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Abstract

Autonomous robot navigation has become important for the scientific community due to the in-
creasing interest in self-driving vehicles. In order to navigate in its environment, a robot needs
to perform first an estimation of its current position, so that it could plan its route and follow it
accordingly. There are several approaches to accomplish that: one example is the Simultaneous
Localisation And Mapping (SLAM) technique, where a comprehensive scan of the surroundings
of the robot is performed, so that an obstacle map with the position of the robot in it could be
created.

In this thesis a position tracking system for detecting the coordinates of a mobile station is developed
to support the method of SLAM. It relies on combining data from the input throttle and steering
angle with measurements from two separate sensors, using an Extended Kalman Filter (EKF)
as a correction mechanism. The sensor measurements rely on detecting the orientation of the
mobile base with an Inertial Measurement Unit (IMU) and determining the travelled distance by
estimating the displacement of the robot relative to the ground beneath it with the help of a laser
mouse sensor. This approach has been implemented and evaluated, achieving accuracy of 3% in
the estimation of the robot’s coordinates for distances up to 10m on a flat surface.



Abstrakt

Die autonome Roboternavigation spielt aufgrund der zunehmenden Interesse an selbstfahrenden
Fahrzeugen eine immer wichtigere Rolle in der Forschung. Eine Voraussetzung für die erfolgreiche
Navigation ist die Fähigkeit des Roboters seine Position zu bestimmen. Diese kann für die weitere
Planung und Ausführung einer Route verwendet werden. Es gibt unterschiedliche Methoden, um
das zu erreichen: eine solche Technik ist das SLAM-Verfahren (englisch “Simultaneous Localisation
And Mapping“), bei dem eine Abtastung der Umgebung des Roboters durchgeführt wird, so dass
eine Hinderniskarte mit der Position des Roboters darin erzeugt werden kann.

In dieser Arbeit wurde ein Positionsermittelungssystem zur Erfassung der Koordinaten einer Mobil-
station entwickelt, um die SLAM-Technik zu unterstützen. Es beruht auf Kombinieren der Daten
aus der Eingabegeschwindigkeit und Lenkwinkel mit Messungen von zwei verschiedenen Sensoren
mit Hilfe des Erweiterten Kalman Filters (EKF). Die Sensormessungen bestehen aus Messen der
Orientierung einer mobilen Basis mit einem Inertialsensor (englisch IMU, Inertial Measurement
Unit) und Bestimmen der zurückgelegten Distanz durch Abschätzen der Verschiebung des Robot-
ers gegenüber dem Boden mit Hilfe eines Laser-Maus-Sensors. Dieser Ansatz wurde durchgeführt
und evaluiert, wobei eine Genauigkeit von 3% bei der Schätzung der Koordinaten des Roboters für
Entfernungen bis zu 10 Metern auf einer ebenen Fläche erreicht wurde.



1. Introduction

1.1. Problem statement
The development of a precise localisation system is critical for many robot implementations. Ac-
curate calculation of the position and orientation of an autonomous system is necessary, so that it
could navigate in its environment. Determining the location of a robot is, however, not a simple
task - each measurement of vehicle displacement is relative to a certain frame, so that the selection
of appropriate reference points is an issue of great importance. Several position tracking techniques
include:

1. Absolute measurement: This approach utilises an absolute coordinate system, to which
all measurements are being referred. An example is the Global Positioning System (GPS),
which has been the preferred method for localisation of transportation vehicles for the last
decade. A receiver mounted on the vehicle obtains signals from geostationary satellites, which
provide the geographical coordinates of the object with accuracy up to 3 meters [1]. This
method, however, has limited functionality indoors and lacks the precision, when it comes to
short distance movements.

2. Dead reckoning: The method of dead reckoning relies on calculating the postition of a
mobile base from its previous position, based on information about the current velocity and
heading [2]. For example, measuring the rotation of the vehicle wheels could be used to
calculate the travelled distance [3]. Another approach in this category is the implementation
of an Inertial Measurement Unit (IMU) [4]. This is a sensor consisting of an accelerometer,
a gyroscope, and sometimes a magnetometer. It can measure acceleration, angular velocity,
and the direction and magnitude of the Earth magnetic field to produce information about its
movement in space. Of course, precise measurements are required for this approach, because
an error would grow proportionally to the travelled distance [2].

3. Simultaneous Localisation and Mapping (SLAM): In this approach the robot environ-
ment is scanned, most commonly with a laser rangefinder, and an obstacle map of the vehicle
surroundings is generated [5]. This technique provides information of the robot’s location in
regard to the nearby objects it detects. This approach offers position estimation with multiple
reference points. Some of the disadvantages are the complexity of the system, the increase in
the required computational power, and the high price of the scanning device.

Another important subject is data fusion - the position information, obtained by several different
mechanisms, needs to be combined in a certain manner, so that a single output is produced. In the
course of this project, different techniques were combined and a prototype localisation system for
determining the position and orientation of a mobile station was designed, built, and tested.
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1. Introduction

1.2. Methods
In this project a specialised system for determining the coordinates and orientation of a mobile
station relative to a starting position is developed. The system is based on the principle of dead
reckoning, meaning that the position of the robot is calculated using data from its previous location.
The system is mounted on a remote controlled car for test purposes. It relies on a combination of
several position information sources. By distributing the data acquisition over multiple systems,
separate reference points are utilised for location estimation, which increases the redundancy and
improves the reliability of the position tracking. The developed system uses the following set of
data sources, software tools, and algorithms to estimate the robot position:

1. Mechanics model of the robot: the input throttle and steering angle together with math-
ematical representation of the vehicle geometry provide basic motion information.

2. Inertial Measurement Unit: the IMU is provides orientation information, which is inde-
pendent from the robot platform and the control commands.

3. Laser sensor from an optical mouse: the mouse sensor measures the dispacement of the
vehicle relative to the ground beneath it.

4. Robotic Operating System (ROS): a software framework, designed to provide a universal
platform for the development of diverse robot applications.

5. Extended Kalman Filter: the filter uses the data acquired from the mechanics model and
the sensors to produce a position estimate, based on the confidence interval, attributed to
each data source.

An onboard microcontroller is used to configure the sensors. It reads the data from both sensors
and then transfers it to a communication module, which provides connection to a remote computer
station over WiFi. The microcontroller receives control commands over the same wireless connec-
tion to operate the throttle and the steering of the vehicle. After data acquisition a sensor fusion
algorithm - the Extended Kalman Filter - is performed onboard the computer station. The filter
weighs the input data according to a predefined set of measurements, in order to produce a more
accurate state estimate.

Since none of the original components of the chassis have been modified or replaced, the system
could be potentially used on any ground robot platform. From hardware perspective, difficulties
arise from the proper alignment of the IMU sensor and from the secure mounting of the laser sensor
close to the ground. In order to function correctly, the software requires a relatively precise math-
ematical representation of the model mechanics, consequently an adequate correction mechanism,
optimised for the platform in use could be applied.

The system was tested on several separate tracks to produce a comprehensive analysis of the
obtained results.
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1. Introduction

1.3. Evaluation platform
For the purpose of this project, a radio controlled car is used as a test platform. The position
tracking equipment is mounted on a RC vehicle, operated remotely by a computer. Thus, the
properties of the system could be easily demonstrated through a series of tests. By estimating the
performance in a simulation environment, an appropriate assessment of the system’s capabilities
could be obtained.

The RC model used in this project is based on Tamiya TT-02 four-wheel drive chassis. It features
a 540Nm DC motor, controlled by an Electronic Speed Controller (ESC), a 2.4GHz radio module,
consisting of a transmitter and a receiver, and a servo for controlling the steering of the vehicle.
Power is delivered by a 7.8V, 1500mAh NiMH battery pack.

The relatively large chassis of the vehicle offers a convenient platform for mounting the position
tracking system components. The powerful motor allows testing the performance of the system at
high velocity. The high-capacity battery provides sufficient power supply for both the vehicle and
the tracking system.

Figure 1.1.: Tamiya TT-02 chassis

Control mechanism:

The transmitter sends control signals over the 2.4GHz radio link to the receiver, using two different
channels for the motor and for the steering. A pulse-width-modulation (PWM) technique is used
for operating the ESC and the servo. In this modulation scheme the control signal consists of
periodic rectangular pulses with a specific duration. The speed and the angle of steering can be
controlled by modifying the pulse length.

Such setup enables to redirect the input signal for the ESC and servo from the radio receiver to a
microcontroller, capable of generating this type of pulses. Thus, the vehicle can be operated from a
remote computer station and the original radio unit can be used as backup control mechanism.

3



1. Introduction

Mechanics model:

The chassis of the Tamiya model represents a geometry, known as Ackermann steering: as figure
1.2 shows, it is characterised by the difference in the steering angles φin and φout for the inner and
outer wheels of the vehicle. The difference minimises the side slip of the wheels, caused by the
different radius of rotation rin and rout. By approximating the model to a tricycle with a steering
wheel positioned in the middle of the front axle, the two different steering angles can be combined
into a single one φ [6]. The control input in this configuration comprises of a single linear velocity
~v and a single steering angle φ.

Figure 1.2.: Ackermann steering geometry used for the project

A series of tests are performed in order to establish the relationship between the input PWM-values
and the corresponding linear velocity ~v and steering angle φ. The resulting model is used to provide
a rough estimation of the current position and orientation of the mobile base. According to the
geometry, an angular velocity could be defined as the product between the current velocity and the
momentary radius, which is a function of the steeing angle φ:

tan(φ) = L

R
R = L

tan(φ) ω = v

R
ω = v · tan(φ)

L
(1.1)

The system state (x, y, θ) could be described in this case by the following equation: xt
yt
θt

 =

 xt−1 + vt · dt · cos(θt−1)
yt−1 + vt · dt · sin(θt−1)

θt−1 + ωt · dt

 =

 xt−1 + vt · dt · cos(θt−1)
yt−1 + vt · dt · sin(θt−1)
θt−1 + vt·tan(φt)

L · dt

 (1.2)

Of course, one has to account for the possible errors in the model construction. For example, the
conversion from PWM-values to speed and angle values is prone to measurement errors. Moreover,
the inertia of the vehicle has to be taken into consideration because the robot needs time to
accelerate from ~v1 to a certain velocity ~v2. To get better estimates a set of sensors and a correction
algorithm are used to improve the accuracy in the position tracking of the vehicle.
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2. Setup

2.1. Hardware Configuration
This section provides a detailed description of the postition tracking system mounted on the test
vehicle. Besides an overview of the used components, it illustrates the principle of operation of the
selected hardware, as well as the communication to a remote computer station.

2.1.1. Component overview
The main controller, used in the project, is an ATMega328P, which is mounted on an Arduino
Nano development board. It is connected to the MPU-6050 IMU module over an I2C interface
for gathering the orientation data. The displacement of the vehicle is measured by an ADNS-9500
laser sensor and is sent over a SPI interface to the Arduino board. The microcontroller transfers
the sensor data together with a timestamp to a communication module, the ESP-8266, using a
serial interface. The ESP-8266 acts as a WiFi access point, to which a remote computer connects.
The module sends the data, received over the serial link, as IP packets for further analysis. Using
the same TCP link control data is sent to the Arduino, which drives two PWM-pins to operate the
ESC and the servo of the vehicle. The whole system is powered by the car battery.

Figure 2.1.: Position tracking system mounted on a Tamiya TT-02 Chassis

The correction in the position of the vehicle takes place onboard the remote computer, which
uses the data from the mechanics model and the sensors as inputs to an Extended Kalman Filter
(EKF), which then produces the corrected state. The separation of data acquisition and algorithm
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2. Setup

execution on different platforms allows a high sensor sampling frequency of 100Hz, which minimises
the discretisation error.

The system components were installed without much effort on the chassis, using the available
screws, securing the different parts of the RC vehicle. The IMU was aligned with the axes of the
vehicle to simplify the setup and the laser sensor was mounted close to the surface in order to
capture the ground images, necessary for the displacement calculation. The alignment of both
sensors is not compulsory, but allows a simple deployment of the system. A software calibration
could be performed to compensate any offset in the orientation and position of the sensors relative
to the chassis.

Components description

1. Tamiya TT-02 chassis:

a) 540Nm DC motor: a powerful DC motor to drive the RC vehicle

b) ESC: a PWM-controlled Electronic Speed Controller

c) Servo: a PWM-controlled servo

d) 2.4GHz Radio Receiver: used in combination with the original radio control

e) Power switch: turns on or off the power supply to the ESC and the radio receiver

f) Battery: a 7.8V NiMH battery

2. Arduino Nano: A development board for the ATMega328P microcontroller. The controller
runs at 16MHz, has 32kB of onboard flash memory and 2kB of SRAM. It reads the information
from the sensors and sends it to the communication module. It generates the PWM pulses,
which control the speed and steering of the vehicle, based on the information received from
the main computer system.

3. MPU-6050: Mounted firmly on the Tamiya chassis and properly aligned with the axes of
the vehicle, this sensor gathers information about the acceleration and angular velocity of
the mobile base in its own coordinate system ΣTamiya. It is using proprietary algorithms to
compute its orientation in space relative to an inertial coordinate system Σworld.

4. ADNS-9500 is a laser sensor from an optical mouse. It is fixed steadily to the chassis 2.5mm
above the ground and its axes are aligned with those of the IMU. The sensor measures the
displacement of the vehicle relative to its previous position and stores the data in two 16-bit
registers, one for each axis. After reading the data from the registers their contents is cleared,
so that each time the displacement (dx, dy) relative to the previous position is produced.

5. ESP-8266 serves as a WiFi-to-UART interface between the computer system and the micro-
controller. It creates an 802.11g access point and acts as a TCP server. The Arduino sends
data about displacement and orientation over its serial interface to this module, which is then
transferred to a TCP client on the main computer system.

6. Circuit board (1): The main controller is mounted on this circuit board. It contains
additional components, such as voltage dividers for the communication interfaces, a signal
detection circuit and a multiplexer for the PWM signals.

7. Circuit board (2): Consists of a voltage regulator circuit to power the WiFi-module and
the laser sensor. A power switch turns on or off the power supply for the whole system.

6



2. Setup

Safety mechanism

The control commands can be generated either by the operator, using a joystick or by a computer
algorithm designed for autonomous navigation. Since several programs running on two processors
control the speed of the test subject, it is a good practice to develop a separate, hardware solution
to take control over the mobile base. It is used as a backup control mechanism, if one of the
programs misperforms, the connection between the computer and microcontroller is lost and in any
other scenario, in which the RC model is heading at full-speed towards an obstacle. The developed
backup control system uses the original radio module as shown in figure 2.2:

Figure 2.2.: Multiplexor circuit used for input channel selection: radio PWM signals (in yellow);
Arduino PWM signals (in blue); channel select line (in red); PWM output (in green)

The PWM outputs of both the Arduino (in blue) and the radio unit (in yellow) are fed to input
channels (1) and (2) of a multiplexer to enable the selection of different signal sources. The PWM
motor signal line from the radio receiver is also connected to a signal detection circuit to drive the
multiplexer channel select pin (in red). When the radio transmitter is switched off, zero voltage is
supplied to the signal detection circuit. Thus, channel (1) is selected and the PWM signal, generated
by the Arduino, is propagated to the multiplexer output (in green). When the transmitter is turned
on and a PWM signal is detected, the circuit switches the input channel to channel (2), so that the
PWM pulses from the radio can control the vehicle. This ensures, that even if one of the programs
fails, the user can bring the mobile base to a halt or steer it to a safe location.

7



2. Setup

2.1.2. Inertial Measurement Unit
An Inertial Measurement Unit (IMU) is used for detecting the vehicle orientation in space. The
IMU is a small micro-electro-mechanical sensor, consisting of an accelerometer and a gyroscope.
For the purpose of this project, it is fixed firmly on the RC car, so that its x- and y-axis match
those of the Tamiya chassis to measure the acceleration and the angular velocity relative to the
coordinate system ΣTamiya. Since the goal of the project is to determine the position of the vehicle
relative to a starting position, the data from the sensor should be transformed to represent the
displacement and orientation in an inertial coordinate system Σworld.

(a) Test vehicle with IMU axes aligned to Σworld (b) Test vehicle with IMU rotated θ◦ relative to Σworld

Figure 2.3.: Coordinate transformation between the local vehicle frame ΣTamiya and the global
inertial frame Σworld

In order to do that, an IMU with additional special characteristics was utilised. The MPU-6050 has
an integrated Digital Motion Processor (DMP), which is capable of performing enhanced algorithms
for calculating the orientation relative to the inertial system Σworld. Taking into consideration the
acceleration due to the earth gravity and constantly gathering information from the accelerometer
and gyroscope, the DMP acts as a separate controller with the function of providing data about the
sensor’s orientation in space. Upon initialisation, the MPU-6050 interprets its current orientation
as the inertial system Σworld and any deviation from this initial position will be perceived as a
rotation relative to the value, measured at start-up.

The MPU-6050’s DMP functionality greatly reduces the load on the main microcontroller, which
does not perform additional complex data fusion algorithms. The controller receives the orientation
data as a quaternion q(x, y, z, w) from which it calculates the angle around the z-axis.

Although the IMU can deliver the acceleration relative to the inertial system Σworld, it requires a
lot of effort to accurately get the travelled distance [7]. The necessary double integration of the
acceleration value will drastically increase the error. Moreover, experiments have shown, that the
sensor acceleration offset at rest varies with the angle, so that even the provided velocity would be
inaccurate. To address this limitation a laser mouse sensor is used for measuring the displacement
of the vehicle.

8



2. Setup

2.1.3. Laser mouse sensor
As previously stated, a separate sensor can be implemented to compensate for the inaccuracy of
the accelerometer used for calculating the position. For this project, the ADNS-9500 laser sensor,
most oftenly used in high-performance computer mice, is used for measuring the travelled distance.
It is aligned to the axes of the test vehicle, so its data output is related to the ΣTamiya coordinate
system. The principle of operation is the following:

A vertical-cavity surface-emitting laser (VCSEL) illuminates the ground surface with coherent light,
which after reflection is focused via lens on a high-speed image acquisition system, operating at
several thousand frames per second. An on-board digital signal processor (DSP) analyses and
compares the taken images and determines the direction and magnitude of the movement (Moy,
2011).

Figure 2.4.: Laser sensor1

The laser sensor provides the displacement ∆x and ∆y relative to the previous reading of its
registers in form of "counts". These measured values apply in the coordinate system ΣTamiya.
They have to be interpreted together with the chosen resolution, in counts per inch, or CPI, to
determine the distance, which the sensor has travelled over the surface. The relationship between
the value in counts and the travelled distance in meters is given in equation 2.1:

∆x[m] = ∆x[counts] · 0.0254[m/inch]
resolution[counts/inch] (2.1)

Register values are reset to zero after reading, which allows one to detect differentially small dis-
placements, when reading the registers at high enough frequencies. This feature of the module
allows one to achieve relatively high accuracy in the measurements because a small change in the
orientation is combined with a small change in the position.

Similar to the IMU, the main computation of the sensor data gets performed by the sensor it-
self - a specialised DSP with digital image processing capabilities is used for transforming the
visual data into travelled distance, which offloads the microcontroller from intensive computational
operations.

1Image obtained from Dennis Moy, Optical mouse technology: Here to stay, still evolving, 2011
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2. Setup

2.1.4. Communication module
The hardware connection between the microcontroller, mounted on the vehicle, and the computer
station is established by a communication module, connected to the Arduino serial interface. The
ESP-8266 is a compact WiFi chip, featuring full support for the 802.11g protocol, and is capable
of transmitting data it receives over its serial connection as IP packets to a remote host to provide
a simple interface for connecting a microcontroller to a computer system [9]. In order to be able
to test the position detection system where no connection to a wireless network is possible, the
module is configured to establish an access point of its own and set up a TCP server. A client
running on a laptop is set up to connect to this server and to begin the data exchange between the
two devices.

The Arduino continuously sends position and orientation data, gathered from the sensors, over the
serial link and the ESP-8266 forwards it as IP packets to the remote client. The same TCP socket
is utilised to send control signals from the computer station to the microcontroller in order to drive
the vehicle. In this case, the client sends IP packets with the necessary information to the wireless
module, which then extracts the payload and forwards it over the serial link to the controller.

The wireless module offers a lot of advantages to the system:

• simple integration: the chip provides a direct communication between the computer and the
microcontroller

• reliability: the TCP protocol takes care of the correct data transmission

• transparency: the wireless module hides the communication details from both the microcon-
troller and the computer.

Figure 2.5.: Communication flow between the different components of the position tracking system

The interpretation of the obtained data and the control of the vehicle from a computer is made
possible by using a specialised robotics software. The Robotic Operating System (ROS) is an
open-source platform, which provides message passing interface for inter-process communication
[10]. The main program running on the computer station, is a ROS node featuring a TCP client
inside it. The position information, received from the TCP socket, is passed as a ROS-compatible
message for further analysis. The ROS-network is discussed in details in the next section.

10



2. Setup

2.2. Software
This section describes the software structure implemented on the computer station and discusses
in details the Extended Kalman Filter used for the data fusion.

2.2.1. ROS as middleware
The data from the sensors is sent to a computer for further analysis. This is accomplished by using
the Robotic Operating System (ROS) as middleware. ROS is a collection of libraries and tools,
developed for Linux and written in C++ and Python, which provide an easy to use framework to
work with robots [10]. A ROS network consists of several programs, called nodes, which exchange
information via publishing messages on different topics. By subscribing to a topic and by publishing
information on another one, the user can easily control the data flow between the nodes. Figure 2.6
shows the network of nodes and topics, designed for the prototype position tracking system:

Figure 2.6.: ROS communication: nodes are coloured in blue, topics in red

On the computer, the ROS node "Tamiya" operates as a TCP client, which connects to the
wireless module. It receives the sensor data and carries out the sensor fusion algorithm. The
corrected state is published on the /tf topic. By subscribing the visualisation node "rviz" to this
topic, a 3-dimensional, real-time interpretation of the vehicle state is obtained. The data from the
same /tf topic is used by the "hector_trajectory_server" node to pass the trajectory of the
mobile base to "rviz".

The "Tamiya" node is subscribed to the /cmd_vel topic to receive control signals to transfer to
the Arduino. As figure 2.6 shows, different nodes can be registered to publish on this topic, in
order to implement different control inputs. For example manual control with a joystick would
require a node "joy_node" to read the joystick input and another one "car_control" to publish
the data in the appropriate message format for the /cmd_vel topic. The use of the "move_base"
interface allows one to implement algorithms for autonomous navigation, which could be used with
predefined maps. The ROS framework enables the integration of many other functions, which
would further improve the robot field of operation, but are beyond the scope of this project.
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2. Setup

2.2.2. Kalman Filter
As already discussed, a mechanism is required to combine the postition information, obtained from
different data sources. In this project an Extended Kalman Filter was used for data fusion. It
is a nonlinear extention to the popular Kalman Filter, which provides a weighted average, giving
more weight to the estimates with higher certainty. The Kalman Filter can be described as a set of
mathematical equations that provide an efficient computational (recursive) means to estimate the
state of a process, in a way that minimises the mean of the squared error (Welch and Bishop, 2004).
Typical uses of the filter include smoothing noisy data and providing estimates of parameters of
interest. The Kalman Filter model assumes that a system evolves from a prior state xt−1 to a new
state xt according to the following equation:

xt = Atxt−1 +Btut + wt (2.2)

The new state vector xt is a linear function of the previous state xt−1, the control input ut and a
certain process noise wt. The matrix At represents the state transition function, which describes
the effect of the system parameters at time t − 1 on the system at time t. The influence of the
input control is modelled by the input control matrix Bt. The vector wt contains the process noise
terms for each parameter in the state vector. The process noise is assumed to be drawn from zero
mean multivariate normal distribution with covariance given by the covariance matrix Qt.

The system is also supposed to be observable and the performed measurements are described by
the following equation:

zt = Htxt + vt (2.3)
zt represents the measurement vector. The matrix Ht transforms the state vector parameters into
measurement domain. vt is the vector containing the measurement noise terms for each observation
in the measurement vector. Like the process noise, the measurement noise is assumed to be zero
mean Gaussian white noise with covariance Rt.

The algorithm comprises of two steps - state prediction and measurement update. In the prediction
step, an estimate of the state parameters together with an estimate of the new covariance at time
t is performed. Then, equation 2.2 is used to propagate the state parameters and the process noise
Qt is included in the covariance prediction:

x̂t = Atxt−1 +Btut (2.4)

P̂t = AtPt−1A
T
t +Qt (2.5)

The correction stage comprises of state correction and covariance update:

xc = x̂t +K(zt −Hx̂t) (2.6)

Pc = (I −KH)P̂t (2.7)
The state correction xc is calculated from the state prediction x̂t and from the difference between
the measurement zt and the measurement prediction Hx̂t from equation 2.3. The difference is
multiplied by a coefficient K, known as the Kalman gain.

K = P̂tH
T (HP̂tHT +Rt)−1 (2.8)

The Kalman gain is a ratio between the the predicted covariance and the measurement noise.
Its role and the principle of the algorithm are best demonstrated by discussing the two extreme
cases:
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1. In the first one the predicted covariance P̂t is small compared to the measurement noise
Rt, so the Kalman gain tends to zero. The term in the brackets in equation 2.6 dissapears
(or has a negligible value) and the corrected state equals the predicted state, resulting in
situation where the prediction is valued more than the measurements. The new covariance Pc
is equal to or slightly less than equal to the predicted covariance P̂t, meaning that the noisy
measurement has little influence on the resulting uncertainty.

2. In the second one the measurement noise R is small compared to the predicted covariance
P̂t. The Kalman gain approaches the identity matrix, so that xc ≈ Kzt, meaning that the
confidence in the measurements is greater than the confidence in the model. The corrected
covariance Pc is reduced to a fraction of P̂t due to the small value of (1−KH), resulting from
the decreased uncertainty in the measurements.

The capability to modify the influence of each data source based on the noise associated with it
makes the Kalman Filter a suitable candidate for data fusion algorithm [12]. More information
about the Kalman Filter algorithm can be obtained from [11]. Subsection 2.2.3 discusses in detail
how the nonlinear Extended Kalman Filter was implemented in this project.

2.2.3. Extended Kalman Filter
The following paragraphs describe the state transition equations together with the different steps
of the Extended Kalman Filter algorithm.

System model

The state of the vehicle can be described by its current position on the xy-plane and its angle
around the z-axis. Equation 1.2 represent the state transition function g(x,u), which depends
on the prior state xt−1 and on the input control ut. The system uncertainty is modelled by the
covariance matrix P and the process noise wt (comprised of the control noise, represented by the
control noise matrix M).

xt =

 xt−1 + vt · dt · cos(θt−1)
yt−1 + vt · dt · sin(θt−1)
θt−1 + vt·tan(φt)

L · dt


︸ ︷︷ ︸

g(x,u)

+wt; P =

 σ2
x σxy σxθ

σyx σ2
y σyθ

σθx σθy σ2
θ

 ; M =
(

σ2
v σvφ

σφv σ2
φ

)
(2.9)

The state transition function g(x,u) is not linear. The Extended Kalman Filter is designed for
nonlinear systems and operates by linearising the state transition function at current mean µt−1
and covariance Pt−1 [13], making it suitable for this project.

State prediction

The prediction step for the state is similar to the linear Kalman Filter, equation 2.4, and uses the
mechanics model from equation 1.2:

x̂t =

 µx,t−1 + vt · dt · cos(µθ,t−1)
µy,t−1 + vt · dt · sin(µθ,t−1)

µθ,t−1 + vt·tan(φt)
L · dt

 (2.10)
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2. Setup

For the covariance prediction the state transition function will be linearised at the current mean
µt−1 by calculating the jacobian G of g(x,u) with respect to the current state xt−1:

Gt = ∂g(µt−1,ut)
∂xt−1

=

 1 0 −vt · dt · sin(θt−1)
0 1 vt · dt · cos(θt−1)
0 0 1

 (2.11)

With this linearised approximation of the state transition function it is possible to forward the
uncertainty according to equation 2.5, where instead of the linear transition At a linearised version
Gt for positive vehicle speed is used. As the process noise Qt is given by the control noise Mt, the
jacobian of the state transition function with respect to the conrol values Vt should be calculated.
This way the uncertainty in the control is transformed into uncertainty in the state:

Vt = ∂g(µt−1,ut)
∂ut

=

 dt · cos(θt−1) 0
dt · sin(θt−1) 0

dt·tan(φt)
L

v·dt
L·cos2(φt)

 (2.12)

The predicted covariance P̂t has therefore the following form:

P̂t = GtPt−1G
T
t +Qt = GtPt−1G

T
t + VMV T (2.13)

Measurement prediction

The next step of the algorithm requires to calculate a measurement prediction ẑt = Hx̂t from
the state prediction, according to equation 2.6. The mouse sensor measures the displacement
(dx, dy) during a single timestep in its own coordinate system ΣTamiya. The state transition
function g(x,u) provides, however, the differential dispacement in the world frame Σworld. The
transformation matrix H, which converts the state parameter into the measurement domain, is
therefore a two-dimensional rotation matrix in homogenous form:

ẑt = H∆x̂t =

 cos(θt−1) −sin(θt−1) 0
sin(θt−1) cos(θt−1) 0

0 0 1

 ·
 vt · dt · cos(θt−1)
vt · dt · sin(θt−1)

vt·tan(φt)
L · dt

 (2.14)

Correction step

The correction step is performed, using equations 2.6 and 2.7.

The Extended Kalman Filter was programmed on the main computer system, instead on the
microcontroller. This way the maximum sensor refresh rate could be utilised, resulting in a smaller
discretisation error. A detailed analysis of the filter performance is shown in the next chapter.
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3. Results

3.1. Mechanics model
The mechanics model was tested on the following track: the vehicle was propagated along a straight
path for 1.5m and than a 90◦ left turn with a constant radius of 0.8m was performed. The car was
driven straight for another 1.5m, resulting in a total track length of 4.25m with an end state at
(2.30m, 2.30m, 1.57 rad). The test was performed twice. Although it is not possible for the operator
to follow exactly the chosen trajectory and some deviation from the path occured, the obtained
data was reliable enough to assess the strengths and weeknesses of the mechanics model. Figure
3.1 shows the results of the experiment. The test course is coloured in green and the trajectory,
computed with the mathematical model from equation 1.2, is marked with the black dots:
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(a) Test 1: end state (2.99m, 1.99m, 1.58 rad)
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(b) Test 2: end state (2.90m, 1.79m, 1.46 rad)

Figure 3.1.: Mechanics model: position estimate; the test track with an end point at (2.30m, 2.30m,
1.57 rad) is coloured in green; the black dots represent the mechanics model

Both tests show a similar output. According to the mechanics model, the vehicle starts turning left
at a further position along the x-axis, when compared to the executed path. This is explained by
the fact, that the model does not take into account the vehicle acceleration. The resulting distance
estimate will be greater than the actual one, because the model assumes, that the input velocity
is achieved instantaneously. After that the simulation shows a change in direction, similar to the
actual one. This means, that the estimated values for (v, φ), together with the system’s equations,
represent a satisfactory model of the vehicle dynamics. A significant difference in the executed
trajectory and the proposed model arise at the end of the curve. As one can see from figure 3.1,
in both cases the mechanics model predicts an earlier halt at y = 1.99m and y = 1.79m, compared
to the actual end point with y = 2.30m. This behaviour is not surprising and is due to the fact,
that near the end of the test the vehicle was moving without any velocity command as a result
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3. Results

of its momentum. The system calculates its path by using the input velocity and steering angle,
therefore this type of motion will always reamain unaccounted for by this model.

Figure 3.2 shows the estimated angle θ as a function of the elapsed time. The deviation from the
strictly linear progression is result of the operator’s actions to steer the robot to the chosen end
point. The green line marks the desired end value θend of 1.57 rad:
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(a) Test 1: θend = 1.58 rad
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(b) Test 2: θend = 1.46 rad

Figure 3.2.: Mechanics model: angle estimate; the green line represents the desired θend of 1.57 rad
at the end of the test; the black dots show the angle from the mechanics model

Conclusion:

As the results show, the mechanics model is capable of producing an acceptable postition estimate.
Its precision, however, is determined by a lot of factors. Some of them, such as the mapping of the
pulse duration to velocity and steering angle, could be improved by extensive testing, but the most
influential result from additional forces, acting on the vehicle. Therefore the mechanics model does
not suffice to produce a reliable position tracking on its own, separate solution should be used in
combination with it to compensate for the following effects:

• measurement error: the process of converting the pulse length to velocity and steering
angle is associated with certain noise. It is possible to improve the model by further experi-
ments, but this would not improve the overall performance drastically, because of the other
uncertainties involved.

• linkage sway: the linkage of the steering has a certain degree of freedom. Despite constant
input velocity and steering angle, the loose connections between the servo and the wheels
could result in different steering angles at fixed pulse durations.

• acceleration error: the input control values do not account for the vehicle acceleration.
The resulting error is especially evident, when there is a significant change in the velocity
over a short period of time (e.g. accelerating from a still position)

• wheel slip/skating: the model relies on a good traction between the car’s tyres and the un-
derlying surface. Any effect, which is not result of the input control, but from the environment
will not be perceived and accounted for.

• vehicle inertia: the vehicle inertia is not included in the mechanics model. This can lead to
inaccuracies, when the input velocity decreases to zero, but the car has gained momentum.
Additionaly, any other force, acting on the vehicle will introduce a relatively high deviation.
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3.2. Sensor data
A direct estimation of the vehicle’s state could be accomplished, relying only on the data from the
sensors. This is possible by using the angle from the IMU to project the values (dx, dy) provided
by the laser sensor from the local vehicle frame into the world frame. The sensors were tested on
three different test courses, in order to determine their accuracy and overall performance. Each
test was repeated 20 times to obtain enough information for statistical analysis.

In order to give a qualitative as well as a quantitative assessment of the sensor data, it is necessary
to define parameters, which describe the accuracy of the performed measurements. First, a metric
for the mean error ∆d will be introduced, which shows the deviation of the measured mean values
(µx, µy) from the desired endstate (x, y):

∆d =
√

(x− µx)2 + (y − µy)2 (3.1)

This value alone does not provide enough information; the quotient of ∆d and the total travelled
distance s is required to evaluate the accuracy of the sensor with respect to the traversed path:

εµ = ∆d
s

(3.2)

A qualitative interpretation of the obtained measurement variance will be provided by the ratio of
the standard deviation σ and the travelled distance s:

εσ = σ

s
(3.3)

Both the IMU and the mouse sensor have a lot of configuration registers, which alter their behaviour
and therefore their precision. All of the following tests were performed using the same configuration,
described below. It is optimised for the fastest data acquisition and uses the default settings for
both sensors:

• accelerometer sensitivity: ±2g

• gyroscope sensitivity: ±2000◦/s

• sample rate: 100Hz

• laser sensor resolution: 1620 cpi

When using the MPU-6050’s Digital Motion Processor neither the accelerometer’s, nor the gyro-
scope’s full-scale range can be changed from those default values. The sample rate can be set from
20Hz to 100Hz. The ATMega328P controller serves only for data acquisition, so it is possible to
utilise the highest update frequency. Increasing the resolution of the optical sensor did not improve
its performance, but did impose a lower maximum speed limit. This is why the parameter is left
to its default value.
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3.2.1. Test course 1: straight line

ADNS-9500
A direct test to observe the distance measurement precision of the mouse sensor is to propagate
it along a straight line with a fixed length and record the measured values for x and y. This
experiment was performed for two distances with lengths of 2m and 5m. The exact results of the
experiment are listed in the appendix, table A.1.

A visual representation of the data is obtained by plotting the measurement values on the xy-axis,
as shown of figure 3.3. The green markers on the graph indicate the end coordinates, to which the
vehicle was brought to a halt, namely (2.00, 0.00) and (5.00, 0.00). The black dots represent the
position in (x, y), measured by the sensor. The data is also used to construct a covariance ellipse,
with axes coloured in red and center, positioned at the mean value.
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Figure 3.3.: ADNS-9500: 2m and 5m straight line test results: the measurement are shown in black;
the green circle marks the end point; the red lines show the ellipse axes

2m line:

Table 3.1.: ADNS-9500: 2m line test results
µx µy σx σy ∆d εµ εσx εσy

2.04m 0.01m 0.025m 0.009m 0.041m 2% 1.2% 0.4%

The mean values and the standard deviations, together with the error parameters, defined in
section 3.2, are summed in table 3.1. The measurements show mean values (µx, µy) of (2.04m,
0.01m) and standard deviations (σx, σy) of (0.025m, 0.009m). These values correspond to a mean
error ∆d = 0.041m, εµ = 2% and εσ = (1.2%, 0.4%) for x and y respectevely.
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5m line:

Table 3.2.: ADNS-9500: 5m line test results
µx µy σx σy ∆d εµ εσx εσy

5.002m 0.001m 0.052m 0.03m 0m 0% 1% 0.6%

Table 3.2 shows the results for the 5m test line. As the track length more than doubles, the mea-
surements remain still relative precise, registering mean values of (5.002m, 0.001m) and standard
deviations of (0.052m, 0.03m). This point distribution leads to ∆d ≈ 0m, εµ ≈ 0% and εσ of (1%,
0.6%).

These results indicate high consistency of the performed measurements. For both test lengths
the mean estimate is very close to the actual coordinates and the standard deviation increases
proportionally to the travelled distance.

ADNS-9500 and MPU-6050
The straight line test was performed again, this time by combining the ADNS-9500 displacement
data with the current orientation, provided by the IMU. Measurements on an additional track with
length 10m was also carried out. The measured values are listed in table A.2 in the appendix.
Figure 3.4 shows the obtained results; each data set uses the same axis scale, so that the three
point distributions can be visually compared:
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Figure 3.4.: ADNS-9500 and MPU-6050: 2m, 5m and 10m straight line test results: the measure-
ments are shown in black; the green circle marks the end point; the red lines show the
ellipse axes

Tables 3.3, 3.4, and 3.5 summarise the measured mean values, standard deviations and error fac-
tors.
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2m line:

Table 3.3.: ADNS-9500 and MPU-6050: 2m line test results
µx µy σx σy ∆d εµ εσx εσy

2.017m -0.001m 0.012m 0.0086m 0.017m 0.85% 0.6% 0.43%

The acquired data shows mean values close to the real end point with a standard deviation of
less than 2cm for both axes. This high consistency in the measurements results in error factors
εµ, εσx , εσy below 1%.

5m line:

Table 3.4.: ADNS-9500 and MPU-6050: 5m line test results
µx µy σx σy ∆d εµ εσx εσy

4.997m 0.034m 0.075m 0.015m 0.034m 0.68% 1.5% 0.3%

As the results indicate, the variance in the x-values increases, but the one in the y-values remains
low. As the track length increases, the additive character of the distances measurement causes the
uncertainty to grow. Since there is significant less movement in the y-direction, the variance along
this axis does not increase much. The y-axis mean value, however, is not close to zero: this can be
explained by the fact, that the angle from the MPU-6050 plays a crucial role in the measurements.
Even if the laser sensor measurements were 100% accurate, any initial offset of the IMU from 0◦ will
result in a small value, calculated for the y-axis. Based on the acquired data, a 3.4cm y-offset for a
5m straight line corresponds to a 0.389◦ initial angle, which is practically impossible to compensate,
when aligning the vehicle to the 5m test line. The error factors, calculated from this data, remain
below 2%, meaning that even though the variance increases with the length of the track, it grows
proportionally to the distance.

10m line:

Table 3.5.: ADNS-9500 and MPU-6050: 10m line test results
µx µy σx σy ∆d εµ εσx εσy

9.834m 0.219m 0.083m 0.058m 0.275m 2.75% 0.83% 0.58%

The obtained data has a mean value at (9.834m, 0.219m), which for the length of the test course is
equivalent to a εµ of 2.75%. The standard deviations grow larger with the increase of the travelled
distance, but still represent less than 1% of the total path length, as shown by εσx and εσy . A
22cm mean offset from the 0 value for the y-axis is equivalent to a 1.2581◦ initial vehicle offset from
the straight 10m line, which again is difficult to determine, while positioning the robot on the test
track.
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3.2.2. Test course 2: circular track
The second test track represents an arc with a radius of 0.8m. The purpose of this track is to
determine how accurate the measured displacement values from the ADNS-9500 are projected into
the world frame, using the angle from the MPU-6050. Three series of tests were performed to
evaluate the performance of the sensor combination:

• 180◦ left turn with path length of 2.5m

• 360◦ left turn with path length of 5m

• 720◦ left turn with path length of 10m

The test results are summed in table A.3 in the appendix. Figure 3.5 illustrates the test track with
the point distributions for each test.

−0.85

−0.75

−0.65

−0.55

−0.45

−0.35

−0.25

−0.15

−0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.850.85

−0.5−0.4−0.3−0.2−0.100.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.92

x
[m

]

y[m]

180° turn, 2.5m

360° turn, 5m

720° turn, 10m

Figure 3.5.: ADNS-9500 and MPU-6050: 180◦, 360◦, 720◦ arc test results: the measurements are
shown in black; the green circles mark the end points at 0◦(right) and 180◦(left); the
red lines show the ellipse axes; the vehicle movement is counter clockwise

For each of the three test lengths the vehicle started from (0.00m, 0.00m), represented by the green
dot on the right on figure 3.5. It followed the path, traced by the blue line in counter clockwise
direction, and was brought to halt at (0.00m, 1.60m) for the 180◦ turn. The end point is marked
with the green dot on the left side. For the 360◦ turn a full circle was performed and for the 720◦

test the vehicle completed two rotations with a total travelled distance of 10m, ending its movement
at the start point. The black dots with their corresponding ellipses show the measured position
values and the red lines represent the ellipse axes. A detailed analysis of the data is obtained by
reviewing the mean values µx, µy, the standard deviations σx, σy and the error factors ∆d, εµ, εσx ,
and εσy for each test series. These parameters are given in tables 3.6, 3.7, and 3.8.
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180◦ turn, 2.5m:

Table 3.6.: ADNS-9500 and MPU-6050: 180◦ turn test results
µx µy σx σy ∆d εµ εσx εσy

0.229m 1.564m 0.043m 0.09m 0.232m 9.2% 1.7% 3.5%

Analysing the results of the first experiment of the series, leads to the observation, that the standard
deviation of the measurements is larger, compared to the results from a straight line of a similar
length (see section 3.2.1). As each dispacement value from the laser sensor is rotated, based on the
current angle, measured by the IMU, the uncertainty in the angle measurement has its effect on
the overall sensor performance.

360◦ turn, 5m:

Table 3.7.: ADNS-9500 and MPU-6050: 360◦ turn test results
µx µy σx σy ∆d εµ εσx εσy

0.209m 0.008m 0.041m 0.036m 0.209m 4.1% 0.8% 0.7%

As figure 3.5 indicates, the measurements are distributed in the vicinity of the end point. Although
the standard deviation of the data is smaller, compared to the 180◦ test, the measurement errors
lead to a trajectory, which is resembles a spiral, not a circle, so that the point distribution alone is
not enough for a qualitative assessment.

720◦ turn, 10m:

Table 3.8.: ADNS-9500 and MPU-6050: 720◦ turn test results
µx µy σx σy ∆d εµ εσx εσy

-0.038m -0.131m 0.084m 0.143m 0.136m 1.3% 0.8% 1.4%

The more widely spaced out samples for the 720◦ test course in figure 3.5 indicate data with a
larger variance. Similar to the previous tests, the standard deviation increases with the distance.
Nevertheless, after two complete circles, the position provided by the sensor combination registers
a mean value, located 13.6cm from the actual end point. The small error factors εµ, εσx and εσy of
less than 1.5% confirm the precision of the selected pair of sensors.
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3.2.3. Test course 3: curved path
The last sensor test uses the same track, on which the mechanics model was tested. This way a
direct comparison of the two approaches could be accomplished. The sensor data was recorded
during the the experiments in section 3.1. Figure 3.6 shows the path computed by the mechanics
model in black and the one from the sensor combination in blue. The course, which the operator
followed is coloured in green.
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(a) Test 1: end state mechanics (2.99m, 1.99m, 1.58 rad);
end state sensors (2.31m, 2.28m, 1.61 rad)
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(b) Test 2: end state mechanics (2.90m, 1.79m, 1.46 rad);
end state sensors (2.51m, 2.15m, 1.54 rad)

Figure 3.6.: Mechanics model and sensor data: position estimate; the test track with an end point
at (2.30m, 2.30m, 1.57 rad) is coloured in green; the black dots represent the mechanics
model; the trajectory from the sensors is marked in blue

The output of the sensor combination shows a curve, much similar to the actual test track. In both
cases the trajectory closely resembles the path, which it is supposed to follow. Under conditions,
which include a flat, non-reflecting surface and a medium vehicle speed, the sensor measurements
indicate high reliability. The end coordinates, calculated by the sensors in the first test, measure
a difference of 2cm from the desired end state and 2◦ from the desired orientation. In the second
experiment this difference is larger - 26cm from the actual end point, but the trajectory is consistent
with the data from the mechanics model in terms of direction of travel and final position, meaning
that the operator strayed from the planned path.

A significant advantage of measuring the travelled distance with the mouse sensor is the fact,
that the dispacement of the vehicle relative to the ground is measured with high precision. This
measurement method also covers the effect of other forces, acting on the robot, so any movement
will be perceived as such, regardless of the input controls. As a result, according to the sensor
combination, the vehicle starts turning at a point, very close to the actual one. Furthermore, in
the absence of an input velocity, movement, caused by the gained momentum is still detected, as
the laser sensor continues scanning the surface.

Figure 3.7 shows a comparison between the angle estimates from the mechanics model and the IMU
over time:
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(a) θend=1.58 rad (mechanics); θend=1.61 rad (IMU)
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(b) θend=1.46 rad (mechanics); θend=1.54 rad (IMU)

Figure 3.7.: Mechanics model and sensor data: angle estimate; the green line represents the desired
θend of 1.57 rad at the end of the test; the black dots show the angle from the mechanics
model; the IMU angle estimate is coloured in blue

The IMU data exhibits a similar output to the mechanics model. Although it shows a certain
angle offset, as the results from section 3.2.1 suggest, the sensor is capable of detecting rotations,
which are not caused by the control commands. The sensor combination does have its limitations
though:

• gyro drift: the gyroscope of the IMU drifts over time. The signal processor can correct the
drift in the (x, y) direction by using the gravity, measured by the accelerometer, but no such
correction is possible for the yaw angle.

• lens contamination: the laser sensor requires a relatively flat, clean surface for correct
operation. If there is dirt on the lens, or any other obstruction, the displacement value
provided by the sensor will be incorrect.

• change of height: the mouse sensor will also deliver inaccurate data, if its distance from the
ground changes. A bump or a dent on the track will result in a series of wrong measurements.
Correct operation will be established, when the distance to the ground is restored to normal.

Conclusion:

The sensor data could however minimise some of the errors, which the mechanics model cannot.
First of all, it is independent from the used platform: the motion processor of the IMU delivers
data about the sensor’s orientation, regardless of how rotation was introduced to the system. The
mouse sensor measures the displacement relative to the ground beneath it, so as long as the vehicle
is situated on the ground, every movement will be detected. The independence on the underlying
mechanics, whether it is Ackermann steering, differential drive or some other platform, allows the
combination of sensors to detect the changes of the robot’s state, which are not a direct effect of the
input control. Therefore the car’s momentum and wheel slipping/skating could also be accounted
for. On the other hand, the mechanics model could compensate the gyro drift over time, since in
the absence of movement no change in orientation is expected. Moreover the laser sensor precision
is dependent on a lot of parameter, such as flat surface, constant distance from the ground, etc.,
which could change in the course of operation, while the input control commands remain impartial
to the terrain. Therefore by combining the data from both models in an adequate manner, both
approaches could be used in a way to compensates the disadvantages of each other. This was
achieved by using an Extended Kalman Filter as a data fusion algorithm.
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3. Results

3.3. Extended Kalman Filter
An improved estimate of the vehicle state could be obtained by combining the the mechanics
model with the sensor data. The algorithm used for the data fusion is the Extended Kalman Filter,
described in section 2.2.2. Its role is to provide a weighted average of the robot state, based on
the information from the control input and the sensor measurements in a way to decrease the
uncertainty in the position estimate.

Filter output with an angle correction:

The first test examines the performance of the system, when the angle from the mechanics is
corrected by the value from the IMU. This behaviour will be modelled in the filter algorithm by
increasing the control input noise and decreasing the measurement noise. This way the data from
the IMU will have a higher influence on the angle estimate. Figure 3.8 shows a comparison of
the mechanics model (in black), the sensor combination (marked in blue), and the filter output
(coloured in red):
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(a) Test 1: filter state (3.06m, 1.86m, 1.69 rad)
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(b) Test 2: filter state (3.09m, 1.55m, 1.42 rad)

Figure 3.8.: Angle correction with EKF: position estimate; the test track with an end point at
(2.30m, 2.30m, 1.57 rad) is coloured in green; the black dots represent the mechanics
model; the trajectory from the sensors is marked in blue; the filter output is shown in
red

As illustrated by figure 3.8, the filter generates a trajectory, similar to the one from the mechanics
model, but with a curvature, which resembles the output from the sensor combination. If the
uncertainty in the mechanics model is decreased or the noise in the IMU measurement is increased,
the filter output will shift towards the state, predicted by the mechanics (the black trajectory). This
ability of the filter algorithm to change the preffered data source could be utilised to compensate
the drift of the IMU gyroscope, when there is no input velocity command.

More detailed information of the filter performance is obtained by comparing the change of the
angle over time, computed by the filter, to the angles, provided by the mechanics and the IMU.
Figure 3.9 shows the angles from the mechanics, the IMU and the filter in black, blue and red
respectevely:
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(a) Test 1: filter angle: θend=1.69 rad
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(b) Test 2: filter angle: θend=1.42 rad

Figure 3.9.: Angle correction with EKF: angle estimate; the green line represents the desired θend
of 1.57 rad at the end of the test; the black dots show the angle from the mechanics
model; the IMU angle estimate is coloured in blue; the filtered result is marked in red

In both tests the filter output initially follows the angle, given by the MPU-6050, as indicated by
the overlapping of the plots. Near the end of the simulations, despite the change in the angle,
detected by the IMU, the value from the filter remains constant. This observation is explained by
the following fact: the filter output depends on the noise associated with each model. In the last
couple of seconds the vehicle does rotate a little, as measured by the sensor. But since there is no
input velocity (the robot is using its current momentum to steer), the noise from the mechanics
model is reduced to a small value. This behaviour is expected, because without an input velocity
the mechanics model does not exhibit any noise. As a result, the last sensor updates are discarded
- the confidence in the mechanics is greater, due to the fact that no movement is registered.

Filter output with position and angle correction:

Figure 3.10 shows the filter performance with an additional correction in the measured distance:
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(a) Test 1: filter state (2.34m, 2.02m, 1.69 rad)
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(b) Test 2: filter state (2.47m, 1.74m, 1.42 rad)

Figure 3.10.: Position and angle correction with EKF: position estimate; the test track with an end
point at (2.30m, 2.30m, 1.57 rad) is shown in green; the mechanics model is coloured
in black; the sensors’ estimate is marked in blue; the filter output is shown in red
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3. Results

The results of the laser sensor measurements in section 3.2.1 justify the decision to assign small un-
certainty to the mouse sensor. By increasing the confidence in the measurements, a filter behaviour,
similar to the angle correction, is observed: the filter output follows the sensor data right up to
the last couple of seconds. At the end, the zero input velocity reduces the noise in the mechanics
model and forces the filter to ignore the position updates from the laser sensor.

Conclusion:

As indicated by the results, the filtered values do not provide an immediate solution to the position
estimation problem. There are situations, where the dispacement from the mechanics v · dt and
the dispacement from the laser sensor (dx, dy) contradict, which demand additional changes to the
proposed model:

• v 6= 0, (dx, dy) 6= 0: this is the case for normal operation, where the filter output will depend
on the predefined uncertainties.

• v = 0, (dx, dy) = 0: both models do not detect movement; the robot is standing still.

• v = 0, (dx, dy) 6= 0: this situation occurs, when the laser detects movement with zero input
velocity. This happens, when the vehicle is rolling due to its inertia, or the wheels have lost
traction and the car is sliding. In this case the filter should adopt the sensor measurements,
although the noise in the mechanics is small. This could be accomplished by including an
additional term in the predicted covariance, such as the velocity is zero, the noise gets large
enough, so that the mechanics data is practically ignored.

• v 6= 0, (dx, dy) = 0: if the output torque on the wheels is too high, the vehicle will skid. The
laser sensor will not detect a change in position, so that the measurement should be preferred
over the mechanics. However, this difference in the velocity could arise if the laser sensor lens
is contaminated by dirt, or bumps on the track change its distance to the ground. In these
cases the mechanics will be a better estimate of the vehicle movement and the filter should
minimise the influence of the measurements. The model in its current setup cannot resolve
this conflict situation.

In order to take advantage of the EKF algorithm, several system changes have to be made. First,
the state should be extended to include the current velocity, so that the filter corrects the velocity,
rather than the dispacement directly. This means, that a separate velocity measurement is required.
This could be accomplished by integrating the acceleration from the IMU: although it is relatively
noisy, it could serve the purpose of determining, whether the robot is moving or not. This approach,
however, was not implemented in this project: the measured acceleration showed after calibration an
angle dependent offet, which means that even for a stationary robot the acceleration and therefore
the velocity will change according to the current orientation.

A position tracking system will become increasingly complex, when trying to compensate for all
of the possible scenarios, environments and additional factors, which determine the accuracy of
the position estimation. Exhaustive research and thorough testing are required for the design of
a complete functional prototype, which is not feasible within the given time span. As the test
results indicate, an EKF algorithm could be practically used to combine adequately data from the
input commands for an Ackermann steering vehicle and the measurements from an IMU and a
laser mouse sensor to provide a weighted estimate of the robot’s state. Further improvement in
this direction should be the topic of another work.
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4. Summary

The position tracking system developed in this project combines the input velocity and steering
commands with the data from an IMU and a mouse sensor in an Extended Kalman Filter to estimate
the coordinates of a mobile robot. Several tests of the system were performed to determine the
system advantages and limitations, as well as to propose alternative methods for compensating
some of the design flaws.

The experiment results indicate precise sensor measurements for distances up to 10m with mean
error of around 3% of the total travelled distance. The obtained data exhibits also small variance,
with a ratio of the standard deviation to the total traversed path ranging from 0.3% to 3.5%.
The integration of the Extended Kalman Filter provides a mechanism to select between different
position information sources based on their noise. The filter can be extended to use data from
additional sensors for optimised state estimation. As none of the original components of the test
vehicle were modified or removed, the system can be potentially implemented on different robot
platforms due to its simple hardware design. Moreover, as the system performs as a regular ROS
node, it can be easily extended to participate in more complex robot implementations, such as
autonomous navigation in known and unknown environments.

The system limitations are mostly connected to the sensor imperfections and the incomplete filter
model. The mouse sensor should be mounted several millimeters above a flat and non-reflecting
surface and requires constant distance to the ground for proper measurements. The IMU gyroscope
exhibits a certain drift over time, resulting in an inaccurate angle estimate. The implementation of
the Extended Kalman Filter needs to be revised to account for different movement scenarios.

The system could be further developed and improved to compensate some of the mentioned draw-
backs. An additional optical lens with specific focal length could be used to increase the distance
between the laser sensor and the ground. Introducing a separate sensor for speed measurement
could provide further information about the motion of the vehicle and can be used to resolve conflict
situations, due to contradicting data from the model and the laser sensor, as described at the end of
section 3.3. The state model used in the Extended Kalman Filter could be extended to include the
velocity of the vehicle in the correction step, instead of correcting the robot displacement directly.
Detailed examination of the filter performance in different situations would provide feedback to
customise the algorithm for optimal use with the selected mechanics model and sensors.

Despite the limitations, the system demonstrated high reliability in tracking the position of the
remote control vehicle, and it is suitable for implementation in small vehicles for indoor operation
since it can be mounted without modification of the chassis.
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A. Sensor measurements

Table A.1.: ADNS-9500: straight line results
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A. Sensor measurements

Table A.2.: ADNS-9500 and MPU-6050: straight line results

Table A.3.: ADNS-9500 and MPU-6050: circular path results
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