
Integration des Functional
Mockup Interfaces in

IEC 61499-basierte Komponenten

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Michael H. Spiegel
Matrikelnummer 1125727

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Wolfgang Kastner
Mitwirkung: Univ. Ass. Dipl.-Ing. Günther Gridling

Wien, 5. Oktober 2015
Michael H. Spiegel Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Integrating the Functional
Mockup Interface into

IEC 61499-based components

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Michael H. Spiegel
Registration Number 1125727

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Wolfgang Kastner
Assistance: Univ. Ass. Dipl.-Ing. Günther Gridling

Vienna, 5th October, 2015
Michael H. Spiegel Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael H. Spiegel
Wurzbachtalgasse 25, 1140 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. Oktober 2015
Michael H. Spiegel

v

Acknowledgements

I would like to thank the Austrian Institute of Technology, which founded the presented
work and Prof. Wolfgang Kastner and Dipl.-Ing. Günther Gridling representing the
Automation Systems Group who supervised this thesis and enabled a fruitful cooperation.
Furthermore, I would like to thank Fabian Leimgruber, who supervised my work at
the Austrian Institute of Technology and who always provided valuable and supporting
feedback. I would also like to express my gratitude to my former colleagues at the
Austrian Institute of Technology, in particular Johannes Kathan and Dr. Edmund Widl.
Thank you for supporting my work and for many inspiring and fruitful discussions we
have had during the last months! Last but not least I want to thank Stefanie Berger,
who spent hours in proof reading this thesis.

vii

Kurzfassung

Zahlreiche technische Prozesse werden mittels industrieller Steuerungen kontrolliert. Der
IEC Standard 61499 spezifiziert eine Beschreibungssprache zur Konfiguration von verteil-
ter Automatisierungsinfrastruktur auf der Systemebene. Sein Anwendungsfeld erstreckt
sich von der Steuerung produktiver Systeme bis zur Modellierung von Steuerungsaspekten
in gekoppelten Simulationen. In diesen Simulationen werden derzeit IEC 61499-basierte
Steuerungen meist mittels programmspezifischer Schnittstellen mit Simulationsmodellen
gekoppelt. Um den Simulationsprozess auf domänenspezifische Aspekte zu fokussieren
und die arbeitsintensive Kopplung der Programme zu erleichtern, ist die Verwendung
von standardisierten Schnittstellen wie dem Functional Mockup Interface anzudenken.

In dieser Bachelorarbeit wird eine neuartige vorhersagebasierte Methode zur Kopplung
von ereignisbasierten Komponenten mittels Functional Mockup Interface vorgestellt und
auf IEC 61499-basierte Regelungen beziehungsweise Steuerungen angewandt. Die Arbeit
dokumentiert die dafür notwendigen Anpassungen der Methode und erweitert diese
für den Einsatz in Echtzeitsystemen. Weiters wurde der vorgeschlagene Ansatz zur
Übertragung der Ausgaben des Simulationsmodells an die eingesetzten Regelungen
beziehungsweise Steuerungen implementiert und evaluiert. Dieser Ansatz zeichnet sich
durch eine Reduktion der ausgelösten Ereignisse sowie durch eine zeitnahe Kommunikation
aus. Neben algorithmischen Details und der eingesetzten Softwarearchitektur werden
die Testanordnungen sowie die experimentell ermittelten Ergebnisse der Evaluierung
vorgestellt. In einem solchen Experiment werden die Ausgaben eines Simulationsmodells
an einen IEC 61499-basierten Wechselrichter-Teststand zeitgerecht übertragen und die
aufgenommene Leistung gemäß der Vorgaben angepasst.

ix

Abstract

Numerous technical processes are controlled by an automation infrastructure. The
IEC 61499 standard provides a system level design language for complex distributed
automation systems. It may be deployed in a productive environment or used to model
control related aspects in a co-simulation setup. State of the art tool coupling approaches
link IEC 61499-based controllers via simulation tool-specific interfaces. Labor intensive
tool coupling may be avoided by using standardized interfaces such as the Functional
Mockup Interface. This thesis presents a novel predictive approach which may be used
to couple event-based components via the Functional Mockup Interface. It applies
this approach to IEC 61499-based controllers. Additional modifications were made in
order to allow a soft real-time operation. The implementation and evaluation of the
presented approach are also discussed in this thesis. Furthermore, this thesis deals with
algorithmic details and the implemented software architecture. The prediction-based
approach reduces the number of triggered events and precisely adapts to the timing of
the model. First experiments which include an inverter test-stand show promising results.
The outputs of a test model were successfully transferred to the test-stand hardware.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Main Goals . 3
1.4 Methodology . 3
1.5 Structure . 4

2 Related Work 5
2.1 Discussion of the IEC 61499 . 5
2.2 Using IEC 61499-Based Controllers in Co-Simulation 6
2.3 Using System Models in IEC 61499-Based Controllers 7
2.4 Co-Simulation and Model-Exchange Interfaces 7
2.5 Hardware-in-the-Loop and Real-Time Testing 10
2.6 Contribution . 10

3 Theoretical Background 13
3.1 IEC 61499 Component and Execution Model 13
3.2 Functional Mockup Interface Model . 15
3.3 Predictive Model Coupling . 16

4 Implementation 19
4.1 Use-Cases . 19
4.2 Program Flow . 20
4.3 User Interface Design . 23

xiii

4.4 Software Design . 28
4.5 External Software . 39

5 Evaluation 41
5.1 Unit Testing . 41
5.2 Proof of Concept Setup . 44
5.3 Timing Evaluation . 52
5.4 Measurements . 56

6 Conclusion and Outlook 61

Bibliography 63

List of Figures

3.1 IEC 61499 Device Model Example . 13

4.1 Interface Program Flow . 21
4.2 Basic Program Design . 29
4.3 Main Basic Service Classes . 31
4.4 Abstract Event Class and Sub-Classes . 33
4.5 Event Dispatcher Class . 34
4.6 Event Predictor Classes . 36
4.7 Networking Module Overview . 38

5.1 Publisher Test Setup . 42
5.2 Dynamic Sampling Component . 45
5.3 Test Model . 45
5.4 Simple Boiler Model . 47
5.5 Household Model . 48
5.6 Hardware Test-Stand (Taken from [22]) . 49
5.7 IEC 61499-Based Interface . 50
5.8 IEC 61499-Based Test Application . 51
5.9 Event Delays of the Household Model . 53
5.10 Event Delays of the Test Model (Fast Configuration) 54
5.11 Event Delays of the Test Model (Slow Configuration) 55
5.12 Comparison of the Outputs of the Household Model 56
5.13 Measurement and Simulation Results (Test Model, Fast Configuration) . . . 57

xiv

5.14 Measurement and Simulation Results (Test Model, Slow Configuration) . . . 58

List of Tables

4.1 Mandatory Properties . 24
4.2 Optional Properties . 24
4.3 Functional Mockup Interface (FMI) Type Numbers 26
4.4 Event Stage Encoding . 27
4.5 Timing File Record Description . 28

5.1 Test Model Parameters . 46
5.2 Timing Statistic of the Household Model Experiment 54
5.3 Timing Statistic of the Test Model Experiments 55

xv

CHAPTER 1
Introduction

A broad variety of technological domains require a flexible, scalable and dependable
automation infrastructure. It has to efficiently control the technical processes of the
domain which range from chemical plants to electricity grids. For instance, future manu-
facturing processes are expected to require advanced Information and Communication
Technology (ICT) and automation systems [18, 61]. They support upcoming trends such
as mass customization in manufacturing. First experimental factories show the benefits
of a flexible automation infrastructure and produce customized products at the cost of
mass goods [42].

The electric energy domain, likewise, has to perform fundamental transitions in order
to face grand societal challenges such as combatting climate change [22, 61]. Fossil
fuel-based electricity generation has a significant share in total man-made greenhouse
gas emissions. The energy supply sector globally accounts for approximately 26% of the
total greenhouse gas emissions [37]. In order to reduce the anthropogenic greenhouse gas
emissions, renewable energy sources need to be integrated into the energy systems [22, 68,
69]. Such energy sources are, for example, solar Photovoltaic (PV), wind generators, and
biomass. The variability of many renewable energy sources is a major challenge [68]. It
requires the development of flexibility options such as demand-side response and energy
storage. Traditional electricity transmission and distribution networks are not designed
to handle a high number of renewable and distributed electricity producers [22]. Smart
grids are developed in order to face that challenge. They enable demand response and
the large scale integration of variable energy sources [22, 70].

The International Electrotechnical Commission (IEC) standard 61499 specifies a
system level design language for distributed automation systems [6, 41, 42]. It has shown
its benefits in many technical domains such as manufacturing and power systems [10, 23,
42, 44, 51, 53]. The IEC 61499 provides the required flexibility and reusability and may
be used to implement advanced control strategies. Some authors have already shown
that it is beneficial to use the same IEC 61499-based controls both during design as
well as in the field [22, 44, 51]. Due to the flexibility of the standard the same control

1

applications can be used in a virtual testing setup and in a productive environment. The
actual implementation of the control logic does not have to be changed.

Note that some parts of this thesis have already been published at the proceedings of
the workshop on modeling and simulation of cyber-physical energy systems [43]. The
conference paper was created under the kind supervision of Fabian Leimgruber, Edmund
Widl and Günther Gridling.

1.1 Motivation
The development of cyber-physical energy systems or sophisticated manufacturing systems,
for instance, requires advanced simulation and testing capabilities [22, 61]. Frequently,
different specialized tools and models have to be coupled in order to accurately model
the behavior of a system [10, 44, 53]. For example, a smart grid model may include one
tool which models the behavior of a grid. Another independent tool may implement
the control logic of a grid component. Both tools have to be coupled in order to gain a
holistic view.

In the energy domain, development and testing is rarely constrained to pure virtual
simulations [22, 64]. Controllers which run on their target hardware and real power
hardware may be coupled with (real-time) simulations to verify their operation. Depending
on the Hardware under Test (HuT), different interfaces are needed to couple various
kinds of hardware. Whilst a controller only needs low energy interfaces such as a network
connection to transmit the control information, power Hardware-in-the-Loop (HIL)
experiments require hardware interfaces which emulate high power components such as
PV arrays or distribution grids. For instance, the inverter test-stand presented by Andrén
et al. features a Direct Current (DC) supply which mimics a PV array, a connection to
the local power grid, and an adjustable local load [22].

1.2 Problem Statement
A professional and seamless tool coupling work-flow reduces the overhead of coupling
different simulation tools. It allows to focus on domain related aspects instead of interface
implementations. Existing model and tool coupling approaches in the IEC 61499 domain
often require tool or application-specific interfaces [10, 44, 51, 53]. Most tools aiming at
simulation do not implement communication standards which are used in the automation
domain [71]. Hence, tool-specific interfaces are deployed.

The FMI standard provides tool-independent interfaces to couple simulation tools and
models. Several simulation tools support the FMI interface but no FMI enabled IEC 61499-
based Runtime Infrastructure (RTI) is known [7]. It is expected that interaction between
simulations and IEC 61499-based controllers via an FMI enhances the development of
many energy related cyber-physical systems.

Since many automation infrastructures also include a Supervisory Control and Data
Acquisition (SCADA) system which provides a user interface, coupling may also be done
at the SCADA level. A SCADA level integration may not only couple the automation

2

infrastructure with FMI-based models but may also generate new prospects in usability,
flexibility and the need for additional infrastructure. Such a SCADA system which
interfaces a plant model may execute without any control-level implementation at all.
Similar to IEC 61499-based RTIs, no FMI enabled SCADA system is known.

Time management and time synchronization is a crucial part in coupling simulation
tools and models [10]. The notion of time of a tool needs to be synchronized in order to
get meaningful results. Many RTIs, SCADA systems and most HuT execute in real-time
only [9, 31, 46]. Hence, the implemented model or tool coupling setup has to have
real-time capabilities.

One possible use-case is the automation of the test-stand presented by Andrén et
al. [22]. In their setup, the local load is controlled by an IEC 61499-based controller
and a SCADA system. Currently, the load set-points are entered statically and mostly
in-time. A model or tool interaction may automate the experiments and may provide
dynamically generated set-points. Other use-cases include controller HIL and pure virtual
co-simulation experiments.

1.3 Main Goals
First, this thesis shall briefly summarize work which is related to tool and model coupling,
focusing in particular on smart-grid related literature and use-cases. Then, it will describe
the implementation and evaluation of an FMI-based model coupling approach. In order
to couple IEC 61499-based controllers or SCADA systems with FMI-based models, a
novel model coupling approach which was introduced by Müller et al. and Widl et al. is
adopted [13, 27]. The approach uses a prediction-based methodology which computes
future events. The adoptions should target a soft real-time operation of the interfaced
components. Furthermore, the algorithm may be altered in order to couple IEC 61499-
based controllers. To couple IEC 61499-based controllers as well as SCADA systems, an
intermediate protocol may be used.

The implemented software design must follow the modified prediction-based approach.
It targets maintainability, usability, and portability aspects. The intended software
life-time is set beyond the scope of this thesis. Future modifications have to result
in adequate implementation effort. Every developed interface software provides unit
test-cases which test its functionality. The unit test-cases shall target the boundary
values of the program instead of documenting the intended operating conditions. The
implementation shall be evaluated in terms of its timing capabilities and its expected
accuracy. The evaluation shall include the test-stand hardware and simple test models.
Additional experiments may be conducted to further evaluate the implementation.

1.4 Methodology
First, the chosen approach which includes necessary modifications of an existing approach
is shortly described. Based on the approach, an interface software is designed. The
design fulfills the main goals described in section 1.3. Following the software design, the

3

interface software is implemented. The software components are tested by automated
unit test-cases which check the program functionality.

Based on the prototypical implementation, the capabilities of the modified approach
are evaluated. Therefore, a dedicated test infrastructure is used. The evaluation is
based on two simple test models which are accessed via FMI, a local IEC 61499-based
test application, and the test-stand infrastructure. The timely behavior of every setup
is evaluated based on different sets of timing records. Power measurements which are
captured by the test-stand and the outputs of the local test application are used to
evaluate the simulation results.

Due to the limited scope of this thesis, only a one directional information flow is
implemented and evaluated. The outputs of a model are sent to the IEC 61499-based
controllers but the model currently does not receive information from the IEC 61499-based
infrastructure. Nevertheless, the implementation tries to prepare future extensions which
allow a closed loop operation.

1.5 Structure
Chapter 2 summarizes the state of the art. It discusses work related to IEC 61499,
co-simulation and model exchange interfaces as well as work related to HIL setups.
Additionally, work concerning IEC 61499-based controllers in co-simulation setups and
system models in IEC 61499-based controls is described. Chapter 3.3 shortly states the
theoretical background and introduces the implemented approach. The implementation
of an interface component which enables IEC 61499-based controllers to utilize simulation
models is described in chapter 4. Chapter 4 also describes the user interface, the software
architecture and lists deployed third party software. The implemented test-cases and the
evaluation of the approach are described in chapter 5. Chapter 6 concludes the findings
and lists open questions which exceed the scope of this thesis.

4

CHAPTER 2
Related Work

2.1 Discussion of the IEC 61499
The IEC standard 61499 defines a system level design language for distributed automation
systems [6, 41]. It is available in the second edition and has been developed for distributed,
modular, (re)configurable, and flexible control systems [6, 52]. The IEC 61499 extends the
Function Block (FB) concept of the well established IEC 61131-3 by an event handling
mechanism [52]. Additionally, FBs are extended to provide a finite automaton named
Execution Control Chart (ECC) which controls the execution of the algorithms of a FB
[6, 41]. The FB concept provides the ability to encapsulate algorithms and data into
robust and reusable components [6, 52] resulting in an event-based and object-oriented
engineering approach. To gain interoperability between different devices and vendors, an
Extensible Markup Language (XML) format which stores system-configurations is also
defined by the IEC 61499 [41].

First professional IEC 61499-based solutions are now available and various publications
discuss different implementations, expected advantages and the integration of concepts
from computer science [42]. Special attention is put to several ambiguities, mostly in
the first edition of the standard. These ambiguities lead to different interpretations of
the defined execution models and often to incompatible system designs [41, 42, 52]. One
of the spotted ambiguities refers to the lifetime of event-input variables [41]. When
clearing event-variables immediately after their first use, transitions within the ECC might
get lost, while keeping them after the first positive transition might trigger undesired
transmissions.

Another issue related to the IEC 61499 is the execution order within compound FBs
which consist of other FBs. The execution order is not entirely defined by the abstract
event-flow model [41, 52]. Different scheduling schemes, including sequential scheduling
using global or local queues, cyclic and parallel executions are feasible. Miscellaneous
scheduling schemes could lead to different results, especially if an input variable content
is latched more than once. Also, real-time parameters like the responsiveness vary

5

significantly for different execution models [52]. Attempts have been made to address
the ambiguities by developing compliance profiles which further specify the execution
model [29, 41].

2.2 Using IEC 61499-Based Controllers in Co-Simulation

IEC 61499-based controls have been successfully coupled with simulation tools to model
control-specific behavior. Yang et al. presented a proxy-based approach simulating the
execution time of a controller [10]. The proxy-based approach does not require any
real-time simulation to run the model. Instead, the control reaction is delayed according
to the simulation time and the estimated reaction time. On each variation of a simulated
value in the physical domain, a control event is generated. This event triggers the
execution of the IEC 61499-based control and the result is fed back using the time-proxy.

Stifter et al. presented a co-simulation framework for electrical power systems, which
relies on open-source software [44]. In the presented setup, GridLAB-D takes control
over the simulation. Some battery models are added using the FMI export feature of
OpenModelica. The PSAT toolbox running on GNU Octave was integrated using a
thin wrapper accessing the data of GNU Octave. Additionally, the IEC 61499 controller
4DIAC FORTE was accessed using TCP/IP-Sockets and ASN.1. Strasser et al. presented
a similar approach simulating an under-load tap changer and its controller using GNU
Octave and 4DIAC FORTE [53]. The simulated voltage of the secondary winding of the
transformer is directly passed on from GNU Octave to the controller using a TCP/IP-
connection too. The controller returns the resulting tap position and the next simulation
step is performed.

Another application of co-simulation was presented by Strasser et al., who introduced
a co-simulation training platform tailored to smart-grid applications [51]. In contrast to
other work, the platform is used to educate students and power systems professionals in
increasingly complex smart-grid applications. The software tool PowerFactory implements
the grid model of the platform and acts as the simulation master. PowerFactory provides
several interfaces like Dynamic-Link Library (DLL), OPC or a MATLAB/Simulink
interface used to include other simulation tools and models. A control logic of a test-
stand and a Human Machine Interface (HMI) was also implemented by 4DIAC and the
SCADA system ScadaBR.

Although the reviewed papers presented approaches to couple separate IEC 61499-
based controls with co-simulation environments, additonal HuT was not included. Also,
the application of an automation infrastructure which emulates power grids was not
further discussed in this context. The communication between the simulation software and
the controller was implemented using TCP/IP- or UDP/IP-connections in conjunction
with application-specific interfaces. Because of the high level of necessary adoptions, these
interfaces cannot be easily used to couple additional software tools with the deployed
controllers. The application of co-simulation specific interfaces, like the FMI [65] to
couple IEC 61499-based infrastructure was not demonstrated.

6

2.3 Using System Models in IEC 61499-Based Controllers

Though some work has been published on using IEC 61499-based controls within co-
simulation environments, there is not much focusing on integrating plant simulations
within IEC 61499-based architectures. Hegny et al. presented an approach which runs
production plant simulation models on IEC 61499-based controls [20]. They proposed a
common automation component model to facilitate an integrated model-driven engineering
approach for industrial automation. The automation component model uses timed state
charts, a subset of Unified Modeling Language (UML) state chart diagrams, as a general
plant model. To run a hierarchically structured plant model, it is translated into an
IEC 61499 application using the Eclipse Modeling Project tools. Each automation
component is mapped to FBs utilizing the ECC and delay FBs to implement timed
behavior.

Integration of physical plant models and the automation control logic is proposed
based on a modified version of the layered model-view-control design [19]. The layered
model-view-control design pattern utilizes a plant model and a view component providing
a graphical display of the data [45]. After the validation of the controller component, the
model and the view components will be replaced by interface components. The interface
components access the physical system instead of the model data. Replacing the model
should be eased by specifying the interfaces of the plant before starting the controller
design [19]. Based on the FB-type, the actually instantiated implementation is chosen by
the runtime environment.

Advantages such as further using existing designs are seen in integrating domain spe-
cific tools [18, p.59ff]. The author identified three different ways of extracting information
from legacy applications. The first solution, directly implementing the export functional-
ity within the application, can be considered to be optimal. Other ways include external
model-to-model transformations which optionally use an intermediate vendor-neutral
data format. Transformation of automation component models back to legacy models is
discussed as model-to-model or model-to-code transformation which is also facilitated by
the proposed architecture. The usage of external models without transforming them into
the automation component model is not discussed in detail [18, 19, 20].

Some literature related to co-simulation which is presented in section 2.2 uses indepen-
dent components to run the control logic and the simulation [10, 44, 51, 53]. Although
the focus is put on the co-simulation point of view, some results are applicable to the
automation point of view as well. These results include the communication paradigms
used between the co-simulation environment and the IEC 61499-based controller. It
is important to note that the schedule and control of the simulations are up to the
co-simulation frameworks which limits the applicability to time-unaware cases.

2.4 Co-Simulation and Model-Exchange Interfaces

Coupling one or more simulation models and simulation tools to gain a more compre-
hensive simulation has already been successfully demonstrated [2, 10, 21, 44, 51, 53].

7

Coupling is done by tool-specific interfaces on the one hand and open standards like the
FMI or High Level Architecture (HLA) on the other hand. The FMI standard defines an
interface for coupling two or more simulation tools [65] and for sharing models between
different simulation tools [66]. The HLA not only defines the interfaces but also a common
integrated architecture and a general framework which addresses interoperability and
reuse of different types of simulations [15].

The FMI was initiated by Daimler AG, first released in 2010 and recently updated
in 2014 by the MODELISAR consortium [60, 65, 66, 67]. The first version defines two
main parts, the FMI for model exchange and the FMI for co-simulation. The former part
defines interfaces to couple single simulation models without a dedicated solver. The
latter part defines interfaces for coupling two or more simulation tools which include
their own solvers. The second version of the standard combines the two main parts into
a single standard document and defines several new features [67].

Single simulation components using the FMI standard are encapsulated into Functional
Mockup Units (FMUs), a zip-compressed archive containing all files needed [60, 65, 66].
An XML file which is included into the FMU describes all variables exposed to the
environment, co-simulation tool capabilities and other model information required. The
actual interface calculating the model equations or communicating with the co-simulation
tool is expressed by a small set of C-functions which could also be provided as binary
files. For model exchange, ordinary differential equations in state space form including
discontinuities are supported [60, 66]. Discontinuities are represented by events indicating
a sudden state change. Exported models usually do not include their own solvers.
Numerical integration has to be provided by the simulation tool which imports the model.

In contrast, the FMI for co-simulation requires the FMU to integrate its own solver
and restricts communication to discrete communication points only [60, 65]. A master
algorithm which is not specified in the standard controls the data exchange between
single FMUs and manages the simulation time. The FMI for co-simulation allows several
different levels of tool integration. Such levels include one process, one machine, and
fully-distributed co-simulations. In each case only the C-function-based interface without
any communication protocol is specified by the FMI.

The other aforementioned standard, the HLA, was defined in the Institute of Electrical
and Electronics Engineers (IEEE) standard 1516. It was first released in 2000 and revised
in 2010 [15, 21]. The standard refers to a collection of interacting simulation tools as
federation and to each single tool as federate. Federates specify the information they could
provide by a simulation object model. The information exchanged within a federation
has to be specified using a federation object model. Additionally, a management object
model is provided to monitor and control the execution of the federation. Objects within
the context of HLA are collections of attributes which could be defined by XML-based
object model templates.

Similar to the FMI, the HMI also supports hybrid simulations combining time-discrete
and event-discrete approaches. A dedicated RTI controls the execution of federations,
handles the communication between federates and manages the simulation time [15,
21]. The HLA not only specifies the object model declaration but also the services to

8

be implemented by the RTI and rules for proper interaction between federates. Beside
programming language independent service definitions, the HLA also provides C++ and
Java interfaces as well as Web Services Description Language (WSDL) bindings.

Müller et al. describe a HLA-based co-simulation framework tailored to the needs of
smart-grid applications [21]. The presented framework called INSPIRE integrated an
ICT simulation tool and a power system simulation tool. The scenario description which
is given as an IEC 61970 compatible structure is parsed and translated to provide HLA
object models. INSPIRE also logs system states during the execution of the simulation
and provides tools to examine the simulated system. The paper also presents a use-case
of INSPIRE which demonstrates the dependencies between the ICT and the physical
domain.

A combination of the FMI and the HLA was first presented by Awais et al. [28].
They proposed two algorithms integrating exported FMUs into a HLA and evaluated
them empirically. A naive approach simply increasing the simulation time by a fixed
lookahead-value and integrating the model provided by the FMU will fail if events are
generated too fast. Instead, both algorithms are based on a zero-lookahead simulation-
based approach. The first one assumes a fixed step size and the second one is capable of
using variable step sizes. Both algorithms were able to operate without losing any event;
however, the algorithm using a variable step size generated significantly less events which
improved the simulation performance.

Strasser et al. discussed the applicability of open standards in smart-grid applications
including different domains [53]. They stated that IEC 61850 only specifies an information
model and the transmission of that information. The device functionality needs to be
described using other standards such as IEC 61499.

Andrén et al. identified several open issues within smart-grid model and design
approaches and envisioned a comprehensive smart-grid information model including
physical, communication, control, and application domains [23]. They argued that closer
cooperation of simulation models and real power systems resulting in a multi-directional
information flow between planning, simulation/validation and operation is needed to
face upcoming challenges. A comprehensive smart-grid information model supporting
the process is not available so far. The authors proposed a holistic smart-grid model
addressing this issue. The model should be based on existing domain models such
as the ones defined in IEC 61499 and IEC 61850. When integrating multiple domain
models into a single holistic model, information shared between different domains needs
to be synchronized. It is proposed to access single domain models via domain specific
views, which display only domain relevant information. The authors concluded that
the approach should be beneficial for long operational power systems as well as rapidly
changing smart-grids.

Another approach which provides tighter tool integration was presented by Biffl et al.
They introduced the concept of an automation service bus [25]. The automation service
bus should bridge existing gaps between models and tools in the engineering process. It
is based on the enterprise service bus and uses message oriented middleware to provide a
communication infrastructure between several involved tools. The authors demonstrated

9

the concept based on an enhanced engineering work-flow. It includes automatic model
updates, build and test processes as well as automated issue tracking.

2.5 Hardware-in-the-Loop and Real-Time Testing
In HIL setups, stability of the system is a necessary, accuracy a sufficient condition [64].
The theoretical groundwork of testing and analyzing stability and accuracy is given by
means of system theory [16, 17]. Many works which summarize the theoretical basis in a
general manner already exist [16, 17, 36, 59]. Viehweider et al. applied system theory
to stabilize Power-HIL setups [64]. The power amplifier driving the HuT and the HuT
itself are approximated by linear models. To couple the simulation with the HuT, a
current/voltage-source pair is used. The current source is virtually connected to the
simulation model while the amplifier acts as the voltage source. Each source interacts
with the other forming a closed loop control system. The effects of hardware inductance
addition, feedback current filtering and multi-rate partitioning in stabilizing the system
were analyzed and evaluated. All methods are able to stabilize the system but adding a
hardware inductance decreases accuracy significantly. Multi-rate partitioning as well as
increasing the overall sampling rate showed the best results.

Guo et al. demonstrated the capabilities of real-time simulators in simulating a small
community microgrid [2]. They put special emphasis on the detailed emulation of the
communication network by using a dedicated network simulator. It was shown that
the four deployed real-time simulators are able to simulate numerous switched devices
with over 100 single switches at 10 kHz switching frequency. Each simulator in the
presented setup is interconnected via analogue and digital I/O-lines. Additionally, they
are connected via a network simulator. The authors concluded that the communication
network enables new protection schemes but adequate network simulation is necessary to
predict the components’ behavior accurately. The integration of real HIL was not part of
the presented work.

2.6 Contribution
The integration of IEC 61499-based controls in co-simulation has been successfully shown
[10, 44, 51, 53]. However, the integration of simulation models which do not provide their
own solver into IEC 61499-based controllers is still rare. Although Hegny et al. presented
an approach of modeling automation infrastructure within IEC 61499, the usage of
continuous state space models was not covered [18, 20]. Some standards for co-simulation
and model exchange are already available [15, 65, 66, 67] but the cooperation of such
a standard with IEC 61499-based controllers has not been shown. As a consequence,
previous work regarding the integration of models and simulation tools into IEC 61499
applications relies on tool-dependent interfaces.

HIL and Power-HIL setups have already been studied from many points of view [50,
64] but IEC 61499-based controllers could not be found as an intermediate link between
the HuT and the simulated environment. The absence of IEC 61499-based controllers

10

in HIL setups might be based on the lack of feasible interfaces to common simulation
environments. However, IEC 61499-based controllers are still in use to control HuT in a
human-operated test-stand [51].

This bachelor thesis addresses these issues by adopting an FMI-based predictive model
coupling approach [13, 27]. It uses the FMI standard to represent a broad variety of
different simulation tools without the need of dealing with tool specifics. Special emphasis
is put on HIL setups and necessary features. In addition, the results are demonstrated
by implementing and evaluating the adopted approach.

11

CHAPTER 3
Theoretical Background

3.1 IEC 61499 Component and Execution Model

The main objective of the IEC standard 61499-1 is to provide a reference model for
distributed Industrial-Process Measurement and Control Systems (IPMCSs) [6]. It defines
several different entities forming an IPMCS. The function of a system is modelled as
a possibly distributed application consisting of subapplications and a hierarchy of FBs.

Device I

Resource A Resource B Resource C

Application 1

Application 2

Device II

Application 0

Resource A Resource B Resource C

Applica-
tion 5Application 3

Network Connection

INIT INITO
 EI EO

QI QO
SD_1 RD_1
SD_2 RD_2
SD_3 RD_3
SD_4 RD_4

INIT INITO
 EI EO

QI QO
SD_1 RD_1
SD_2 RD_2
SD_3 RD_3
SD_4 RD_4

INIT INITO
 EI EO

QI QO
SD_1 RD_1
SD_2 RD_2
SD_3 RD_3
SD_4 RD_4

INIT INITO
 EI EO

QI QO
SD_1 RD_1
SD_2 RD_2
SD_3 RD_3
SD_4 RD_4

Ap

INIT INITO
 EI EO

QI QO
SD_1 RD_1
SD_2 RD_2
SD_3 RD_3
SD_4 RD_4

INIT INITO
 EI EO

QI QO
SD_1 RD_1
SD_2 RD_2
SD_3 RD_3
SD_4 RD_4

Subapplications and
Function Block Networks

Application 4

Figure 3.1: IEC 61499 Device Model Example

13

Applications may be distributed along multiple resources contained within a specific
device. A resource is described as “a functional unit, which has independent control
of its operation” [6, p.21] containing one or more local applications or local parts of
applications. Figure 3.1 provides an example configuration illustrating the application,
resource and device mapping.

The execution of function blocks is scheduled on the resource level based on the
resource scheduling function. Scheduling is determined by the occurrence of events,
FB interconnections and additional scheduling information such as priorities. Each FB
instance is a named copy of a specific FB type. FBs may be interconnected within FB
networks by connecting FB in- and outputs. Two types of in- and outputs exist, one
passing events on and one transferring data between FBs. If an event is passed on to the
event input of a FB the FB will be scheduled for execution. It is possible to associate
data in- and outputs with event in- and outputs respectively. If an event is triggered,
data will be provided at the associated in- or outputs.

The IEC 61499 defines three major classes of FB types: basic-, composite- and
service interface FB types. Basic FBs encapsulate a set of algorithms and local variables
and provide a set of in- and outputs [6, p.30ff]. The execution of algorithms and the
emittance of events is controlled by an ECC, a finite state automaton. Each state may
be associated with a set of actions specifying the algorithm executed on entering the
state. An associated action may also include an event to be triggered on completing the
algorithm. Transitions between states have a transition condition containing an event
reference, a guard condition or both. If the transition condition is fulfilled, i.e. the guard
condition is true and the event occurred, the corresponding state will be entered. Such a
state transition is called crossing a transition. The FB execution stops if no transition
can be crossed. The specification of rules necessary to describe the algorithm is beyond
the specification provided by IEC 61499 but FBs as defined in IEC 61131-3 may be used
[6, p.84].

Composite Function Block (CFB) types contain a set of interconnected component
FB types, called FB network, which defined the behaviour of the CFB. The declaration
of CFB types follows the rules of basic FB types, except that the event in- and outputs
of the CFB may be connected to the out- and inputs of the component FB [6, p.35ff].
The event connections represent the sequence of FB invocations inside the CFB.

The third major class of FB types defined are Service Interface Function Block (SIFB)
types, whose instances provide service to the application [6, p.44ff]. SIFBs are based
on abstract interactions between applications and resources which are independent
of the actual implementation. These interactions are called service primitives. The
behaviour of SIFBs is described by sequences of linked service primitives called Service
Sequence Diagrams (SSDs). SIFBs are commonly used to access functionality such as
process and communication interfaces provided by the underlying infrastructure. The
IEC 61499 also defines two special kinds of SIFBs, communication FBs and management
FBs. Communication FBs provide interfaces between applications and communication
mapping functions of a resource. They can be used to exchange information between
different applications or between different parts of an application. Management FBs may

14

be used to perform application management functions such as creating, starting and
stopping specific entities.

An application or subapplication may be distributed among different devices by
allocating the used function block instances to different resources [6, p.27]. FBs are
specified to be the basic unit of distribution. As a consequence FBs contained within
a CFB reside in the same associated resource. It is not allowed to use subapplications
within CFBs.

3.2 Functional Mockup Interface Model

The first version of the FMI protocol suite contains two separate interfaces, the FMI
for model exchange [66] and the FMI for co-simulation [65]. The first interface is used
to exchange dynamic system models between simulation tools and the second interface
couples independent simulations. In addition, a second version of the FMI standard
exists, combining the two former standards in one document [67]. The second version
introduces several improvements and new features; however, due to the fact that it has
been released in June 2014, many tools do not yet support it. As a consequence the
theoretical discussion provided will focus on the first version of the standard. Additionally,
remarks pointing out relevant differences between the FMI versions may be provided.

Some parts such as the definition of input and output variables are commonly used in
the two interfaces of the FMI standard but some parts such as the model representations
differ significantly. In contrast to the discrete event-based execution model of IEC 61499,
FMI supports the simulation of piecewise continuous systems. Time is expressed in the
first version of the FMI by a dense time base. The second version uses a super dense time
base additionally enumerating events at a given instant in time [67, p.69]. In FMI terms
points of discontinuities are also called event but to explicitly distinguish them from
IEC 61499-events, they will be called FMI-events. Different types of FMI-events including
state and time events exist but every FMI-event indicates a possible discontinuity in the
output or state derivative function.

Both FMI interfaces call a single component encapsulating a model or a co-simulation
tool an FMU instance. FMUs are exchanged as zip-compressed archives containing all
relevant information such as input and output descriptions as well as executable interface
code. Static information such as the number and type of in- and outputs as well as model
parameters are represented in an XML file within the FMU. Functions calculating the
model equations may be provided as C-code or by platform dependent executable binary
files. Since this thesis focuses on FMI for model exchange, FMI for co-simulation is not
described in detail.

The FMI for model exchange represents systems as Ordinary Differential Equations
(ODEs) in state space form [66, p.9ff]. Each FMU provides a set of C-functions to access
input and output variables, states and their derivatives as well as setting the current
simulation time. A dedicated solver, provided by the software including the FMI, has
to solve the ODE numerically. FMI for model exchange defines three types of events:
time, state and step events. The instant of time when the next time event occurs has to

15

be reported by the FMU in advance at each occurrence of an event. Step events may
be triggered after the solver finishes an integration step. After issuing a step event it
is not possible to set time instants prior to the step event. If, for example, a solver
triggers a step event after an integration step is taken, then it must not recalculate the
last integration step. State events use special indicator variables to determine the time
instant when the event occurs. It will be triggered if an event indicator variable changes
its domain. In this case, the solver has to perform an iteration over time to determine
the precise event time.

The FMI for model exchange is designed to enable efficient caching of calculated
values. Only changed inputs will be set and the FMU may evaluate only the equations
necessary to calculate a certain output [66, p.18ff]. Both FMI versions specify a state
machine defining admissible function calls. The second version of the FMI explicitly
marks state transitions by function calls [67, p.83]. If the FMU is in an event mode it
is generally not allowed to set a new time instant. In- and outputs are assumed to be
continuous in a continuous mode of operation.

It is optionally possible to declare direct dependencies of input and output variables
within the descriptive XML file. If no dependency information is given it is assumed
that an output directly depends on every input [66, p.37f]. On connecting FMUs with
direct dependencies the solver has to deal with possibly occurring algebraic loops [66,
p.48ff]. Within an algebraic loop an output of an FMU directly depends on the output
of another FMU and vice versa. The resulting system of algebraic equations has to be
solved in order to obtain correct outputs.

3.3 Predictive Model Coupling

Müller et al. and Widl et al. introduced a novel predictive approach which couples
FMUs and discrete event simulations [13, 27], which uses the FMU to pre-calculate
future FMI-events. These events can be relayed accurately to the coupled tool and model.
Hence, no artificial delay has to be introduced. In contrast, conventional approaches may
deploy a periodic synchronization and may delay events until a common synchronization
point is reached. The prediction first assumes that no external event is triggered. If an
event is issued to the FMU, the predictions are still valid until the issued event time.
After the event time, all predictions have to be invalidated. Invalidated predictions have
to be re-calculated and new events may be scheduled.

The approach is applied to the IEC 61499 by translating IEC 61499-events and FMI-
events. Every FMI-event is directly mapped to an IEC 61499-event which is associated
with the output variables of the model. If no FMI-event is predicted within a certain
time-span, an IEC 61499-event is also scheduled at the end of the prediction period. The
period is called lookahead horizon. It assures that continuous model outputs which do
not directly trigger an FMI-event will also be transferred. The lookahead horizon has to
be chosen with respect to the properties of the model [13, 27].

Any incoming IEC 61499-event first has to be time-stamped. Secondly, associated data
needs to be fetched and set in the FMU at the appropriate time. Since the IEC 61499 does

16

not provide a time-stamping mechanism [6], each event time has to be tracked externally.
It may be recorded by the interface logic while the IEC 61499-event is first processed.
In order to mark the discontinuity, every IEC 61499-event shall be directly translated
to an FMI-event. The implementation of the IEC 61499 to FMI-event translation is
beyond the scope of this thesis. However, the design also tackles future extensions such
as bidirectional data flow.

IEC 61499-based controllers will process incoming events as soon as possible. FMI-
events, however, are predicted beforehand. In order to apply the predictive approach in
real-time environments, FMI-events need to be delayed appropriately. The system clock
of the workstation which executes the FMU is used as a reference. Any event will be
delayed according to that clock. Furthermore, the processing and queuing time of the
IEC 61499-event is considered to be part of the system. It will not be compensated by
additional means. Further details of the implemented approach and required modifications
can be found in [43].

The IEC 61499 also specifies an Abstract Syntax Notation One (ASN.1)-based network
protocol [6]. The protocol is capable of transferring IEC 61499-events and its associated
variables. Additionally, it may be supported by SCADA systems. The interface logic
which encapsulates the FMU is connected to one or more controllers by using the specified
protocol. The protocol enables a vendor- and platform-independent implementation. It
allows a separation of the hardware, which executes the controller, and the machine,
which executes the model.

17

CHAPTER 4
Implementation

4.1 Use-Cases
Targeted use-cases which require a model-controller interaction include the development
and testing of smart-grid components in an IEC standard 61499-based test-stand and the
development of advanced control strategies in smart-grid related systems. The test-stand
addressed in the first use-case features resistive, inductive and capacitive loads which are
controlled by an IEC 61499-based controller. The time until new set-points are applied
is up to several seconds [22, p.46]. Typical set-point adoption intervals range from few
minutes up to several hours. Due to the large update time-spans, timing deviations of a
few hundred milliseconds will not noticably affect the test outcome. Additionally, the
test-stand is designed to tolerate usage failures and timing deviations without causing
serious damage. The second targeted use-case only includes control equipment which is
not capable of causing any damage. In this case large timing deviations may affect the
outcome but do not cause any damage. Hence, both targeted use-cases can be met with
a best-effort approach which records every timing deviation.

The test-stand features a static control infrastructure which is not designed to be
changed frequently. A fully functional operation and high availability is required to
provide an uninterrupted laboratory service. Both constraints imply that changes of the
controllers should be kept at a minimum. It is expected that the included model will be
changed much more often than the control infrastructure. A standard communication-
based approach is used to decouple the execution of the controller and the model. The
model is wrapped by an external program called FMITerminalBlock which executes it on
a separate workstation. On changing the model only the wrapping program has to be
reconfigured. The control infrastructure may remain unaffected.

At a first implementation step it is feasible to support FMI for model-exchange only.
As a consequence, the software has to provide its own solver. As stated in section 1.3
a predictive approach is implemented. Events are triggered in soft real-time using the
mechanisms of the operating system. Beyond that best-effort no real-time analysis of

19

the code was performed. Any real-time analysis would require sound assumptions of the
timing of the model [43] which is beyond the scope of this thesis.

4.2 Program Flow

The intended program flow which follows the algorithmic concept was modeled as follows:
It assumes that an abstract predictor is able to calculate future events which are triggered
by the model [13, 27]. If the next event time exceeds a specified prediction horizon, an
event at the end of the prediction horizon is returned. Every event is stored in a central
event queue. The queue is used to determine the time of the next event and merges
different event sources. In addition to predicted events, external events triggered by the
IEC 61499-based controllers may be generated and have to be managed. Events are not
limited to certain points in time. Hence, different event sources have to be operated in
parallel. The central queue which merges different event sources has to be capable of
receiving events concurrently. Although a hard real-time operation does not require an
event queue which is capable of holding multiple events, it avoids losing late events in a
best-effort approach [43].

Figure 4.1 visualizes the program flow of the interface software. It consists of different
parts executed in parallel. The main thread shown in Figure 4.1a executes the model
and distributes the events in time. One or more auxiliary threads detect incoming events.
These threads also queue detected events in the central storage but return to a listening
state immediately after reporting the detected event. Figure 4.1b briefly summarizes the
operation of the event receiver.

First, the program which includes the model has to be initialized. Initialization
includes setting up the user interface such as parsing the user input and contains the
initialization procedure of the model which is specified by the FMI standard [66, 67].
After the initialization step, every part of the program is started and able to perform its
regular operation.

At the beginning of each event cycle, the next event time has to be computed. The
predicted event is based on the assumption that no other event generated by an external
event source is emitted. If the assumption fails, the predicted event will get invalid and
the program has to repeat the prediction. In order to repeat a prediction, the discrete
and continuous states of the FMU will have to be reset to the state at the external event
time. The FMI for model exchange in its first version, however, does not expose the
discrete states and hence does not allow to reset them to a previously calculated value
[13, 27, 66]. Note that after predicting the next event time by observing event indicator
changes or by stopping at previously known event times, the prediction logic must not
execute the event update function. Calling the event update function potentially changes
the discrete state of the FMU [66] which prevents a proper reset. The event update
functions will have to be called after the FMI-event is actually taken.

As soon as the next event time is predicted, the event will be added to the sorted event
queue and the main thread waits until the next event time equals the system time. At
the waiting stage, any incoming event which is issued by an auxiliary thread will modify

20

Start

Predict the next
event time

Add the event to
the queue

Wait until the next
event time

Is the next event a
predicted one?

Calculate the
outputs of the

model

Distribute the
event

Update the inputs
of the model

Is the end of the
emulation reached?

End

yes

yes

no

no

(a) Main program flow

Start

Listen for incoming
events

Dequeue future
predicted events

Add event to the
event queue

(b) Event receiver program flow

Figure 4.1: Interface Program Flow

21

the targeted wake-up time. The event may also release the main thread immediately. If,
for example, the current real time instant is t0 = 3 s and the next event time is predicted
at t(epred) = 5 s, the main thread will initially try to sleep until t′ = t(epred) = 5 s. Let
eext be an interrupting external event at t(eext) = 4 s. On receiving the interrupting event
eext, the wake-up time of the main thread will be altered to t′ = t(eext) = 4 s and the
predicted event will be invalidated.

If the next event returned after waiting is a predicted event, the output data associated
with that event still needs to be calculated. It is important to notice that the data
associated with an event corresponds to the limit from the right of the outputs of the
model. Let y(t) be the output at time t and V(e) the associated variables of event e.
Discontinuous outputs may only change its value y(t) if an event occurs [66, 67]. If and
only if the FMI-event epred changes the outputs at the event time t(epred), (4.1) holds.

lim
t→t(epred)−

(y(t)) 6= lim
t→t(epred)+

(y(t)) (4.1)

As a consequence of (4.1), two potential sets of values may be associated with the
event. The first one, V−(epred) = limt→t(epred)− (y(t)) contains the limit from the left of
the model output values and the second one, V+(epred) = limt→t(epred)+ (y(t)) contains
the limit from the right. Since the values of an event are intended to trigger control
actions, previously valid values are only of limited use. The program has to calculate
and distribute V(epred) = V+(epred) in order to obtain expected results.

Since the solver cannot trigger the event update function immediately after predicting
the next event time, the discrete state of the model which is calculated during the
prediction step is equal to the state just before the event is triggered. Requesting outputs
at this point in time will approximately result in a variable set equal to V−(epred). At
the output calculation step, first the event handling functions are invoked. After the
event handling terminates, the state reflects the changed discrete state and the outputs
at V(epred) = V+(epred) can be calculated.

On receiving an external event, the model has to be reset to the external event time
t(eext). During prediction, intermediate continuous states will be stored which allows to
quickly reset the state of the FMU at the external event time [13, 27]. After resetting the
state, new inputs received by the external event will be applied. Subsequently, the state
is updated and further predictions based on the altered inputs may be done. Note that
the current program flow assumes that external inputs will remain constant between two
consecutive external events. Any non constant interpolation of external values received
from the IEC 61499-based control or the SCADA application is omitted.

Every triggered event will be distributed using the configured distribution channels.
The distribution may be done concurrently and parallel to the model update operation
but in order to simplify the implementation it is modelled sequentially. The program may
be shut down after a predefined stopping criterion is fulfilled. Such a stopping criterion
may be a predefined stopping time or a stopping condition based on the outputs of the
model. To demonstrate the feasibility of the predictive approach only the first stopping
criterion is actually implemented.

22

The program flow of the event receiver as shown in figure 4.1b first listens for incoming
events. The generic listening step includes handling various communication protocols
such as the ASN.1-based protocol specified in the IEC standard 61499 [6]. After the
event is received and its data is parsed, the central event queue has to be managed.
Each predicted event that is triggered after the received event time is based on the
assumption that no external event is triggered and will therefore become invalid. Hence,
the auxiliary thread will remove these events from the event queue before the received
event is inserted. Multiple external event sources such as IEC 61499-based controllers or
a SCADA system may generate events independently. These events may arrive out of
their temporal order. The thread which accesses the queue must reorder incoming events
based on their time-stamp to establish a consistent order. After the auxiliary thread has
added the received event, it immediately starts listening again.

4.3 User Interface Design

The user interface was designed to generate a trade-off between an intuitive and an
efficient implementation. As described in section 4.2, the execution parameters such as the
executed model, the featured lookahead horizon and the network address of the controller
will be fixed during initialization. After the initialization no user input is required and
FMITerminalBlock executes autonomously. The targeted use-cases require the user
to have detailed knowledge of the simulation and the underlying ICT infrastructure.
Hence, a command-line interface which takes the execution parameters as command-line
arguments is justifiable.

During initialization, the given command-line arguments will be validated. If an error
is detected, an appropriate error message will be displayed and FMITerminalBlock will
prematurely terminate. In case of a detected error, the exit code of the program will
be set to a non-zero value. Additional debug information including debug messages,
timestamps and log levels is printed via the standard output of the operating system as
well.

4.3.1 Command-Line Arguments

The command-line interface uses a property oriented syntax. Each property is passed on
as a single command-line argument and consists of a key and a value part. The textual
encoding follows the scheme <key>=<value>. The <key> fragment corresponds to
the property key and <value> fragment to the configured value. Table 4.1 and 4.2
summarize supported properties. The property key must not contain any equals sign
and the first equals sign is used to separate the key from the value fragment. In general,
both property parts allow to store any other printable American Standard Code for
Information Interchange (ASCII) character. Note that many command-line interpreters
require some characters to be properly escaped or quoted [3, 47].

The output of FMITerminalBlock does not depend on the order of the properties.
Each property may be passed on at an arbitrary position in the list of input arguments. If

23

Property Key Type Description

fmu.path URL The URL which specified the directory of the
model

fmu.name String The model identifier
app.lookAheadTime Decimal The total lookahead horizon in seconds
out.<chn-nr>.protocol String The protocol identifier of the channel
out.<chn-nr>.addr String The destination address and port of the chan-

nel
out.<chn-nr>.<port-nr> String The associated model variable name
out.<chn-nr>.<port-nr>
.type

Integer The FMI type number of the port

Table 4.1: Mandatory Properties

Property Key Type Default Value Description

fmu.instanceName String fmu.name The instance name of the
model

app.lookAheadStepSize Decimal app.lookAheadTime
10 Size of a single prediction step

app.integratorStepSize Decimal app.lookAheadStepSize
10 Size of a single integrator step

app.startTime Decimal 0.0 The initial time of the simula-
tion

app.stopTime Decimal ∞ The final time of the simula-
tion

app.timingFile String - The name of the timing log file
out.<chn-nr>
.<port-nr>
.encoding

String Sensitive The ASN.1 port value encod-
ing

Table 4.2: Optional Properties

a key is specified more than once, an error message will be printed and the program exits
prematurely. The strict unambiguousness requirement avoids misconfigured simulations
which are caused by contradicting property definitions.

FMITerminalBlock requires two parameters to load the FMU. The first parameter,
fmu.path is the Unified Resource Locator (URL) to the extracted base directory of
the FMU. It will be used as a base path to determine the descriptive XML file and to
load the binaries of the model. The second parameter, fmu.name corresponds to the
model identifier as specified in the descriptive XML file [66]. It is required by the current
version of FMI++ to load the binaries. The current version of FMITerminalBlock avoids
parsing the descriptive XML file outside the FMI++ library. Hence, it requires the user

24

to pass on the model identifier. Future versions of the software may automatically query
the name from the descriptive XML file. Each FMU instance which shares a common
binary may have a unique instance name which possibly differs from the model identifier.
The instance name can be passed on by the optional fmu.instanceName property. If
no instance name is specified, the model identifier will be used.

The mandatory app.lookAheadTime property specifies the lookahead horizon.
After the specified time in seconds, the prediction logic will generate an output event
independent from any FMI-event triggered by the FMU. The lookahead horizon is divided
into a number of equidistantly spaced steps. At the end of each step the continuous
state of the FMU is saved. The saved state will be used to efficiently interpolate the
state if an external event occurs. The size of these lookahead steps can be controlled via
the optional app.lookAheadStepSize parameter. By default, it is chosen to feature
ten steps per lookahead horizon. The integrator step-size is controlled by the optional
app.integratorStepSize parameter. Each lookahead step may be divided into
several integrator steps. As for the other prediction parameters, the integrator step-size
is expected to have the unit of seconds. The unit is implicitly assumed and the user must
not append an additional unit postfix. By default, the integrator step-size is chosen to
feature ten integrator steps per lookahead step as well.

The start time will be initially set to the app.startTime property value. If no start
time is specified, a start time of zero seconds will be taken. The duration of a simulation
may be limited by specifying the app.stopTime property. If the latest distributed
event exceeds or equals the stop time, the simulation run will be terminated. To gain a
more intuitive program flow, termination will be delayed at the end of the distribution
cycle. Hence, no artificially generated event at the end of the simulation has to be
distributed. Let, for example, tstop = 3 s be the specified stop time and eend the latest
event which is scheduled at t(eend) = 3.5 s and let the event before eend be scheduled
at t(eend−1) = 2.9 s. As soon as eend−1 is triggered, the next cycle will be executed and
eend will be predicted. After the prediction step, FMITerminalBlock waits until the
next external event is triggered or t = 3.5 s is reached and distributes the next event.
According to Figure 4.1a, the end condition will be checked after the last completed cycle
and the program will terminate at about tstop ≤ t = 3.5 s.

FMITerminalBlock supports multiple output channels which feature a variable number
of output ports and different protocol implementations. An output port is considered
as a model variable which is transmitted to a data sink. Data sinks may be arbitrary
network devices which implement the communication protocol. In the intended use-cases
IEC 61499-based controllers or SCADA systems may act as data sinks. Different output
ports must be grouped into one or more output channels. A single channel uses common
communication parameters like communication protocols and communication endpoints.
Many channels such as the implemented ASN.1-based channels ideally transmit the data
of an event consisting of every configured port in one User Datagram Protocol (UDP) or
Transmission Control Protocol (TCP) packet. These packets will have to be decoded by
the data sink in order to extract the transmitted information of the output port.

Each output channel property has an out.<chn-nr>. prefix where <chn-nr>

25

FMI Type Type Number

fmiReal 0
fmiInteger 1
fmiBoolean 2
fmiString 3

Table 4.3: FMI Type Numbers

corresponds to the number of the output channel. The channel numbers are consecutive
integer values starting at zero. If the next consecutive channel number is not present, it is
expected that no more channels are configured. The assumption on consecutive channel
number avoids an additional parameter which defines the total number of output channels.
Each output channel must have an out.<chn-nr>.protocol property which specifies
the used protocol.

Currently the protocol identifiers CompactASN.1-TCP and CompactASN.1-UDP
are supported. Both protocols implement the ASN.1-based compact encoding as spec-
ified in IEC 61499-1 [6]. They differ by the used transport protocol. The first one,
CompactASN.1-TCP, uses a TCP connection and the second one encapsulates config-
ured ports into one UDP packet per event. Every ASN.1-based output channel requires
an out.<chn-nr>.addr property which specifies the remote address of the channel.
The first part of the address names the destination host or Internet Protocol (IP) address
and the second part specifies the destination port. Both address parts are separated by a
single colon.

The output ports of a channel are configured by the property out.<chn-nr>
.<port-nr>. As for channel numbers, the port number represented by the generic
<port-nr> part is a consecutive integer starting at zero. On using an ASN.1-based
encoding, the output port number specifies the transmission order of the configured
ports. Each out.<chn-nr>.<port-nr> property expects the output variable name of
the model. For example, the argument out.0.0=x configures the first port of the first
channel to transmit the output variable x of the model. Currently, the configuration must
contain the FMI type number of each port. The FMI type number is specified in FMI++
and names the FMI type of an output port. The FMI type is used to correctly query
model variables and may be different to the network encoding of the variable. Table 4.3
lists the corresponding type numbers. Later versions of the software may automatically
extract the type number from the model description. To correctly specify the real typed
model variable x of the previous example, the property out.0.0.type=0 has to be
added.

ASN.1-based channels may encode specific FMI types in different ways. A real FMI
value, for example, may be encoded as LREAL or REAL value [6, 14]. In this case, the
64-bit LREAL features full precision and the 32-bit REAL may encode the same number
with a reduced precision. By default, the ASN.1 encoder chooses the most appropriate

26

Encoding Name Description

0 Real Time Generation After submission by a real-time event source
1 Prediction After prediction by the included FMU
2 End of Distribution Before the event is destroyed
3 Begin of Distribution Before the event data is distributed

Table 4.4: Event Stage Encoding

encoding but some use-cases may require to alter the behavior. The encoding may
be specified by the out.<chn-nr>.<port-nr>.encoding property which sets the
output encoding. It takes a string value which has to be equal to the data type names
defined in IEC 61499. If the conversion from a model variable type to the type of the
encoding is not supported, an error will be triggered during initialization. For example,
the property out.0.0.encoding=REAL reduces the precision of the model variable
and transmits the value of the variable as a 32-bit floating point number.

4.3.2 Timing Data Interface

A timing data interface allows to track certain timing information of the simulation
process. It is used to validate the best-effort approach and to track timing violations.
The timing data interface is based on the assumption that during its lifetime an event
crosses several program parts, called stages. At each stage, the timing according to the
system clock and the event time is recorded. The collected information is written to a
timing file which follows a syntax based on Comma Separated Values (CSV) files. A
single semicolon is used as field separator.

Each line of the written timing file contains a single record made at a defined stage.
To ease further processing, the event stage is encoded as a single integer value. Table 4.4
shortly summarizes the stage encoding. The current time-stamp is divided into several
CSV fields including the current weekday, hour, minute and second. The field which
stores the seconds value of the wall clock also includes fractions of seconds. Table 4.5
describes the fields of the CSV file in the order of their appearance. The last field may
only contain some debug information and may not be properly quoted. It is advised to
ignore every information after the last valid field separator.

The software will write the timing information to the file specified by the property
app.timingFile. If the property is not present, no timing file will be written. After
starting FMITerminalBlock, any existing content will be cleared and the first event is
logged in the first line of the output file.

27

Field Index Range Field Description

0 [0, 6] Number of the current day of the week starting at Sunday
1 [0, 23] The hour field of the log record
2 [0, 59] The minute field of the log record
3 [0, 60) The seconds field of the log record
4 [0,∞) The logged event time-stamp in seconds
5 [0, 3] The encoded stage
6 - Some debug information

Table 4.5: Timing File Record Description

4.4 Software Design

The following section describes the deployed software design which includes the software
partitioning and internal interface design. The software was designed with flexibility
in mind. In addition to the operation specified in sections 4.2 and 4.3, the following
modifications shall be possible without re-factoring unrelated parts of the source code.

• Adding additional properties to refine the behavior of the program

• Using another predictive event source

• Adding new transmission protocol implementations

• Transferring the real-time management to a connected device

• Adding various external event sources

The usage of dedicated interface classes simplifies implementation, testing, and mainte-
nance. The following sections describe the software partitioning as well as the developed
software modules.

Some of the Sections 4.4.2 to 4.4.5 show class diagrams. The syntax of these diagrams
is based on the UML specification in its version 2.3 [8, 26]. To gain a better overview,
some minor modifications according to the rules of the standard were made. The diagrams
show public and protected class members only. To reduce the overhead, the diagrams
contain neither parameter lists nor return values and show function names followed by
two parenthesis only. Final class members will be written in upper case letters only.
By convention, final class members starting with PROP_ correspond to property keys of
the global configuration. Following the C++ standard, the class diagrams mark each
object destructor with a leading swung dash [58]. For instance, the function ∼Event()
corresponds to the destructor of the Event class.

28

BasicQServices

ApplicationQContext ChannelQMapping

Networking EventQDispatching EventQPrediction

Publisher

Publisher

Subscriber

Subscriber

...

...

EventQDispatcher

Event
Queue

EventQPredictor

FMI++
IncrementalQFMU

Figure 4.2: Basic Program Design

4.4.1 Basic Design

The solver and event mapping components which are required to integrate an FMU are
mainly implemented by FMI++. Hence, the basic system design focuses on the remaining
parts of FMITerminalBlock. The design includes the user interface, the networking
facility, the real-time scheduler which properly delays events, and the event prediction
logic which subsumes several components described by the abstract model. Figure 4.2
illustrates the basic system architecture. FMITerminalBlock is partitioned into four
modules. Each module has its associated name-space and consists of several classes.

The basic service module provides helper classes and functions which do not implement
the core program logic but provide commonly used features. These classes and functions
include global configuration management. Each program module must have access to the
user’s configuration in order to parametrize its operation. The configuration is distributed
by a globally unique application context object which encapsulates the configuration
information. The application context object also provides access to other basic services
like the channel mapping. The main purpose of the channel mapping is to provide a
common representation of the data flow between the event prediction logic and available
output channels. It only encodes the routing information of the data transport and
does not provide any transport or data encoding functionality itself. For example, the
channel mapping encodes that the output variable x of the model will be sent to the
first publisher. It does not redirect the output to the given publisher or specify any
representation of the value of x.

The event prediction module implements the simulation logic. It predicts the next

29

event based on the included FMU and updates the model according to external events.
The event prediction module has to implement the event mapping logic which maps the
event-based execution of IEC 61499-based systems to continuously operating FMUs.

Communication between the IEC 61499-based controllers or a SCADA system and
FMITerminalBlock is handled by the networking module. It encodes predicted events
and generates events by parsing incoming network traffic. Since the received traffic
is potentially independent from the generated one, the decoding and encoding logic is
modelled in separate program parts. A publisher encodes events and the subscriber
parses incoming network traffic and emits new events if necessary. Several independent
subscribers and publishers may coexist. Each publisher and subscriber may also implement
a different communication protocol.

The event dispatching module conducts the main program flow described in section 4.2
and delays events according to their associated time. It uses the event prediction module to
forecast events and redirects the events to the networking module. The event dispatching
module also provides some interfaces to register externally triggered events. The event
timing and emission will be managed in a central event queue which is accessed by the
event dispatcher.

Each module is located in a separate C++ namespace. The basic services share
the namespace FMITerminalBlock::Base, the event prediction module is located
at FMITerminalBlock::Model, the event dispatching module is located at FMI
TerminalBlock::Timing and the C++ namespace FMITerminalBlock::Network
covers the network facilities.

The basic program design was checked against the design goals listed in section 4.4.
The usage of a dynamic application context allows to easily add new properties. The
generic networking model enables various external event sources. In contrast, the
implementation of different real-time management and prediction strategies is not covered
at this design stage. Proper abstract interfaces which allow the displacement of single
components have to be specified by the specific software design.

During further development, the basic design was reduced to its essentials and is not
fully implemented. Currently the event prediction, dispatching, and publishing logic is
present. Program parts which receive and process external events are contemplated but
not coded and may be added in future versions. The following sections will focus on the
implemented features and do not cover future extensions in detail.

4.4.2 Basic Services

The class ApplicationContext is the center of the basic services. It provides access
to information such as the configuration and the channel mapping which has to be
available globally. Figure 4.3a gives a first overview of the application context members.
The configuration is stored in terms of configuration properties in a property tree. Each
property is addressed by a unique hierarchical identifier, called path. A path of a property
may be encoded by a single string. The different hierarchic levels within the path string
are separated by a single dot character.

30

ApplicationContext

b)PROP_PROGRAM_NAME
b)PROP_START_TIME
b)PROP_LOOK_AHEAD_TIME
b)PROP_LOOK_AHEAD_STEP_SIZE
b)PROP_INTEGRATOR_STEP_SIZE

b)ApplicationContextug
b)~ApplicationContextug
b)addCommandlinePropertiesug
b)addSensitiveDefaultPropertiesug
b)getPropertyug
b)getPositiveDoublePropertyug
b)getRealPositiveDoublePropertyug
b)getPropertyTreeug
b)hasPropertyug
b)getChannelMappingug

(a) Application Context

ChannelMapping

+oPROP_OUT
+oPROP_TYPE

+oChannelMapping()
+ogetOutputVariableNames()
+ogetNumberOfOutputChannels()
+ogetOutputPorts()
+otoString()

(b) Event receiver program flow

Figure 4.3: Main Basic Service Classes

The property tree is first populated by parsing the command-line arguments. During
initialization, it is enhanced by global sensitive default values. By adding calculated
values, other program parts gain a consistent view of the configuration values. In contrast
to global default values, local default values will not be stored in the property tree. They
can be easily managed by the requesting program module and will not have to be available
for other modules. The central configuration is also used to add static information like
the name of the command at the start-up phase. The added information may be accessed
consistently and does not have to be maintained separately.

The ApplicationContext class does not only provide access to property subtree
objects itself but also defines several façade functions which directly allow to retain
configuration values [62, p.73f]. Some of the access functions already check the range of
the configuration value and may throw an appropriate exception. An accessing program
part does not need to perform these checks manually and can reduce its code complexity.

Although the application context object is globally unique, it was not designed as
singleton instance [62, p.35ff]. The singleton design pattern restricts inheritance and
decreases the extensibility of the program. Future versions of FMITerminalBlock may
have to maintain multiple instances of the event processing framework described in
section 4.4.1. Hence, they may need separate application context objects. In contrast
to the singelton approach, the application context is managed by the basic framework
functions which start the application. Each program module maintains a reference to the
application context object which is passed on to the constructor of the module.

The application context object also implements the getChannelMapping(void)
function which creates and returns a pointer to a ChannelMapping object. The channel
mapping object represents the association of model variables and output channels in
an easily processable format. Figure 4.3b shows an overview of the channel mapping
members. Each piece of accessible information is called port. Each port is identified

31

by its data type and a numerical identifier. For example the real typed output variable
x may be internally addressed by its type fmiTypeReal and a numeric identifier, let
us say 42. Both parts of the port identifier are encapsulated into a std::pair called
PortID [32, 56].

The port identifier allows to efficiently address differently typed variables. The
channel mapping object manages the port identifier. The numerical identifier of each
port is always unique for a particular port type. It will be assigned consecutively starting
at zero. The assignment policy allows to efficiently buffer the content of the model
variable into arrays. In contrast, numerical variable identifier of the FMI may not be
consecutively assigned and their usage does not allow a direct addressing of array elements
[66]. In addition, IncrementalFMU which is implemented by FMI++ hides these FMI
identifiers and only provides name-based variable access.

The channel mapping object also exposes the number of output channels and a list
of port identifiers per output channel. A publisher may utilize the list of output ports
to send associated information. A model variable may be associated to multiple output
channels. In this case, the same port identifier is returned for multiple channels. A single
port identifier may also be associated to an output channel multiple times. In case of
equal port identifiers, the value may also be sent multiple times.

The channel mapping focuses on the output port assignment only. It does not store
any additional information beyond the mapping information. Any additional information
such as output addresses or encoding information must be parsed individually by each
publisher. Future versions may alter this behavior and may also provide additional
configuration information via associated property subtrees.

4.4.3 Event Dispatching

The event dispatching module defines an abstract event class which encapsulates the
event time and its associated values. Figure 4.4 shows the functions of the event classes
as well as two derived classes inheriting from the event base class. Each value is called
variable and consists of its port identifier which is further described in section 4.4.2 and
its actual value. The value is stored in a boost::any object [35]. The universal value
representation allows a unified processing of differently typed variables. Both elements of
a variable are encapsulated in a std::pair named Variable [32, 56].

The abstract event class called Event defines two main functions. The implemented
function getTime(void) returns the previously set time and the virtual function
getVariables(void) returns a vector of event variables. Some event sources like the
model may return the whole set of available output variables but future implementations
may only emit a subset of variables. Additionally, a virtual function toString(void)
is defined which returns a human readable representation of the event data. The function
is mainly used for debugging purposes and may not always be fully implemented.

Each life-cycle of an event object begins with the event detection or prediction and
ends after it has been finally distributed. In general, the event producer object and the
object which determines that the life-time of the event has expired are not equal. First,
the event will be produced by an event predictor or a subscriber. It will reach the end of

32

Event

time_

+ Event()
+ ~Event()
+ getVariables()
+ getTime()
+ toString()
isValid()
toString()

LazyEvent

+ LazyEvent()
+ ~LazyEvent()
+ getVariables()
+ toString()

StaticEvent

+ StaticEvent()
+ ~StaticEvent()
+ getVariables()
+ toString()

Figure 4.4: Abstract Event Class and Sub-Classes

its life-cycle after the event dispatcher has finally distributed the event. At the end of
the life-cycle of an event, it has to be deleted and the memory has to be freed. To free
allocated memory, each event source may also register as an event sink which deletes the
object. In this case, the dispatcher has to call the event source after all other sinks are
notified. Otherwise, event sinks may receive an invalid reference. To reduce the code
complexity an exception to the commonly enforced memory policy was made. In case of
event objects, freeing of allocated memory is not up to the object which allocates the
memory of the event. Instead, the producer is liberated from its obligation and the caller
must ensure deallocation. If, for example, the event predictor produces an event, the
receiving event dispatcher will have to delete it.

The event dispatcher which is introduced in section 4.4.1 controls the main pro-
gram flow. It implements an observer-like pattern to distribute emitted events [62,
p.68]. Each event observer which needs to receive emitted events implements the
EventListener interface. The listener interface defines a single virtual function, void
eventTriggered(Event *) which receives the triggered event. The event dispatcher
acts as observable object and provides functions which add an observer to the list of
notified observers. Figure 4.5 shows an UML-like class diagram which contains the event
dispatcher and its major relations.

Additionally, the event dispatcher defines a void run(void) function which exe-
cutes the main program flow. On calling the void run(void) function, first the event
dispatcher uses the event predictor to calculate the next event. As soon as the next
predicted event is known, the dispatcher puts the event into its event queue and waits
until the queue returns the next event. Lastly, it distributes the gathered event by calling
every listening observer and then deletes it. The event dispatcher may run multiple event

33

EventQueue

+S~EventQueue()
+Sadd()
+Sget()

TimedEventQueue

+STimedEventQueue()
+S~TimedEventQueue()
+Sadd()
+Sget()

AbstractEventPredictor

+S~AbstractEventPredictor()
+Sinit()
+SpredictNext()

EventDispatcher

+SPROP_STOP_TIME

+SEventDispatcher()
+S~EventDispatcher()
+Srun()
+SaddEventListener()

EventListener

+SeventTriggered()

*

Figure 4.5: Event Dispatcher Class

cycles until the exit condition is reached.
Delaying certain events and scheduling recent events is delegated to a dedicated event

queue object. The event queue stores and manages events and returns them according to
the event management strategy. An abstract interface called EventQueue is introduced
to ease the implementation of alternative scheduling strategies. Each event queue provides
two main interface functions, an adder function and a getter function. The adder function,
void add(Event *, bool), takes a pointer to the event and a flag which indicates
the source of the event. The flag has to be set if the event is a predicted one which may
get invalid before it is emitted. The getter function, Event * get(void), returns the
next scheduled event according to the implemented scheduling strategy. It may delay the
calling thread until the event time is reached.

The event queue has to be able to process concurrent accesses. These accesses won’t
be synchronized by the event dispatcher and have to be managed by the queue. Most
notably, the queue has to process incoming events while the getter function blocks a
calling thread.

An event queue implementation is provided by the timed event queue class Timed
EventQueue. It implements the queue management functionality described in sec-
tion 4.2 and blocks the fetching thread until the next event time. Internally it uses
a boost::mutex object to synchronize concurrent accesses. A condition variable is
utilized to notify waiting threads about incoming events [54].

The void add(Event *, bool) function of the event queue first locks the internal
event pointer storage and checks whether the new event is an external one. If the event
is an external one, every predicted event which is to be scheduled after the new one is
deleted. After the new event is inserted to the internal event storage, the waiting thread
gets notified about the queue changes using the condition variable.

Snippet 1 shows the get function of the timed event queue. The get function delays an

34

Event *
TimedEventQueue::get(void)
{

boost::unique_lock<boost::mutex> lock(queueMut_);
Event* ret = NULL;

while(ret == NULL)
{

if(queue_.empty())
{

newEventCondition_.wait(lock);
}else if(isFutureEvent(queue_.front().first)){

// Wait until the event time is reached
(void) newEventCondition_.timed_wait(lock,

getSystemTime(queue_.front().first));
}else{

// Process event immediately
ret = queue_.front().first;
queue_.pop_front();

}

}

return ret;
}

Snippet 1: Event Retrieval and Blocking Function

event according to its associated time-stamp. If the internal element storage queue_ is
empty, the requesting thread is blocked until the adder function notifies a waiting thread
via the condition variable newEventCondition_. If the element storage is populated,
the timed_wait function of the condition variable is utilized to delay the event until
it is scheduled. The function either times out if the event time is reached or returns if
the adder queues another event. As a consequence, the timing highly depends on the
implementation details of the synchronization primitive. After the return of the waiting
function, the content of the event storage is evaluated again and immediate events will
be dequeued and returned.

4.4.4 Event Prediction

The event predictor described in section 4.4.1 was specified using the interface Abstract
EventPredictor. Figure 4.6 visualizes the abstract event predictor interface and its
implementation. It defines a virtual initialization function, void init(void), which
initializes the model as soon as the global configuration is stable and every property
is known. The next event will be predicted by calling the virtual function Event *
predictNext(void). It creates a new event instance and returns a pointer to it.

35

AbstractEventPredictor

+C~AbstractEventPredictor()
+Cinit()
+CpredictNext()

EventPredictor

+CPROP_FMU_PATH
+CPROP_FMU_NAME
+CPROP_FMU_INSTANCE_NAME

+CEventPredictor()
+C~EventPredictor()
+CgetModelDescription()
+Cinit()
+CpredictNext()
+CeventTriggered()

EventListener

+CeventTriggered()

Figure 4.6: Event Predictor Classes

Following the approach described in section 4.4.3, the memory of the event instance must
be managed by the caller instead of the callee.

A model may also receive incoming events to update its state accordingly. The abstract
event predictor interface inherits from the event listener interface EventListener which
specifies an event notification function. When an external event occurred, the event
notification function has to be called and the model may be updated accordingly. As a
result of the FMI specification, some restrictions are imposed on the calling sequence.
Therefore, the sequence must be specially designed on the abstract level to ensure a proper
operation of the implemented predictor. The outputs of the model may be calculated on
request only. According to section 4.2, the discrete state of the FMU cannot be reset
after the calculation of outputs. Hence, the predictor cannot process any external event
after the outputs of the event are read.

The event predictor implementation accesses the IncrementalFMU implementation
which is provided by FMI++. Any event prediction is done by the FMI++ library. The
event predictor conducts the single calculation steps and queries the results. After the
prediction, the next event time may be immediately queried but its output calculations
have to be delayed until the event is actually taken. An event class friended to the event
predictor, LazyEvent, implements the delayed output query. It calls the event predictor

36

and queries the model data only upon request. Instead of an event instance which already
contains the predicted data, the Event * predictNext(void) function of the event
predictor returns a new LazyEvent instance. By utilizing the returned event object,
the state of the FMU may be queried later on.

A predicted event may get outdated if another event is predicted by the same event
predictor instance. An outdated event must be destroyed and cannot return previously
calculated outputs. Figure 4.1 shows that only one predicted event is needed at a time.
Each new prediction step will invalidate any previously calculated event. To detect
program errors LazyEvent checks whether the event is already outdated and will throw
an appropriate exception if needed.

4.4.5 Networking Module

The networking module is split up into several publisher instances and a managing object
called NetworkManager. The network manager instantiates and deletes the publisher
object instances. It also registers these instances at the event dispatcher instance for
event notification. Figure 4.7 visualizes the relationships between the classes of the
networking module.

An abstract publisher interface class called Publisher defines the interface functions
that are used to manage each publisher instance. The interface allows to add new publisher
instances without modifying major parts of the network manager object. As soon as a
publisher is instantiated, an initialization function is invoked to configure the publisher.
The initialization function expects the port identifier of the publisher and the configuration
subtree which configures the specific publisher. The split initialization was chosen to
ease the publishers instantiation. Each publisher should provide a default constructor.
The function which dynamically instantiates the specified publisher only has to call the
default constructor and does not have to deal with different parameters.

Event notification is done by the event listener interface of the event dispatcher. The
publisher interface inherits the listener and provides a common event notification function.
On receiving an event notification, each publisher instance transmits the event data via
the configured output ports.

The ASN.1-based communication protocol is supported via UDP and TCP. For each
transport protocol, a dedicated publisher class is implemented. Class CompactASN1TCP
ClientPublisher connects to a TCP server and transmits any ASN.1-based message
via the opened channel. In contrast, CompactASN1UDPPublisher does not maintain
a connection and publishes each message via UDP. Both classes share a common base
class, CompactASN1Publisher, which manages the output variables and encodes the
messages.

Each ASN.1-based publisher maintains a copy of its configured output variables. On
receiving new events, the publisher updates its output variable copies according to the
event variables. If the event does not contain the full set of output variables, missing
variables remain unchanged. An encoding function encodes the buffered output variables
and adds their encoded values to a message buffer.

37

CompactASN1Publisher

HLPROP_ENCODE_TYPE
~LCASTABLE

HLCompactASN1PublisherVU
HL~CompactASN1PublisherVU
HLinitVU
HLeventTriggeredVU
HLencodeASN1OutputVariablesVU
~LtoStringVU

CompactASN1TCPClientPublisher

HLPUBLISHER_ID
HLPROP_ADDR

HLCompactASN1TCPClientPublisherVU
HL~CompactASN1TCPClientPublisherVU
HLinitVU
HLeventTriggeredVU

CompactASN1UDPPublisher

HLPUBLISHER_ID
HLPROP_ADDR

HLCompactASN1UDPPublisherVU
HL~CompactASN1UDPPublisherVU
HLinitVU
HLeventTriggeredVU

Publisher

HL~PublisherVU
HLinit()

EventListener

HLeventTriggered()

NetworkManager

HLPROP_OUT_PROTOCOL
HLPROP_OUT_CHN

HLNetworkManagerVU
HL~NetworkManagerVU

I

EventDispatcher

HLPROP_STOP_TIME

HLEventDispatcherVU
HL~EventDispatcherVU
HLrunVU
HLaddEventListenerVU

Figure 4.7: Networking Module Overview

38

The encoding scheme follows the compact encoding rules defined by the IEC stan-
dard 61499 [6, p.98ff] and by the ASN.1 standard itself [4, 12]. The implemented
ASN.1-based publisher partly accepts different encoding schemes per FMI type. For
example, an fmiReal typed value may be encoded as 32-bit or 64-bit floating point
number. By casting the fmiReal typed 64-bit value to a 32-bit floating point number,
precision might get lost [14, p.6] but the integration of existing IEC 61499-based applica-
tions is eased. Per default, a lossless encoding is chosen which avoids numerical errors
introduced by an inexact casting.

The implemented encoding functions have to assure that the byte order of a value is
converted to the big endian network byte order [6, 12, 48]. The byte order is guaranteed
by populating the message buffer on a per-byte basis. To transmit floating point numbers
which follow the IEEE standard 754, FMITerminalBlock assumes that the host processor
and the used compiler internally use this encoding. The assumption slightly restricts
targeted platforms but increases the program code maintainability due to a simplified
program flow.

4.5 External Software

Some external programs and program libraries are used to ease development and mainte-
nance of FMITerminalBlock. The following sections shortly describe the external software
and explains the reason for their usage.

4.5.1 FMI++ Import Utility

The FMI++ library includes various import utility classes which handle the instantiation,
communication, and integration of included FMUs [11, 13, 27]. FMI++ also provides
a class named IncrementalFMU which already implements the event prediction. It is
distributed by a BSD-like license which allows modifications of the included source code.
At the time of writing, an updated version is not yet published but can be expected soon.

The inclusion of external model exchange FMUs which follow the proposed approach
requires the implementation of the low-level C interface. Additionally, a numerical
integration mechanism which is able to deal with intermediate FMI events has to be
provided. The FMI++ library already implements both parts. Since the source code of
FMI++ is available, it can be adopted to the needs of FMITerminalBlock. These facts
lead to the design decision of building on the import functionality of FMI++.

The predictive FMU implementation, IncrementalFMU, implements a function
which changes the current state of the FMU to a predicted one [11, 13, 27]. Since the
update function called fmiTime updateState(fmiTime) only uses predicted values,
it may only be set to a value before the event handling function is executed. As mentioned
before, any predictive value issued after an event is being handled may potentially change
the internal discrete state of an FMU [66] and prohibits a proper reset.

As described in section 4.2, the program requires to calculate the output value
directly after an event has happened. To overcome the minor limitation, a function

39

fmiTime updateStateFromTheRight(fmiTime) was added to the FMI++ library.
The newly added function checks whether an event has happened and performs a very
small integrator step. During this step, the FMI event handling functions get called and
the state updates to its value right after the event.

4.5.2 CMake Build System

To ease cross platform development, the build system generator CMake has been chosen
[30]. In contrast to GNU autoconf, CMake does not depend on platforms which maintain
a shell compatible interpreter [30, 39]. It is also capable of generating Microsoft Visual
Studio-based build environments. CMake generates the actual build system such as a
Microsoft Visual Studio Project Folder or a GNU Make file based on a list of high level
targets. To configure the build process, several CMake input files were written.

FMI++ also uses CMake to generate its build system. To increase the compatibility,
most of the compiler settings of FMI++ are also used in the CMake input files of FMITer-
minalBlock. The newly written CMake configuration requires a path pointing to the
development directory of FMI++. It automatically compiles FMI++ into shared library
files which were needed by FMITerminalBlock. Optionally, the CMake configuration also
compiles the test-cases into test programs. These test programs also require the FMI++
library object and execute a collection of test-cases.

4.5.3 Boost

Several functionalities such as multi-threading or networking support are required to
efficiently develop a program which interfaces FMUs and IEC 61499-based controllers.
Ideally, these functionalities can be abstracted from the operating system Application
Programming Interfaces (APIs), which leads to an almost platform independent program
code. FMI++ depends on several free libraries called Boost [11, 24]. The Boost
libraries provide the required basic functionalities and most often support a broad
variety of platforms [1, 33, 34, 35, 49, 54, 55, 63]. Using the Boost libraries does not
introduce another dependency because they are needed by FMI++. They provide several
functionalities which are not covered by the C++ standard library yet [32, 56]. Hence,
FMITerminalBlock extensively uses some Boost libraries.

The property tree implementation of Boost provides the basis for the global configu-
ration of FMITerminalBlock. The application context class maintains a property tree
object which stores the configuration [63]. Several other parts such as the event publisher
also access the configuration via a property subtree. By using a library, the complex tree
management and path resolving is delegated.

The networking and multi-threading facilities of the Boost libraries are used to imple-
ment the event scheduling and event transmission [1, 54]. To increase portability, only
functionality available on both Linux and Windows was used from these libraries. Both
libraries support various platforms and avoid the usage of operating system dependent
APIs. Additionally, several other libraries such as the Boost any type library [35] and the
format library of Boost [34] are used to avoid re-implementation of available functionality.

40

CHAPTER 5
Evaluation

5.1 Unit Testing
To test the program, an automatic testing framework was deployed. The testing framework
includes several unit tests which cover every program module described in section 4.4.
Each test collection which covers a coherent part is compiled into a different test executable.
On executing a test executable, every corresponding test-case is executed and the result
is returned. The implemented test-cases use the Boost Test library extensively [55]. The
Boost test library provides the basic testing framework and assembles single test-cases
into a common executable. Additionally, it provides several helper functions which check
return values and expected conditions.

Generally, every test collection covers valid use cases of each tested class and some
faulty usages which are expected to throw an exception. Every test-case which handles
an exception targets exactly one error condition. Let, for example, f(x, y), x > 0 ∧ y > 0
be a function which expects two real positive parameters. A test-case shall never set both
arguments to zero at the same time in order to efficiently test the exception handling. All
test-cases specially focus on boundary values and may not reflect expected input values.

To test the ASN.1-based network facilities, some test fixtures which contain commonly
used functionalities were written. Each test fixture follows the test fixture approach which
is implemented by Boost [55]. A test fixture encapsulates its variables and functions in a
C++ structure. Figure 5.1 visualizes the concept of the implemented test-cases which test
ASN.1-based publishers. The ASN1Fixture structure contains a minimal configuration
which is necessary to instantiate relevant publishers. Additionally, it provides a function
which checks the content of a message buffer. The checking function is used as a callback
function. A UDP or TCP server which is instantiated for testing purpose only executes
the callback function and passes the received data on. Moreover, the status of the server
is checked to be successful.

Two derived test fixtures implement the actual servers which listen for incoming pack-
ets. Most network related test-cases use these servers to check the network communication.

41

Test-Case1Implementation

Tested1Publisher Server

Reference
MessageTest1Fixture

controls controls sets

checks
101
010

Figure 5.1: Publisher Test Setup

Both servers rely on the Boost Asio library and implement the asynchronous approach [1].
To control the operation of a test fixture, the callback functions are only called if the test-
case runs an Input/Output (IO) service execution function ioService.run_one(). If
the execution function is not called, no result will be checked. Hence, no synchronization
mechanism is needed and the test-case complexity is reduced. At the end of each test-case
the number of successfully received messages is tested. Testing the message count also
detects failures which do not call the checking function at all.

The ASN.1-based encoding of transmitted values is compared to a statically coded
reference. The static reference which mainly consists of manually derived values avoids
false positive results by failures which are present in the reference implementation as well.
The reference values were further compared to the values sent by the IEC 61499-based
controller 4DIAC FORTE [31]. Both encodings turned out to be identical.

Snippet 2 shows a test-case implementation which uses the TCP fixture ASN1TCP
Fixture. Each test-case in the test set is started by an appropriate macro which is
defined by the Boost Test library [55]. The BOOST_FIXTURE_TEST_CASE macro takes
exactly two arguments, a unique name of the test-case and the name of the included test
fixture.

Obviously, several variables like config, receiveReference and publisher are
defined outside the test-case (see snippet 2). These variables are defined as members
of the test fixture and are initialized during its instantiation. The test-case does not
have to instantiate them manually and may be reduced to a minimum amount of code.
Although the amount of code is shortened and the maintainability of several similarly
written test-cases is increased, the test fixture approach introduces a significant drawback.
A reader must know the capabilities and implementation details of the test fixture to
fully understand the test-case. In future versions, the structure-based approach proposed
by the Boost Test library [55] may be improved by test fixtures which reduce the number
of exposed variables by proper encapsulation.

Less complex test-cases like those testing the event predictor or the application context
only access a very simple test fixture or do not use a test fixture at all. For example,

42

BOOST_FIXTURE_TEST_CASE(test_publish_ASN1_TCP_manual_enc_0, ASN1TCPFixture)
{

// Setup configuration
config.put("0.encoding", "LREAL");

// Setup event variables and their values
std::vector<Timing::Event::Variable> vars;

vars.push_back(std::make_pair(
std::make_pair(fmiTypeReal, 666),
(fmiReal) DBL_EPSILON));

// Setup reference
uint8_t ref[] = {0x4b, 0x3c,0xb0,0x00,0x00,0x00,0x00,0x00,0x00};
receiveReference.assign(ref, ref+sizeof(ref));

// Init publisher
publisher.init(config, ports);

// Let the client connect
ioService.run_one();

// Trigger event
Timing::Event * ev = new Timing::StaticEvent(0.0, vars);
publisher.eventTriggered(ev);

// Fetch and check the IO result
ioService.run_one();

delete ev;
BOOST_CHECK_EQUAL(validMessages, 1);

}

Snippet 2: Example of an ASN.1 Unit Test

the fixture which supports event predictor test-cases only exposes a single variable. The
variable holds a minimal configuration inside an application context object. A person
who reads the code still has to know the state of the application context, but the small
test fixture is much easier to review.

The test-cases which test the event handling functionalities do not only demonstrate
the event operation of the dispatcher but also test the exchangeability of the event pre-
dictor. An alternative event predictor class was written which simply emits equidistantly
timed events. The event dispatcher test-cases successfully use the alternative event
predictor instead of the complex FMI++-based one. The newly written predictor fits
into few lines of code and produces a very predictable output. Hence, failures which
result from an inexact FMI implementation can be eliminated. Aspects related to FMI
and FMI++ are tested separately.

43

The event predictor test-cases utilize an FMU which was primarily written to test the
FMI++ implementation. Most related test-cases instantiate a predictor which accesses
the test FMU. The outputs of the predictor are checked against a manually calculated
reference. Each significant deviation will be reported as an error. For floating point
comparisons, the Boost macro BOOST_CHECK_CLOSE is utilized. The macro will report a
failure if the gathered result deviates too much from the expected one. Due to unavoidable
numerical errors, an exact floating point comparison may result in false negatives.

The unit tests focus on the correct functionality of single program modules. They
supported the initial development and raised several bugs which might not have been
found otherwise. Especially, the ability of Boost to find memory leaks supported the
detection of bugs which are usually hard to find [55]. The automatic test-cases also
showed their potential for regression tests. After adding new features, existing test-cases
were executed which avoided a time consuming and error prone manual testing. At the
end of the development cycle, every test-case was executed successfully.

5.2 Proof of Concept Setup

This thesis mostly focuses on the interface logic between FMI for model exchange and
IEC 61499-based controllers. Several aspects such as the detailed software development
cycle and extended use-cases are beyond the scope of this document. However, two simple
test setups and their experimental evaluations are presented. Both test setups aim at
demonstrating the potential and limitations of the prediction-based approach. They do
not claim full applicability in complex energy systems.

Both setups include models which were generated in OpenModelica [71] and exported
by its built-in FMI export functionality. Sections 5.2.1 and 5.2.2 describe these models.
One model was executed at a hardware test-stand and the other model was executed at
a local test setup. Both setups are described in section 5.2.3.

5.2.1 Test Model

Testing and evaluation of the implemented prediction-based approach requires a test
FMU which triggers events. To limit the probability of errors which are introduced by the
model, a simple model was chosen. The simple model outputs a time-dependent function
consisting of single steps and a sinusoidal function. Since IEC 61499-based controllers
communicate data at discrete points in time only [6], a sampling component was added.
The sampling component of the model generates FMI-events and maintains constant
outputs between two consecutive events. It could use a constant sampling rate but
equidistantly triggered events do not fully utilize the capabilities of the prediction-based
approach. Hence, a dynamic sampling component which adjusts the sample rate based
on the inputs of the sampler is implemented.

Figure 5.2 shows the block diagram of the sampling component as displayed by Open-
Modelica. The functionalities of the model are implemented by connecting predefined
Modelica library function blocks. The function blocks provide an adequate visualization

44

sampler

br
ea
kL
oo
p

pr
e

threshold

>=

abs

abs-

feedback

yu

Figure 5.2: Dynamic Sampling Component

enableT

true

enable

Q
zeroQ

k=0

P

sampler

pulse1

period=60
pulse2

period=60

pulse3

period=40
addOut

+1

+1

+1

+

omega

duration=1800
time

startTime=150

product sin

sin

addChirpaddChirp

+
+1

+1

k=Pmaxc/c2

gain

addOffsetaddOffset

+
+1

+1

offsetStep

startTime=150

Figure 5.3: Test Model

without the need of exposing the text-based Modelica language. The dynamic sampling
component continuously compares the input u(t) with its output y(t) via the feedback
block. If and only if the absolute deviation of the in- and output exceeds a given threshold,
the input u(t) will be sampled. Depending on the input function, sampling will be done
in non constant intervals. Note that the pre block delays its input by an infinitesimal
small time step [57]. It breaks the algebraic loop which arises by the feedback loop and
allows a proper simulation.

The test signal generation is shown in figure 5.3. The implemented model also uses
Modelica function blocks which generate the output signal. The outputs P, Q and enable

45

Configuration
Parameter Fast Slow

Pmax 12 kW 12 kW
ω0 2π 1

15 2π 1
360

∆ω 2π 1
60 0

t0 5 s 5 s
t1 25 s 45 s
t2 60 s 120 s
t3 90 s 180 s
t4 120 s 240 s
t5 150 s 300 s
t6 1950 s 1950 s

Table 5.1: Test Model Parameters

of the model are sent to the test-stand controller. Only the resistive load set-point P
is currently adjusted during the experiments. Other outputs are present to meet the
interface requirements of the test-stand.

To test the stepwise adjustment, the function blocks pulse1, pulse2 and pulse3
first generate a single pulse and a stepped pulse. Figures 5.13 and 5.14 show the expected
outputs of the model. Let ypulse(t) be the output of the pulse function block at time t
and σ(t) be the Heaviside function [17, 59]. The output ypulse(t) is given by (5.1) which
assumes the parameters Pmax and t0 < t1 < t2 < t3 < t4 to be known beforehand.

ypulse(t) = 3Pmax
4 (σ(t− t0)− σ(t− t1))

+ Pmax
3 (σ(t− t2) + σ(t− t3)− 2 · σ(t− t4)) (5.1)

After the step functions return to zero, a chirp-like test sequence is started. The
function block omega constantly increases the frequency of the sine component until the
maximum frequency is reached. Since the resistive load does not feature negative power,
an offset was added to the sine signal. Hence, all load set-points will be positive. The
output ychirp(t) of the test sequence is given by (5.2).

ychirp(t) = σ(t− t5)
(
Pmax

2 sin ((∆ω(t− t5)−∆ω(t− t6)σ(t− t6) + ω0) · t)
)

+ σ(t− t5) · Pmax
2 (5.2)

The chirp-like test sequence is parametrized by the parameters Pmax, ω0, ∆ω and t5 < t6.
When testing, two different configurations of the model were applied. Table 5.1 shows
the deployed parameter values of both configurations.

46

ThermalStoarge

EnvironmentTemperature

T=TAmb
Insulation

heatingElement
loadSwitch

K

te
m
pe
ra
tu
re
Se
ns
or

temperatureController

reference

u

boiler

waterSource
p

T

waterSink
p

T

volumeflow

V

n

hotWaterUsage

referenceTemperature

p

Figure 5.4: Simple Boiler Model

First, the FMU which was exported by OpenModelica failed to execute. An error
message which indicated that it is not allowed to set an empty state vector was displayed.
Since the test model does not contain any continuous state, the state vector originally
remained empty and only algebraic equations had to be solved. To overcome the limitation,
a constant dummy state was manually added to the model. Snippet 3 shows the applied
workaround.

model TestSignal
// [...]
Modelica.SIunits.Temperature T(start = 0) "Some dummy temperature";

equation
der(T) = 0;
// [...]

end TestSignal;

Snippet 3: Missing State Workaround

5.2.2 Household Model

To give a first impression of the capabilities of the approach, the energy consumption of
an electric hot water boiler was modelled. The model focuses on the event generation
introduced by the temperature controller of the boiler and does not claim full physical

47

constantvoltage1=
230

+
-

gnd

boilerPowerSensor

P
boiler

P

QconstQ

k=0
constCtrl

true

enable

dynamicSetpoint

period=86400

shower2

period=86400

shower1

period=86400
addHotWaterLoadsaddHotWaterLoads

+
+1

+1

Figure 5.5: Household Model

accuracy. The construction of a detailed system model is beyond the scope of this thesis.
Figure 5.4 shows the model of the hot water boiler. It maintains two ports connecting
the electrical load, one port connecting the hot water usage and one port connecting
the temperature set-point. The thermal mass of the fluid is modelled as a concentrated
thermal mass. Any temperature gradient within the fluid is neglected. The actual heat
transfer to the heated media is modelled by a HeatedPipe library object [57]. An
OnOffController library block controls the temperature and switches the resistive
load which heats the boiler. Additionally, heat losses via the boilers insulation are
modelled.

The hot water boiler model was embedded in a simple household model which is shown
in figure 5.5. The household model applies static set-points and outputs the calculated
energy consumption. A transient electrical analysis is avoided by using an equivalent
DC source. The temperature set-point of the boiler and the hot water consumption are
approximated by step functions. The simple usage profile consists of two pulses which
represent a ten minute shower each. The temperature set-point mimics an intelligent
home automation system which rises the set-points in time of high photovoltaic gains.

The model is parametrized via a set of model parameters. These parameters are the
physical dimensions of the boiler (radius r, height h), ambient and fluid temperatures,
the heat conductivity λins of the insulation as well as the fluid properties. It is assumed
that the boiler has a cylindrical shape which is covered by the insulation. Additionally,
it is assumed that the insulation material consists of d = 10 cm polyurethane rigid
foam with a thermal conductivity of λins = 0.03Wm−1 K−1 [40]. The heated fluid is
assumed to be water. Its thermal properties are stated in the Modelica library class
Modelica.Thermal.FluidHeatFlow.Media.Water. The heat capacity Cstorage of
the thermal storage is calculated by (5.3) where ρ corresponds to the fluid density and cp

48

HuT

(PV inverter)

Power connection

230 V / 50 Hz

RL

DC supply

for HUT
AC source

grid simulator

Switch

grid / simulator

CL

Power measurement

AC HuT

A

A

A

Measurements

RLC circuit

dZ

0,5/1,0

RN

Power mesurement

grid

Power measurement

DC HuT

Switch and

measurement device
Grid impedance

emulation

Power Measurement

Local load

(RLC circuit)

LL

LN

Linear programmable

PV array simulators PVAS2

3 x 12 kW, 850 VDC, 3 x 32 A

decentralized

I/O modules

Tripper input

power breakdown /

Impedance step

Hook-up

of HuT

decentralized

I/O modules

decentralized

I/O modules

SCADA

Ethernet

Industrial Ethernet

Industrial Ethernet

Industrial Ethernet

Embedded

Controller /

Industry PC

Figure 5.6: Hardware Test-Stand (Taken from [22])

corresponds to the specific heat capacity of the fluid at constant pressure.

Cstorage = r2 · π · hρcp (5.3)

According to the OpenModelica documentation, the thermal conductance Gins for a
cylindrical geometry of the insulation is given by (5.4) [57].

Gins = 2π · λinsh · log
(
r + d

r

)
(5.4)

Figure 5.12 shows the outcome of the model in a 26.5 hour period which starts with
the first hot water consumption. The model is mainly used to demonstrate the long-term
stability of FMITerminalBlock and its ability to reduce triggered events. Since the
set-point of the boiler is increased after 4.5 hours, the energy consumption rises at that
time. The set-point is reset after three hours. The second hot water consumption period
after nine hours consumes the same amount of water as the first period. Due to the
increased storage temperature the consumption results in a decreased heating-up time.

5.2.3 IEC 61499-Based Infrastructure

The test-stand is described by Andrén et al. who implemented an automatic tuning of
the deployed oscillatory circuit [22]. Figure 5.6 is provided by Andrén et al. and shows
the test-stand setup. The HuT is driven by linear programmable PV array simulators on

49

RLC1_CTRL_R

REQ CNF

ERROR

RLC_CTRL

0.0

USE_PQ

MAX_NODES

USE_NOM

PQ_SET

PQ_END

MEAS»

NODES»

P_SET

REQ CNF

FILTER_REAL

0.0

IN

TOL

OUT

P_Preset

REQ CNF

REAL2REAL

1.0

IN OUT

E_PERMIT

EI EO

E_PERMIT

0.1

PERMIT

CTRL_ONOFF

REQ CNF

BOOL2BOOL

1.0

IN OUT

Q_preset

REQ CNF

REAL2REAL

1.0

IN OUT

SERVER_RLC_CTRL_SCADA

INIT

RSP

INITO

IND

SERVER_1_3

0.0

QI

ID

SD_1

QO

STATUS

RD_1

RD_2

RD_3

P

5

FALSE

REALo0.01

1

localhost:63636

Figure 5.7: IEC 61499-Based Interface

its DC side. On the Alternating Current (AC) side of the HuT it is possible to apply
several configurations. The HuT may be connected to an AC grid simulator or directly
to the local grid. The oscillatory circuit may be used to apply local loads and the grid
impedance emulation may emulate the properties of the power grid. An IEC 61499-based
4DIAC FORTE controller operates the oscillatory circuit and the deployed switching
devices [22, 31]. It is executed on a dedicated industrial PC. The controller implements
several safety measures and adjusts the oscillatory circuit of the test-stand based on given
power set-points. A SCADA system which is based on ScadaBR [46] provides the user
interface of the test-stand and logs recorded states. All subsystems are interconnected
via ethernet and industrial ethernet respectively.

During the performed tests, the local load was connected to the local power grid and
the resistive load was adjusted by applying the outputs of the test model. An HuT or
any artificial grid impedance was not present. The power consumption of the load was
recorded by a DEWETRON measurement station. It operates independently from the
measurement equipment which is used to control the local load. The local resistive load
consists of a single continuous load and several discrete loads which can be switched
individually. The controller adjusts the discrete and the continuous loads in order to
follow the given set-point.

Figure 5.7 shows the first few components of the load adjustment control logic [22].
It was exported by the 4DIAC IDE. Set-points are received via the server FB (which is
drawn on the left hand side of figure 5.7). They are passed on for further processing such
as filtering new set-points. Note that the third variable of the server contains a flag which
enables the adjustment logic. Currently, only the resistive adjustment is implemented
but the interface is prepared to adjust the reactive loads as well.

To test FMITerminalBlock, a local IEC 61499 application was created. The application
was modeled using the 4DIAC IDE (version 1.5.3) and executed on an FBRT and a
4DIAC FORTE RTI [9, 31]. Both RTIs were distributed with the 4DIAC IDE installation.
The local application receives the outcome of the simulation and displays the data of
the model at an event log component. Figure 5.8 shows the FBs of the application. The

50

ST
AR
T_
VA
LU
E

R
EQ

CN
F

BO
O
L2
BO
O
L

1.
0

IN
O
U
T

ST
O
P_
VA
LU
E

R
EQ

CN
F

BO
O
L2
BO
O
L

1.
0

IN
O
U
T

G
ET
_Q
I

EI
1
EI
2

EO

F_
M
U
X_
2_
1

0.
0

IN
_1
_1

IN
_2
_1

Q
O

ST
AT
U
S

O
U
T_
1

SE
T_
PO
IN
T_
SR
V

IN
IT

R
SP

IN
IT
O
IN
D

SE
R
VE
R
_0
_3

0.
0

Q
I
ID

Q
O

ST
AT
U
S

R
D
_1

R
D
_2

R
D
_3

LR
EA
L2
LR
EA
L

R
EQ

CN
F

LR
EA
L2
LR
EA
L

1.
0

IN
O
U
T

LR
EA
L2
LR
EA
L_
0

R
EQ

CN
F

LR
EA
L2
LR
EA
L

1.
0

IN
O
U
T

BO
O
L2
BO
O
L

R
EQ

CN
F

BO
O
L2
BO
O
L

1.
0

IN
O
U
T

W
ST
R
IN
G
2W
ST
R
IN
G

R
EQ

CN
F

W
ST
R
IN
G
2W
ST
R
IN
G

1.
0

IN
O
U
T

W
ST
R
IN
G
2W
ST
R
IN
G
_0

R
EQ

CN
F

W
ST
R
IN
G
2W
ST
R
IN
G

1.
0

IN
O
U
T

AS
_M
SG
_0

R
EQ

CN
F

AP
PE
N
D
_S
TR
IN
G
_3

0.
0

IN
_1

IN
_2

IN
_3

O
U
T

AS
_M
SG
_1

R
EQ

CN
F

AP
PE
N
D
_S
TR
IN
G
_3

0.
0

IN
_1

IN
_2

IN
_3

O
U
T

D
IA
G
_L
O
G

IN
IT

R
EQ

IN
IT
O
IN
D

D
IA
G
_L
O
G

0.
1

Q
I
SR
C

CO
N
D

Q
O

ST
AT
U
S

F_
ST
R
IN
G
_T
O
_W
ST
R
IN
G

R
EQ

CN
F

F_
ST
R
IN
G
_T
O
_W
ST
R
IN
G

0.
0

IN
O
U
T

1 0

12
7.
0.
0.
1:
14
99

FM
IT
er
m
in
al
Bl
oc
k

Fi
gu

re
5.
8:

IE
C

61
49

9-
B
as
ed

Te
st

A
pp

lic
at
io
n

51

DIAG_LOG FB of FBRT currently does not support arbitrarily typed inputs. Hence, a
data type conversion from the LREAL typed outputs of the model to the WSTRING typed
inputs of the display is needed. Additionally, different variables are concatenated to a
single human-readable string.

The application is implemented in a distributed way because FBRT and 4DIAC
support different sets of FBs. 4DIAC provides convenient string concatenation FBs
while FBRT provides HMI FBs. At first, the application was modelled from a holistic
perspective. Afterwards, it was distributed to the deployed controllers. The server
component and the conversion logic resides on the 4DIAC FORTE-based controller and
the HMI FB (DIAG_LOG) is mapped to the FBRT-based controller. The data between
both controllers is transmitted via a publisher and a subscriber FB. Since both FBs are
modeled at the device level, they are not shown in figure 5.8 which displays the general
application.

5.3 Timing Evaluation

When using FMITerminalBlock productively, the timing of the experiment has to be
evaluated on a regular basis. Only if the observed timing deviations do not exceed
application-specific limits the output of the experiment is reasonable. To simplify the
timing analysis, a set of MATLAB scripts and functions was written [38]. The functions
read FMITerminalBlock timing files, evaluate and display the results. To test and verify
the logging facilities of FMITerminalBlock, external timing sources were used. Two
experimental setups were used to evaluate the capabilities of FMITerminalBlock.

The first setup consists of the local IEC 61499 application which is described in
section 5.2.3. It was executed on an office PC under Windows 7 Enterprise. In the local
setup, the household model was executed and the timing was recorded by FMITerminal-
Block, the FBRT controller, and Wireshark (version 1.12.3), a network protocol analyzer.
To test the long term stability and to fully utilize the capabilities of the predictive
approach, a prediction horizon of five minutes was chosen. Additionally, the settings of
FMITerminalBlock were altered to internally store the results of the integrator in a five
second interval. The current energy consumption of the boiler, a constant boolean flag,
and the current temperature of the boiler were transferred to the local application. No
other model variable was recorded.

By evaluating the timing records provided by FMITerminalBlock, the delay of each
single event is estimated. The estimation is done by subtracting the event time-stamp
from the time-stamp of the timing record at the end of the distribution stage. Every
protocol implementation currently uses the synchronous send(...) functions of Boost
to transmit data [1]. The record is added after all publisher instances are notified and
the model variables are updated. Therefore, a network packet delay may be less than the
recorded delay. In most use-cases, the time of the model does not directly correspond to
the absolute time which is recorded in the timing file. To compare the absolute timing
and the calculated time of each event, the relative time of the event is converted to an
absolute time-stamp. As a reference time, the absolute time-stamp of the first event is

52

Simulation Time [h]
5 10 15 20 25

D
el

ay
 [s

]

0

0.02

0.04

0.06

0.08

0.1

0.12 End Distribution
Begin Distribution
Controller

Figure 5.9: Event Delays of the Household Model

taken. In particular, the time-stamp which is recorded after the event is emitted is used
as an absolute reference. Following this method, constant timing offsets introduced by
the event scheduling functions can not be detected. However, since most experiments do
not require an absolute timing anyway, constant timing offsets can be neglected.

Figure 5.9 shows the delay of each recorded event at different stages of the program
flow. For each stage, the calculated nominal time of the event is used as the reference
time. Due to the large time-span of at least 242ms between two consecutive events, no
event prediction had to be delayed, and they all finished before the scheduled time for
the event. The time stamps at the beginning and the end of the event distribution were
recorded by FMITerminalBlock. Since the outputs are calculated on request only, the
time which is required by the distribution also includes the calculation of the outputs of
the model. It turned out that most of the accumulated delay arises by late scheduling.
Only 0.09% of the accumulated delay at the end of the distribution stage arose during
distribution.

The delay of the controller was calculated from the event log timestamps of the
controller. It includes delays which were introduced by FMITerminalBlock as well as the
execution time of each involved controller. The controller records the event timing with
a precision of only three decimal digits. Hence, some controller records show less delay
than the corresponding distribution records. No additional delay which was added by
the controllers beyond the precision limits was recorded.

In addition to each event delay, the MATLAB functions output some statistics of the
recorded timing. The statistical information includes the average nominal time between
two events and their absolute boundaries. The average and Root Mean Square (RMS)
error as well as the absolute boundary delay values are also printed. In addition, the
uppermost 1.5% of the observed delays are considered as outliers. The maximum delay

53

Description Value

Nominal time between events [242ms, 300 s]
Average nominal time between events 294 s
Delay range [−0.2ms, 127.7ms]
Mean delay 9.7ms
RMS delay 13.8ms
Upper 1.5% delay threshold 29.0ms

Table 5.2: Timing Statistic of the Household Model Experiment

Simulation Time [s]
200 400 600 800 1000 1200 1400 1600

Ji
tte

r
[s

]

0

0.05

0.1

0.15

0.2

0.25
Total Delay
Delayed Start
Delayed Prediction
Distribution Delay

Figure 5.10: Event Delays of the Test Model (Fast Configuration)

of the remaining samples is displayed, as well. Table 5.2 shows the calculated statistics
of the first experiment.

The network timing files which were recorded and exported by Wireshark show a
significant clock drift. After capturing the network traffic, the files were exported via the
CSV export functionality of Wireshark. The packet timing is represented as an absolute
date string. After approximately 26 hours of operation, the clock of Wireshark was
1.862 s behind the clock of FMITerminalBlock. Since the timings of the controller are
reasonable, it is assumed that the deviation is introduced by Wireshark.

The second experimental setup consists of the hardware test-stand and a workstation
which was connected to the test-stand infrastructure. Both configurations of the test
model which is described in section 5.2.1 were executed. The events’ timing was recorded
by FMITerminalBlock and by a Wireshark instance which was executed on the workstation.
The timing records of the experiment which were generated by FMITerminalBlock were

54

Simulation Time [s]
100 200 300 400 500 600 700 800 900

Ji
tte

r
[s

]

0

0.01

0.02

0.03

0.04

0.05
Total Delay
Delayed Start
Delayed Prediction
Distribution Delay

Figure 5.11: Event Delays of the Test Model (Slow Configuration)

Configuration
Description Fast Slow

Nominal time between events [0.05ms, 20 s] [0.1ms, 30 s]
Average nominal time between events 396ms 5.0 s
Delay range [0.1ms, 278ms] [9.8ms, 55ms]
Mean delay 2.7ms 12.1ms
RMS delay 8.1ms 13.4ms
Upper 1.5% delay threshold 11.1ms 33.4ms

Table 5.3: Timing Statistic of the Test Model Experiments

first evaluated independently from any other external timing information. The applied
method follows the method which was used to evaluate the local timing of the household
model. Figures 5.10 and 5.11 show the recorded event delays of the fast and the slow
configuration respectively. Table 5.3 additionally lists the calculated timing statistics of
both experiments.

Figures 5.10 and 5.11 plot each event delay at different processing stages. The
distribution delay corresponds to the delay at the beginning of the distribution stage.
The total delay corresponds to an event delay at the end of the distribution stage. If an
event is already delayed before its prediction starts or after it is predicted, the delayed
start and the delayed prediction marks respectively show the event delay.

Figures 5.10 and 5.11 indicate that most event delays fall inside a narrow time
interval. For instance, 90% of the observed event delays from the slow experiment

55

Time [h]
0 5 10 15 20 25

P
ow

er
 (

W
)

500

1000

1500

Time [h]
0 5 10 15 20 25

B
oi

le
r

T
em

pe
ra

tu
re

 (
°C

)

45

50

55

60

65

Controller
OpenModelica
Threshold

Figure 5.12: Comparison of the Outputs of the Household Model

are in [10.1ms, 12.0ms]. Especially large total timing delays show positive delays at
every possible processing stage. Some events first got delayed at the beginning of their
distribution, some events were not predicted in time and some event cycles even start
delayed. Hence, no single source which caused the observed outliers can be determined.

Since the reference time is chosen by the scheduling of the first event, figure 5.10 also
shows negative distribution delays. It has to be noted that negative distribution delays
slightly bias the statistics presented in table 5.3. Hence, the fast configuration shows
smaller absolute delay values than the slow configuration. From the perspective of a
controller, actual delays may range from the distribution to the total delay values.

The Wireshark instance collected the network traffic which was sent via the TCP-
based protocol to adjust the set-points. Since TCP returns an acknowledgment packet,
the network delay including the processing time of the network stack can be estimated.
For every event two packets have been captured, one containing the set-points and one
acknowledging the first one. Additional packets which are used to establish and reset
a TCP connection are neglected [5]. Like in the first experiment, the exported timing
information of Wireshark showed a clock drift of 1.3 s within the first 27 minutes of the
fast configuration. According to that timing information, the packets of an event were
received before the corresponding event was actually triggered. Since the local setup
provides strong indicators that the invalid timing is caused by Wireshark, further research
on that issue is beyond the scope of this thesis.

5.4 Measurements
The errors of the local test setup are not only estimated in the time domain but also output
value deviations are considered. The IEC 61499-based logging application records two

56

Time [s]
0 50 100 150 200 250 300 350 400

P
ow

er
 [W

]

0

2000

4000

6000

8000

10000

12000

Measurement
Expected Result
Continuous Result

Figure 5.13: Measurement and Simulation Results (Test Model, Fast Configuration)

output values, the boiler temperature and the current power consumption. Figure 5.12
compares the notion of the output values of the controller to a reference output which
was created by OpenModelica. The OpenModelica configuration uses a DASSL integrator
and saves the outputs of the model in five second intervals. The results of the timing
evaluation which are stated in section 5.3 lead to the expectation of accurate measurement
results. Measured outputs confirm the expectations and do not tend to be erroneous.
Hence, most outputs in figure 5.12 nearly overlap. After aligning the output time-stamps,
an RMS deviation of 15W for the power value and an RMS deviation of 1.5× 10−4 K for
the boiler temperature was calculated. The mean deviations of both outputs are 1.2W
and −4.2× 10−5 K, respectively.

To evaluate the whole test-stand setup which includes the test-stand hardware, the
resistive load was measured and evaluated. The deployed measurement station periodically
samples the current and voltage levels of the load. Based on the measurements, it
calculates the resistive and reactive power. For both experiments a sampling frequency
of 10 kHz was chosen. After five voltage periods, the data was aggregated and the actual
power was calculated. Hence, the measurement station sampled the power in 100ms
intervals. The measurement station and the workstation which executed the test model
currently do not share a common time base, and they are not synchronized. Therefore, it
is not possible to directly compare the timing of the result with the output of the model.
Instead, a manually adjusted offset is used to align the first measured edge.

Figure 5.13 shows the first 400 s of the results of the fast configuration. Additionally,
the expected outcome and the continuous output are presented. The expected outcome
was generated by OpenModelica which features DASSL integration. The step function
at the beginning shows that the controller first adjusts the discrete loads [22]. As soon
as the discrete loads are adjusted, the continuous load is used to fine-tune the power

57

Time [s]
0 100 200 300 400 500 600 700 800 900

P
ow

er
 [W

]

0

2000

4000

6000

8000

10000

12000

Measurement
Expected Result
Continuous Result

Figure 5.14: Measurement and Simulation Results (Test Model, Slow Configuration)

consumption. The actual power is often temporarily higher than the intended set-point.
The transient overshoot is a result of the implemented control algorithm. Since both
configurations intend to challenge the presented setup and frequently adjust the set-points,
transient overshoots are observed regularly. During the measurements it turned out that
the controller restricts the loads’ power consumption to ≈ 10.5 kW. Hence, the actual
maximum power is below the assumed maximum power of Pmax = 12 kW.

In the first experiment which uses the fast configuration, the first 1630 s of the model
execution were recorded. After aligning expected results and recorded measurements,
the RMS and the average error were calculated. The measurement shows an RMS
deviation of 1.7 kW and an average deviation of −49W. Since the actual maximum power
consumption biases the result, the reference was adjusted. The new reference features
a maximum power of 10.5 kW. Adjusted statistics were calculated based on the newly
calculated values. The adjusted RMS of the experiment is 1.6 kW and the adjusted mean
value is 227W.

The outcome of the slow configuration was also recorded and evaluated. Figure 5.14
shows the first 900 s of the calculated output as well as corresponding measurements.
The increased time constants allow a better adoption to given set-points. Hence, the
unadjusted RMS error is only 589W and the unadjusted average error is −174W. The
adjusted reference shows an RMS error of 506W and an average error of 83W. The
glitches which result from an adoption of the set-points still exist. Nevertheless, in
particular for the step functions, set-point changes are triggered less frequently.

Figures 5.13 and 5.14 indicate that the average set-point adoption time of the test-
stand is much larger than every observed event delay. Hence, a precise measurement of
the timing of FMITerminalBlock which is based on the measured power consumption is

58

not feasible. As a direct consequence, it is expected that the timing of FMITerminalBlock
will allow reasonable experiments at the presented test-stand.

59

CHAPTER 6
Conclusion and Outlook

Many use-cases require the coupling of different simulation tools or models. By combining
IEC 61499-based control infrastructure with plant models new prospects arise. Control
infrastructure can be developed and tested with a minimal effort in porting the control
logic to a productive environment. The integration of simulation models in IEC 61499-
based infrastructure enables dynamically generated set-points of an IEC 61499-based
inverted test-stand or advanced controller HIL experiments. Current tool coupling
approaches which include IEC 61499-based controller most often require labor intensive
configurations and interface implementations. The FMI standard which specifies model
exchange or co-simulation interfaces does not impose the need of implementing tool-
specific interfaces. Hence, it enables a fluent development work-flow.

A predictive approach which integrates FMI-based models into IEC 61499-based
infrastructure is implemented and evaluated. It uses an ASN.1-based communication
protocol to transmit the outputs of the model to the control infrastructure. This thesis
describes the intended program flow and the user interface. It also states the chosen
software architecture. A third party library called FMI++ is used to interface FMI-
based models. Hence, the software design focuses on the user interface, timing and data
transmission. To evaluate the best-effort approach, a timing interface is implemented.
The interface outputs the program timing information and records several time-stamps
during the operation. It turned out that the usage of external software and software
libraries such as Boost, FMI++ or CMake enhanced the development. The software
already provided several basic functions on which the interface software is based.

The implemented interface program is tested by a set of unit test-cases to improve the
program code quality. The automated tests enable frequent regression tests. Furthermore,
the program and the implemented approach were evaluated in different experiments. Two
test setups in different configurations were deployed. One includes the test-stand hardware
and one includes a local IEC 61499 test application which records the output of the
program. Additionally, a network protocol analyzer was used to trace generated network
traffic. It turned out that the network protocol analyzer suffered from a large clock drift

61

which biases the results. Independent timing records were made by the interface program
and the local test application. They strongly indicate that the deviation is based on
the timings of the network protocol analyzer. Hence, the timing source was not used to
evaluate the timing of the interface program.

Two different models were used to evaluate the program. One outputs a stateless
time-dependent function and one contains a simple model of a hot water boiler. The
boiler model was executed by the local application. Most delays in that setup originated
from the operating system scheduling. At the local experiment, an RMS delay of 13.8ms
was achieved. Delays at the test-stand which outputs the results of the test model were
dominated by the network delay and the delay caused by output calculations. In this
setup, the timing of the interface program exceeds the precision of the adaptive load by
far.

The output of the local test application showed only little error compared to a
reference simulation. The deviation is mostly caused by numerical errors. The error in
the measured power curve is dominated by the adjustment time of the test-stand. Each
deployed electromechanical component requires a notable time-span to shift its state. In
both setups, the implemented approach performs well and outputs predicted events in
time. In rare circumstances, the best-effort implementation showed event delays up to
278ms which are far beyond the average delays. Nevertheless, the observed maximum
delays are far below the adjustment time of the test-stand.

Although this thesis presents first promising results, future research and engineering
is still necessary. For instance, a systematic discussion on combining the FMI and
IEC 61499-based controllers is still missing. The interface program may also be extended
by an updating functionality which changes the inputs of a model based on the outputs
of a controller. The resulting closed loop system would require separate evaluation.
Additionally, exhaustive tests which include large models and more realistic use-cases are
still missing. To further improve the interface program code quality, test-cases from an
independent tester are desirable.

62

Bibliography

[1] Christopher M. Kohlhoff. Boost.Asio. 2014. url: http://www.boost.org/
doc/libs/1_56_0/doc/html/boost_asio.html (visited on 10/29/2014).

[2] Feng Guo, Luis Herrera, Robert Murawski, Ernesto Inoa, Chih-Lun Wang, Philippe
Beauchamp, Eylem Ekici, and Jin Wang. „Comprehensive Real-Time Simulation
of the Smart Grid“. In: Industry Applications, IEEE Transactions on 49.2 (Mar.
2013), pp. 899–908. issn: 0093-9994. doi: 10.1109/TIA.2013.2240642.

[3] Brian Fox and Chet Ramey. GNU Bourne-Again SHell. Linux man page. Free
Software Foundation, Inc. url: http://linux.die.net/man/1/bash (visited
on 12/17/2014).

[4] ITU-T X.680: Information technology – Abstract Syntax Notation One (ASN.1):
Specification of basic notation. International Telecommunication Union, ITU, Nov.
2008. doi: 11.1002/1000/9604.

[5] RFC 793: TRANSMISSION CONTROL PROTOCOL. Information Sciences Insti-
tute. Sept. 1981. url: https://tools.ietf.org/html/rfc793 (visited on
02/05/2015).

[6] IEC 61499-1/Ed.2: Function blocks - Part 1: Architecture. International Electrotech-
nical Commission, IEC, Nov. 2012. url: http://www.iec.ch/.

[7] FMI Support in Tools. Modelica Association Project. 2014. url: https://www.
fmi-standard.org/tools (visited on 09/29/2014).

[8] OMG Unified Modeling LanguageTM (OMG UML), Superstructure. Version 2.3.
Object Management Group, Inc. 2010. url: http://www.omg.org/spec/UML/
2.3/Superstructure/PDF (visited on 02/19/2015).

[9] FBDK - The Function Block Development Kit. Holobloc Inc. Mar. 2011. url: http:
//www.holobloc.com/doc/fbdk/index.htm (visited on 02/04/2015).

[10] Chia-Han Yang, Gulnara Zhabelova, Chen-Wei Yang, and Valeriy Vyatkin. „Cosim-
ulation Environment for Event-Driven Distributed Controls of Smart Grid“. In:
Industrial Informatics, IEEE Transactions on 9.3 (Aug. 2013), pp. 1423–1435. issn:
1551-3203. doi: 10.1109/TII.2013.2256791.

[11] Edmund Widl. FMI++. A High-level Utility Package for FMI for Model Ex-
change. 2013. url: http://sourceforge.net/projects/fmipp/?source=
navbar (visited on 01/07/2015).

63

http://www.boost.org/doc/libs/1_56_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_56_0/doc/html/boost_asio.html
http://dx.doi.org/10.1109/TIA.2013.2240642
http://linux.die.net/man/1/bash
http://dx.doi.org/11.1002/1000/9604
https://tools.ietf.org/html/rfc793
http://www.iec.ch/
https://www.fmi-standard.org/tools
https://www.fmi-standard.org/tools
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.holobloc.com/doc/fbdk/index.htm
http://www.holobloc.com/doc/fbdk/index.htm
http://dx.doi.org/10.1109/TII.2013.2256791
http://sourceforge.net/projects/fmipp/?source=navbar
http://sourceforge.net/projects/fmipp/?source=navbar

[12] Walter Gora. ASN.1. abstract syntax notation one. 3., aktual. Aufl. DATACOM-
Fachbuchreihe. Bergheim: DATACOM-Buchverl., 1992. isbn: 3-89238-062-7.

[13] Edmund Widl, Wolfgang Müller, Atiyah Elsheikh, Matthias Hörtenhuber, and
Peter Palensky. „The FMI++ library: A high-level utility package for FMI for
model exchange“. In: Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2013 Workshop on. 2013, pp. 1–6. doi: 10.1109/MSCPES.2013.
6623316.

[14] IEEE Standard for Binary Floating-Point Arithmetic. 1985. doi: 10.1109/
IEEESTD.1985.82928.

[15] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)
– Framework and Rules. 2010, pp. 1–38. doi: 10.1109/IEEESTD.2010.5553440.

[16] Jan Lunze. Regelungstechnik 2; Mehrgrößensysteme, Digitale Regelung. Springer-
Lehrbuch. Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
isbn: 978-3-642-10197-7. doi: 10.1007/978-3-642-10198-4.

[17] Jan Lunze. Regelungstechnik 1; Systemtheoretische Grundlagen, Analyse und En-
twurf einschleifiger Regelungen. 9., überarbeitete Aufl. 2013. Springer-Lehrbuch.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. isbn: 978-3-642-29533-1.

[18] Ingo Hegny. „Development and simulation framework for industrial production
systems“. Technische Universität Wien, 2014.

[19] Ingo Hegny, Alois Zoitl, and Wilfried Lepuschitz. „Integration of simulation in the
development process of distributed IEC 61499 control applications“. In: Industrial
Technology, 2009. ICIT 2009. IEEE International Conference on. Feb. 2009, pp. 1–6.
doi: 10.1109/ICIT.2009.4939681.

[20] Ingo Hegny, Monika Wenger, and Alois Zoitl. „IEC 61499 based simulation frame-
work for model-driven production systems development“. In: Emerging Technologies
and Factory Automation (ETFA), 2010 IEEE Conference on. Sept. 2010, pp. 1–8.
doi: 10.1109/ETFA.2010.5641364.

[21] Sven Christian Müller Müller, Hanno Georg, Markus Küch, and Christian Wietfeld.
„INSPIRE - Co-Simulation of Power and ICT Systems for Evaluation of Smart
Grid Applications“. In: At-Automatisierungstechnik 62(5) (Apr. 2014), 315–324.
issn: 0178-2312. doi: 10.1515/auto-2014-1086.

[22] Filip Andrén, Felix Lehfuß, and Thomas Strasser. „A DEVELOPMENT AND VAL-
IDATION ENVIRONMENT FOR REAL-TIME CONTROLLER-HARDWARE-
IN-THE-LOOP EXPERIMENTS IN SMART GRIDS“. In: International Journal
of Distributed Energy Resources and Smart Grids 9.1 (Hardware-in-the-loop Testing
July 2013), pp. 27–50. issn: 1614-7138.

[23] Filip Andrén, Matthias Stifter, and Thomas Strasser. „Towards a Semantic Driven
Framework for Smart Grid Applications: Model-Driven Development Using CIM,
IEC 61850 and IEC 61499“. English. In: Informatik-Spektrum 36.1 (2013), pp. 58–68.
issn: 0170-6012. doi: 10.1007/s00287-012-0663-y.

64

http://dx.doi.org/10.1109/MSCPES.2013.6623316
http://dx.doi.org/10.1109/MSCPES.2013.6623316
http://dx.doi.org/10.1109/IEEESTD.1985.82928
http://dx.doi.org/10.1109/IEEESTD.1985.82928
http://dx.doi.org/10.1109/IEEESTD.2010.5553440
http://dx.doi.org/10.1007/978-3-642-10198-4
http://dx.doi.org/10.1109/ICIT.2009.4939681
http://dx.doi.org/10.1109/ETFA.2010.5641364
http://dx.doi.org/10.1515/auto-2014-1086
http://dx.doi.org/10.1007/s00287-012-0663-y

[24] Beman Dawes and David Abrahams. Boost C++ Libraries. 2005. url: http:
//www.boost.org/ (visited on 01/07/2015).

[25] Stefan Biffl, Alexander Schatten, and Alois Zoitl. „Integration of heterogeneous
engineering environments for the automation systems lifecycle“. In: Industrial
Informatics, 2009. INDIN 2009. 7th IEEE International Conference on. 2009,
pp. 576–581. doi: 10.1109/INDIN.2009.5195867.

[26] Bernhard Rumpe. Modellierung mit UML. Sprache, Konzepte und Methodik. 2nd ed.
Xpert.press. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011. isbn:
9783642224133. doi: 10.1007/978-3-642-22413-3.

[27] Wolfgang Müller and Edmund Widl. „Linking FMI-based components with discrete
event systems“. In: Systems Conference (SysCon), 2013 IEEE International. 2013,
pp. 676–680. doi: 10.1109/SysCon.2013.6549955.

[28] Muhammad Usman Awais, Peter Palensky, Wolfgang Mueller, Edmund Widl, and
Atiyah Elsheikh. „Distributed hybrid simulation using the HLA and the Functional
Mock-up Interface“. In: Industrial Electronics Society, IECON 2013 - 39th Annual
Conference of the IEEE. 2013, pp. 7564–7569. doi: 10.1109/IECON.2013.
6700393.

[29] Christoph Sünder and Valeriy Vyatkin. O3neida Workgroup on Execution Models
of IEC 61499 Function Block Applications. O3neida. Oct. 2011. url: http://www.
oooneida.org/standards_development_Compliance_Profile.html
(visited on 08/13/2014).

[30] CMake 3.1.0 Documentation. Kitware, Inc. url: http://www.cmake.org/
cmake/help/v3.1/ (visited on 01/07/2015).

[31] 4DIAC: FORTE. PROFACTOR GmbH. url: http://www.fordiac.org/8.
0.html (visited on 09/18/2014).

[32] Pete Becker. The C++ standard library extensions. a tutorial and reference. Upper
Saddle River, NJ, July 2006.

[33] Rene Rivera. Boost Predef library. June 2014. url: http://www.boost.org/
doc/libs/1_56_0/libs/predef/doc/html/index.html (visited on
11/24/2014).

[34] Samuel Krempp. Boost Format library. Dec. 2006. url: http://www.boost.
org/doc/libs/1_56_0/libs/format/ (visited on 11/24/2014).

[35] Kevlin Henney. Boost.Any. 2001. url: http://www.boost.org/doc/libs/
1_56_0/doc/html/any.html (visited on 11/24/2014).

[36] Hermann Kopetz. Real-Time Systems; Design Principles for Distributed Embedded
Applications. Real-Time Systems Series. Boston, MA: Springer Science+Business
Media, LLC, 2011. isbn: 9781441982377. doi: 10.1007/978-1-4419-8237-7.

[37] Global Greenhouse Gas Emissions Data. EPA, United States Environmental Protec-
tion Agency. 2013. url: http://www.epa.gov/climatechange/ghgemissions/
global.html (visited on 02/13/2015).

65

http://www.boost.org/
http://www.boost.org/
http://dx.doi.org/10.1109/INDIN.2009.5195867
http://dx.doi.org/10.1007/978-3-642-22413-3
http://dx.doi.org/10.1109/SysCon.2013.6549955
http://dx.doi.org/10.1109/IECON.2013.6700393
http://dx.doi.org/10.1109/IECON.2013.6700393
http://www.oooneida.org/standards_development_Compliance_Profile.html
http://www.oooneida.org/standards_development_Compliance_Profile.html
http://www.cmake.org/cmake/help/v3.1/
http://www.cmake.org/cmake/help/v3.1/
http://www.fordiac.org/8.0.html
http://www.fordiac.org/8.0.html
http://www.boost.org/doc/libs/1_56_0/libs/predef/doc/html/index.html
http://www.boost.org/doc/libs/1_56_0/libs/predef/doc/html/index.html
http://www.boost.org/doc/libs/1_56_0/libs/format/
http://www.boost.org/doc/libs/1_56_0/libs/format/
http://www.boost.org/doc/libs/1_56_0/doc/html/any.html
http://www.boost.org/doc/libs/1_56_0/doc/html/any.html
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://www.epa.gov/climatechange/ghgemissions/global.html
http://www.epa.gov/climatechange/ghgemissions/global.html

[38] MATLAB Documentation. MathWorks, Inc. 2014. url: http://de.mathworks.
com/help/matlab/index.html (visited on 12/01/2014).

[39] Gary V. Vaughan, Ben Elliston, Tom Tromey, and Ian Lance Taylor. „GNU
Autoconf, Automake, and Libtool. expert insight into porting software and building
large projects using GNU Autotools“. In: 1st ed. Indianapolis, Ind.: New Riders,
2001. Chap. Writing ‘configure.in’. isbn: 978-1-57870-190-2. url: https://www.
sourceware.org/autobook/autobook/autobook_toc.html (visited on
01/07/2015).

[40] Alfons Oebbeke. Dämmstoff Magazin: Wärmeleitzahlen / λ-Werte. ARCHmatic.
2015. url: http://www.baulinks.de/baumaterial/lambda-werte-
waermeleitzahl- waermeleitfaehigkeit- waermedaemmung.php (vis-
ited on 02/03/2015).

[41] Valeriy Vyatkin. „The IEC 61499 standard and its semantics“. In: Industrial
Electronics Magazine, IEEE 3.4 (Dec. 2009), pp. 40–48. issn: 1932-4529. doi:
10.1109/MIE.2009.934796.

[42] Valeriy Vyatkin. „IEC 61499 as Enabler of Distributed and Intelligent Automation:
State-of-the-Art Review“. In: Industrial Informatics, IEEE Transactions on 7.4
(Nov. 2011), pp. 768–781. issn: 1551-3203. doi: 10.1109/TII.2011.2166785.

[43] Michael H. Spiegel, Fabian Leimgruber, Edmund Widl, and Günther Gridling. „On
using FMI-based models in IEC 61499 control applications“. In: Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), 2015 Workshop on. 2015,
pp. 1–6. doi: 10.1109/MSCPES.2015.7115407.

[44] Matthias Stifter, Edmund Widl, Filip Andrén, Atiyah Elsheikh, Thomas Strasser,
and Peter Palensky. „Co-simulation of components, controls and power systems
based on open source software“. In: Power and Energy Society General Meeting
(PES), 2013 IEEE. July 2013, pp. 1–5. doi: 10.1109/PESMG.2013.6672388.

[45] Layered Model-View-Control Design Pattern. Holobloc Inc. Jan. 2011. url: http:
//www.holobloc.com/doc/despats/mvc/ (visited on 08/12/2014).

[46] ScadaBR English Summary. url: http://sourceforge.net/p/scadabr/
wiki/Manual%20ScadaBR%20English%200%20Summary/.

[47] TechNet about_Quoting_Rules. Microsoft. May 2014. url: http://technet.
microsoft.com/en-us/library/hh847740.aspx (visited on 12/17/2014).

[48] Greg Ippolito. Endianness: Big and Little Endian Byte Order. 2013. url: http:
//www.yolinux.com/TUTORIALS/Endian-Byte-Order.html (visited on
11/24/2014).

[49] Andrey Semashev. Chapter 1. Boost.Log v2. 2014. url: http://www.boost.
org/doc/libs/1_56_0/libs/log/doc/html/index.html (visited on
01/19/2015).

66

http://de.mathworks.com/help/matlab/index.html
http://de.mathworks.com/help/matlab/index.html
https://www.sourceware.org/autobook/autobook/autobook_toc.html
https://www.sourceware.org/autobook/autobook/autobook_toc.html
http://www.baulinks.de/baumaterial/lambda-werte-waermeleitzahl-waermeleitfaehigkeit-waermedaemmung.php
http://www.baulinks.de/baumaterial/lambda-werte-waermeleitzahl-waermeleitfaehigkeit-waermedaemmung.php
http://dx.doi.org/10.1109/MIE.2009.934796
http://dx.doi.org/10.1109/TII.2011.2166785
http://dx.doi.org/10.1109/MSCPES.2015.7115407
http://dx.doi.org/10.1109/PESMG.2013.6672388
http://www.holobloc.com/doc/despats/mvc/
http://www.holobloc.com/doc/despats/mvc/
http://sourceforge.net/p/scadabr/wiki/Manual%20ScadaBR%20English%200%20Summary/
http://sourceforge.net/p/scadabr/wiki/Manual%20ScadaBR%20English%200%20Summary/
http://technet.microsoft.com/en-us/library/hh847740.aspx
http://technet.microsoft.com/en-us/library/hh847740.aspx
http://www.yolinux.com/TUTORIALS/Endian-Byte-Order.html
http://www.yolinux.com/TUTORIALS/Endian-Byte-Order.html
http://www.boost.org/doc/libs/1_56_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_56_0/libs/log/doc/html/index.html

[50] Martin Schlager. „Interface Design for Hardware-in-the-Loop Simulation of Real-
Time Systems“. Disertation. Technischen Universität Wien, Fakultät für Informatik,
Sept. 2007.

[51] Thomas Strasser, Matthias Stifter, Filip Andrén, and Peter Palensky. „Co-Simulation
Training Platform for Smart Grids“. In: Power Systems, IEEE Transactions on
29.4 (July 2014), pp. 1989–1997. issn: 0885-8950. doi: 10.1109/TPWRS.2014.
2305740.

[52] Thomas Strasser, Alois Zoitl, James H. Christensen, and Christoph Sünder. „Design
and Execution Issues in IEC 61499 Distributed Automation and Control Systems“.
In: Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on 41.1 (Jan. 2011), pp. 41–51. issn: 1094-6977. doi: 10.1109/
TSMCC.2010.2067210.

[53] Thomas Strasser, Matthias Stifter, Filip Andrén, Daniel Burnier de Castro, and
Wolfgang Hribernik. „Applying open standards and open source software for smart
grid applications: Simulation of distributed intelligent control of power systems“.
In: Power and Energy Society General Meeting, 2011 IEEE. July 2011, pp. 1–8.
doi: 10.1109/PES.2011.6039314.

[54] Anthony Williams and Vicente J. Botet Escriba. Boost Thread 4.3.0. 2014. url:
http://www.boost.org/doc/libs/1_56_0/doc/html/thread.html
(visited on 01/07/2015).

[55] Gennadiy Rozental. Boost Test Library. 2007. url: http://www.boost.org/
doc/libs/1_56_0/libs/test/doc/html/index.html (visited on
01/07/2015).

[56] Standard C++ Library reference. cplusplus.com. 2014. url: http://www.cplusplus.
com/reference/ (visited on 01/07/2015).

[57] Modelica Documentation. OpenModelica. 2015. url: https://build.openmodelica.
org/Documentation/ (visited on 01/27/2015).

[58] Ralf Schneeweiß. Moderne C++ Programmierung. Klassen, Templates, Design
Patterns. Xpert.press. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2006.
isbn: 9783540459545. doi: 10.1007/3-540-45954-5.

[59] Gerhard Doblinger. Zeitdiskrete Signale und Systeme; eine Einführung in die
grundlegenden Methoden der digitalen Signalverarbeitung. 2., überarb. Aufl. Wilburg-
stetten: Schlembach, 2010. isbn: 978-3-935340-66-3.

[60] Torsten Blochwitz, Martin Otter, Martin Arnold, C Bausch, Christoph Clauß,
Hilding Elmqvist, Andreas Junghanns, Jakob Mauss, M Monteiro, T Neidhold,
et al. „The functional mockup interface for tool independent exchange of simulation
models“. In: 8th International Modelica Conference, Dresden. 2011, pp. 20–22. url:
https://www.modelica.org/events/modelica2011/Proceedings/
pages/papers/05_1_ID_173_a_fv.pdf.

67

http://dx.doi.org/10.1109/TPWRS.2014.2305740
http://dx.doi.org/10.1109/TPWRS.2014.2305740
http://dx.doi.org/10.1109/TSMCC.2010.2067210
http://dx.doi.org/10.1109/TSMCC.2010.2067210
http://dx.doi.org/10.1109/PES.2011.6039314
http://www.boost.org/doc/libs/1_56_0/doc/html/thread.html
http://www.boost.org/doc/libs/1_56_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_56_0/libs/test/doc/html/index.html
http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/
https://build.openmodelica.org/Documentation/
https://build.openmodelica.org/Documentation/
http://dx.doi.org/10.1007/3-540-45954-5
https://www.modelica.org/events/modelica2011/Proceedings/pages/papers/05_1_ID_173_a_fv.pdf
https://www.modelica.org/events/modelica2011/Proceedings/pages/papers/05_1_ID_173_a_fv.pdf

[61] FACTORIES OF THE FUTURE. Multi-annual roadmap for the contractual PPP
under Horizon 2020. European Commission. 2014. url: http://www.effra.eu/
attachments/article/129/Factories\%20of\%20the\%20Future\
%202020\%20Roadmap.pdf (visited on 02/12/2015).

[62] Karl Eilebrecht and Gernot Starke. Patterns kompakt. Entwurfsmuster für effektive
Software-Entwicklung. Heidelberg: Spektrum Akademischer Verlag, 2010. isbn:
3827425255. doi: 10.1007/978-3-8274-2526-3.

[63] Marcin Kalicinski. Boost.PropertyTree. 2008. url: http://www.boost.org/
doc/libs/1_56_0/doc/html/property_tree.html (visited on 01/07/2015).

[64] Alexander Viehweider, Georg Lauss, and Felix Lehfuss. „Stabilization of Power
Hardware-in-the-Loop simulations of electric energy systems“. In: Simulation Mod-
elling Practice and Theory 19.7 (2011), pp. 1699 –1708. issn: 1569-190X. doi:
10.1016/j.simpat.2011.04.001.

[65] Functional Mock-up Interface for Co-Simulation. Version 1.0. Modelica Asso-
ciation Project. MODELISAR consortium, Oct. 2010. url: https : / / svn .
modelica.org/fmi/branches/public/specifications/FMI_for_
CoSimulation_v1.0.pdf (visited on 07/07/2014).

[66] Functional Mock-up Interface for Model Exchange. Version 1.0. Modelica As-
sociation Project. MODELISAR consortium, Jan. 2010. url: https://svn.
modelica.org/fmi/branches/public/specifications/FMI_for_
ModelExchange_v1.0.pdf (visited on 08/15/2014).

[67] Functional Mock-up Interface for Model Exchange and Co-Simulation. Version 2.0.
Modelica Association Project. MODELISAR consortium, July 2014. url: https:
//svn.modelica.org/fmi/branches/public/specifications/FMI_
for_ModelExchange_and_CoSimulation_v2.0.pdf (visited on 08/15/2014).

[68] Technology Roadmap. Solar Photovoltaic Energy. International Energy Agency. 2014.
url: http://www.iea.org/media/freepublications/technologyroadmaps/
solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.
pdf (visited on 02/13/2015).

[69] Technology Roadmap. Wind Energy. International Energy Agency. 2013. url: http:
//www.iea.org/publications/freepublications/publication/
Wind_2013_Roadmap.pdf (visited on 02/13/2015).

[70] Technology Roadmap. Smart Grids. International Energy Agency. 2011. url: http:
//www.iea.org/publications/freepublications/publication/
smartgrids_roadmap.pdf (visited on 02/13/2015).

[71] https://openmodelica.org/. Modelica Association. 2015. url: http://sourceforge.
net/projects/fmipp/?source=navbar (visited on 01/19/2015).

68

http://www.effra.eu/attachments/article/129/Factories\%20of\%20the\%20Future\%202020\%20Roadmap.pdf
http://www.effra.eu/attachments/article/129/Factories\%20of\%20the\%20Future\%202020\%20Roadmap.pdf
http://www.effra.eu/attachments/article/129/Factories\%20of\%20the\%20Future\%202020\%20Roadmap.pdf
http://dx.doi.org/10.1007/978-3-8274-2526-3
http://www.boost.org/doc/libs/1_56_0/doc/html/property_tree.html
http://www.boost.org/doc/libs/1_56_0/doc/html/property_tree.html
http://dx.doi.org/10.1016/j.simpat.2011.04.001
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
http://www.iea.org/media/freepublications/technologyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf
http://www.iea.org/media/freepublications/technologyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf
http://www.iea.org/media/freepublications/technologyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf
http://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf
http://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf
http://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf
http://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf
http://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf
http://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf
http://sourceforge.net/projects/fmipp/?source=navbar
http://sourceforge.net/projects/fmipp/?source=navbar

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Main Goals
	Methodology
	Structure

	Related Work
	Discussion of the IEC 61499
	Using IEC 61499-Based Controllers in Co-Simulation
	Using System Models in IEC 61499-Based Controllers
	Co-Simulation and Model-Exchange Interfaces
	Hardware-in-the-Loop and Real-Time Testing
	Contribution

	Theoretical Background
	IEC 61499 Component and Execution Model
	Functional Mockup Interface Model
	Predictive Model Coupling

	Implementation
	Use-Cases
	Program Flow
	User Interface Design
	Software Design
	External Software

	Evaluation
	Unit Testing
	Proof of Concept Setup
	Timing Evaluation
	Measurements

	Conclusion and Outlook
	Bibliography

