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Abstract

OPC Unified Architecture (OPC UA) is a common communication protocol in the industrial
automation. It is standardized in IEC 62541 and enables the seamless communication of
devices from different vendors. Classic OPC relied on the Windows Component Object Model
(COM)/Distributed COM (DCOM) technology. In contrast to OPC, its successor OPC UA is
platform independent and can be used in a variety of devices. This feature enables the use
of OPC UA across all levels of the automation pyramid, even including the field level. The
development of Low-Power Wireless Personal Area Network (LoWPAN) technologies made it
possible to replace wired field bus networks with wireless standards, which are specifically
designed for low power devices. To implement OPC UA on such devices without the need of
gateways, IP based LoWPAN standards are needed.

The aim of this work is to show that OPC UA communication is possible over a LoWPAN
network. Therefore, a software stack architecture combining OPC UA and IPv6 over Low-
Power Wireless Personal Area Network (6LoWPAN) is defined and implemented based on
open-source software. Furthermore, the implementation is compared to a setup using standard
Wireless Local Area Network (WLAN) as communication protocol.
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Kurzfassung

OPC Unified Architecture (OPC UA) ist ein gängiges Kommunikationsprotokoll in der
industriellen Automatisierung. Es ist in der IEC 62541 genormt und ermöglicht die nahtlose
Kommunikation von Geräten verschiedener Hersteller. Classic OPC setzt auf die Windows
Component Object Model (COM)/Distributed COM (DCOM)-Technologie. Im Gegensatz zu
OPC ist der Nachfolger OPC UA plattformunabhängig und kann in einer Vielzahl von Geräten
eingesetzt werden. Diese Funktion ermöglicht den Einsatz von OPC UA auf allen Ebenen
der Automatisierungspyramide, auch in der Feldebene. Die Entwicklung von Low-Power
Wireless Personal Area Network (LoWPAN)-Technologien ermöglichte es, kabelgebundene
Feldbusnetzwerke durch Funk-Standards zu ersetzen, die speziell für Geräte mit geringem
Stromverbrauch entwickelt wurden. Um OPC UA auf solchen Geräten ohne Gateways zu
implementieren, werden IP-basierte LoWPAN-Standards benötigt.

Ziel dieser Arbeit ist es zu zeigen, dass OPC UA Kommunikation über ein LoWPAN
Netzwerk möglich ist. Daher wird eine Software-Stack-Architektur, die OPC UA und IPv6
über Low-Power Wireless Personal Area Network (6LoWPAN) kombiniert, definiert und auf
Basis von Open-Source-Software implementiert. Darüber hinaus wird die Implementierung
mit einem Setup unter Verwendung von Standard Wireless Local Area Network (WLAN) als
Kommunikationsprotokoll verglichen.

ix





Contents

Abstract vii

Kurzfassung ix

1 Introduction 1
1.1 Motivation and problem statement . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methodological approach . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Technical background 3
2.1 OPC Unified Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 OPC UA over Low Power Wireless Networks 11
3.1 Software stack architecture . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Software stack interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Open source OPC UA stacks . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Operating systems for embedded devices . . . . . . . . . . . . . . . . . . 14
3.5 Low Power Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Proof of concept 15
4.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion and outlook 21

List of Figures 23

List of Tables 23

Acronyms 25

Bibliography 27

xi





CHAPTER 1
Introduction

1.1 Motivation and problem statement

OPC UA has become to an indispensable machine to machine communication protocol in
modern industrial automation systems. The demand for control and data collection of every
part of the automation systems is increasing. This is, for instance, due to the increased
complexity, the endeavor towards Predictive Maintenance (PdM) and the use of data analytics
in the Cloud. With the increasing number of sensors and controllers in such automation
systems, the cabling effort and complexity is rapidly increasing. For this reason, LoWPAN
can be interesting to reduce the cabling effort especially for sensors and control applications
that are not time critical and have minor polling intervals. The mesh networking capability is
a big advantage of LoWPAN over other wireless standards.

While LoWPAN protocols are not designed for high bandwidths and big Maximum
Transmission Units (MTUs), OPC UA in contrast is primarily used on Ethernet networks with
high bandwidths and powerful MTUs. It need to be prooved if OPC UA over LoWPAN is
feasible and evaluated if the performance is practical for applications.

1.2 Methodological approach

The first task is to study the parts of the OPC UA specifications and the 6LoWPAN standard
that are important for this work.

The second task is to select an OPC UA software stack that is appropriate for the solution
and can be adapted to communicate with the selected Internet of Things (IoT) OS. Also a
suitable Micro Controller Unit (MCU) and an IEEE 802.15.4 radio transceiver module that is
supported by the OS needs to be selected. It is also important that the selected MCU has
enough memory to fit the OS and the stack.
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1. Introduction

The third task is to setup the hardware and configure the OS to enable the radio transceiver
module and setup the 6LoWPAN network. The OPC UA stack network implementation needs
to be ported to the OS, this is the main challenge of the implementation.

The fourth and last task is to evaluate the comparison of the proposed solution against
another solution regarding their response times and discuss the pros and cons of the found
solution.

1.3 Structure of the work
The first Chapter 2 gives an introduction to parts of OPC UA, IEEE 802.15.4 and 6LoWPAN
that are important for this work. Chapter 3 gives a survey of OPC UA stacks, IoT OS and
LoWPAN networks. Chapter 4 shows the hardware setup and the implementation of the OPC
UA stack on the OS. This section also presents the evaluation results of the found solution
against another implementation.
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CHAPTER 2
Technical background

2.1 OPC Unified Architecture
As the number of computer based control and monitor systems in the automation field
continuously increased in the 1990s, a number of different bus systems and protocols arised
to access the automation data. Most of them solved the same problem, but in a different
and vendor-specific way. This made it difficult do build automation systems where parts from
different vendors work together seamlessly.

Therefore, the vendors of Supervisory Control and Data Acquisition (SCADA) and Human
Machine Interface (HMI) software, which had analogical challenges, united their efforts in
a task force which was founded in 1995 by the companies Intuitive Technology, Intellution,
Opto 22, Rockwell Software, and Fisher-Rosemount. Under the name OLE for Process
Control (OPC) Foundation, they defined standards to unify the automation data access in
Windows-based systems.

In August 1996, the initial specification for OPC Data Access was published. This first
release was a success because of the reuse of COM and DCOM, which is a Microsoft Windows
base technology and the focus on the main features. The focus on important features and the
use of base Windows technologies allowed a quick adoption of the standard for the addressed
use case. To meet the requirements of modern industrial applications, the OPC Foundation
developed a variety of OPC specifications. Three of the most important specifications are:

OPC Data Access (DA) OPC DA defines the way to access process data in real-time.

OPC Alarm & Events (AE) With OPC AE it’s possible to react to process events.

OPC Historical Data Access (HDA) OPC HDA was specified to get access to historical
process data.
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2. Technical background

The use of Microsofts COM and DCOM technology in Classic OPC with its existing interprocess
communication and network protocols led to fast developments and allowed a quick time-to-
market. However, Classic OPC also has a number of disadvantages:

• Limitation to Microsoft systems

• Lack of a data model

• Deficient security features

• Not designed for Internet communication

Classic OPC found its way into many products in the automation pyramid, however the
dependency on COM/DCOM and difficulties with remote data access disabled the use of
OPC by manufactures in many other areas. With the goal to overcome all these issues
without limited performance or features, OPC UA was developed. To fulfill the requirements
in modern systems, OPC UA offers flexible and rich modeling instruments, as well as a system
interface for a variety of platforms. To enable the use of OPC from embedded systems to
SCADA and the automation pyramid up to Enterprise Resource Planning (ERP) systems (cf.
Figure 2.1), scalability was also required.

ERP 
(Unix) 

MES 
(Windows) 

Firewall

Firewall

DCS 
(Linux) 

HMI 
(Windows) 

Controllers 
(VxWorks) Sensors

OPC UA clients

OPC UA servers 

Enterprise level

Plant level

Process control level

Control & field level

OPC UA

OPC UA

OPC UA

Corporate network

Operations network

Plant floor network

Figure 2.1: OPC UA within the automation pyramid
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2.1. OPC Unified Architecture

2.1.1 OPC UA Information Modeling

Classic OPC transfers only minimal information to understand the semantic of the transmitted
data. For example the tag name and the engineering unit are transmitted with the provided
data. With OPC UA it is possible to describe the semantic of the provided data. For example,
a datapoint that measures the power consumption of a power circuit with Classic OPC would
only deliver the measured power; with OPC UA meta information such as type of the sensor
and the location of the sensor inside the power circuit can also be modeled. Figure 2.2 shows
an example information model of a temperature sensor. For information modeling in OPC
UA, these conventions are fundamental:

• An object-oriented way is applied with hierarchies and single inheritance

• Type information and instances shall be retrievable in the exact same manner

• Nodes can be related in different ways to connect information in a full mesh network,
this provides the flexibility to depict different use cases

• To extend the functionality of OPC UA, type hierarchies and the type of references can
be defined

• The implementation of the OPC UA information model is exclusively performed on the
OPC Server.

OPC UA server

Device A

EngineeringUnit

Measurement

Temperature

TemperaturSensorType

Tolerance

Address space

Configuration

Configuration:
     - Engineering unit, etc.
Measurement data:
     - Temperature, etc.
Device type information:
     - Tolerance, etc.

HasComponent
HasProperty
HasTypeDefinition

Temperature sensor

Figure 2.2: OPC UA information model example (adapted from [1])
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2. Technical background

2.1.2 OPC UA Transport and Encoding

The OPC UA standard describes two transport protocols that are used, UA Transmission
Control Protocol (TCP) and Simple Object Access Protocol (SOAP)/Hypertext Transfer
Protocol (HTTP). The connection from the UA client to the server is performed with these
protocols on the network layer. Secure Channel and OPC UA Sessions are implemented on
top of the network layer.

Service messages that are sent over the network layer can be encoded in different ways:
OPC UA Binary, OPC UA XML or OPC UA JSON. Encoding describes the packing of the
Service messages with their input and output parameters into a network format. OPC UA
Binary provides fast encoding and decoding of data with minimal overhead. This is very
important for devices with constraints regarding memory usage and processing power like
embedded systems. This encoding is also preferred for applications where the throughput
is very important because of the minimal overhead. OPC UA XML and OPC UA JSON
are suitable for application and platforms where Extensible Markup Language (XML) or
JavaScript Object Notation (JSON) are commonly used and already implemented. Both
encodings are also straightforward to read and debug for human beings. Figure 2.3 shows the
OPC UA transport profiles and the context of the different layers.

UA Binary UA XML, UA JSON

UA Secure 
Conversation 

WS Secure 
Conversation 

UA TCP SOAP 

HTTP 

TCP / IP

Binary Hybrid Webservices

4840 443 443 80 

HTTPS 

Figure 2.3: OPC UA transport profile (adapted from [2])
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2.2. IEEE 802.15.4

2.1.3 OPC UA Client Server interaction

The procedure of opening a connection to create a session for subsequent data requests is
shown in Figure 2.4. In a client initiated connection, the client creates a Transport Connection,
this is followed by a Hello request which shall be replied with an Acknowledge from the
server. After the Acknowledge the client sends an Open Secure Channel request to the server.
After receiving the Open Secure Channel response a session is created with a Create Session
request and response. After this procedure Data Requests can be performed.

:Client

Open Connection 

:Secure 
channel 

:Transport 
connection  :Client:Secure 

channel 
:Transport 
connection 

Hello 

Acknowledge 

Open Secure Channel Request 

Open Secure Channel Response 

Create Session 

Create Session Response 

Data requests

Figure 2.4: OPC UA connection establishment

2.2 IEEE 802.15.4

IEEE 802.15.4 [3] defines the two lowest layers (MAC, PHY) of the OSI model and leaves
the upper layers to the developer. It was specially developed for low power and low cost
applications.

2.2.1 Network topologies

IEEE 802.15.4 defines two topologies to meet the requirements for different applications: the
star topology and the peer-to-peer topology. As seen in Figure 2.5, the star topology has a
central point of communication called Personal Area Network (PAN) coordinator which is the
primary controller of the PAN. Devices can only communicate via this point within the network.
The second topology is the peer-to-peer topology, which allows direct communication of all
devices with each other as long as they are in range of one another. This network topology
also allows multi-hop routing, by which more complex network structures like mesh networks
are enabled. A PAN coordinator is also implemented.
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2. Technical background

IEEE 802.15.4 specifies two different devices types:

• Full Function Devices (FFDs) have a complete set of Media Access Control (MAC)
functionality and can operate as PAN coordinator and coordinator. FFDs are typically
mains powered.

• Reduced Function Devices (RFDs) implement a reduced MAC functionality for minimal
memory and resource usage. RFD devices are typically battery powered and sleep unless
they need to send data. RFDs cannot communicate directly with each other but only
via an intermediate FFD.

Star topology Peer-to-Peer toplogy

Device (FFD or RFD)

Coordinator (FFD)

PAN coordinator (FFD) 
FFD ... Full Function Device 
RFD ... Reduced Function Device 

Figure 2.5: IEEE 802.15.4 star and peer-to-peer topology examples

2.3 6LoWPAN
LoWPAN is short for Low-power Wireless Personal Area Networks, these includes radio devices
which are using the IEEE 802.15.4-2003 (cf. Section 2.2) standard which was defined by
the Institute of Electrical and Electronics Engineers (IEEE). IEEE 802.15.4 was designed
for low bandwidth connections between devices with very limited resources in computation,
power and memory. Internet Protocol (IP) version 6 (IPv6), in contrast, was designed for
high bandwidth Internet applications, which don’t have significant constraints in all these
resources. To bring IPv6 to Wireless IoT devices, 6LoWPAN was developed as an adaption
layer between the link layer and the network layer oft the OSI reference model. The adaption
layer has been developed by the Internet Engineering Task Force (IETF) and performs the
compression of the IPv6 and higher layer headers. It also handles the fragmentation of the
IPv6 packets as a result of the different MTU size (cf. Section 2.3.2).
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2.3. 6LoWPAN

2.3.1 IPv6

IPv6 was developed by the IETF and is the successor of the well known IP version 4 (IPv4). It
was first defined in the Internet standard document RFC 2460 [4] and published in December
1998 as a new network layer (layer 3) of the Open Systems Interconnection (OSI) model.
With the growing amount of devices that are connected to the Internet, it became evident
that the number of IPv4 addresses (∼4.3 ∗ 109) that are available would be exceeded in the
near future. IPv6 uses a 128-bit address which defines ∼7.9 ∗ 1028 times more addresses than
IPv4 with its 32-bit address space. With a total amount of ∼3.4 ∗ 1038 unique addresses this
would result in ∼7 ∗ 1023 IPv6 addresses per square meter evenly distributed over the whole
earth, including the oceans. This should counteract the growing amount of IoT devices in
the near future, where each device is supposed to have its own IP.

Address representation

The 128-bit IPv6 addresses are commonly represented as hexadecimal numerals in eight
groups of 2 bytes. The eight groups are separated by colons (:). A typical IPv6 addresses
would look like this:

2001:0DB8:0000:0000:0000:0000:0003:05B1

In comparison to IPv4, the IPv6 addresses are much longer, therefore the IETF defined
RFC 5952 [5] to simplify and abbreviate the presentation of IPv6 addresses. The first method
to reduce the length of an IPv6 address is to replace the longest sequence of consecutive
zero bytes with a double colon (::). This is only allowed once. With this method, the address
above could be reduced to:

2001:0DB8::0003:05B1

In addition, leading zeros may be suppressed in each 16-bit group. This would shorten
the addresses above to:

2001:DB8::3:5B1

2.3.2 Packet Fragmentation

IPv6 requires a minimum packet size of 1280 bytes. The maximum packet size of an IEEE
802.15.4 frame is 127 bytes, this is why the IPv6 packets need to be fragmented into several
link-level frames to satisfy the minimum MTU requirements of IPv6. The fragmentation
headers (see Figure 2.6 and 2.7) are used if the payload datagram doesn’t fit into a single IEEE
802.15.4 frame. The first fragment header (see Figure 2.6) consists of the datagram_size
which defines the size of the entire IP packet and the datagram_tag which is a number that
is equal in all link fragments of a payload datagram. All subsequent fragments (see Figure 2.7)
have an additional datagram_offset field which defines the offset of the fragment inside
the payload datagram, this offset is expressed in multiple of 8 bytes. That’s why all link
fragments apart from the last one need to be multiple of eight bytes long.
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2. Technical background

0 1
3

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9

1 1 0 0 0 datagram_size

0 1 2 3 4 5 6 7 8 9
2

datagram_tag

Figure 2.6: First IEEE 802.15.4 fragment header

0 1 2 3 4 5 6 7 8 9
3

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9

1 1 1 0 0 datagram_size

0 1 2 3 4 5 6 7 8 9
2

datagram_tag datagram_offset

Figure 2.7: Subsequent IEEE 802.15.4 fragments header

2.3.3 6LoWPAN Header Compression
One of the tasks of 6LoWPAN is the compression of header information. It describes methods
to reduce the amount of data in IPv6 and ensuring User Datagram Protocol (UDP) headers.
This is important because of the small maximum MAC frame size of IEEE 802.15.4 which is
127 bytes, this allows a payload 102 bytes because 25 bytes a reserved for the MAC Header
(MHR) and the MAC Footer (MFR). This amount of payload is reduced even further because
the auxiliary security header is added by the link-layer to the MAC header. In the worst case,
this would leave only 81 bytes for the IPv6 protocol. The size of an IPv6 header in an IPv6
frame is 40 bytes, thus, leaving only 41 bytes for higher layers. Encapsulated protocols at the
transport layer like UDP with a 8 bytes header or TCP with a 20 bytes header would leave
only a few bytes for the application-layer.
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CHAPTER 3
OPC UA over Low Power Wireless

Networks

3.1 Software stack architecture
The layers of the OPC UA stack do not correlate one-on-one with the OSI layer model. The
stack is implemented in the layer 7 (application) of the OSI model and can be deployed on
any layer 5, 6 or 7. To transmit OPC UA messages over LoWPAN the OPC UA stack is
stacked on top of the TCP transport layer (cf. Figure 3.1).

IEEE 802.15.4

IPv6

TCP 

OPC UA Transport Layer 

OPC UA Secure Channel Layer 

OPC UA Serialization Layer 

IEEE 802.15.4 
868/915 MHz

IEEE 802.15.4 
2.4 GHz 

6LoWPAN, ...

Network Layer 

Data Link Layer 

Physical Layer 

Transport Layer 

Application Layer, 
Presentation Layer, 

Session Layer 

MAC

LLC

UA Application 

Figure 3.1: OPC UA stack and corresponding OSI layers
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3. OPC UA over Low Power Wireless Networks

3.2 Software stack interaction
Figure 3.2 shows the interaction of the different software stacks. On the left side is the OPC
UA server, on the right side the OPC UA client. The communication between the LoWPAN
layers is simplified for presentation.

The OPC UA server first needs to prepare its TCP/IP layer by creating a socket, bind
this socket to a port and register a callback to receive data requests.

An OPC UA client connects to a server by creating a socket and connecting to the
given address and port. To establish this connection, a SYN message is sent to the server
by the TCP/IP layer of the client. The server sends a SYN-ACK message to the client as
acknowledgement. When this message is acknowledged by the client with an ACK message,
the connection is established. To enable message fragmentation in TCP, the TCP receive
window size can be defined to limit the amount of data that can be received by the client.

Following OPC UA messages are split into segments if their size is larger than the TCP
window size. This is shown in the first loop of Figure 3.2. This loop is repeated until the full
frame is transmitted. The OPC UA message fragments need to be defragmented by the OPC
UA stack. The second loop acts equal to the first loop, OPC UA messages from the server
to the client are fragmented and defragmented.

Figure 3.2 only illustrates how the TCP/IP connection is established and the first OPC
UA Hello message, including the corresponding acknowledgement, is transmitted. Subsequent
messages (c.f. Figure 2.4) are transmitted analogously.

3.3 Open source OPC UA stacks
A list of open source OPC UA stacks is given in Table 3.1. It shows the used programming
language and the latest commit on Github.

Language Latest commit
open62541 C99 July 2018
node-opcua Javascript July 2018
FreeOpcUa C++ January 2018
OPC Foundation UA Java Java June 2018
OPC Foundation UA ANSI C ANSI C July 2018

Table 3.1: OPC UA stacks

Open62541 is the first OPC UA stack in the Table 3.1. It’s open source and royalty free.
The name for this stack derives from the standard IEC 62541 that defines OPC UA. The
source code is available on Github with a strong community of contributors.

Node-opcua is written in JavaScript and Node.js. Node.js makes it easy to develop web
server applications, which makes node-opcua perfect for data visualization applications.
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3.3. Open source OPC UA stacks

:OPC UA server
application :TCP/IP layer

bind(file descriptor, port) 

:LoWPAN layer :OPC UA client
apllication

lowpan_data( TCP segment ) 
tcp_data(OPC UA Hello fragment)

lowpan_send(TCP segment) 

:LoWPAN layer

socket() 

file descriptor

TCP segment 

tcp_data(OPC UA  
Hello message) 

register callback(tcp_data) 

TCP ACK 
lowpan_data( TCP ACK ) 

:TCP/IP layer

lowpan_send( TCP segment ) 

OPC UA server OPC UA client

socket() 

connect(ip address, port) 

file descriptor

TCP 
connection established

lowpan_send( TCP SYN ) 
TCP SYN 

lowpan_data( TCP SYN ) 

lowpan_send( TCP SYN-ACK, 
window size ) TCP SYN-ACK, window size lowpan_data( TCP SYN-ACK,  

window size )

lowpan_send( TCP ACK ) 

Loop

TCP segment 
lowpan_data( TCP segment ) 

lowpan_data( TCP ACK ) 
TCP ACK 

lowpan_send( TCP ACK ) 

tcp_data(OPC UA 
Acknowledge fragment)

Loop

[ full frame transmitted ]

[ full frame transmitted ]

TCP ACK
lowpan_data( TCP ACK )

TCP ACK
lowpan_data( TCP SYN ) 

tcp_send(OPC UA  
Acknowledge message)

Figure 3.2: Protocol stack interaction

FreeOpcUa is another open source OPC UA stack hosted on Github, it is developed in
C++.

The OPC Foundation itself provides reference implementations in Java (OPC Foundation
UA Java) and ANSI C (OPC Foundation UA ANSI C) which are also available on Github.
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3. OPC UA over Low Power Wireless Networks

3.4 Operating systems for embedded devices
Table 3.2 shows a list of some OS for IoT devices, their support for C and C++, the supported
network stacks and the latest commit on Github.

C and C++ support Network stack Latest commit
Contiki Partial C uIP, RIME March 2018
TinyOS nesC BLIP May 2018
RIOT C and C++ gnrc, OpenWSN, ccn-lite July 2018

Table 3.2: Operating systems for embedded devices

Contiki is an OS which was developed for systems with memory-constrained resources like
8-bit MCUs. With the rise of more powerful MCUs, it became also available for 16-bit and
32-bit devices. For lightweight networking, micro IP (uIP) and Rime is available in Contiki.
The uIP stack provides IPv4 and IPv6 networking support via uIPv6. Rime is also available in
Contiki, which is a lightweight communication stack specially designed for LoWPAN.

TinyOS is an operating system for embedded platforms. It is specially designed for
systems with memory-constrained resources. To meet these limitations, TinyOS was written
in nesC. This programming language is a dialect of C and is optimized for low memory usage
and bug prevention. For networking support in TinyOS, 6LoWPAN was implemented through
Berkeley Low-power IP stack (BLIP).

In addition to Contiki and TinyOS, RIOT is another operating system for IoT applications.
The kernel of RIOT ist written in C. For application development, C++ is also available.
It supports a multitude of network stacks like gnrc, OpenWSN an ccn-lite. Gnrc is RIOTs
default full 6LoWPAN network stack.

3.5 Low Power Wireless Networks

Native IPv6 Link layer topology Consortium
Bluetooth Bluetooth Smart Star Bluetooth SIG
ZigBee ZigBee IP Mesh ZigBee Alliance
6LoWPAN yes Mesh IETF, Google

Table 3.3: LoWPAN protocols

Table 3.3 shows a selection of LoWPANs with native IPv6 support and their supported
link layer topologies. Native IPv6 has been supported in Bluetooth [6] since version 4.1
with the specification of Bluetooth Smart and the Internet Standard RFC 7668 [7] defined
by the IETF. The network topolgy is limited to star arrangement. With the specification of
ZigBee IP by the ZigBee Alliance in 2012, native IPv6 with mesh networking is available in
ZigBee [8]. 6LoWPAN is defined in the Internet Standard RFC 4944 [9] and supports full
mesh networking and native IPv6.
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CHAPTER 4
Proof of concept

The open62541 stack was selected for the implementation of the OPC UA server in the test
setup. This was due to the big open source community and the C99 programming language,
which is compatible with most operating systems and compilers for embedded devices (cf.
Table 3.2). First compilations of the open62541 stack showed that an MCU with sufficient
amount of ram and flash was needed to fit the OPC UA stack and the operating system
into the LoWPAN node. Therefore, the PIC32MX795F512L MCU was selected as a test
platform. Contiki OS was selected as operating system because of the support for PIC32
MCUs. Finally, MRF24J40MB was selected as the IEEE 802.15.4 radio transceiver module as
the driver for this chip is already available in Contiki OS.

4.1 Hardware setup

SPIZolertia z1 mote
(tunslip)

MRF24J40

UBW32 - OPC UA server (Contiki)Laptop - OPC UA client

USB

6LoWPAN

Figure 4.1: Hardware setup
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4. Proof of concept

Figure 4.1 shows the structure of the hardware setup and the chosen hardware components.
On the left side of the 6LoWPAN radio channel, a laptop performs the role of the OPC UA
client. The IPv6 network traffic is tunneled with tunslip over a serial IP tunnel to a Zolertia
z1 mote over USB. The Zolertia z1 mote runs a border router firmware. On the right side,
the UBW32 board with the PIC32MX795F512L MCU is used as an OPC UA server. The
MRF24J40MB IEEE 802.15.4 radio transceiver is connected over Serial Peripheral Interface
(SPI) with the PIC32.

4.2 Implementation
To implement open62541 in Contiki OS, some adaptions of the open62541 network imple-
mentation need to be done. Open62541 already has a network implementation, that can be
found in the GitHub repository under arch/ua_network_tcp.c. Because of lack of Linux
standard socket support in Contiki OS, the arch/ua_network_tcp.c file needs to be ported
to the uIP socket Application Programming Interface (API), which is supported by Contiki
OS.

For porting Contiki to a new hardware platform, the configuration settings need to
be modified in the file contiki-conf.h. The following settings are important to enable
6LoWPAN, IEEE 802.15.4 and the MRF24J40MB radio driver:

# define NETSTACK_CONF_NETWORK rime_driver
# define NETSTACK_CONF_FRAMER framer_802154
# define NETSTACK_CONF_RADIO mrf24j40_driver

Because TCP is a streaming protocol, open62541 needs to implement a function to merge
fragmented messages and check for completeness. If the message is completed it is passed to
the open62541 stack for processing. To enable packet fragmentation on the TCP level the
UIP_CONF_RECEIVE_WINDOW is set to a value so that one TCP fragment fits into a single
IEEE 802.15.4 frame. The size of the TCP receive window is the same as the TCP maximum
segment size. This is defined in the contiki-conf.h under UIP_CONF_TCP_MSS. Following
configuration settings need to be set:

# define UIP_CONF_RECEIVE_WINDOW 48
# define UIP_CONF_TCP_MSS 48

Another way to fit the OPC UA messages inside IEEE 802.15.4 frames would be to
define the maximum message size which is returned by the OPC UA server in the Hello -
Acknowledge message. This will notify the OPC UA client to send messages smaller than the
maximum message size.

The process of packet reassembly is shown in the Figure 4.2. The uIP callback function
tcp_data_callback is executed on every received TCP data frame. First the msg_incomplete
variable, which is defaulted to false, is checked. It is true when a packet reassembly is in
progress.

16



4.2. Implementation

If the msg_incomplete variable is false the opc_msg_data_len is decoded from the first
OPC UA fragment. Next the input_data_len is compared with the opc_msg_data_len. If
the length is equal, msg_incomplete is set to false and msg_incomplete_size is set to 0.
Because the OPC UA message fits into a single frame, the message can be directly passed as
a UA_WorkItem to the open62541 stack. Otherwise the message is incomplete. Therefore
the msg_incomplete variable is set to true and the msg_incomplete_size is incremented
by the fragment length input_data_len. Now the received data fragment is appended to a
msg_incomplete_buffer.

If the msg_incomplete variable is true, the message reassembly is in progress. The
msg_incomplete_size is incremented by the fragment length input_data_len and the received
data fragment is apppended to the msg_incomplete_buffer. If the msg_incomplete_size
is greater or equal to the opc_msg_data_len the fragment is reassembled and send as a
UA_WorkItem to the open62541 stack.

tcp_data_callback( tcp_socket, input_data, input_data_len )

input_data_len == 
opc_msg_data_len 

read opc_msg_data_len from
input_data

msg_incomplete 
N

N

msg_incomplete = true 
msg_incomplete_size += input_data_len 

append input_data to 
msg_incomplete_buffer

msg_incomplete = false 
msg_incomplete_size = 0 

create UA_WorkItem object

Y

msg_incomplete_size += input_data_len 

Y

msg_incomplete_size >=
opc_msg_data_len 

msg_incomplete = false 
msg_incomplete_size = 0 

Y

create UA_WorkItem object

append input_data to 
msg_incomplete_buffer

Figure 4.2: Flow chart of tcp_data and message reassembly
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4. Proof of concept

4.3 Evaluation
In this section the OPC UA over 6LoWPAN implementation is compared with an OPC UA
over IEEE 802.11 WLAN [3] setup. The response time for data requests with different payload
lengths simulated through a string data type is compared with each other.

4.3.1 Evaluation setup
The Figure 4.3 shows the two configurations for the evaluation. The laptop with the OPC
UA client application remains the same for both measurements. In setup (a), 6LoWPAN and
a PIC32 is used as an OPC UA server. In setup (b), a Raspberry Pi 3 is used as an WLAN
hotspot and OPC UA server.

UBW32 - OPC UA server (Contiki)Laptop - OPC UA client

6LoWPAN

Laptop - OPC UA client

WLAN

Raspberry Pi 3 - OPC UA server (Raspian)

(a)

(b)

Figure 4.3: Evaluation setups

4.3.2 Evaluation results
To get the evaluation results of setup (a) and (b), the OPC UA server on the PIC32 and the
Raspberry Pi simulated a string variable with different lengths. The length of this variable,
starting with 16 byte, was doubled with every measurement. To compare the two setups, the
time from variable request to the response was measured. The variable was requested 100
times from the OPC UA server to get good results for the visualization. A median filter was
applied to results to deal with very large values which would skew the final result. Such very
high values could result for example from transmission errors.

Setup (a) in Figure 4.4 shows that for small messages the response time is, with about
600ms, already very high. The reason for this could be the low OPC UA message processing
performance of the PIC32 and the fragmentation of OPC UA messages. The OPC UA
ReadRequest message is in this test already 123 bytes long, with the selected window size of
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48 bytes, this would need 3 TCP packets and 3 ACK to transmit the message. The OPC UA
message with 16 byte payload also requires a 90 bytes OPC UA ReadResponse message in
this case, which is fragmented into 2 TCP packets. This would need further investigation.
This setup was tested and worked reliably for payloads less than 800 bytes, which is sufficient
for the intended use case.

The second setup (b) in Figure 4.4 shows that the response time for payloads equal to or
less 1024 bytes is smaller than 3ms. Even payloads as large as 262kB are transmitted much
faster than the smallest payload in the evaluation setup (a).

The evaluation results showed that beside the transmission speed of the wireless technology,
the MTU size plays an important role for a fast response time.
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Figure 4.4: Measurement results
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CHAPTER 5
Conclusion and outlook

In this work, the basics of OPC Unified Architecture, IEEE 802.15.4 and 6LoWPAN were
treated. The theoretical idea of OPC UA over Low Power Wireless Networks was shown
with the OPC UA stack on top of the LoWPAN stack. A survey of common OS for IoT
devices and suitable LoWPAN protocols was conducted. The proof of concept showed that
the implementation of OPC UA over LoWPAN is possible by using 6LoWPAN with Contiki
OS and open62541 OPC UA stack on a PIC32 MCU. The evaluation of the response time
measurements showed, that the response time for OPC UA messages over 6LoWPAN is in the
range of 1s, which is high, but still feasible for time uncritical applications. The major problem
are the small MTU size of 6LoWPAN, the lack of TCP header compression in 6LoWPAN,
and the protocol overhead of OPC UA for basic messages. The evaluation also showed that
OPC UA over WLAN is much faster, also with big payloads. WLAN is for many application
much faster and more reliable, however compared to 6LoWPAN, WLAN doesn’t support
mesh networking and was not especially designed for low power usage. The proposed solution
certainly has benefits for several applications.

For future work, the response time measurements for multi-hop LoWPAN networks may
be interesting. This could determine if the proposed solution is suitable for applications,
that require mesh networking capabilities. Another interesting development is the release of
the new OPC UA Part 14 - PubSub Specification [10], which uses UDP on the transport
layer and a publisher-subscriber model instead of the classic client-server model. The use of
UDP instead of TCP leads to a reduced header overhead and enables the use of UDP/IPv6
header compression in 6LoWPAN. Another advantage of the publisher-subscriber model, in
particular for IoT devices, is the reduced amount of traffic with the use of multicast UDP.
The publishers and subscribers are loosely coupled, this would enable the devices to enter
low-power sleep modes to reduce the power usage. Since open62541 supports this model
since May 2018, this could be a topic for future work.

21





List of Figures

2.1 OPC UA within the automation pyramid . . . . . . . . . . . . . . . . . . . . 4
2.2 OPC UA information model example (adapted from [1]) . . . . . . . . . . . 5
2.3 OPC UA transport profile (adapted from [2]) . . . . . . . . . . . . . . . . . 6
2.4 OPC UA connection establishment . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 IEEE 802.15.4 star and peer-to-peer topology examples . . . . . . . . . . . . 8
2.6 First IEEE 802.15.4 fragment header . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Subsequent IEEE 802.15.4 fragments header . . . . . . . . . . . . . . . . . . 10

3.1 OPC UA stack and corresponding OSI layers . . . . . . . . . . . . . . . . . . 11
3.2 Protocol stack interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Flow chart of tcp_data and message reassembly . . . . . . . . . . . . . . . . 17
4.3 Evaluation setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

List of Tables

3.1 OPC UA stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Operating systems for embedded devices . . . . . . . . . . . . . . . . . . . . 14
3.3 LoWPAN protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

23





Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Network. vii, 1, 2, 10, 14, 16, 18,
21

AE Alarm & Events. 3

API Application Programming Interface. 16

BLIP Berkeley Low-power IP stack. 14

COM Component Object Model. vii, 3, 4

DA Data Access. 3

DCOM Distributed COM. vii, 3, 4

ERP Enterprise Resource Planning. 4

FFD Full Function Device. 8

HDA Historical Data Access. 3

HMI Human Machine Interface. 3

HTTP Hypertext Transfer Protocol. 6

IEEE Institute of Electrical and Electronics Engineers. 8

IETF Internet Engineering Task Force. 8, 9, 14

IoT Internet of Things. 1, 2, 9, 14, 21

IP Internet Protocol. 8, 9, 25

IPv4 IP version 4. 9

IPv6 IP version 6. 8–10, 14, 16

25



JSON JavaScript Object Notation. 6

LoWPAN Low-Power Wireless Personal Area Network. vii, 1, 2, 11, 12, 14, 15, 21, 23

MAC Media Access Control. 8, 10, 26

MCU Micro Controller Unit. 1, 14–16, 21

MFR MAC Footer. 10

MHR MAC Header. 10

MTU Maximum Transmission Unit. 1, 8, 9

OPC OLE for Process Control. 3–5

OPC UA OPC Unified Architecture. vii, 1, 4–7, 11–13, 15–19, 21, 23

OSI Open Systems Interconnection. 9

PAN Personal Area Network. 7, 8

PdM Predictive Maintenance. 1

RFD Reduced Function Device. 8

SCADA Supervisory Control and Data Acquisition. 3, 4

SOAP Simple Object Access Protocol. 6

SPI Serial Peripheral Interface. 16

TCP Transmission Control Protocol. 6, 10, 16

UDP User Datagram Protocol. 10, 21

uIP micro IP. 14, 16

WLAN Wireless Local Area Network. vii, 18, 21

XML Extensible Markup Language. 6

26



Bibliography

[1] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified Architec-
ture. Springer Publishing Company, Incorporated, 1st edition, 2009.

[2] OPC Foundation. OPC Unified Architecture - Wegbereiter der 4. Indus-
triellen (R)Evolution. https://www.iosb.fraunhofer.de/servlet/is/21752/
OPC-UA-Wegbereiter-der-I40.pdf?command=downloadContent&filename=
OPC-UA-Wegbereiter-der-I40.pdf, 2013. [Online; accessed 24-July-2018].

[3] IEEE Computer Society. Part 15.4: Wireless medium access control (mac) and physical
layer (phy) specifications for low-rate wireless personal area networks (wpans). IEEE
Std 802.15.4-2006, 2006.

[4] Robert M. Hinden and Dr. Steve E. Deering. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460, December 1998.

[5] Seiichi Kawamura and Masanobu Kawashima. A Recommendation for IPv6 Address
Text Representation. RFC 5952, August 2010.

[6] SIG Bluetooth. Bluetooth core specification version 4.1. Specification of the Bluetooth
System, 2013.

[7] Johanna Nieminen, Teemu Savolainen, Markus Isomaki, Basavaraj Patil, Zach Shelby,
and Carles Gomez. IPv6 over BLUETOOTH(R) Low Energy. RFC 7668, October 2015.

[8] IEEE Computer Society LAN MAN Standards Committee et al. Wireless lan medium
access control (mac) and physical layer (phy) specifications. ANSI/IEEE Std. 802.11-
1999, 1999.

[9] Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore Kushalnagar. Trans-
mission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944, September 2007.

[10] OPC Foundation. OPC Unified Architecture Specification - Part 14: PubSub, Release
1.04 edition, 2018.

27

https://www.iosb.fraunhofer.de/servlet/is/21752/OPC-UA-Wegbereiter-der-I40.pdf?command=downloadContent&filename=OPC-UA-Wegbereiter-der-I40.pdf
https://www.iosb.fraunhofer.de/servlet/is/21752/OPC-UA-Wegbereiter-der-I40.pdf?command=downloadContent&filename=OPC-UA-Wegbereiter-der-I40.pdf
https://www.iosb.fraunhofer.de/servlet/is/21752/OPC-UA-Wegbereiter-der-I40.pdf?command=downloadContent&filename=OPC-UA-Wegbereiter-der-I40.pdf

	Abstract
	Kurzfassung
	Introduction
	Motivation and problem statement
	Methodological approach
	Structure of the work

	Technical background
	OPC Unified Architecture
	IEEE 802.15.4
	6LoWPAN

	OPC UA over Low Power Wireless Networks
	Software stack architecture
	Software stack interaction
	Open source OPC UA stacks
	Operating systems for embedded devices
	Low Power Wireless Networks

	Proof of concept
	Hardware setup
	Implementation
	Evaluation

	Conclusion and outlook
	List of Figures
	List of Tables
	Acronyms
	Bibliography

