier of a BACnet object is known, then the oBIX contract it maps to can be
derived from the object type. In this section, the mapping of read and write requests from oBIX
to BACnet is discussed. A summary can be seen in Table 3.1.

oBIX request (HTTP binding) BACnet request
GET /bacnet/123123/AnalogOutput1 HTTP/1.1 ReadProperty Request

- Object Identifier: AnalogOutput, 1
- Property Identifier: Present_Value

PUT /bacnet/123123/AnalogOutput1 HTTP/1.1 WriteProperty Request
- Object Identifier: AnalogOutput, 1

<real val="3.1415"/> - Property Identifier: Present_Value
- Property Value: 3.1415
- Priority: 10

PUT /bacnet/123123/AnalogOutput1 HTTP/1.1 WriteProperty Request
- Object Identifier: AnalogOutput, 1

<real null="true"/> - Property Identifier: Present_Value
- Property Value: NULL
- Priority: 10

Table 3.1: Mapping oBIX to BACnet requests

17

Read requests

When the constructed oBIX object is read, the value has to be retrieved from the BACnet object
it represents. To this end, oBIX read requests are mapped to the BACnet ReadProperty
service. The ReadProperty service takes three arguments: the object identifier of the object
to read from, the property identifier of the property to be read, and optionally a property array
index.

The object identifier is already known. The property identifier is set to the identifier of
the Present_Value property. The property array index is only needed if the property be-
ing read is an array. Since Present_Value is only a single value this argument is omitted.
The response of the service contains the read property value. Its data type is either REAL or
BACnetBinaryPV, depending on whether the object type is one of the analog or binary object
types. The value can then be interpreted and mapped to an oBIX value as previously discussed.

Write requests

For write requests to the oBIX object, a similar mapping has to be defined. The write request
maps to the WriteProperty service. This service takes five arguments: the object identifier,
a property identifier, a property array index, a property value and a priority.

For the object identifier, property identifier and property array index the same considerations
are made as for the ReadProperty service before. The property value argument contains the
value we want to write to the object. For the priority, an integer in the range 1-16 can be
chosen. If the priority is omitted, a default priority of 16 (lowest priority) is implied. The
highest priorities should be reserved for life safety emergency overrides, so a mid-range priority
of around 10 is suggested.

The priority mechanism allows to override a value with lower priority, and then later re-
voke the new, high priority value and to return to the original value. To revoke a value with
certain priority, its entry in the priority array has to be reset to NULL. oBIX does not have a
null object, instead it uses a facet to indicate a null value. Therefore, writing to an oBIX object
with a null value can be used to reset its value. In this case, the property value to use in the
WriteProperty service request is BACnet’s NULL data type.

Figure 3.4 shows examples of how the priority array and the Relinquish_Default
property affect the Present_Value. If all entries in the priority array are NULL, then the
value of the “Relinquish_Default” property is used as a fallback, otherwise the highest-
priority value of the priority array - the one with the lowest index - is used.

Priority Array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 RD PV

NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 12 12

NULL NULL NULL NULL NULL NULL NULL NULL NULL 42 NULL NULL NULL NULL NULL NULL 12 42

NULL NULL NULL NULL 22 NULL NULL NULL NULL 42 NULL NULL NULL NULL NULL NULL 12 22

Figure 3.4: Examples for the priority array and how it affects the Present_Value

18

3.4 Check if BACnet object is writable

The contract definitions already set the default of the writable facet for each object type.
However, the present values of input and value objects can become writable depending on the
Out_Of_Service and Relinquish_Default properties [1]. In order to correctly reflect
this in the oBIX object, these properties have to be checked.

Output objects are always writable. Input objects are writable, if the property
Out_Of_Service is set to TRUE or if the Present_Value property is commandable, oth-
erwise they are read-only.

The boolean property Out_Of_Service indicates whether the physical input to the object
is currently in service. If Out_Of_Service is active, the physical input is decoupled from
the Present_Value property and manually changing the Present_Value is allowed.

If the Present_Value is commandable, then the properties Priority_Array and
Relinquish_Default are both present in the object, too. To check if these properties are
available, a ReadProperty service request can be attempted. If they are not available, the
request will result in an UNKNOWN_PROPERTY error, indicating that the Present_Value
property is not commandable.

These conditions have to repeatedly be checked every time the oBIX object is read, as they
can change over time.

Using the techniques described so far, a BACnet object can be mapped to a functional oBIX
object that can be read and written to. An example of an object using this mapping is shown in
Figure 3.5.

<obj href="/BACnet/10003/AnalogOutput1" is="iot:AnalogOutput">
<real name="value" href="value" val="4200" writable="true"/>

</obj>

Figure 3.5: Example oBIX object representing a BACnet Analog Output object

3.5 Additional properties

At this point, a functional mapping, that allows reading and writing BACnet objects through
oBIX, has already been defined. However, the mapping can be further improved by making use
of additional properties that BACnet objects provide. For instance, there is no information about
the role of the object, as only its value is mapped. But in order to effectively use a value, it is
necessary to know what it represents. In the following, a few useful properties are discussed.

Name

Every BACnet object has an Object_Name property. A name is unique within the BACnet
device that consists of the object. In oBIX, the children of an object must have unique names,
too. Names in BACnet are restricted to printable characters only, and a minimum length of one
character. oBIX imposes stricter constraints on names and only allows ASCII letters, digits,

19

underbars, and dollar signs. Additionally, a digit must not be used as first character [10]. Invalid
characters have to be stripped from the Object_Name before it can be used as name for the
oBIX object. The problem of duplicate names from different BACnet objects is largely avoided
by structuring the oBIX representation as discussed in the next section.

Description

BACnet also provides a Description property. This property can be useful to understand the
purpose of the object and can be included in the constructed oBIX object. To this end, a new
child object of type str by the name of “description” is added to the object. Its value is the
value obtained from the Description property of the BACnet object by a ReadProperty
service request. No sanitation of the obtained string is required, as it is restricted to printable
characters only.

Units

For analog values, a unit is required to be able to interpret it correctly. Both, BACnet and
oBIX provide means to specify the units for a value. In BACnet, the Units property of the
data type BACnetEngineeringUnits represents the Present_Value property’s units
of measurement.

BACnetEngineeringUnits is an enumeration of many units from different domains,
such as acceleration, area, currency, force, humidity, length, velocity, volumetric flow and others.
Units with an enumerated value in the range 0-255 are reserved for definition by ASHRAE,
values in the range 256-65535 may be used freely.

oBIX features a flexible way to define units numerically. Dimensions are specified using
the obix:Dimension contract using the seven fundamental SI units and their exponent (Fig-
ure 3.6).

<obj href="obix:Dimension">
<int name="kg" val="0"/>
<int name="m" val="0"/>
<int name="sec" val="0"/>
<int name="K" val="0"/>
<int name="A" val="0"/>
<int name="mol" val="0"/>
<int name="cd" val="0"/>

</obj>

Figure 3.6: oBIX’s Dimension contract [10]

An actual unit is represented with the obix:Unit contract (Figure 3.7). It contains a
dimension that can be scaled and offset (unit = dimension · scale + offset) and the unit’s
symbol [10]. Figure 3.8 shows how a kilowatt can be expressed using this system.

Some units don’t fit into this model, like logarithmic units or units dealing with angles. Such
units should use a dimension where every exponent is set to zero.

20

<obj href="obix:Unit">
<str name="symbol"/>
<obj name="dimension" is="obix:Dimension"/>
<real name="scale" val="1"/>
<real name="offset" val="0"/>

</obj>

Figure 3.7: oBIX’s Unit contract [10]

<obj href="obix:units/kilowatt" display="kilowatt">
<str name="symbol" val="kW"/>
<obj name="dimension">

<int name="m" val="2"/>
<int name="kg" val="1"/>
<int name="sec" val="-3"/>

</obj>
<real name="scale" val="1000"/>

</obj>

Figure 3.8: Kilowatt as obix:Unit [10]

oBIX provides a database of predefined units. If possible, BACnetEngineeringUnits
should be mapped to the corresponding unit in this database, otherwise new units can be defined
as shown. For example, BACnet’s revolutions-per-minute (with an enumerated value
of 104) maps to obix:units/revolutions_per_minute.

BACnet has a special enumerated value representing the absence of a unit, “no-units”. This
value can be mapped by simply omitting the unit facet of the oBIX object.

21

3.6 Completed oBIX object

By mapping these additional properties, a much more meaningful object is obtained. Compare
Figure 3.5 with Figure 3.9. The second object gives a much better idea of what it does, even
though both may actually represent the same BACnet object. A summary of BACnet properties
and how they were used in the mapping is given in Table 3.2.

<obj name="lfan" href="/BACnet/10003/AnalogOutput1"
is="iot:AnalogOutput">

<real name="value" href="value" val="4200"
unit="obix:units/revolutions_per_minute" writable="true"/>

<str name="description" href="description"
val="left fan speed setpoint"/>

</obj>

Figure 3.9: Example oBIX object representing a BACnet Analog Output object

BACnet property Use in oBIX object mapping
Present_Value value object, as real or bool
Object_Name name facet
Description string description object
Units unit facet on value object
Out_Of_Service

Priority_Array

Relinquish_Default

Used to check if Present_Value is writable

Object_Identifier href facet

Table 3.2: BACnet properties and their usage in the mapping to an oBIX object

22

CHAPTER 4
Auto-discovery of BACnet devices

4.1 BACnet’s Remote Device Management Services

Among the services that BACnet provides are a group of services collectively known as “Re-
mote Device Management Services”. These services provide a number of functions, including
operator control and auto-configuration.

In particular, there are two services that can be used to discover devices, the Who-Is and
Who-Has services. They eliminate the effort of having to program other devices’ network
addresses into each device. The service messages are broadcast in the BACnet network to every
device, and the receiving devices may respond with an acknowledgment message containing
their address.

Who-Is and I-Am

The Who-Is service is used to determine the device identifier, the network address, or both of
other BACnet devices that are on the same network as the device issuing the service request. It
is an unconfirmed service, meaning that it does not require a response.

There are multiple ways of using the service. It can be used to determine the device identifier
and network addresses of all devices on the network. If a device identifier is already known, then
the service can be used to determine the address of the corresponding device.

The I-Am service informs other devices about its sender by broadcasting an unconfirmed
request containing its device identifier. The service may be used at any time. Usually an I-Am
request is sent after a device has initialized to inform other devices about its availability.

When a device receives a Who-Is request, it may respond by sending an I-Am service
request.

23

Who-Has and I-Have

Another way to locate devices on the network is provided by the unconfirmed services Who-Has
and I-Have.

The Who-Has service is similar to the Who-Is service. It can be used to ask for the device
identifier of devices that contain an object that has a given object name or object identifier.

In response, devices that have the requested resource send an I-Have service request, con-
taining the device identifier, as well as both the object name and object type of the requested
object.

Device Instance Ranges

Optionally, a range of device instances can be specified as an argument for the Who-Is and
Who-Has service requests. If the range is omitted, then every device that receives the request
will process it. Otherwise, only devices whose device object’s instance number is in between
the specified range will answer.

In large networks, an unbounded Who-Is request to all devices at once would result in a lot
of answers at the same time and sudden network load. As a consequence, packets containing the
I-Am response are more likely to be dropped on their way to the requesting device. Since the
I-Am service is unconfirmed, packets will not be resent. This may lead to not all devices being
discovered.

Device instance ranges provide a solution to this problem. Instead of one Who-Is request
to all devices, the request can be split up into several smaller requests, thereby reducing the
network load per request.

Device objects and object lists

Every BACnet device is required to have a device object. Its instance number is the same as
the device’s identifier.

The device object offers a property called Object_List. It is an array type property
that contains the object identifiers of all objects available on the device. This property allows to
query all the objects contained in a device that has been discovered by the Who-Is service.

4.2 BACnet/IP broadcast management devices

BACnet networks consisting of multiple subnets connected through IP routers build an inter-
network. Because IP Routers do not forward any broadcasts, the Remote Device Management
services, which rely on broadcast messages, are not able to propagate past them and are confined
to the subnet the message originated in.

To enable the Remote Device Management services to work on the complete network, a
BACnet/IP broadcast management device (BBMD) can be used. Figure 4.1 shows how BBMDs
are used in an internetwork.

A BBMD is placed on every subnet. They listen for broadcasts originating from their local
subnet and forward these messages directly to the BBMDs on the other subnets. These BBMDs

24

ANNEX J - BACnet/IP (NORMATIVE)

ASHRAE 135-2004 569

J.3 BACnet/IP Directed Messages

B/IP devices shall communicate directly with each other by using the B/IP address of the recipient. Each NPDU shall be

transmitted in a BVLL Original-Unicast-NPDU.

J.4 BACnet/IP Broadcast Messages

This clause defines how BACnet broadcast messages are managed within a B/IP network.

J.4.1 B/IP Broadcast Management, Single IP Subnet

In this case, the B/IP network consists of a single IP subnet. A "local broadcast" shall use the B/IP broadcast address and the

NPDU shall be transmitted in a BVLL Original-Broadcast-NPDU message. Because all nodes are on a single IP subnet, such

messages will automatically reach all nodes. See Figure J-1.

IP Subnet LAN Segment

BACnet Device

Figure J-1. A B/IP network consisting of a single IP subnet.

J.4.2 B/IP Broadcast Management, Multiple IP Subnets

In this case, the BACnet/IP network consists of two or more IP subnets. A "local broadcast" shall use the B/IP broadcast address,

and the NPDU shall be transmitted in a BVLL Original-Broadcast-NPDU message. Because standard IP routers do not forward

such broadcasts, an ancillary device is required to perform this function. This device shall be called a BACnet/IP Broadcast

Management Device (BBMD). See Figure J-2.

IP Subnet 1

IP Subnet 2

LAN Segment

BACnet Device

Internet Router

BBMD

I
n
t
e
r
n
e
t

Figure J-2. A B/IP network consisting of two IP subnets.

J.4.3 BBMD Concept

Each IP subnet that is part of a B/IP network comprised of two or more subnets shall have one, and only one, BBMD. Each

BBMD shall possess a table called a Broadcast Distribution Table (BDT) which shall be the same in every BBMD in a given

B/IP network. If the BBMD has also been designated to register foreign devices as described below, it shall also possess a

Foreign Device Table (FDT).

J.4.3.1 Broadcast Distribution

There are two ways that a BBMD may distribute broadcast messages to remote IP subnets. The first is to use IP "directed

broadcasts" (also called "one-hop" distribution). This involves sending the message using a B/IP address in which the network

portion of the address contains the subnet of the destination IP subnet and the host portion of the address contains all 1's. While

Figure 4.1: BBMDs forward broadcasts between subnet [1]

then broadcast the message on their own subnet. Because the BBMDs forward the messages
using point-to-point connections (instead of broadcasts) they pass through IP Routers without a
problem.

BBMDs can’t use broadcasts to discover the BBMDs on other subnets, therefore each
BBMD contains a Broadcast Distribution Table (BDT) that is manually populated. The entries
in the BDT specify where broadcasts should be forwarded to. Devices on a subnet without a
local BBMD that wish to receive BACnet broadcast messages can register with a remote BBMD
to be included in their BDT as a foreign device.

BACnet Routers

BACnet/IP devices may operate together with BACnet devices on non-BACnet/IP networks.
To enable communication between devices on differing data links, a BACnet Router is placed
between them (see Figure 4.2).

Routed messages travel from router to router as directed messages until the routed message
reaches its final destination network. If the originating message was a broadcast, the router will
substitute the appropriate broadcast command for the attached data link.

ANNEX J - BACnet/IP (NORMATIVE)

572 ASHRAE 135-2004

J.5.2.1.2 Use of the BVLL Delete-Foreign-Device-Table-Entry Message

Upon receipt of a BVLL Delete-Foreign-Device-Table-Entry message, a BBMD shall search its foreign device table for an entry

corresponding to the B/IP address supplied in the message. If an entry is found, it shall be deleted and the BBMD shall return a

BVLC-Result message to the originating device with a result code of X'0000'. Otherwise, the BBMD shall return a BVLC-

Result message to the originating device with a result code of X'0050' indicating that the deletion attempt has failed.

J.5.2.2 Use of the BVLL Register-Foreign-Device Message

Upon receipt of a BVLL Register-Foreign-Device message, a BBMD capable of providing foreign device support and having

available table entries, shall add an entry to its FDT as described in J.5.2.1 and reply with a BVLC-Result message containing a

result code of X'0000' indicating the successful completion of the registration. A BBMD incapable of providing foreign device

support shall return a BVLC-Result message containing a result code of X'0030' indicating that the registration has failed.

J.5.2.3 Foreign Device Table Timer Operation

Upon receipt of a BVLL Register-Foreign-Device message, a BBMD shall start a timer with a value equal to the Time-to-Live

parameter supplied plus a fixed grace period of 30 seconds. If, within the period during which the timer is active, another BVLL

Register-Foreign-Device message from the same device is received, the timer shall be reset and restarted. If the time expires

without the receipt of another BVLL Register-Foreign-Device message from the same foreign device, the FDT entry for this

device shall be cleared.

Upon receipt of a BVLC-Result message containing a result code of X'0000' indicating the successful completion of the

registration, a foreign device shall start a timer with a value equal to the Time-to-Live parameter of the preceding Register-

Foreign-Device message. At the expiration of the timer, the foreign device shall re-register with the BBMD by sending a BVLL

Register-Foreign-Device message.

J.6 Routing Between B/IP and non-B/IP BACnet Networks

J.6.1 Router Operation

In concept, a router between a B/IP network and a non-B/IP network functions identically to the routers described in Clause 6.

See Figure J-4.

LAN Segment

BACnet Device

Internet Router

BBMD

BACnet Router

BACnet/IP Net 1

Non-BACnet/IP Net 2I
n
t
e
r
n
e
t

Figure J-4. A BACnet router can be used to convey messages between devices on a B/IP network and

non-B/IP network using the procedures in Clause 6.

There are two possible differences. First, on the B/IP side, the B/IP address is used in place of the MAC layer address referred to

throughout Clause 6. Second, if B/IP and non-B/IP BACnet devices reside on the same physical LAN, then all traffic is typically

sent and received through a single physical port. The collection of B/IP devices would, in such a case, have a network number

distinct from the network number of the non-B/IP devices. Such a scenario could easily occur on an Ethernet network where

some devices are IP-capable while others are not.

Figure 4.2: The addition of a non-BACnet/IP data link results in two networks [1]

4.3 Automatic configuration for oBIX servers

The Remote Device Management services offered by BACnet can be used to automatically con-
figure devices for use in oBIX servers.

25

Discovery of objects

Using the Who-Is service, BACnet devices can be discovered and then mapped to oBIX objects.
The following steps describe the general approach.

1. A virtual local BACnet device is set up, in order to be able to interact with the BACnet
network. The virtual device is able to send and receive BACnet messages.

2. A listener for I-Am and I-Have requests is set up.

3. A Who-Is service request is broadcast. If the network is large, the request can be split
up into several requests using the device instance range arguments to target devices in
chunks, as described above.

4. The I-Am listener receives messages from devices on the network in response to the
Who-Is request. The device’s identifier is part of the response. To get a list of objects
contained in the device, a ReadProperty service request for the Object_List prop-
erty is sent to each device.

5. The BACnet objects contained in the object list are mapped to oBIX objects based on their
object type as described in the previous section.

6. Finally, the constructed oBIX objects can be published through an oBIX server.

The last two steps can be skipped if the object has already been mapped before, as it would
be if multiple I-Am requests are received from the same device.

Following these steps, an object hierarchy like described in the previous section can be
created. When a BACnet device comes online, it usually sends an I-Am broadcast on its own
to signal its availability. Those requests are received by the virtual local device and can also be
mapped and published to an oBIX server at runtime.

26

CHAPTER 5
Case Study

5.1 The IoTSyS Gateway

The techniques for automatic discovery and mapping of BACnet devices to oBIX objects pre-
sented in this thesis have been implemented in the open-source project “IoTSyS” [8] [6].

IoTSyS is a transparent IPv6 multi-protocol gateway that allows sensors and actuators from
various home and building automation systems to participate in the Internet of Things. The
gateway can be equipped with multiple protocol stacks and physical interfaces to different media
to communicate with various BAS. It is a Java application based on Web services and oBIX to
provide an interoperable interface for smart objects.

oBIX protocol binding to CoAP

IoTSyS uses the OASIS standard oBIX as application layer protocol. In addition to the HTTP
and SOAP bindings oBIX provides, a CoAP binding is defined.

oBIX provides the concept of Watches for observing resources, but it is tailored to a polling
interaction model. The oBIX watch services can still be used with CoAP, but to take advantage
of the asynchronous communication of CoAP, the CoAP observe extension [5] is implemented
and included in the oBIX protocol binding to CoAP. This allows a CoAP GET request with the
observe option set to be sent and to receive multiple responses without the need for constantly
repeated polling.

Efficient encoding using EXI

For constrained devices, using XML based messages is heavyweight. With IEEE 802.15.4 as
data link layer, for example, the application payload for a single message is limited to less than
72 Bytes in order to be transmitted without fragmentation [8]. The oBIX standard defines an
efficient custom binary encoding as a solution to this problem. IoTSyS implements an additional,
more standardized solution - the W3C recommendation EXI (Efficient XML Interchange) [8].

27

EXI is a binary encoding for XML documents. A schema can be provided for an informed
encoding, leading to an even more efficient result.

For IoTSyS, promising results can be achieved using EXI even without having a schema
[8]. IoTSyS specifies IoT contracts for various device types as oBIX contracts. This allows
the definition of XML schema documents leading to a fixed EXI grammar and optimal binary
representation of exchanged messages.

5.2 Architecture of IoTSyS

Figure 5.1 shows an overview of the components of the IoTSyS gateway. A key part of the
architecture are the various protocol adapters. They provide the interface to the BAS. This
connection might require different physical and data link layers, depending on the BAS.

the rt attribute reflecting the resource type can by assigned
with the unique name of an oBIX IoT contract.

These mentioned adjustments of oBIX combined with a
protocol binding to CoAP, a message encoding based on EXI
and standardized oBIX contracts provide the protocol stack for
an Internet of Things system. It is therefore named IoTSyS.

V. INTEGRATING BUILDING AUTOMATION IN THE IOT
SYSTEM

The previous section outlined a possible protocol stack of
a target IoT system. New IoT devices might work natively
on that stack using IPv6 for addressing and a UDP based
application layer protocol for message exchange, which allows
to use this application layer protocol directly on constrained
devices like 6LoWPAN nodes. The oBIX based approach in
the previous section is one possible realization of an IoT
system. With the extension to oTIX, a suitable API to devices
is provided through a uniform interface and object contracts.
The question still to be answered is how existing (legacy)
systems can be integrated. For oBIX, BACnet/WS or OPC
UA a centralized server that provides access to all devices of
a BAS system is a common way. Devices directly interacting
with each other using a RESTful approach are not the typical
usage scenario for the existing BAS integration technologies.
There is no direct interworking and for each specific enterprize
system the integration has to be done manually.

In the centralized approach a single Web service endpoint
is offered with a single IPv6 address. Thus, the addressing
is moved to the information model of the specific integration
technology. A gateway following such an integration approach
from KNX to oBIX is presented in [10]. For the realization
of the IoT, this integration approach is not satisfactory. The
Web service interface acts as a single visible application level
gateway for the client and direct device interaction is not
possbile with such an approach.

In contrast the CoRE architecture presented by [5] uses Web
services on a device level and a more convenient way for
integrated existing devices is to build a transparent gateway,
that provides an CoAP interface bound to an IPv6 address
for each client that resides behind the gateway. This allows
to extend the CoRE architecture transparently (see Figure 8)
with devices using existing BAS technologies. Transparency
is guaranteed because an application acting as a CoAP client
cannot determine whether it is communicating with a native
CoAP device or a legacy device residing behind the gateway.
Furthermore, it is also possible that two legacy devices interact
with each other using the IoT API.

A. Multi-protocol gateway architecture

Figure 9 provides a closer view on the required components
of the IPv6 multi-protocol gateway.

The protocol adapters (e.g., KNX Adapter) are key compo-
nents of the gateway architecture. They provide the interface
to the BAS specific application layer protocol. Depending on
the BAS, the connections to different physical and data link
layers need to be provided. Furthermore, the mapping of BAS

Server

Server

Node

The Internet
(IPv6)

HTTP

Proxy

Server

Constrained
Environments

C

REST

HTTP

CoAP

C

C

C

CoAP

CoAP

CoAP

IPv6 multi-protocol gateway IPv6 multi-protocol gateway

KNX network BACnet network

KNX

KNX KNX

KNX
KNX

PLC

C C C C C

BAC
net

BAC
net

BAC
net

C C C

CoAP
CoAP

HTTP

Fig. 8: Extending the CoRE architecture by Shelby [5] trans-
parently with BAS

IoT Gateway

<<component>>
HTTP Handler

<<component>>
CoAP Handler

<<component>>
EXI Parser

<<component>>
oBIX Handler

<<component>>
IoT objects

<<component>>
KNX

Adapter

<<component>>
BACnet Adapter

<<component>>
Virtual Device

Adapter

<<component>>
Other Adapters

Native IoT Device

<<component>>
CoAP Handler

<<component>>
EXI Parser

<<component>>
oBIX Handler

Per-device interfaces (HTTP)

Centralized HTTP interface

Per-device interfaces (CoAP)

Centralized CoAP Interface

Per-device interface

Fig. 9: Multi-protocol gateway architecture

specific concepts to the generic objects adhering to the IoT
oBIX contracts has to happen there. These contracts allow
to map various technologies into a common object oriented
representation, which can act as a connecting element to an
ontology based on semantic technologies.

The oBIX handler takes care of read, write and invoke

230

Figure 5.1: IoTSyS multi-protocol gateway architecture [8]

28

oBIX Handler

The oBIX Handler implements the handling of read, write and invoke requests on oBIX objects.
oBIX services Alarming and the watch service are also implemented in this component. In
order to allow for direct device access over HTTP and CoAP, the oBIX Handler publishes each
device using separate handlers on per-device IPv6 addresses. This makes it possible to use the
centralized approach of accessing the device through the gateway and the direct device access
approach in parallel.

The oBIX Handler only works on XML data, the EXI compression and decompression hap-
pens transparently in the EXI Parser layer between the oBIX Handler and the HTTP/CoAP
Handlers.

Technology connectors

To communicate with a variety of BAS, IoTSyS employs “technology connectors”. Technology
connectors are components that publish devices of a BAS as oBIX objects through the gateway’s
object broker. They implement the read and write operations of the oBIX objects, transparently
translating them to commands appropriate for the BAS. Some technology connectors are already
included in the IoTSyS project, including connectors for KNX, W-MBus and BACnet.

Device Loader

When IoTSyS starts, the main device loader reads a configuration file, devices.xml, in which
specialized device loaders for technology connectors can be defined (see Figure 5.2).

<devices>
<deviceloaders>

<device-loader>at.ac.tuwien.auto.iotsys.gateway.connectors.
bacnet.BacnetDeviceLoaderImpl</device-loader>

</deviceloaders>
[...]

</devices>

Figure 5.2: Device loader specified in the devices configuration file

The main device loader continues instantiating the specified device loaders and calls their ini-
tialization methods. Each technology connector’s device loader sets up its devices and publishes
them as oBIX objects through the gateway’s object broker. To do so, it looks for configuration
inside the devices.xml file.

For the BACnet technology connector, the BACnet network to access has to be configured.
The devices.xml file contains an entry for each network in form of a connector entity.

29

<devices>
[...]
<bacnet>

<connector>
<name>BACnet Lab</name>
<enabled>true</enabled>
<localDeviceID>4235</localDeviceID>
<localPort>47808</localPort>
<broadcastAddress>192.168.161.255</broadcastAddress>
[...]

</connector>
</bacnet>
[...]

</devices>

Figure 5.3: BACnet connector definition

IoTSyS’s BACnet technology connector uses the BACnet4J library by Serotonin Software
[13], which creates a virtual BACnet device through which it interacts with the network, there-
fore a local device identifier is required. An example definition of a BACnet connector is seen
in Figure 5.3.

So far, only network access information has been specified. BACnet devices can be explicitly
configured by defining device entities in the connector. The devices need to be configured
using the address of an object and the oBIX object type that it maps to, specified as an oBIX
object’s class. This class will be instantiated and set up according to the configuration. The URI
under which the device should be published also needs to be specified using an href entity. For
an example device configuration, see Figure 5.4.

5.3 Implementation in IoTSyS

To evaluate the techniques described in this thesis, the BACnet technology connector for IoTSyS
has been extended to support automatic discovery and configuration of BACnet devices. This
section contains implementation details.

BACnet device loader

The configuration for BACnet connectors in the devices.xml file has been extended by
an additional setting, the boolean discovery-enabled. The BACnet device loader reads
the configuration file, and instantiates a BACnetConnector for each connector defined in
devices.xml’s bacnet section. If discovery-enabled is set to true, the BACnet
device loader sets up a listener for BACnet events for the virtual local BACnet device corre-
sponding to the connector. The listener will handle incoming I-Am and I-Have requests.
After the listener is set up, a Who-Is request is broadcast in the network.

30

<devices>
[...]
<bacnet>

<connector>
[...]
<device>

<type>at.ac.tuwien.auto.iotsys.gateway.obix.objects.
iot.sensors.impl.bacnet.TemperatureSensorImplBacnet</type>

<address>2098178, 0, 1, 85</address>
<href>temperature2</href>
<ipv6>2001:629:2500:570::10c</ipv6>
<historyEnabled>true</historyEnabled>

</device>
[...]

</connector>
</bacnet>
[...]

</devices>

Figure 5.4: BACnet device definition

Listener for I-Am and I-Have requests

When the listener receives I-Am and I-Have requests, the information about the sending
device is encapsulated in an instance of RemoteDevice. By reading the device object’s
Object_List property, a list of ObjectIdentifier instances is retrieved.

Each object is given to the BACnetDeviceFactory, which tries to map it to an oBIX
object instance. If successful, the href of the object is set as discussed before, where the top-
level path element corresponds to the connector’s name. The object is then published through
the oBIX object broker.

BACnet Device Factory

The BACnetDeviceFactory class has a static method createDevice that instantiates an
oBIX object implementation based on a BACnet object’s type. It supports the generic object
types discussed in section 3.

31

Generic object implementations

The generic object types have been implemented in a class hierarchy as seen in Figure 5.5.

+ refreshObject() : void
refreshWritable() : void
+ isOutOfService() : boolean
+ isValueCommandable() : boolean

- name : String
- description : String
deviceID : int
objectIdentifier : ObjectIdentifier
propertyIdentifier : PropertyIdentifier
bacnetConnector : BACnetConnector

BacnetObj

+ value() : Real
+ refreshObject() : void
+ writeObject(Obj obj) : void

- value : Real
AnalogBacnetObj

+ value() : Bool
+ refreshObject() : void
+ writeObject(Obj obj) : void

- value : Bool
BinaryBacnetObj

refreshWritable() : void

BinaryInputImpl

refreshWritable() : void

BinaryOutputImpl

refreshWritable() : void

BinaryValueImpl

refreshWritable() : void

AnalogInputImpl

refreshWritable() : void

AnalogValueImpl

refreshWritable() : void

AnalogOutputImpl

+ CONTRACT : String
+ valueContract : String

+ value() : Real

«interface»
AnalogInput

+ CONTRACT : String
+ valueContract : String

+ value() : Real

«interface»
AnalogValue

+ CONTRACT : String
+ valueContract : String

+ value() : Real

«interface»
AnalogOutput

+ CONTRACT : String
+ valueContract : String

+ value() : Bool

«interface»
BinaryInput

+ CONTRACT : String
+ valueContract : String

+ value() : Bool

«interface»
BinaryOutput

+ CONTRACT : String
+ valueContract : String

+ value() : Bool

«interface»
BinaryValue

Figure 5.5: Class hierarchy of the generic object type implementations

Abstract class BACnetObj

The root of the class hierarchy is given by the BACnetObj class. It is an abstract class that
extends the Obj class from the oBIX toolkit. The name and description child objects,
shared by all classes in the hierarchy, are defined here.

When the object is read through the oBIX server, the method refreshObject is called
first. The first time this method is called, the BACnet properties for name and description are
read and stored. On subsequent reads, the stored values are used, as these properties are assumed
not to change over the object’s lifetime.

The class also provides implementations for methods called isOutOfService and
isValueCommandable, which can be used in descendant classes to check if the value object
is writable. To this end, refreshObject also calls the method refreshWritable, which
descendants can overwrite.

32

Analog object types

The abstract class AnalogBacnetObj is the shared parent class for the concrete analog object
type implementations. As such, it defines the child object value of type real.

The refreshObject method is extended by the ability to read the underlying BACnet
object’s value. Additionally, on the first call, the BACnet object’s units are determined and
cached. BACnetEngineeringUnits is an enumerated value. Its integer representation is
mapped to the corresponding oBIX unit contract name by a static HashMap stored in the class
BacnetUnits.

oBIX write requests are handled by the writeObject method. It is implemented by
sending WriteProperty requests to the BACnet object.

The concrete classes inheriting from AnalogBacnetObj are
AnalogInputObjectImpl, AnalogOutputObjectImpl and
AnalogValueObjectImpl. In these concrete classes, the corresponding oBIX con-
tract is set. The contracts are named after the BACnet object type, with the prefix “iot:” (e.g.
iot:AnalogInput).

The concrete classes also implement the refreshWritable method, checking
for writability as discussed in section 3 using the methods isOutOfService and
isValueCommandable defined in BACnetObj.

Binary object types

The abstract class BinaryBacnetObj is the shared parent class for the concrete binary object
type implementations. As such, it defines the child object value of type bool. Its methods and
concrete object type implementations are defined similarly to those of the analog object types.
However, binary objects do not define a unit.

Interaction sequence

Figure 5.6 shows the sequence of messages that occur when the gateway broadcasts a Who_Is
request to discover devices, and a device answering the request. BACnet devices that receive a
Who_Is request answer with an I_Am request. The gateway proceeds by asking for the object
list of the device.

IoTSyS

IoTSyS

BACnet device

BACnet device

Who-Is broadcast message

I-Am request

ReadProperty Object_List

Object_List property

Figure 5.6: Who_Is broadcast is answered by BACnet device

33

After an object that can be mapped is found, the gateway requests some basic information
about the object, such as its name and description, as seen in Figure 5.7. For analog objects, the
units that the value represents are also read.

For input and value objects, the Out_Of_Service and Relinquish_Default prop-
erties may also be requested in order to determine if the object is writable, as described in
section 3.

IoTSyS

IoTSyS

Analog BACnet object

Analog BACnet object

ReadProperty Name

ReadProperty response

ReadProperty Description

ReadProperty response

ReadProperty Present_Value

ReadProperty response

ReadProperty Units

ReadProperty response

(a) Analog BACnet object

IoTSyS

IoTSyS

Binary BACnet object

Binary BACnet object

ReadProperty Name

ReadProperty response

ReadProperty Description

ReadProperty response

ReadProperty Present_Value

ReadProperty response

(b) Binary BACnet object

Figure 5.7: Initial message exchange

When the gateway receives an HTTP GET request for a mapped BACnet object, it refreshes
its value by sending a Read_Property request for the Present_Value property to the
BACnet object (Figure 5.8). The Out_Of_Service and Relinquish_Default proper-
ties might again be requested to update the writability of the object for input and value objects.
Afterwards, the gateway answers the HTTP request with the updated oBIX representation of the
BACnet object.

Client

Client

IoTSyS

IoTSyS

BACnet device

BACnet device

GET /bacnet/123/AnalogInput1 HTTP/1.1

ReadProperty Present_Value

ReadProperty response

HTTP response
[…]<int value="42" />[…]

Figure 5.8: Sequence diagram showing message exchange on GET request

34

HTTP PUT requests are used to write to objects. Input and value objects are not always
writable, and therefore the Out_Of_Service and Relinquish_Default properties are
requested to check for writability of the object. If it is writable, a Write_Property re-
quest is sent by the gateway to the BACnet object to update its Present_Value. After the
Write_Property request is confirmed, the gateway answers the HTTP request with the new
state of the oBIX object.

Client

Client

IoTSyS

IoTSyS

BACnet device

BACnet device

PUT /bacnet/123/AnalogInput1 HTTP/1.1
[…]<int value="42" />[…]

WriteProperty Present_Value

WriteProperty response

oBIX object as HTTP response
[…]<int value="42" />[…]

Figure 5.9: Sequence diagram showing message exchange on PUT request

5.4 Evaluation

At the Vienna University of Technology, a test-bed with several BACnet devices is set up. To
interact with the devices through IoTSyS, they previously had to be manually configured in the
devices.xml file. The auto-discovery and auto-configuration capabilities implemented in
IoTSyS have been tested on this setup.

The configuration for the BACnet connector using auto-discovery used in this case study can
be seen in Figure 5.10.

Using this configuration, the BACnet devices on the test-bed have been successfully discov-
ered and published through the oBIX lobby. In Figure 5.11 the output of querying the oBIX
lobby at /obix is shown. The lobby contains a reference to the top-level connector object.

This object contains references to devices as oBIX objects, as seen in Figure 5.12.

35

<devices>
[...]
<bacnet>

[...]
<connector>
<name>BACnet A-Lab (Auto)</name>
<enabled>true</enabled>
<discovery-enabled>true</discovery-enabled>
<localDeviceID>12345</localDeviceID>
<broadcastAddress>128.130.56.255</broadcastAddress>
<localPort>47808</localPort>

</connector>
</bacnet>

</devices>

Figure 5.10: BACnet connector definition with auto-discovery enabled

<obj href="/obix">
<ref name="about" href="about"/>
<ref href="/watchService" is="obix:WatchService"/>
<ref name="enums" href="/enums" is="obix:obj"/>
<ref name="BACnet A-Lab (Auto)"

href="/BACnetA-Lab(Auto)" is="obix:obj"/>
[...]

</obj>

Figure 5.11: oBIX lobby exposing connector object

<obj name="BACnet A-Lab (Auto)" href="/BACnetA-Lab(Auto)">
<ref name="89785" href="/BACnetA-Lab(Auto)/89785"/>
[...]

</obj>

Figure 5.12: Connector object listing BACnet devices

The device objects contain references to oBIX objects representing the datapoints or objects
of the BACnet device, seen in Figure 5.13

These datapoints and their properties are mapped as discussed in section 3. An example of
such a mapped object, representing a BACnet object from the test-bed, is seen in Figure 5.14.

36

<obj href="/BACnetA-Lab(Auto)/89785">
<ref name="AnalogOutput0"

href="/BACnetA-Lab(Auto)/89785/AnalogOutput0"/>
</obj>

Figure 5.13: Device object listing mapped BACnet objects

<obj name="AnalogOutput0"
href="/BACnetA-Lab(Auto)/89785/AnalogOutput0"
is="iot:AnalogOutput">

<str name="name" href="name" val="TempSensor 0"/>
<str name="description" href="description" val=""/>
<real name="value" href="value" val="21.2" writable="true"

unit="obix:units/degreesCelsius"/>
</obj>

Figure 5.14: BACnet object mapped to oBIX

The study showed that the described techniques successfully create a browsable and ex-
plorable hierarchy that represents the structure of BACnet devices on the test-bed. Reading the
objects repeatedly delivers correct and up-to-date values. The oBIX objects have been used to
successfully write to and control BACnet devices, such as turning lamps on and off.

The quality of the mapping depends in part on the vendors of BACnet devices and the BAC-
net network operators. If the device does not report units, or the name and description aren’t
understandable and comprehensive, or even incorrect, the quality of the mapping suffers, as the
objects’ function cannot be easily determined.

37

CHAPTER 6
Conclusion

The vision of the Internet of Things (IoT), with billions of devices connected and communicating
through the Internet, is increasingly becoming a reality. Among other things, the IoT will help to
realize smart and sustainable building operation. Smart buildings and a smart grid will increase
building efficiency and reduce energy consumption. IPv6 will be a key technology to support the
IoT. New technologies and protocols are developed to specifically meet the demands of small,
low-power devices wanting to participate in the IoT, such as CoAP.

Legacy Building Automation Systems (BAS), like KNX or BACnet, are already widely de-
ployed. It is desirable to use existing BAS infrastructure and let it be part of the IoT. Different
integration approaches to achieve this goal have been explored. oBIX, a standard to represent
and communicate building information through Web services, based on established standards
such as XML and HTTP, promises to be a good fit for building data operating on the IoT.

This thesis proposes a technique to map BACnet devices to oBIX. Using several descriptive
BACnet object properties, generic BACnet objects are mapped to oBIX objects that express the
role and current state of the underlying BACnet object. These oBIX objects can be read from
and written to, transparently accessing the underlying BACnet object. The topology of BACnet
networks is also mapped to browsable oBIX object hierarchies. Furthermore, BACnet’s Remote
Device Management Services have been discussed and a way to automatically discover and map
BACnet devices has been presented. This work allows seamless integration of BACnet devices
into the IoT.

The presented techniques were implemented in IoTSyS, a multi-protocol gateway that makes
devices from different BAS accessible via IP-based addressing and standard protocols, such as
oBIX and CoAP. To evaluate the techniques described in this thesis, the implementation has
been tested on a BACnet test-bed. The effort to set up BACnet networks for use in IoTSyS has
been greatly reduced, requiring only minimal configuration. The resulting mapping of BACnet
devices worked well, although in general, the quality of the mapping depends on the correct and
complete description of BACnet devices by their vendors and the BACnet operators.

39

In this thesis, only the mapping of the six generic BACnet object types has been handled,
which already covers a large subset of common use cases. Further work may include specialized
mapping of other object types or supporting BACnet features like intrinsic reporting and alarms
through the mapping.

40

Bibliography

[1] Standard ASHRAE. Standard 135—2004: BACnet—a data communication protocol for
building automation and control networks. American Society of Heating, Refrigerating and
Air-Conditioning Engineers, Atlanta, Georgia, USA, 2004.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787–2805, 2010.

[3] Francesco Corucci, Giuseppe Anastasi, and Francesco Marcelloni. A WSN-based testbed
for energy efficiency in buildings. In Computers and Communications (ISCC), 2011 IEEE
Symposium on, pages 990–993. IEEE, 2011.

[4] Eric Bloom David Emmerich. Commercial building automation systems. Technical report,
Pike Research, 2012.

[5] Klaus Hartke. Observing resources in CoAP. https://tools.ietf.org/html/
draft-ietf-core-observe-16, 2014. Accessed: 2015-03-23.

[6] Markus Jung. IoTSyS open source project. https://code.google.com/p/
iotsys/. Accessed: 2015-03-23.

[7] Markus Jung, Christian Reinisch, and Wolfgang Kastner. Integrating building automation
systems and IPv6 in the Internet of Things. In Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on, pages 683–688.
IEEE, 2012.

[8] Markus Jung, Jurgen Weidinger, Christian Reinisch, Wolfgang Kastner, Cedric Crettaz,
Alex Olivieri, and Yann Bocchi. A transparent IPv6 multi-protocol gateway to integrate
Building Automation Systems in the Internet of Things. In Green Computing and Com-
munications (GreenCom), 2012 IEEE International Conference on, pages 225–233. IEEE,
2012.

[9] Li Li, Hu Xiaoguang, Chen Ke, and He Ketai. The applications of WiFi-based wireless
sensor network in Internet of Things and smart grid. In Industrial Electronics and Appli-
cations (ICIEA), 2011 6th IEEE Conference on, pages 789–793. IEEE, 2011.

[10] OASIS. OBIX version 1.1 working draft 08. 2013.

41

https://tools.ietf.org/html/draft-ietf-core-observe-16
https://tools.ietf.org/html/draft-ietf-core-observe-16
https://code.google.com/p/iotsys/
https://code.google.com/p/iotsys/

[11] Luis Pérez-Lombard, José Ortiz, and Christine Pout. A review on buildings energy con-
sumption information. Energy and buildings, 40(3):394–398, 2008.

[12] Zach Shelby, Klaus Hartke, and Carsten Bormann. Constrained application protocol
(CoAP). https://tools.ietf.org/html/rfc7252, 2014. Accessed: 2015-03-
23.

[13] Serotonin Software. BACnet4J. http://bacnet4j.sourceforge.net, 2008. Ac-
cessed: 2015-06-18.

[14] International Telecommunication Union. Measuring the information society report. 2014.

[15] Miao Yun and Bu Yuxin. Research on the architecture and key technology of Internet of
Things (IoT) applied on smart grid. In Advances in Energy Engineering (ICAEE), 2010
International Conference on, pages 69–72. IEEE, 2010.

[16] Sébastien Ziegler, Cedric Crettaz, Latif Ladid, Srdjan Krco, Boris Pokric, Antonio F
Skarmeta, Antonio Jara, Wolfgang Kastner, and Markus Jung. IoT6–moving to an IPv6-
based future IoT. In The Future Internet, pages 161–172. Springer, 2013.

42

https://tools.ietf.org/html/rfc7252
http://bacnet4j.sourceforge.net

	Introduction
	Building Automation System Trends
	The Internet of Things
	IoT Gateways
	Goals, Methodology and Structure of the Thesis

	State of the Art
	Internet of Things
	CoAP
	oBIX
	BACnet

	Generic oBIX mapping for BACnet devices
	Mapping of Present_Value
	Mapping the object identifier to a URI
	Mapping read and write requests
	Check if BACnet object is writable
	Additional properties
	Completed oBIX object

	Auto-discovery of BACnet devices
	BACnet's Remote Device Management Services
	BACnet/IP broadcast management devices
	Automatic configuration for oBIX servers

	Case Study
	The IoTSyS Gateway
	Architecture of IoTSyS
	Implementation in IoTSyS
	Evaluation

	Conclusion
	Bibliography

