
PowerRPDEVS Modellbibliothek
für 9-wertige Logikschaltungen

nach IEEE Std. 1164-1993

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Christian Fiedler
Matrikelnummer 01363562

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof.Dr. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Franz Preyser, Bsc.

Wien, 5. März 2019
Christian Fiedler Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

PowerRPDEVS Model Library for
9-Value Logic Circuits
According to IEEE Std. 1164-1993

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Christian Fiedler
Registration Number 01363562

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof.Dr. Wolfgang Kastner
Assistance: Dipl.-Ing. Franz Preyser, Bsc.

Vienna, 5th March, 2019
Christian Fiedler Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Christian Fiedler
Mexikoplatz 2-3/4/6, A-1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. März 2019
Christian Fiedler

v

Kurzfassung

Logikgatter, wie AND, OR und XOR, wenden eine Boolesche Operation auf ihre Ein-
gangssignale an, um ein Ausgangssignal zu erzeugen. Die Simulation eines Schaltkreises
bestehend aus Logikgattern, liefert daher das Ergebnis des zugehörigen Booleschen Aus-
drucks. Das ist unkompliziert, solange der Schaltkreis keine Rückkopplungen enthält, wie
dies zum Beispiel bei einem RS-Latch der Fall ist. Ein RS-Latch kann aus zwei NOR-
Gattern aufgebaut werden, deren Ausgänge mit einem Eingang des jeweiligen anderen
NOR-Gatters verbunden werden. Diese Modelle verhalten sich nicht immer entsprechend
den Erwartungen des Benutzers.

PowerRPDEVS ist ein Simulator, der auf dem neuen Modellierungsformalismus Revised
Parallel Discrete Event System Specification (RPDEVS) basiert. Der für RPDEVS
definierte Simulationsalgorithmus verspricht transparenteres Modellverhalten im Falle von
rückgekoppelten Systemen. Für diese Arbeit soll eine Logik-Bibliothek für PowerRPDEVS
implementiert werden, die fundamentale Logikgatter (AND, OR, XOR) und andere hilfreiche
Primitive enthalten soll, um die Möglichkeit zu erforschen, Latches, Flip-Flops und andere
zustandsbehaftete Schaltkreise mit PowerRPDEVS zu simulieren. Insbesondere werden
ein RS-Latch, ein RS-Flip-Flop, ein D-Flip-Flop und ein Shiftregister modelliert und
simuliert.

Die Logik-Bibliothek wurde mit der 9-wertigen Logik aus IEEE Standard 1164-1993
implementiert, was ihre Fähigkeit, echte Hardware zu simulieren, verbessern sollte. Um
das zu zeigen, wurde ein simpler Bus mit zwei Teilnehmern, die Schreibkonflikte auflösen,
modelliert und simuliert.

vii

Abstract

Logic gates like AND, OR and XOR perform Boolean operations on their inputs to produce
an output. Simulating a circuit of logic gates yields the result of the corresponding
Boolean expression. This is straightforward unless the circuit contains feedback loops,
like for example in a static RS flip-flop. A static RS flip-flop can be constructed from
two NOR gates whose outputs are connected to the inputs of the respective other NOR
gate. Such models do not always behave according to the expectations of the modeler.

PowerRPDEVS is a simulator based on the new modeling formalism Revised Parallel
Discrete Event System Specification (RPDEVS). The simulation algorithm defined for
RPDEVS promises to be more transparent in its model behavior in the case of feedback
systems. The purpose of this thesis is to implement a logic library for PowerRPDEVS
containing fundamental logic gates (AND, OR, XOR) and other helpful primitives to explore
the possibility of modeling flip-flops and other stateful circuits in PowerRPDEVS. In
particular, models of a static RS flip-flop, a triggered RS flip-flop, a D flip-flop and a
shift register are shown and simulated.

The logic library was implemented according to the 9-value logic of IEEE standard
1164-1993 which should improve its usability in simulating actual hardware. To show
this, a model of a simple bus with two nodes that perform collision resolution is created
and simulated.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Theoretical Background 3
2.1 The Family of DEVS Formalism . 3
2.2 IEEE 1164-1993 Standard for Multivalue Logic Systems 7

3 PowerRPDEVS 9
3.1 Graphical User Interface . 9
3.2 Engine . 12

4 Multivalue Logic Library 17
4.1 DEVSLogicMessage . 17
4.2 Logic Gates Implementation . 19
4.3 Library Elements . 20

5 Example Logic Circuits 25
5.1 Static RS Flip-Flop . 25
5.2 Triggered RS Flip-Flop . 31
5.3 D Flip-Flop . 33
5.4 Shift Register . 34
5.5 Serial Bus with Collision Resolution 36

6 Conclusion and Outlook 41

A Code of Implementation 43

List of Figures 63

List of Tables 65

xi

Acronyms 67

Bibliography 69

CHAPTER 1
Introduction

Simulation of logic circuits in state-of-the-art general purpose simulators using their
respective formalisms can be inconvenient and may yield unexpected results that do
not match the intents of the modeler. This is what Junglas shows in his paper [Jun16],
in which he built simple logic circuits based on discrete blocks of the modeling tools
Simulink and Dymola / Modelica.

These logic circuits needed to be implemented with additional blocks (the Memory block
in Simulink and the Pre block in Modelica) that introduce infinitesimal delays into
the circuit. This is because the simulation algorithm apparently cannot deal with the
algebraic loops that were introduced with the feedbacks. The algebraic loops can be
avoided when the simulated logic gates are designed with an intrinsic delay which can
also be observed in their physical counterparts.

The purpose of this thesis is to figure out how these issues affect PowerRPDEVS, a
simulation software based on the Revised Parallel DEVS (RPDEVS) formalism [PHK17],
which is a further developed version of the original Discrete Event System Specification
(DEVS), first proposed by Zeigler [ZPK00], and Parallel DEVS (PDEVS) formalisms,
later proposed by Chow [CZ94].

The main reason for revising these existing formalisms was that they did not allow
modeling of Mealy behavior that can respond to an incoming event immediately without
a state change. To imitate Mealy behavior in DEVS and PDEVS, it is necessary to change
into a transitory state after the arrival of an incoming event. A transitory state is a state
with zero lifetime and thus, is left again in the same instant of simulation time. Transitory
states often lead to intransparent model behavior as discussed in [PHK17]. RPDEVS
tries to avoid transitory states by allowing the modeler to model Mealy behavior directly.

For this thesis, a model library that contains fundamental logic gates (AND, OR, XOR,
NOT gates) was implemented for PowerRPDEVS. It was decided to not limit this library
to Boolean logic and implement a multivalue logic system. With this library, a number

1

1. Introduction

of logic circuits is modeled and simulated to investigate the behavior of algebraic loops
in PowerRPDEVS.

Chapter two will first briefly introduce the formalisms DEVS and PDEVS and their
mathematical background, then motivate RPDEVS and point out the major differences.
In the following section in chapter two, the reasons for implementing the Institute of
Electrical and Electronics Engineers (IEEE) standard 1164-1993 will be discussed which
describes a 9-value multivalue logic system that is used in Very High Speed Integrated
Circuit Hardware Description Language (VHDL).

Chapter three introduces PowerRPDEVS which is the proof-of-concept simulator and
modeling software that is used for RPDEVS modeling. First, the user interface of the
toolchain will be described. Then, a more detailed view is taken at the internal workings
of PowerRPDEVS, its simulation algorithm and message passing mechanism.

The fourth chapter will at first discuss certain decisions that were made and considerations
taken during the implementation phase of the library and then introduce the blocks that
are implemented in this library and how they work in PowerRPDEVS.

In chapter five, the circuits from Junglas’ paper [Jun16] are implemented and simulated
in PowerRPDEVS and the results of the simulation and possible pitfalls in the modeling
phase will be shown. It will also discuss the practical advantages of RPDEVS over
traditional DEVS or PDEVS and also the possible differences specifically when simulating
logic circuits between the RPDEVS algorithm and the algorithms used in Simulink and
Modelica based on the simulation results.

A conclusion on the work is given afterwards and points will be mentioned that could be
of interest in future research in this field.

2

CHAPTER 2
Theoretical Background

2.1 The Family of DEVS Formalism

2.1.1 DEVS and Parallel DEVS

DEVS is a modeling formalism first introduced by Zeigler in 1976 [ZPK00]. A DEVS
model consists of so-called atomics (also atomic DEVS), which are systems with an
internal state as well as input and output ports. Output ports can be connected to
input ports with uni-directional connections. Couplings (also coupled DEVS) consist of
connected atomics and couplings. Such a coupling can also have input and output ports
that are connected to the inputs and outputs of its subcomponents. These components,
atomics and couplings, are also referred to as blocks later on, when the distinction is not
needed.

Mathematically, a DEVS atomic can be expressed with the following tuple:

< X,Y, S, δext, δint, λ, ta > (2.1)

X . . . set of possible inputs
Y . . . set of possible outputs
S . . . set of possible (internal) states of the atomic

δext : Q×X → S . . . external state transition function
where Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]}

δint : S → S . . . internal state transition function
λ : S → Y . . . output function
ta : S → R+

0 ∪ {∞} . . . time advance function

3

2. Theoretical Background

[PHRK16]

An atomic DEVS A =< X,Y, S, δext, δint, λ, ta > can receive internal and external events.
When an internal event is received, the λ function is evaluated for the current internal
state of A, the result is passed to the output ports of A and further to the atomics or
couplings connected to them where it causes an external event. Thereafter, the δint

function is evaluated for A and the resulting state becomes its new state. When an
external event is received by A, its δext function is evaluated which causes an immediate
change of internal state. [ZPK00]

An atomic DEVS can be compared to a Moore-type finite state automaton (FSA) [Jos96].
The atomic’s output function λ is only dependent on the current internal state of the
atomic just like the output of a Moore-type FSA is bound to its state. The state transition
functions δint, δext compute the new state but cannot change the output value. δext is
called everytime an external event arrives and thus, can incorporate the data of the
external event into the new state. That implies that to change the output of the atomic,
it has to change internal state first. This is also the way Moore-type FSA work, there
are a few differences in detail though, e.g. the state space of an atomic DEVS could
theoretically be infinite.

Models usually consist of multiple atomic and coupled DEVS that are connected. Together
they again form a coupled DEVS which behaves like an atomic and thus could be replaced
by a corresponding atomic. This property is called closure under coupling. [ZPK00]

Problems can arise when multiple DEVS in a model schedule internal events for the
same time or when a DEVS receives an external event at the same time of a scheduled
internal event. In these cases, the select function which is a property of the coupled
DEVS chooses the order of the events. Correctly implementing the atomics and couplings
of a model, so they can deal with simultaneous events and do not depend on the ordering
imposed by the select function, can be difficult and tedious. If the blocks depend on this
ordering, they are harder to reuse in other models. In further revisions of DEVS, it was
tried to resolve this and other ambiguities. [ZPK00]

Chow and Zeigler published a revision of DEVS in 1994 called PDEVS [CZ94] which
introduces the δconf transition function that prevents the serialization problems mentioned
above regarding simultaneous internal and external transitions. Instead of evaluating
simultaneous δint and δext in a certain order, in PDEVS these collisions are resolved by
evaluating the new δconf function.

With this change, the select function is not necessary anymore and simulation of multiple
PDEVS components could run in parallel. With the new δconf function, an atomic

4

2.1. The Family of DEVS Formalism

PDEVS can be described by the tuple:

< X,Y, S, δext, δint, δconf , λ, ta > (2.2)

δconf : Q×X → S . . . confluent state transition function
where Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]}

To give an example of a DEVS model, a Boolean NOT gate with one input and one output
shall be modeled as a DEVS atomic. The NOT gate will always output the negated input
value (so 0 when the input is 1 and vice-versa) and react to inputs immediately.

B = {0,1}
NOTdevs = < X = B, Y = B, S, δext, δint, λ, ta > (2.3)

S = B× {0,∞} . . . s = (s1, σ) ∈ S

δext(s, e, x) =
{

(x, 0) : if x 6= s1

s : otherwise
λ(s) = ¬s1

δint(s) = (s1,∞)
ta(s) = σ

The model of the NOT gate (Equation 2.3) includes two transitory states (a state s is
transitory if ta(s) = 0). Those states had to be introduced because λ is not evaluated
when only an external event is triggered. An external event only leads to an evaluation
of δext. δext will produce a state with σ = 0, so that an internal event is also triggered at
the same point in simulation time. The internal event results in an evaluation of λ which
sets the new output and δint which switches back to a stable state (σ is set to ∞).

When transitory states are present in a DEVS/PDEVS model, λ may be called multiple
times for the same point in simulation time if the model switches to transitory states
multiple times in a row. This can lead to endless loops in which simulation time is never
increased and thus the simulation cannot complete.

2.1.2 Revised Parallel DEVS

RPDEVS (as introduced by Preyser et al. in [PHK17]) is based on PDEVS but applies
major changes to the formalism:

5

2. Theoretical Background

1. The three functions δext, δint and δconf of PDEVS are combined into one δ function.
A case analysis whether the transition is external, internal or confluent, can be
done optionally by the modeler within δ based on its additional parameters.

2. The λ function is also evaluated for blocks that receive purely external events.

3. The λ function depends on the inner state as well as on the external event. Earlier,
atomics of the original formalisms DEVS and PDEVS were compared to Moore-type
FSA – this change in the formalism together with the previous point now allows for
atomics to behave like Mealy FSA (reacting to an input with an output without
changing the internal state).

4. The δ function in the new formalism is evaluated after the λ evaluations have
stopped. This is partly a design decision and partly a necessity due to the new λ
function that has access to the data of the incoming external events. The DEVS
model has time to stabilize throughout these multiple λ evaluations none of which
may affect the internal state. When the results of λ remain the same throughout
the model, it is ready for a state change, i.e. evaluation of δ.

The intention of the changes to λ was mainly to eliminate the necessity for transitory
states (see subsection 2.1.1). These were needed in DEVS and PDEVS to model Mealy
behavior, i.e. DEVS being able to produce output events instantanously in reaction to
an input event.

The formal definition of the RPDEVS atomic conveys these changes:

< X,Y, S, δ, λ, ta > (2.4)
δ : (Q×X)→ S . . . state transition function
λ : (Q×X)→ Y . . . output function

where Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]}

[PHK17]

The NOT gate from section subsection 2.1.1 can now be modeled without transitory states
(see Equation 2.5). The definition also became simpler because the δ functions were
merged and because the model only needs one state now.

6

2.2. IEEE 1164-1993 Standard for Multivalue Logic Systems

NOTrpdevs = < X = B, Y = B, S, δ, λ, ta > (2.5)
S = {s0}

δ(s, e, x) = s0

λ(s, e, x) = ¬x
ta(s) = ∞

As with DEVS and PDEVS, couplings can be defined in RPDEVS. Like DEVS and
PDEVS, also RPDEVS provides closure under coupling. [PHK17]

2.2 IEEE 1164-1993 Standard for Multivalue Logic
Systems

The PowerRPDEVS logic library was implemented for this thesis. It works with nine
logic values according to IEEE standard 1164-1993 [IEE93]. These are: U, X, 0, 1, Z, W,
L, H, -. The multivalue logic system (from now on called "IEEE 1164") specified in it was
specifically designed for VHDL and hardware modeling. As such it is more powerful than
simple two-value Boolean logic and – regarding the AND, OR, XOR and NOT functions –
IEEE 1164 is equivalent to Boolean logic when the inputs are elements of {0,1}. Thus,
it can be seen as a superset of Boolean logic.

2.2.1 Logic values

In table Table 2.1 the logic values of IEEE 1164-1993 are described.

2.2.2 Motivation for using IEEE 1164

The primary purpose of modeling tools and simulation is to describe particular aspects of
a real-world process on the basis of a certain formalism. The modeler typically neglects
some of the properties of this real-world system or simplifies the model in other ways
(e.g. linearization).

The PowerRPDEVS logic library was designed to provide logic gates that match the
Boolean operators AND, OR, XOR and other logic elements. Boolean logic operates only
on two discrete values: true and false, or 0 and 1.

The motivation for using IEEE 1164 instead of Boolean logic was that Boolean logic
cannot deal with many real-world use-cases of electronic circuits natively, e.g. simulating
a data bus on which two or more parties can send or receive data. If there are two
sources that both send on one wire (the bus), the output is well-defined as long as both
sources carry the same signal (0 or 1), however, if they carry complementary logic values

7

2. Theoretical Background

logic value description
U Uninitialized state. An input port was not connected or carries an

undefined value. This value propagates through logic gates, so the error
source can be found easily.

X Forcing unknown. Strong driver with unknown logic value.
0 Forcing zero. Strong driver with low logic value (transistor connected

to GND).
1 Forcing one. Strong driver with high logic value (transistor connected

to VCC).
Z High impedance. Disconnect wire.
W Weak unknown. Weak driver with unknown logic value.
L Weak zero. Weak driver with low logic value (pull down resistor).
H Weak one. Weak driver with high logic value (pull up resistor).
- Don’t care. This value is only useful for optimizing VHDL synthesis.

Table 2.1: 9 logic values in IEEE 1164-1993

Boolean logic simply cannot resolve the output. While it is possible to work around
this issue (see subsection 5.5.1), extending the domain of possible logic values helps to
create models that more closely match the real world systems. With IEEE 1164, the high
impedance value Z can be used by components to disconnect from the bus.

Still, this library should be useful even if the user only wants to use Boolean logic. If
only elements of B = {0,1} are used as inputs, no signals are undefined and it is ensured
that two complementary logic values are never connected to the same input port, the
outputs will be elements of B.

8

CHAPTER 3
PowerRPDEVS

PowerRPDEVS [POWb] is an open source software for simulating hybrid systems (systems
with continuous and discrete components) based on the RPDEVS formalism, as explained
in subsection 2.1.2. It was forked from PowerDEVS [POWa] which is a simulator
that follows the DEVS formalism and its simulation algorithm was replaced by an
implementation of the RPDEVS abstract simulator. As part of this replacement, the
atomic block library of PowerDEVS became unusable and also had to be recreated.

The following sections will describe how the program is used to create atomics and models
and simulate them. Afterwards, the engine of the simulator is described.

3.1 Graphical User Interface

3.1.1 Model Editor

The model editor (see Figure 3.1) is the primary user interface and the first window
that appears when PowerRPDEVS is started. Here, models can be created by inserting
and wiring RPDEVS atomic blocks from the libraries on the left. No programming is
required if the desired model can be created by coupling already existing atomic blocks.
This can be done graphically in the model editor. Creation of an atomic is described in
subsection 3.1.3.

The blocks can be dragged from the left side into the model area on the right. Output
ports can be connected to multiple input ports (all input ports receive the same message
when the output port generates one) and multiple output ports can be connected to
one input port (that one input port receives the messages from all the connected output
ports). Especially in the latter case, care should be taken and the user should know how
the used block deals with multiple inputs at the same port (the PowerRPDEVS logic
library provides some blocks that merge these incoming messages, see section 4.3).

9

3. PowerRPDEVS

Figure 3.1: PowerRPDEVS Model Editor

Couplings can be created by dragging the coupled block from the left side (which is
inside the group rpdevs_basic_elements) into the model area. The coupling can then be
opened by right-clicking it and then clicking the menu item Open Coupled. The model
area becomes blank because the model editor navigated into the newly created coupling
which is empty. Now the user can drag input and/or output ports from the left into the
coupling. The user can also drag other atomic or coupled blocks into the coupling and
wire them. When navigating back to the previous view by using the bar at the bottom
of the model editor window, the coupling block shows the same number of input and
output ports as were dragged into the coupling before.

3.1.2 Simulation of a model

When a simulation is started, PowerRPDEVS will compile all the involved atomic
blocks, generate and compile C++ code that describes the model with its couplings and
instantiates the atomic blocks’ classes. This binary is then run to simulate the model.

By hitting the F5 function key or clicking the menu item Simulation→Simulate, the
user can compile the model. When the compilation is finished, a dialog appears (see
Figure 3.2) that allows to set additional constraints and then start the simulation.

Run Simulation and Run Timed both run the simulation but with Run Timed the engine
will try to run the simulation in real time, i.e. the elapsed simulated time should always
equal the elapsed wallclock time. The button View Log shows the simulation log that
shows information about the execution – atomic blocks can write to the log which can be
useful for debugging an atomic, there is also the Recorder block that can write the value

10

3.1. Graphical User Interface

Figure 3.2: PowerRPDEVS Simulation Dialog

of its input into the log.

With the Final Time setting, the user can define for how long the simulation should run
in seconds (simulated time). The number of simulations can be adjusted below. The user
can also execute only a certain number of simulation steps.

3.1.3 Creating a new atomic

An atomic block is modeled as a C++ class that is derived from a base class called
Simulator. It has member variables which represent the internal state of the atomic,
an init method that is called once before the simulation starts, a delta method that
represents the atomic’s δ function, a lambda function that represents λ, and an exit
function that is called after the simulation has ended.

The user can drag an atomic block from the left side into the model area, right-click it
and click the Edit Code menu item. This opens the built-in RPDEVS Atomic Editor that
allows to write C++ code to implement a new atomic RPDEVS. This editor imposes
a layer of abstraction, because it does not show the whole C++ code of the atomic as
one large file but groups the individual methods of the class that represents the atomic
into a tabbed view. In the top bar, the user can switch between the functions Init, Time
Advance, Delta, Lambda and Exit.

While Time Advance, Delta and Lambda directly correspond to the formalisms functions
ta, δ and λ, there is no such correspondence for Init and Exit. Init’s purpose is to set the
initial state of the atomic and may be used to acquire system resources. It is called for all

11

3. PowerRPDEVS

Figure 3.3: PowerRPDEVS Atomic Editor

blocks before the simulation starts. Exit serves no purpose for the formal simulation, but
is required for cleanup on the software level (stopping programs, freeing system resources
and memory). It is run after the simulation has completed.

These functions can be viewed in the large text editor box on the right-hand side by
clicking them in the top bar (see Figure 3.3). On the left side there is an additional
text editor that contains the atomic’s internal state variables (member variables of the
atomic’s class) – all of them together form the internal state of the atomic as specified
by the formalism.

3.2 Engine
The PowerRPDEVS engine is programmed in an object-oriented way in C++. As
explained previously, to run the models they need to be compiled into a stand-alone
executable binary file that performs the actual simulation. This binary is composed of
the PowerRPDEVS engine, the model that is simulated and all the atomics that are part
of it.

3.2.1 Message passing

The event-driven nature of RPDEVS is implemented as message passing between blocks.
Atomic as well as coupling blocks have input and output ports. When an input port and
an output port are connected, messages emitted at the otuput port will be forwarded to
the input port.

For that purpose there is the abstract base class DEVSMessage in the engine. It is
used to derive message types that will then be used by the various block libraries. The
following is the source code of DEVSMessage:

12

3.2. Engine

1 class DEVSMessage {
2 public:
3 int index;
4
5 DEVSMessage() {
6 index = 0;
7 }
8 DEVSMessage(int idx) {
9 index = idx;
10 }
11 DEVSMessage(const DEVSMessage& msg) {
12 index = msg.index;
13 }
14 DEVSMessage(std::string value_str) {
15 index = 0;
16 parseValueFromString(value_str);
17 }
18
19 virtual int getInt() {
20 return(0);
21 }
22
23 virtual bool parseValueFromString(std::string value_str) {
24 return(false);
25 }
26
27 virtual bool operator==(const DEVSMessage& msg) const {
28 return(index==msg.index);
29 }
30
31 virtual bool operator!=(const DEVSMessage& msg) const {
32 return(!((*this)==msg));
33 }
34 virtual DEVSMessage* getCopy() const {
35 return(new DEVSMessage(*this));
36 }
37
38 virtual std::string toString() const {
39 return(std::string("WARING: DEVSMessage-Instance!"));
40 }
41 virtual ~DEVSMessage() {};
42 };

The class contains no attributes except index which is used universally in derived classes
for representing vectors. Every message has an associated index that represents its
position in the vector.

Different message types are used for different purposes and atomics need a way to handle
different messages or at least check if the message they receive has the correct type. To

13

3. PowerRPDEVS

Figure 3.4: Message Passing class hierarchy

achieve this polymorphism is used. Input messages can be retrieved from the engine
within the λ and δ functions as pointers to the base class DEVSMessage*. The function
pop_input is used for that. A dynamic_cast may then be used to determine if the
DEVSMessage is of a specific derived type, e.g. QSSDoubleArray:

1 DEVSMessage *msg;
2 while(pop_input(0, &msg)){
3 auto q = dynamic_cast<QSSDoubleArray*>(msg);
4 if(q != nullptr){
5 // q is of type QSSDoubleArray
6 // use q
7 }
8 }

The life time of the received pointer is not guaranteed to be longer than the execution of
the functions λ and δ, so if an atomic should store messages, it must copy the message
object using the copy constructor or copy assignment operator operator=. It could
also use the method getCopy and store the resulting pointer, but this is discouraged as
this method is intended for the engine – moreover the block would have to do manual
memory management. In any case, acquired memory or system ressources shall be freed
when no longer needed or in the exit method.

To allow the λ iterations to stabilize, the engine will check if the output of λ of every
atomic/coupling changed before copying the message from the output bag of one block
to the input bag of another block. That is why the base class DEVSMessage imple-
ments operator== and operator!= and it requires the derived classes to implement
operator== too (operator!= is implemented as the negative of operator== and
shall not be overridden). The derived classes need two overloads of operator==, see
section 4.1 for an explanation.

14

3.2. Engine

In Figure 3.4 the currently implemented message classes and the relations to each other
are shown.

• QSSDoubleArray can represent continuous signals using Quantized State System
(QSS) methods. It is used in most existing library components of PowerRPDEVS.

• DEVSLogicMessage can represent the logic values of IEEE 1164. It is only used
in the PowerRPDEVS logic library currently.

• Entity represents an entity of logistics. It is used in the RPDEVS logistics module.

3.2.2 Simulation Algorithm

The simulation algorithm is formally defined by an Abstract Simulator in [PHKB19] and
is implemented in the PowerRPDEVS engine.

The engine provides a Simulator class from which all atomic RPDEVS are derived.
The functions init, delta (δ), lambda (λ), ta and exit have to be implemented by
the atomic’s class.

The Coupling class represents coupled RPDEVS and is also derived from Simulator
so it provides the same functions that are required by the RPDEVS formalism, but
the Coupling class implements them by calling the respective functions of its children
(other couplings or atomics). Coupling also implements a large part of the engine as a
model is essentially a coupling with nested couplings and atomics.

Figure 3.5: Example object-oriented model and class hierarchy

15

CHAPTER 4
Multivalue Logic Library

4.1 DEVSLogicMessage
The engine of PowerRPDEVS provides the class DEVSMessage that is used for the
message passing (subsection 3.2.1). The developer is encouraged to derive from this class
as it has virtual methods and a virtual destructor. The following DEVSLogicMessage
class was derived from DEVSMessage:

1 class DEVSLogicMessage : public DEVSMessage
2 {
3 public:
4 char logicval;
5 // constructors:
6 DEVSLogicMessage() : DEVSMessage()
7 {
8 logicval = ’U’;
9 }
10 DEVSLogicMessage(char v, int _index = 0)
11 : DEVSMessage(_index),
12 logicval(v)
13 {
14 }
15 DEVSLogicMessage(const DEVSLogicMessage &msg)
16 : DEVSMessage(static_cast<DEVSMessage>(msg)),
17 logicval(msg.logicval)
18 {
19 }
20
21 char getChar() const
22 {
23 return logicval;
24 }

17

4. Multivalue Logic Library

25 double getDouble() const
26 {
27 return getChar() == ’1’ ? 1 : 0;
28 }
29
30 bool getBool() const
31 {
32 return getChar() == ’1’ ? true : false;
33 }
34 void set(char c)
35 {
36 logicval = c;
37 }
38
39 virtual DEVSMessage *getCopy() const
40 {
41 return new DEVSLogicMessage(*this);
42 }
43 virtual std::string toString() const
44 {
45 return std::string(1, getChar());
46 }
47
48 virtual bool operator==(const DEVSLogicMessage &msg) const
49 {
50 if (index != msg.index)
51 {
52 return false;
53 }
54 return logicval == msg.logicval;
55 }
56
57 virtual bool operator==(const DEVSMessage &msg) const
58 {
59 if (typeid(msg) != typeid(*this))
60 return false;
61 return ((*this) == ((DEVSLogicMessage &)msg));
62 }
63
64 virtual ~DEVSLogicMessage() {}
65
66 static bool valid(char v)
67 {
68 return logicfunction_value_valid(v);
69 }
70
71 };

This class saves a logic value in a variable of data type char that can be one of the

18

4.2. Logic Gates Implementation

nine values of IEEE 1164 (subsection 2.2.1) and it is used for messages sent between
blocks of the library. As char can hold more than nine values, a valid function
is defined to verify that only valid logic values are used. This valid function calls
logicfunction_value_valid() which is defined in stdlogic1164.h section A.2.

The char type is used because all nine logic values of IEEE 1164 have a single-character
representation and it makes the code more readable to use them directly. Use of an
equivalent enum type would be more tedious and the gain is not very high because C++’s
type system does not enforce that enum variables only hold defined values. It might be
beneficial to use a type that enforces that kind of type safety, but then more code for
converting character strings to that type and vice-versa as well as implementing the IEEE
1164 logic functions would have to be added. This was not attempted for readability and
simplicity purposes.

The virtual methods override the DEVSMessage base class functions that are used by the
simulation algorithm. The operator== is implemented specifically for DEVSLogicMessage
but an additional overload is provided that can check equality with DEVSMessage and
that returns false if two DEVSMessages of different types are compared. The getCopy
method is explained in subsection 3.2.1.

4.2 Logic Gates Implementation
Unary logic gates (e.g. NOT) as well as binary logic gates (e.g. AND, XOR) differ only
in the function that is applied to the one or two inputs. So the implementation of
unary and binary logic gates was written as templated classes LogicGateUnary and
LogicGateBinary which both export the methods init, ta, delta and lambda. A
function that maps input(s) to output can be given as template argument. That way the
message handling that needs to be done in the λ and δ function was split from the actual
functions. Thus, more unary and binary logic functions can be created as RPDEVS
atomics by simply instantiating the above template classes and calling its methods inside
the respective functions of the new atomic.

A shortened version of the AND atomic can be used as a reference to implement other
binary functions as atomics, see the listing below. The complete implementation is
provided in section A.4.

1 class logic_and: public Simulator {
2 LogicGateBinary<logicfunction_and,logicfunction_resolution>

↪→ gate;
3 public:
4 logic_and(const char *n): Simulator(n) {};
5 void init(double, ...);
6 double ta(double t);
7 void delta(double);
8 void lambda(double);
9 void exit();
10 };

19

4. Multivalue Logic Library

11
12
13
14 void logic_and::init(double t,...) {
15 va_list parameters;
16 va_start(parameters,t);
17
18 n_in_ports = int(va_arg(parameters,double));
19
20 const char *init_logic_vec = va_arg(parameters, char*);
21 gate.init(DEVSLogicMessage::getLogicVector(init_logic_vec));
22
23 va_end(parameters);
24 }
25
26 double logic_and::ta(double t) {
27 return gate.ta();
28 }
29
30 void logic_and::delta(double t) {
31 gate.delta(*this,t);
32 }
33
34 void logic_and::lambda(double t) {
35 gate.lambda(*this,t);
36 }
37
38 void logic_and::exit() {
39 }

The instantiation of LogicGateBinary in line 2 takes the actual binary (meaning
it has two inputs) logic function logicfunction_and and a resolution function
logicfunction_resolution that resolves conflicts between multiple writers. Both
are defined in the header file stdlogic1164.h which implements the IEEE standard
1164 [IEE93] and is shown in the appendix in full length in section A.2. The appendix
also contains the implementation of LogicGateUnary and LogicGateBinary in
section A.3.

4.3 Library Elements

In the following, it will be described how the atomics of the PowerRPDEVS logic library
(see Figure 4.1) work.

As pointed out in subsection 3.2.1 the engine is already prepared to use vector values
everywhere so most of these logic gates can transfer and work with multiple logic values
(a logic vector) via one connection.

20

4.3. Library Elements

In order that these atomics can be used easily, most of them implement automatic signal
resolution of inputs. That means, on ports where the atomic receives logic signals from
more than one source, it will apply the resolution function defined in IEEE 1164 and
it will only interpret the resulting value as input on those ports. That means if for
example two wires are connected to a NOT gate and one carries a 0 and the other an H
the resolution at the input port results in a 0 because the strong logic value wins against
the weak. On this result of the resolution, the actual logic gate’s function is applied.
Thus, in the example the NOT gate would produce a 1 at its output.

When the input is a logic vector of multiple elements, resolution is applied to each element
individually. This is also true for the logic functions like AND, OR etc.

In cases where automatic resolution is not provided but needed, the LogicResolve block
shall be used. For blocks that have at least one input it is denoted below if they do not
automatically resolve inputs.

Figure 4.1: Multivalue Logic Library – all blocks

The blocks in Figure 4.1 are described in the order left to right, top to bottom in the
following paragraphs.

LogicSequence LogicSequence is similar to LogicClock, it can switch between more
than two states though. The user may specify a sequence of logic values that is repeatedly
output. The period of one iteration over all logic values can be specified too. All output
values of the sequence are held for an equal time slice of duration

number of values in sequence .

LogicInit The LogicInit block sets a user-defined logic value or a vector of them on its
output when t = 0. It uses a transitory state to set the output to Z or a vector of Z with
as many elements as the given vector in the next iteration of the simulation.

LogicConstant The LogicConstant block can be used as a source for a constant logic
value or a vector of them. The user can specify the logic value/vector in the Parameters

21

4. Multivalue Logic Library

dialog of the block. This logic value/vector is saved in the instance of the LogicConstant
block and is written to its output in the λ function when the simulation starts.

LogicClock LogicClock implements a clock. The period, duty cycle, high and low
logic values can be be adjusted in the Parameters dialog. The block has a single
output port which alternates between these two logic values. The high value is held for
duty cycle× period and the low value is held for (1− duty cycle)× period.

LogicEdgeDetect The LogicEdgeDetect block will output 0 unless an edge in the
input is detected. Then a 1 is output for a duration that can be specified in the
Parameters dialog of the block.

It should be noted that there cannot be a detectable edge at the time t = 0 since a
rising/falling edge is defined by a transition from a low logic value (0 or L) to a high
logic value (1 or H) and vice versa. But, all inputs are initialized with U at t < 0, so at
t = 0 the transition begins at the uninitialized value U.

GTKWave The GTKWave block can have arbitrarily many inputs and is used to view
logic signals directly in the external program GTKWave. This program supports the
IEEE 1164 logic values.

This atomic does not perform input value resolution.

LogicAnd, LogicOr and LogicXor The functions AND, OR and XOR are implemented
with the respective tables obtained from the IEEE standard 1164 [IEE93]. These blocks
allow an arbitrary number of input ports.

The implementation of LogicAnd is provided in section A.4.

LogicNot The not gate has a single input which is inverted according to the respective
table in IEEE 1164 [IEE93] and then set as output of the block.

LogicResolve The resolve block allows to connect two or more wires, so the output of
this block will be the result of the resolved function from IEEE 1164 (see [IEE93]).
As wires in PowerRPDEVS are unidirectional the inputs are not affected.

LogicMux The LogicMux block is a multiplexer with (1 + 2n) inputs (n ≥ 1). The
first input is the selector which chooses one of the 2n data inputs as active. The selector
input has to be a logic vector of length n. This vector is converted to a number from
1 to 2n and then the corresponding input of the atomic is chosen as active. Note that
input 0 is the selector input. The active data input is forwarded to the output of the
LogicMux block.

22

4.3. Library Elements

The conversion of the selector vector S = (s0, . . . , sn−1) is done as follows:

active port =
{

1 if ∃si ∈ S : to_x01(si) = X

1 +
∑n−1

i=0 2i · to_x01(si) otherwise

When the selector input cannot clearly be evaluated to 0 or 1 port 1 is chosen as active
and an error is written to the log.

The function to_x01 is defined in [IEE93] and its implementation is included in sec-
tion A.2.

This atomic does not perform input value resolution.

Logic2QSS The Logic2QSS block converts incoming logic values to QSSDoubleArray.
This is used for interfacing the logic library with the other libraries that are provided in
PowerRPDEVS, e.g. tracking a logic value by plotting it using a GnuPlot block.

The conversion uses the getDouble method of the DEVSLogicMessage class and is
done independently for every index.

This atomic does not perform input value resolution.

InstantSample The InstantSample block is designed for being connected between a
Logic2QSS block and a GnuPlot block. It performs much better for logic values and
optimizes its output for GnuPlot. It is only useful for this specific use case.

This atomic does not perform input value resolution.

LogicTriggeredSampling The LogicTriggeredSampling block is an edge-triggered
sampling block. Its first input is a data line and the second input is a clock. Whenever
an edge is detected at the clock the input signal is passed to the output.

There are two major configuration options:

• The user can configure which edges on the clock line lead to a change at the output
(either rising edge, falling edge or both, where rising and falling are defined as in
IEEE standard 1164-1993).

• The user can configure either a left limit or right limit sampling property which
determines which value of the input line is forwarded when the input changes
simultaneously with a clock edge.

The implementation of LogicTriggeredSampling is provided in section A.5.

23

CHAPTER 5
Example Logic Circuits

In this chapter, the results and challenges of reimplementing and testing the circuits from
Peter Junglas’ paper [Jun16] in PowerRPDEVS with the newly created PowerRPDEVS
logic library will be described. Junglas implemented several flip-flops and a shift register
in Simulink and Modelica and was facing issues.

Additionally, after the examples relating to Junglas’ paper, another example circuit is
presented that demonstrates the capabilities of the PowerRPDEVS logic library that are
due to its multivalue logic.

5.1 Static RS Flip-Flop

The static RS flip-flop is a logic element with two inputs and two outputs which can
save one bit of information. The two inputs are Set (S) and Reset (R). The outputs are
conventionally called Q and Q. Q represents the stored bit and Q its inverse, but they
can also both hold the same logic value (particularly if S and R are 1). In this case, the
RS flip-flop is in an invalid state.

Setting the S input to 1 while R is 0 will set the stored information bit to 1 and setting
S to 0 while R is 1 will clear the stored information bit (set it to 0). When both inputs
R and S are 0 the information bit is not changed.

5.1.1 Simulation in Simulink and Modelica

In his paper [Jun16], Junglas first implemented a static RS flip-flop. Thereby, he was
forced to use a delaying block (Memory block in Simulink, pre block in Modelica) to
break the algebraic loop that we are going to discuss in subsection 5.1.2. He presented
two models of static RS flip-flops in Simulink (see Figure 5.1).

25

5. Example Logic Circuits

Figure 5.1: static RS flip-flop variants by Junglas

Variant A is a straight-forward approach using a Memory block and variant B feeds the
output back to the input (with a delay) and uses a combinatorial function on the two
inputs R and S and the old output Q to determine the new outputs Q and Q. Variant
B eliminates the delay in the forward path that was imposed by the Memory block,
particularly the delay in variant A is asymmetric, i.e. the Q and Q do not change at the
same time.

Junglas also described that variant A from above can be reproduced in Modelica with a
Pre block taking the place of the Memory block. According to him, this simple version
yields the expected results in Modelica, so there is no need to reproduce variant B.

5.1.2 Simulation in PowerRPDEVS

Due to the event based communication in PowerRPDEVS, signals that are actually
continuous are modeled with discrete events that report every significant change in the
signal. As the output value of a logic gate may depend on all input values, the logic
gates fo PowerRPDEVS have to save the last received logic values for every port. Thus,
they can react also to a change of only a few of their inputs. In such a case, the logic
gate can use the values from its internal state for all inputs which did not receive a new
signal value at a given time.

Moreover, as many of the atomics in the PowerRPDEVS logic library perform input
signal resolution (see section 4.3), they have to save the latest logic value they received
at every port for every source from whom they received it. There can be multiple sources
for every port and if not all of them change at once, the old values from the internal
state have to be used for the other sources when calling the resolution function.

When considering the logic gates of the logic library as operators of Boolean algebra we
can describe logic circuits built in PowerRPDEVS using Boolean algebra. As the logic
gates were designed with no intrinsic delay, a model without a feedback loop can be

26

5.1. Static RS Flip-Flop

evaluated within the λ iteration phase. The result should match what is expected from
the Boolean expression.

Once a feedback loop is added, this representation using Boolean algebra will contain
an algebraic loop, see e.g. Equation 5.3, describing the static RS flip-flop in Figure 5.2.
Explicit expressions for Q and Q cannot be found.

Q = ¬(R ∨Q) (5.1)
Q = ¬(S ∨Q) (5.2)

⇒ Q = ¬(R ∨ ¬(S ∨Q)) (5.3)

A truth table can be obtained by considering Q and Q as independent and evaluating
the first two equations in Equation 5.3 for S and R, see Table 5.1.

S R Q Q
1 1 0 0
0 0 | 1 0 1

0 | 1 0 1 0
no solution no solution 1 1

Table 5.1: RS latch truth table obtained by Boolean algebra

This truth table gives a few indications, how the RS flip-flop might behave, but it does
not really explain how state transitions work or what the output for S = R = 0 is,
because Boolean algebra does not have a notion of time.

But, PowerRPDEVS uses λ iterations to iteratively calculate the outputs of the individual
atomics. So, for the first iteration – when one or both of the NOR gates are evaluated – it
has to use the old values for Q and Q for the calculation of the output. For the following
iterations the value from the last iteration is used. Equation 5.4, Equation 5.5 and
Equation 5.6 show the possible recurrence relations that result from these λ iterations.
Which of these relations is actually solved depends on the particular implementation of
the RPDEVS simulation algorithm and on whether the algorithm can run in parallel.

Solutions of these recurrences are given in Table 5.2 and Table 5.3 up until a point where
the outputs stay the same for at least one iteration. At that point, the λ iteration would
end. As Equation 5.4 and Equation 5.5 are symmetric, the solution for Equation 5.5 is
omitted. In Table 5.3 the cases where the λ iteration cannot terminate are highlighted.

Qn = ¬(R ∨Qn) (5.4)
Qn = ¬(S ∨Qn−1)

27

5. Example Logic Circuits

Qn = ¬(R ∨Qn−1) (5.5)
Qn = ¬(S ∨Qn)

Qn = ¬(R ∨Qn−1) (5.6)
Qn = ¬(S ∨Qn−1)

Qn−1 S R Qn Qn Qn+1 Qn+1 Qn+2 Qn+2

0 0 0 0 1 0 1 0 1

0 0 1 0 1 0 1 0 1

- 1 0 1 0 1 0 1 0

- 1 1 0 0 0 0 0 0

1 0 0 1 0 1 0 1 0

1 0 1 0 0 0 1 0 1

Table 5.2: Solutions of Equation 5.4.

Qn−1 Qn−1 S R Qn Qn Qn+1 Qn+1 Qn+2 Qn+2

0 0 0 0 1 1 0 0 1 1

0 1 0 0 0 1 0 1 0 1

1 0 0 0 1 0 1 0 1 0

1 1 0 0 0 0 1 1 0 0

0 - 1 0 1 0 1 0 1 0

1 - 1 0 0 0 1 0 1 0

- 0 0 1 0 1 0 1 0 1

- 1 0 1 0 0 0 1 0 1

- - 1 1 0 0 0 0 0 0

Table 5.3: Solutions of Equation 5.6.

Except for the highlighted cases, these tables show exactly the behavior we expect from
an RS flip-flop, not taking into account issues of metastability and oscillation that occur
in the hardware. The highlighted lines show a behavior similar to oscillation.

This means that using PowerRPDEVS and its logic library the simulation of most of the
RS flip-flop’s behavior is possible without having to add latency. Only when both R and
S transition from 1 to 0 at once, simulation could lead to an infinite loop in the λ step
and the simulator might abort simulation after a number of λ iterations. However, this
is exactly the case in which a real flip-flop would also become unstable.

28

5.1. Static RS Flip-Flop

Figure 5.2: static RS flip-flop – model A

Thus, it was tried to model the static RS flip-flop in PowerRPDEVS without an effort
of breaking the algebraic loop. Two models of the RS flip-flop were created: model A
(Figure 5.2) is a coupling of two OR gates and two NOT gates and model B (Figure 5.3)
is composed of two NOR gate couplings. The NOR gate couplings are composed of an
OR and a NOT gate (see Figure 5.4). The two models differ slightly in behavior. While
model A starts to oscillate when both inputs transition from 1 to 0 at the same time –
the same behavior that was shown and highlighted in Table 5.3 –, model B does not.

The simulation results in Figure 5.5 show the results of model B. At the end of the
simulation both inputs simultaneously transition from 1 to 0. The results of model A
look the same except the simulation is aborted at that point after a certain number of λ
steps. The input sequences also enter the invalid state (R = S = 1) before that, but do
not transition to 0 at the same time. Transitions with only one of S or R changing back
to 0 are safe in both models.

Figure 5.3: static RS flip-flop – model B

29

5. Example Logic Circuits

Figure 5.4: NOR gate coupling of model B

Figure 5.5: Simulation results of static RS flip-flop

The reason why model B does not oscillate is that the model is processed differently by
the simulation algorithm. In PowerRPDEVS, although the model could be evaluated in
parallel, the simulator evaluates the atomics’ and couplings’ λ and δ steps sequentially.
In model B the two NOR couplings are the only blocks on the top level of the model and
if both receive an input, they both have to call λ. As this happens sequentially, one NOR
gate’s λ is called and its output is immediately reused by the second NOR gate λ call.
This leads to a behavior equivalent to the recurrences Equation 5.4 or Equation 5.5. We
know that these cannot oscillate.

If the evaluation of both NOR gates is done in parallel – which could be the case in later
versions of PowerRPDEVS – the behavior changes and none of the two NOR gates could
then reuse an output of the other of the current λ iteration. This would lead to the same
behavior as in model A. In model A, when both OR gates receive an input, first both
OR gates produce their output, which activates the two NOT gates. Then, in the next λ
iteration step, the two NOT gates calculate their output, reactivating the two OR gates
for the next λ iteration step. This leads to the recurrence in Equation 5.6 which can
oscillate.

The instability problem of course can be tackled by introducing a delay to break the
algebraic loop, like Junglas did, but in practice it is probably a better idea to prevent
the illegal input state for the static RS flip-flop completely with combinatoric circuitry

30

5.2. Triggered RS Flip-Flop

that precedes the RS flip-flop itself, e.g. by using Data (D) and Enable (EN) as inputs
and wiring them to the former S and R inputs as within a static D flip-flop:

S = D ∧ EN (5.7)
R = ¬D ∧ EN (5.8)

(5.9)

5.2 Triggered RS Flip-Flop

A triggered RS flip-flop has an additional clock input (CLK). Whenever CLK triggers
(when an edge is detected at the input), the values R and S determine the value of the
stored bit as with the static RS flip-flop. The stored bit is not updated when there is no
edge detected at the CLK input even if R or S change.

This flip-flop still has the problematic invalid state R = S = 1 but this input is now
allowed intermittently as long as CLK does not trigger.

Junglas used a Trigger block in Simulink which he added to the subsystem of the static
RS flip-flop. In Modelica, he wired the CLK input to a falling edge block and its output
to AND gates that can deactivate the other inputs S and R (similar to the PowerRPDEVS
model shown in Figure 5.7).

In this model, the falling block would detect falling edges on its input CLK and output a
corresponding signal (e.g. 1 for edge detected and 0 for no edge detected). This means
that when an edge is detected the falling block needs to hold the 1 for a certain time
period whereas the falling edge at the input exists only for an instant of time.

An equivalent model was implemented in PowerRPDEVS (see Figure 5.7) with a custom
falling block (see Figure 5.6) that behaves as described above and that will hold 1 at
its output for an adjustable time period. Within this time period, the flip-flop accepts
changes on its inputs S and R which allows for glitches as can be seen in the results in
Figure 5.9 at t = 2.5.

Figure 5.6: Coupling that detects falling edges

31

5. Example Logic Circuits

Figure 5.7: Triggered RS flip-flop in PowerRPDEVS – model A

In theory, the triggered RS flip-flop should adopt its inputs S and R only exactly when
the falling edge occurs. It is easy to see from Figure 5.7 and Figure 5.6 that this behavior
cannot be achieved by this simple model, as the output of the falling block will be high
for a certain time period. This can also be seen in the simulation results in Figure 5.9
where input signal changes in this time frame produce glitches at the outputs of the RS
flip-flop

It should be noted that this custom falling block behaves the same as the built-in
LogicEdgeDetect block, so they yield the same results. The custom block was chosen to
show how the same functionality can be implemented using a coupling.

To match the intended behavior the RS flip-flop was also implemented differently (see
Figure 5.8) and for that the LogicTriggeredSampling block was created (see section 4.3).

Figure 5.8: Triggered RS flip-flop in PowerRPDEVS – model B

In Figure 5.7 the two AND gates were used as switches together with the falling block.
These blocks were replaced by two TriggeredSampling blocks that are wired to CLK on
their second inputs and forward the signals on their first inputs when there is an edge on

32

5.3. D Flip-Flop

the second input. This way, an event is only triggered in the following static RS flip-flop
when the clock input carries an edge.

The results in Figure 5.10 are as expected and do not show the glitches as in the results
of model A (Figure 5.9).

Figure 5.9: Simulation results of triggered RS flip-flop – model A

Figure 5.10: Simulation results of triggered RS flip-flop – model B

5.3 D Flip-Flop
The D flip-flop has two inputs: Data (D) and Clock (CLK). Whenever CLK triggers, the
bit from the D line is stored in the flip-flop. It usually has only one output Q which
holds the value of the stored information bit. This design avoids the invalid state of
R = S = 1.

The D flip-flop that was implemented here is based on the triggered RS flip-flop model
B from section 5.2. The D input of the D flip-flop model is on the one hand wired to
the S input of the triggered RS flip-flop and on the other hand negated and wired to
the R input of the triggered RS flip-flop. This matches the implementation of Junglas

33

5. Example Logic Circuits

in [Jun16]. The model is shown in Figure 5.11. The Tr-RS-FF coupling is the before
mentioned triggered RS flip-flop.

Figure 5.11: D flip-flop in PowerRPDEVS

The results in Figure 5.12 show the D and CLK inputs as well as the Q output (Q is
omitted because the invalid state cannot occur and thus Q = ¬Q). These results are as
expected.

Figure 5.12: Simulation results of D flip-flop

It must be noted that, when its limit setting is set to left, the LogicTriggeredSampling
library block already behaves like a D flip-flop with only a Q output. The simulation
results are the same when a LogicTriggeredSampling block is used instead of the D flip-flop
model shown in Figure 5.11. The reason is that the LogicTriggeredSampling’s output
only changes when its second input detects an edge and it always changes to the last
received value from its first input excluding the value that it currently receives (when set
to left limit).

5.4 Shift Register
A shift register can be created by connecting the output of a D flip-flop with the input
of another one and forming an arbitrarily long chain, in which all the CLK inputs are

34

5.4. Shift Register

connected to the same clock. Whenever CLK triggers, the bits stored in the flip-flops
are propagated one flip-flop further through this chain. The first flip-flop saves its input
which is the D input of the shift register. The value of the last flip-flop in the chain is
lost in this process.

For this example, a shift register with three D flip-flops was implemented using three D
flip-flops from before (see Figure 5.13).

Figure 5.13: Shift register in PowerRPDEVS

The LogicTriggeredSampling atomics of DFlipFlop0 are set to use the right limit (as
before) and those of the other two flip-flops are set to left limit.

When all LogicTriggeredSampling are set to use the right limit the model does not show
the behavior expected from a shift register. The input signal at the first D flip-flop would
propagate through the whole circuit at once. It is important to note that this is correct
behavior when no intrinsic delays are assumed (neither the wires nor the individual logic
elements delay the signal). So, when modeled without delays the model does not resemble
the expectation that the stored bits propagate by only one flip-flop at a time.

The LogicTriggeredSampling blocks in the second and third flip-flop in the shift register
impose an infinitesimal delay on the data lines by propagating only the left limit of their
inputs when they are triggered by the CLK input. The same effect can be achieved
instead by placing generic Delay blocks between the D flip-flops to model a propagation
delay of the previous flip-flop or a data line delay. The delay should be small compared
to the clock’s period. The LogicTriggeredSampling block was chosen because it works
with arbitrary clock periods and to keep the modeling consistent with previous efforts of
not introducing latency.

35

5. Example Logic Circuits

Figure 5.14: Simulation results of the shift register

The example shift register’s D flip-flops were initialized with 0’s and the input signal
is at first 1 and later 0 as can be seen in Figure 5.14. It is also easy to see how the
individual D flip-flop’s adopt the 1 after one another and then reset to 0 in a first in –
first out (FIFO) manner when the input signal changes.

5.5 Serial Bus with Collision Resolution

5.5.1 Buses in Boolean logic and 9-valued logic

To show some of the capabilites of the library regarding multivalue logic, an addi-
tional example is included here, implementing an asynchronous serial bus with collision
resolution.

Buses are data lines that can be read and written by multiple clients. When two or more
clients write to the bus at the same time, some mechanism needs to be in place to detect
and/or resolve collisions in some way. Collisions are simultaneous writes to the data line
of two or more clients.

Implementing a model of a bus using only Boolean logic is not straight-forward. A logic
element that is connected to the bus must be able to indicate if it wants to write the
bus or not. So the atomic/coupling that implements the bus could have two wires per
client (one for the data Di, and one for indicating if the data shall be written WRi). The
bus could then AND the individual Di and WRi and wire the results to an OR gate. But
this is a bad abstraction for real bus systems that probably do not need an extra wire.
Moreover, the case of multiple clients writing to the bus needs to be handled explicitly.

Using the PowerRPDEVS logic library implementing a bus is easier and more related to
the physical implementation. Only one wire is needed to the bus because the connected
nodes can signal that they do not want to write by setting their output to Z.

36

5.5. Serial Bus with Collision Resolution

5.5.2 Example

The given example will be a simple imitation of a Controller Area Network (CAN) bus.
Specifically, these are the attributes of the bus that shall be modeled:

1. The bus has a weak high and a strong low value. In practice, this means that
simultaneous writes of ones and zeros will be resolved to zero. The data line of the
bus is weak high (H) by default.

2. Nodes utilize Carrier-Sense Multiple Access/Collision Resolution (CSMA/CR) so
they do not send when they perceive another node sending, and they listen to the
bus while they write and disconnect if the value they read does not correspond to
the value they have written.

3. Nodes need to use a fixed message format that begins with a strong value and then
the ID of the node. This is used for arbitration as in CAN. Arbitration is the phase
during message transmission when the node determines if it is allowed to write
its message to the bus. Its ID might be overwritten by a lower ID, which would
mean it has lost arbitration and needs to stop transmission. Only one node can
win arbitration and write its whole message on the bus.

The implementation of the above points is described in the following. Unlike CAN, the
example will only use one wire.

1. The bus is implemented with a LogicResolve block. The high value is H and the low
value is 0 throughout the model. A LogicConstant with the value H is connected
to the input of the Bus.

2. For Carrier-Sense Multiple Access (CSMA), the nodes need circuitry for detecting if
another node is writing when they want to write, so they can wait until that other
node is finished (this is not implemented in the example). For CSMA/CR they
additionally need a collision detection circuit that is active during the arbitration
phase and stops the nodes with lower priority from overwriting the node with the
higher priority.

3. The message format used is described in Table 5.4.

0 8 bit ID 15 bit data H

Table 5.4: Message format of the bus

In the example model, shown in Figure 5.15, there are two senders, Sender1 and Sender2
as well as a Bus which is a LogicResolve block. The senders output ports are wired to

37

5. Example Logic Circuits

Sender1 wants to send H0HH000H0H0H0H0HHHHHHH0H00
Sender2 wants to send H0HH000000H0H0H0H0H0H0H0HH

Table 5.5: Data in the bus example

Figure 5.15: Serial bus model

Figure 5.16: Sender coupling (Sender1 and Sender2 in Figure 5.15)

the input port of the LogicResolve block. The output port of the LogicResolve block is
wired back to the sender nodes, as they also need to read from the bus.

Both senders are configured to start sending at the same time starting with an H followed
by the message. The two messages have different ID’s which will cause the node with
lower priority to shut down during transmission wheras the node with higher priority
continues to send without even recognizing that another node started a transmission.

Sender1 and Sender2 are identical, they only differ in their message parameter. On the
one hand they need to have different IDs, so the collision resolution works, on the other
hand the actual data in the message also differs. The coupling is shown in Figure 5.16.
Table 5.5 shows the messages the two senders want to send.

38

5.5. Serial Bus with Collision Resolution

In the coupling constituting a Sender, shown in Figure 5.16, the message transmission is
implemented by a LogicSequence block. The rest of the circuit is for collision resolution.
The XOR checks whether the written value corresponds to the value on the bus. If it
does not, the flip-flop is set. Setting the flip-flop will toggle the MUX and write Z to the
bus. In this proof-of-concept, the flip-flop is never reset, so the stopped node could never
restart sending. Additional circuitry could detect the end of a message on the bus and
reset the flip-flop to retry transmission.

The flip-flop needed to be decoupled by a LogicTriggeredSampling block, because initially,
when the LogicSequence block changes its output and it is different from the value on
the bus, the XOR will always produce a 1. But at this point the logic values that will
be applied to the bus were not resolved yet. So, only the last result of the XOR must be
considered. This is done by setting the LogicTriggeredSampling atomic’s limit setting to
left and its edge setting to both, so every change in the output of LogicSequence triggers
a new evaluation.

Figure 5.17: Result of simulation – Serial bus

In the results in Figure 5.17 we see the sequences that Sender1 and Sender2 want to send
(seq1 and seq2), the signals they are actually sending (signal1 and signal2) and
the signal that is on the bus (bus).

The results in Figure 5.17 are as expected. The ninth bit of the message, which is the
last ID bit, is the first that differs for Sender1 and Sender2. Since the ID of Sender2 is
lower than the ID of Sender1, Sender2 wins the arbitration. Sender1 recognizes this and
shuts down its transmission. In the end the signal on the bus is identical to the message
of Sender2, so every node connected to the bus can read Sender2’s message directly as if
Sender1 never had started sending.

39

CHAPTER 6
Conclusion and Outlook

We compared the DEVS and RPDEVS model of the simplest Boolean logic component,
the NOT gate. The RPDEVS model turned out to be less complex than the corresponding
DEVS model. This can be traced back to the capability of RPDEVS to model true Mealy
behavior and to the consolidation of the different state transition functions.

Based on the work of Junglas, it was tested how the logic library that was implemented
for this thesis performs when its elements are combined in feedback loops. Junglas’
work-arounds for the particular issues that arose in Simulink or Modelica were pointed
out. He had to introduce memory elements (delays) into the circuit and sometimes in a
clever way to keep the timings of the model as expected. Such delays are actually there
in physical implementations of the models, but might be unwanted in simulation.

The issues of the simulation with PowerRPDEVS and the roots of these issues were
discussed. First and foremost, algebraic loops that form whenever there is a feedback loop
of logic gates can cause infinite loops in the λ step of the simulation. The PowerRPDEVS
simulator detects these algebraic loops and aborts the simulation after a certain number
of λ iterations. The algebraic loop in the static RS flip-flop as implemented in this thesis
can also oscillate in the λ step and the simulation is aborted. Therefore, such models
might only be operated within certain specifications, e.g. the inputs of the static RS
flip-flops may not transition from 1 to 0 simultaneously in one of the models presented.
Also, because the PowerRPDEVS logic library elements have no propagation delay, the
user must recognize where delays have to be included into the model for it to work
properly. This was the case with the shift register which can only work with D flip-flops
that delay their outputs.

Finally, an example was given demonstrating the multivalue capabilities of the Power-
RPDEVS logic library that are owed to the implementation of the nine logic values of
IEEE standard 1164-1993. A serial bus with collision resolution similar to the CAN bus
was modeled with two senders starting transmission of their messages simultaneously.

41

6. Conclusion and Outlook

By choosing appropriate logic values (one weak, the other strong) one can avoid signal
resolutions resulting in the unknown logic value X and define the dominant signal on the
bus. Further, a protocol had to be implemented, causing senders which do not read their
own output on the bus to shut down.

In future work, the implementation of the PowerRPDEVS logic library could be made
more flexible by merging the classes LogicGateUnary and LogicGateBinary and
by restructuring the template arguments. The function that is applied by a logic gate
class could be given to the constructor as some function object or maybe as a truth
table instead of the current way of having it as template argument. This would allow to
implement a configurable logic gate for which the user could enter an arbitrary truth
table as a parameter. The implementation of further conversion blocks will be necessary
to effectively use the other parts of the PowerRPDEVS library together with the logic
library, e.g. a Schmitt trigger and analog-digital/digital-analog converters.

42

APPENDIX A
Code of Implementation

A.1 DEVSLogicMessage

A.1.1 DEVSLogicMessage.h
1 #ifndef DEVSLOGICMESSAGE_H
2 #define DEVSLOGICMESSAGE_H
3
4 #include <cctype>
5 #include <typeinfo>
6 #include <DEVSMessage.h>
7
8 #include "logic.h"
9
10 class DEVSLogicMessage : public DEVSMessage
11 {
12 public:
13 char logicval;
14 // constructors:
15 DEVSLogicMessage() : DEVSMessage()
16 {
17 logicval = ’U’;
18 }
19 DEVSLogicMessage(char v, int _index = 0)
20 : DEVSMessage(_index),
21 logicval(v)
22 {
23 }
24 DEVSLogicMessage(const DEVSLogicMessage &msg)
25 : DEVSMessage(static_cast<DEVSMessage>(msg)),
26 logicval(msg.logicval)
27 {

43

A. Code of Implementation

28 }
29 DEVSLogicMessage(std::string value_str) {
30 index = 0;
31 parseValueFromString(value_str);
32 }
33
34 char getChar() const
35 {
36 return logicval;
37 }
38 double getDouble() const
39 {
40 return getChar() == ’1’ ? 1 : 0;
41 }
42
43 bool getBool() const
44 {
45 return getChar() == ’1’ ? true : false;
46 }
47 void set(char c)
48 {
49 logicval = c;
50 }
51
52 virtual int getInt() {
53 switch(logicval) {
54 case ’1’:
55 case ’H’:
56 return(1);
57 break;
58 default:
59 return(0);
60 break;
61 }
62 }
63
64 virtual bool parseValueFromString(std::string value_str) {
65 // string must either be a single character ’c’ (the

↪→ logic-value)
66 // or it also gives the index: ’index:c’, e.g.: ’2:H’, or

↪→ ’0:U’
67 size_t pos=0;
68 if(std::string::npos != (pos=value_str.find(’:’))) {
69 index = std::stoi(value_str.substr(0,pos));
70 pos++;
71 } else {
72 pos = 0;
73 }
74 pos = value_str.find_first_of("01LHUXZW-lhuxzw",pos);

44

A.1. DEVSLogicMessage

75 if(std::string::npos != pos) {
76 logicval = toupper(value_str[pos]);
77 }
78 return(valid(logicval));
79 }
80
81 virtual DEVSMessage *getCopy() const
82 {
83 return new DEVSLogicMessage(*this);
84 }
85 virtual std::string toString() const
86 {
87 return std::string(1, getChar());
88 }
89
90 virtual bool operator==(const DEVSLogicMessage &msg) const
91 {
92 if (index != msg.index)
93 {
94 return false;
95 }
96 return logicval == msg.logicval;
97 }
98
99 virtual bool operator==(const DEVSMessage &msg) const

100 {
101 if (typeid(msg) != typeid(*this))
102 return false;
103 return ((*this) == ((DEVSLogicMessage &)msg));
104 }
105
106 virtual ~DEVSLogicMessage() {}
107
108 static bool valid(char v)
109 {
110 return logicfunction_value_valid(v);
111 }
112
113 static std::map<int, char> getLogicVector(const char *s)
114 {
115 std::map<int, char> output;
116 std::string vec(s);
117
118 auto bra = find(vec.cbegin(), vec.cend(), ’[’);
119 if (bra != vec.cend())
120 {
121 auto ket = find(vec.cbegin(), vec.cend(), ’]’);
122 vec.erase(vec.cbegin(), bra + 1);
123 vec.erase(ket);

45

A. Code of Implementation

124 }
125 auto it = find_if(vec.cbegin(), vec.cend(), isgraph);
126 int i = 0;
127 while (it != vec.cend())
128 {
129 output[i++] = *it;
130 it = find_if(it + 1, vec.cend(), isgraph);
131 }
132
133 return output;
134 }
135 };
136
137 #endif

A.2 Logic functions of IEEE 1164

A.2.1 stdlogic1164.h
1 #ifndef ASSERT
2 #error "don’t include this file! include logic.h"
3 #endif
4
5 #define symbols std::string("UX01ZWLH-")
6
7 /* the following *_table’s were taken from IEEE 1164
8 * and translated to C arrays */
9

10 inline int logicfunction_index(char a)
11 {
12 auto n = symbols.find(a);
13 ASSERT(n >= 0 && n <= 8);
14 return int(n);
15 }
16
17 constexpr bool logicfunction_value_valid(char a)
18 {
19 return a == ’U’ || a == ’X’ || a == ’0’ ||
20 a == ’1’ || a == ’Z’ || a == ’W’ ||
21 a == ’L’ || a == ’H’ || a == ’-’ ;
22 }
23
24 /* a char that meets the following condition */
25 #define NOLOGICVAL ’ ’
26 static_assert(logicfunction_value_valid(NOLOGICVAL) == false, "");
27
28 inline char logicfunction_check_undefined_input(char a)
29 {
30 constexpr char undefined_input = ’U’;

46

A.2. Logic functions of IEEE 1164

31 if(logicfunction_value_valid(a)){
32 return a;
33 }else{
34 return undefined_input;
35 }
36 }
37
38 inline char logicfunction_resolution(char a, char b, char def)
39 {
40 static char resolution_table[9][9] = {
41 { ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’ },
42 { ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ },
43 { ’U’, ’X’, ’0’, ’X’, ’0’, ’0’, ’0’, ’0’, ’X’ },
44 { ’U’, ’X’, ’X’, ’1’, ’1’, ’1’, ’1’, ’1’, ’X’ },
45 { ’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, ’X’ },
46 { ’U’, ’X’, ’0’, ’1’, ’W’, ’W’, ’W’, ’W’, ’X’ },
47 { ’U’, ’X’, ’0’, ’1’, ’L’, ’W’, ’L’, ’W’, ’X’ },
48 { ’U’, ’X’, ’0’, ’1’, ’H’, ’W’, ’W’, ’H’, ’X’ },
49 { ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ }};
50 ASSERT(logicfunction_value_valid(a) && logicfunction_value_valid(b)

↪→);
51 return resolution_table[logicfunction_index(a)][logicfunction_index

↪→ (b)];
52 }
53
54 inline char logicfunction_and(char a, char b)
55 {
56 static char and_table[9][9] = {
57 { ’U’, ’U’, ’0’, ’U’, ’U’, ’U’, ’0’, ’U’, ’U’ },
58 { ’U’, ’X’, ’0’, ’X’, ’X’, ’X’, ’0’, ’X’, ’X’ },
59 { ’0’, ’0’, ’0’, ’0’, ’0’, ’0’, ’0’, ’0’, ’0’ },
60 { ’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’0’, ’1’, ’X’ },
61 { ’U’, ’X’, ’0’, ’X’, ’X’, ’X’, ’0’, ’X’, ’X’ },
62 { ’U’, ’X’, ’0’, ’X’, ’X’, ’X’, ’0’, ’X’, ’X’ },
63 { ’0’, ’0’, ’0’, ’0’, ’0’, ’0’, ’0’, ’0’, ’0’ },
64 { ’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’0’, ’1’, ’X’ },
65 { ’U’, ’X’, ’0’, ’X’, ’X’, ’X’, ’0’, ’X’, ’X’ }};
66
67 ASSERT(logicfunction_value_valid(a) && logicfunction_value_valid(b)

↪→);
68 return and_table[logicfunction_index(a)][logicfunction_index(b)];
69 }
70
71 inline char logicfunction_or(char a, char b)
72 {
73 static char or_table[9][9] = {
74 { ’U’, ’U’, ’U’, ’1’, ’U’, ’U’, ’U’, ’1’, ’U’ },
75 { ’U’, ’X’, ’X’, ’1’, ’X’, ’X’, ’X’, ’1’, ’X’ },
76 { ’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’0’, ’1’, ’X’ },

47

A. Code of Implementation

77 { ’1’, ’1’, ’1’, ’1’, ’1’, ’1’, ’1’, ’1’, ’1’ },
78 { ’U’, ’X’, ’X’, ’1’, ’X’, ’X’, ’X’, ’1’, ’X’ },
79 { ’U’, ’X’, ’X’, ’1’, ’X’, ’X’, ’X’, ’1’, ’X’ },
80 { ’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’0’, ’1’, ’X’ },
81 { ’1’, ’1’, ’1’, ’1’, ’1’, ’1’, ’1’, ’1’, ’1’ },
82 { ’U’, ’X’, ’X’, ’1’, ’X’, ’X’, ’X’, ’1’, ’X’ }};
83 ASSERT(logicfunction_value_valid(a) && logicfunction_value_valid(b)

↪→);
84 return or_table[logicfunction_index(a)][logicfunction_index(b)];
85 }
86
87 inline char logicfunction_xor(char a, char b)
88 {
89 static char xor_table[9][9] = {
90 { ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’ },
91 { ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ },
92 { ’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’0’, ’1’, ’X’ },
93 { ’U’, ’X’, ’1’, ’0’, ’X’, ’X’, ’1’, ’0’, ’X’ },
94 { ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ },
95 { ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ },
96 { ’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’0’, ’1’, ’X’ },
97 { ’U’, ’X’, ’1’, ’0’, ’X’, ’X’, ’1’, ’0’, ’X’ },
98 { ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ }};
99
100 ASSERT(logicfunction_value_valid(a) && logicfunction_value_valid(b)

↪→);
101 return xor_table[logicfunction_index(a)][logicfunction_index(b)];
102 }
103
104 inline char logicfunction_not(char a)
105 {
106 static char not_table[9] = {
107 ’U’, ’X’, ’1’, ’0’, ’X’, ’X’, ’1’, ’0’, ’X’ };
108
109 ASSERT(logicfunction_value_valid(a));
110 return not_table[logicfunction_index(a)];
111 }
112
113 inline char logicfunction_nand(char a, char b)
114 {
115 ASSERT(logicfunction_value_valid(a) && logicfunction_value_valid(b)

↪→);
116 return logicfunction_not(logicfunction_and(a,b));
117 }
118
119 inline char logicfunction_nor(char a, char b)
120 {
121 ASSERT(logicfunction_value_valid(a) && logicfunction_value_valid(b)

↪→);

48

A.2. Logic functions of IEEE 1164

122 return logicfunction_not(logicfunction_or(a,b));
123 }
124
125 inline char logicfunction_nxor(char a, char b)
126 {
127 ASSERT(logicfunction_value_valid(a) && logicfunction_value_valid(b)

↪→);
128 return logicfunction_not(logicfunction_xor(a,b));
129 }
130
131 inline char logicfunction_to_ux01(char a)
132 {
133 ASSERT(logicfunction_value_valid(a));
134 switch(a){
135 case ’0’:
136 case ’L’:
137 return ’0’;
138 case ’1’:
139 case ’H’:
140 return ’1’;
141 case ’U’:
142 return ’U’;
143 default:
144 return ’X’;
145 }
146 }
147
148 inline char logicfunction_to_x01(char a)
149 {
150 ASSERT(logicfunction_value_valid(a));
151 switch(a){
152 case ’0’:
153 case ’L’:
154 return ’0’;
155 case ’1’:
156 case ’H’:
157 return ’1’;
158 default:
159 return ’X’;
160 }
161 }
162
163 inline bool logicfunction_rising(char _old, char _new)
164 {
165 ASSERT(logicfunction_value_valid(_old) && logicfunction_value_valid

↪→ (_new));
166 if(logicfunction_to_x01(_old) == ’0’ && logicfunction_to_x01(_new)

↪→ == ’1’)
167 return true;

49

A. Code of Implementation

168 else
169 return false;
170 }
171
172 inline bool logicfunction_falling(char _old, char _new)
173 {
174 ASSERT(logicfunction_value_valid(_old) && logicfunction_value_valid

↪→ (_new));
175 if(logicfunction_to_x01(_old) == ’1’ && logicfunction_to_x01(_new)

↪→ == ’0’)
176 return true;
177 else
178 return false;
179 }
180
181 inline char logicfunction_to_bit(char a, char def)
182 {
183 char b = logicfunction_to_ux01(a);
184 if(b == ’0’ || b == ’1’){
185 return b;
186 }else{
187 ASSERT(logicfunction_value_valid(def));
188 return def;
189 }
190 }

A.3 LogicGateUnary and LogicGateBinary

A.3.1 LogicGate.h
1 #pragma once
2 #include "simulator.h"
3 #include <cassert>
4 #include <numeric>
5 #include <stdexcept>
6 #include <vector>
7
8 static inline void debug_output(const char *name, int myself, double

↪→ t, const char *text,
9 const std::map<int, char> &outputs)
10 {
11 std::string s(outputs.size(), ’ ’);
12 for (const auto &a : outputs)
13 if (DEVSLogicMessage::valid(a.second))
14 s[a.first] = a.second;
15 printLogAtLevel(_DEBUG_ROUGH, "%s, %d, t=%G: %s ’%s’ \n", name,

↪→ myself, t, text, s.c_str());
16 }
17

50

A.3. LogicGateUnary and LogicGateBinary

18 static inline void override_output(const Simulator &sim, std::map<int
↪→ , char> &outputs,

19 const std::map<int, char> &init)
20 {
21 // when the outputs are set replace all ’U’s
22 // with the initial values given (if any)
23
24 // iterating over init, so to not mess with iterator validity in

↪→ outputs
25 for (const auto &init_pair : init) {
26 std::map<int, char>::const_iterator val_it;
27 if ((val_it = outputs.find(init_pair.first)) != outputs.cend() &&
28 val_it->second == ’U’) {
29 outputs[init_pair.first] = init_pair.second;
30 }
31 }
32 }
33
34 static inline void write_output(Simulator &sim, const std::map<int,

↪→ char> &outputs,
35 const std::map<int, char> &old = std::map<int, char>())
36 {
37 for (const auto &index_output : outputs) {
38 DEVSLogicMessage C(index_output.second);
39 C.index = index_output.first;
40 try {
41 // write if new output is different from old
42 if (old.at(C.index) != C.getChar())
43 sim.add_output(&C, 0);
44 } catch (std::out_of_range &e) {
45 // and write if no corresponding old output saved
46 sim.add_output(&C, 0);
47 }
48 }
49 }
50
51 using LogicGateTernaryFunction = char (*)(char, char, char);
52 using LogicGateBinaryFunction = char (*)(char, char);
53 using LogicGateUnaryFunction = char (*)(char);
54
55 /* Class templates that implement the functionality of logic gates
56 *
57 * These logic gates don’t have a state really, the variable

↪→ last_inputs
58 * is needed to comply with the RPDEVS formalism. Apart from the old

↪→ input
59 * values no data is stored.
60 *
61 * class LogicGateResolver

51

A. Code of Implementation

62 * implements an abstraction layer that receives inputs from the
63 * simulator class and resolves them using a resolution function.
64 * It also saves old inputs. The resolved inputs can be accessed

↪→ via
65 * resolve_lambda from lambda or resolve_delta from delta.
66 *
67 * class LogicGateBinary
68 *
69 * implements a logic gate that applies a binary function to an
70 * arbitrary number of logic inputs. As the order of these is not
71 * predetermined this binary function should be associative and
72 * commutative.
73 * The gate performs signal resolution on signals that were

↪→ received
74 * on the same input and the same index using LogicGateResolver.
75 *
76 * class LogicGateUnary
77 *
78 * implements a logic gate that applies a unary function to a
79 * single logic vector input.
80 * The gate performs signal resolution on signals that were

↪→ received
81 * on the same input and the same index using LogicGateResolver.
82 *
83 *
84 * FIXME: there are hard-coded ’U’s that should be removed either by

↪→ adding
85 * a template parameter for undefined values or maybe a

↪→ constructor
86 * with a respective parameter
87 *
88 * FIXME: there are hard-coded ’0’s that are used as default value

↪→ for
89 * signal resolution.
90 */
91
92 template <typename InputIterator, typename AccessFunc, typename

↪→ ResolveFunc>
93 inline auto logicgate_resolve(InputIterator begin, InputIterator end,

↪→ AccessFunc access,
94 ResolveFunc resolve, char resolve_default = ’0’) -> char
95 {
96 assert(begin != end);
97 auto val = access(*begin);
98 for (++begin; begin != end; ++begin) {
99 val = resolve(val, access(*begin), resolve_default);
100 }
101 return val;
102 }

52

A.3. LogicGateUnary and LogicGateBinary

103
104 template <typename InputIterator, typename ResolveFunc>
105 inline auto logicgate_resolve(InputIterator begin, InputIterator end,

↪→ ResolveFunc resolve,
106 char resolve_default = ’0’) -> char
107 {
108 return logicgate_resolve(begin, end, [](char x) -> char { return x;

↪→ }, resolve,
109 resolve_default);
110 }
111
112 template <LogicGateTernaryFunction Resolve>
113 class LogicGateResolver {
114 public:
115 // outer map indices are DEVSMessage index member variable
116 // vector indices are port indices
117 // inner map indices are pairs of source and source port
118 using saved_inputs_map =
119 std::map<int, std::vector<std::map<std::pair<unsigned, unsigned

↪→ >, char>>>;
120 using map_type = saved_inputs_map::mapped_type::value_type;
121 using map_pair = map_type::value_type;
122 using resolved_inputs_map = std::map<int, std::vector<char>>;
123
124 protected:
125 saved_inputs_map last_inputs;
126
127 void read_input(Simulator &sim, saved_inputs_map &inputs, double t)

↪→ const
128 {
129 if (!sim.input_bag_empty()) {
130 DEVSMessage *in_msg;
131 unsigned port;
132
133 while (sim.pop_input(&in_msg, port)) {
134 DEVSLogicMessage *lmsg = dynamic_cast<DEVSLogicMessage *>(

↪→ in_msg);
135 std::pair<unsigned, unsigned> src{sim.pop_src, sim.

↪→ pop_src_port};
136 if (lmsg == nullptr) {
137 printLogAtLevel(_ERROR,
138 "%s, %d, t=%G: input "
139 "is not logic value \n",
140 sim.name, sim.myself, t);
141 continue;
142 }
143 inputs[lmsg->index].resize(sim.n_in_ports);
144 inputs[lmsg->index][port][src] = lmsg->getChar();
145 }

53

A. Code of Implementation

146 }
147 }
148 resolved_inputs_map calculate_resolved_inputs(const

↪→ saved_inputs_map &inputs,
149 const Simulator &sim, double t) const
150 {
151 resolved_inputs_map resolved_inputs;
152 for (const auto &index_vec : inputs) {
153 /* resolve all input signals so we have only one value
154 per port save them in resolved_inputs so we can
155 iterate over them easily */
156 std::vector<char> resolved;
157 int uninit = 0;
158 for (auto &srcmap : index_vec.second) {
159 char val = ’U’;
160 if (!srcmap.empty())
161 val = logicgate_resolve(
162 srcmap.cbegin(), srcmap.cend(),
163 [](const map_pair &p) { return p.second; }, Resolve);
164 else
165 uninit++;
166 resolved.push_back(val);
167 }
168 if (uninit != 0)
169 printLogAtLevel(_ERROR,
170 "%s, %d, t=%G: some ports of the logic "
171 "gate are not initialized on index %d\n",
172 sim.name, sim.myself, t, index_vec.first);
173 resolved_inputs[index_vec.first] = std::move(resolved);
174 }
175 return resolved_inputs;
176 }
177
178 public:
179 resolved_inputs_map resolve_delta(Simulator &sim, double t)
180 {
181 read_input(sim, last_inputs, t);
182 return calculate_resolved_inputs(last_inputs, sim, t);
183 }
184
185 resolved_inputs_map resolve_lambda(Simulator &sim, double t) const
186 {
187 auto inputs = last_inputs;
188 read_input(sim, inputs, t);
189 return calculate_resolved_inputs(inputs, sim, t);
190 }
191
192 resolved_inputs_map old_inputs(const Simulator &sim, double t)

↪→ const

54

A.3. LogicGateUnary and LogicGateBinary

193 {
194 return calculate_resolved_inputs(saved_inputs_map{}, sim, t);
195 }
196 };
197
198 /* RPDEVS implementation of a generic binary combinatorial logic gate
199 * (i.e. AND-gate, NOR-gate, ...)
200 *
201 * F is the ternary function that the logic gate should perform
202 * Resolve is the binary function that resolves two signals when
203 * they arrive at the same port and index (the third parameter is
204 * a default value which is used when resolution is not possible) */
205 template <LogicGateBinaryFunction F, LogicGateTernaryFunction Resolve

↪→ >
206 class LogicGateBinary : public LogicGateResolver<Resolve> {
207 std::map<int, char> last_outputs, init_outputs;
208 using resolved_inputs_map = typename LogicGateResolver<Resolve>::

↪→ resolved_inputs_map;
209
210 void calculate_output(const resolved_inputs_map &inputs, std::map<

↪→ int, char> &outputs) const
211 {
212 for (const auto &index_vec : inputs) {
213 if (index_vec.second.empty()) {
214 throw std::runtime_error("LogicGateBinary::calculate_output "
215 "encountered an unexpected condition");
216 }
217 outputs[index_vec.first] =
218 std::accumulate(index_vec.second.cbegin() + 1, index_vec.

↪→ second.cend(),
219 index_vec.second[0], F);
220 }
221 }
222
223 public:
224 inline void init(const std::map<int, char> &output_init)
225 {
226 init_outputs = output_init;
227 }
228
229 inline double ta() const
230 {
231 return INF;
232 }
233
234 inline void delta(Simulator &sim, double t)
235 {
236 auto resolved_inputs = this->resolve_delta(sim, t);
237 calculate_output(resolved_inputs, last_outputs);

55

A. Code of Implementation

238 override_output(sim, last_outputs, init_outputs);
239 }
240
241 inline void lambda(Simulator &sim, double t) const
242 {
243 auto resolved_inputs = this->resolve_lambda(sim, t);
244 std::map<int, char> tmp_outputs;
245 calculate_output(resolved_inputs, tmp_outputs);
246 override_output(sim, tmp_outputs, init_outputs);
247 write_output(sim, tmp_outputs, last_outputs);
248 debug_output(sim.name, sim.myself, t, "lambda output",

↪→ tmp_outputs);
249 }
250 };
251
252 /* RPDEVS implementation of a generic unary combinatorial logic gate
253 * (i.e. AND-gate, NOR-gate, ...)
254 *
255 * F is the unary function that the logic gate should perform
256 * Resolve is the ternary function that resolves two signals when
257 * they arrive at the same port and index (the third parameter is
258 * a default value which is used when resolution is not possible) */
259 template <LogicGateUnaryFunction F, LogicGateTernaryFunction Resolve>
260 class LogicGateUnary : public LogicGateResolver<Resolve> {
261 std::map<int, char> last_outputs, init_outputs;
262 using resolved_inputs_map = typename LogicGateResolver<Resolve>::

↪→ resolved_inputs_map;
263
264 void calculate_output(const resolved_inputs_map &inputs, std::map<

↪→ int, char> &output) const
265 {
266 for (const auto &index_vec : inputs) {
267 if (index_vec.second.empty()) {
268 throw std::runtime_error("LogicGateUnary::calculate_output "
269 "encountered an unexpected condition");
270 }
271 output[index_vec.first] = F(index_vec.second[0]);
272 }
273 }
274
275 public:
276 inline void init(const std::map<int, char> &output_init)
277 {
278 init_outputs = output_init;
279 }
280 inline double ta() const
281 {
282 return INF;
283 }

56

A.4. AND gate

284 inline void delta(Simulator &sim, double t)
285 {
286 auto resolved_inputs = this->resolve_delta(sim, t);
287 calculate_output(resolved_inputs, last_outputs);
288 override_output(sim, last_outputs, init_outputs);
289 }
290
291 inline void lambda(Simulator &sim, double t) const
292 {
293 auto resolved_inputs = this->resolve_lambda(sim, t);
294 std::map<int, char> tmp_outputs;
295
296 calculate_output(resolved_inputs, tmp_outputs);
297 override_output(sim, tmp_outputs, init_outputs);
298 write_output(sim, tmp_outputs, last_outputs);
299 debug_output(sim.name, sim.myself, t, "lambda output",

↪→ tmp_outputs);
300 }
301 };

A.4 AND gate

A.4.1 logic_and.h
1 //CPP:rpdevs_logic/logic_and.cpp
2 #if !defined logic_and_h
3 #define logic_and_h
4
5 #include "simulator.h"
6 #include "stdarg.h"
7
8 #include "DEVSLogicMessage.h"
9 #include "LogicGate.h"
10
11
12 class logic_and: public Simulator {
13 // Declare the state,
14 // output variables
15 // and parameters
16
17 LogicGateBinary<logicfunction_and,logicfunction_resolution> gate;
18 public:
19 logic_and(const char *n): Simulator(n) {};
20 void init(double, ...);
21 double ta(double t);
22 void delta(double);
23 void lambda(double);
24 void exit();
25 };

57

A. Code of Implementation

26 #endif

A.4.2 logic_and.cpp
1 #include "logic_and.h"
2
3 // custom code:
4 void logic_and::init(double t,...) {
5 //The ’parameters’ variable contains the parameters transferred from

↪→ the editor.
6 va_list parameters;
7 va_start(parameters,t);
8 printLogAtLevel(_INFO, "%s, %d, t=%G: Init \n",name,myself,t);
9
10 n_in_ports = int(va_arg(parameters,double));
11
12 printLogAtLevel(_INFO, "%s, %d, t=%G: n_in_ports = %d \n",name,myself

↪→ ,t,n_in_ports);
13
14 const char *init_logic_vec = va_arg(parameters, char*);
15 gate.init(DEVSLogicMessage::getLogicVector(init_logic_vec));
16
17 va_end(parameters);
18 }
19 double logic_and::ta(double t) {
20 //This function returns a double.
21 printLogAtLevel(_INFO, "%s, %d, t=%G: ta \n", name,myself,t);
22 /* return double value with the time to the next internal event here.

↪→ */
23
24 return gate.ta();
25 }
26 void logic_and::delta(double t) {
27 printLogAtLevel(_INFO, "%s, %d, t=%G: delta \n", name,myself,t);
28
29 gate.delta(*this,t);
30
31 }
32 void logic_and::lambda(double t) {
33 //This function returns an Event:
34 // Event(%&Value%, %NroPort%)
35 //where:
36 // %&Value% points to the variable which contains the value.
37 // %NroPort% is the port number (from 0 to n-1)
38
39 printLogAtLevel(_INFO, "%s, %d, t=%G: lambda\n",name,myself,t);
40
41 gate.lambda(*this,t);
42

58

A.5. LogicTriggeredSampling atomic

43 }
44 void logic_and::exit() {
45 //Code executed at the end of the simulation.
46 printLogAtLevel(_INFO, "%s, %d: exit \n", name,myself);
47
48 }

A.5 LogicTriggeredSampling atomic

A.5.1 logic_trigg_sampl.h
1 //CPP:rpdevs_logic/logic_trigg_sampl.cpp
2 #if !defined logic_trigg_sampl_h
3 #define logic_trigg_sampl_h
4
5 #include "simulator.h"
6 #include "stdarg.h"
7
8 #include "DEVSLogicMessage.h"
9 #include "LogicGate.h"
10
11 class logic_trigg_sampl: public Simulator {
12 // Declare the state,
13 // output variables
14 // and parameters
15
16 bool left_limit;
17 enum{ RISING, FALLING, BOTH } which_edge;
18 double sigma;
19 std::map<int,char> init_output;
20 LogicGateResolver<logicfunction_resolution> resolver;
21 using resolved_inputs_map = LogicGateResolver<

↪→ logicfunction_resolution>::resolved_inputs_map;
22 resolved_inputs_map old_inputs;
23
24 public:
25 logic_trigg_sampl(const char *n): Simulator(n) {};
26 void init(double, ...);
27 double ta(double t);
28 void delta(double);
29 void lambda(double);
30 void exit();
31 };
32 #endif

A.5.2 logic_trigg_sampl.cpp
1 #include "logic_trigg_sampl.h"
2

59

A. Code of Implementation

3 // custom code:
4 void logic_trigg_sampl::init(double t, ...)
5 {
6 // The ’parameters’ variable contains the parameters transferred

↪→ from the editor.
7 va_list parameters;
8 va_start(parameters, t);
9 printLogAtLevel(_INFO, "%s, %d, t=%G: Init \n", name, myself, t);

10
11 const char *limit = va_arg(parameters, char *);
12 left_limit = false;
13 if (strcmp(limit, "left") == 0)
14 left_limit = true;
15
16 const char *edge = va_arg(parameters, char *);
17 which_edge = BOTH;
18 if (strcmp(edge, "rising") == 0)
19 which_edge = RISING;
20 else if (strcmp(edge, "falling") == 0)
21 which_edge = FALLING;
22
23 const char *initvec = va_arg(parameters, char *);
24 init_output = DEVSLogicMessage::getLogicVector(initvec);
25
26 sigma = 0;
27
28 // always end the init-function with:
29 va_end(parameters);
30 }
31 double logic_trigg_sampl::ta(double t)
32 {
33 // This function returns a double.
34 printLogAtLevel(_INFO, "%s, %d, t=%G: ta \n", name, myself, t);
35 /* return double value with the time to the next internal event

↪→ here. */
36
37 return (sigma);
38 }
39 void logic_trigg_sampl::delta(double t)
40 {
41 printLogAtLevel(_INFO, "%s, %d, t=%G: delta \n", name, myself, t);
42
43 sigma = INF;
44
45 if (!input_bag_empty()) {
46 old_inputs = resolver.resolve_delta(*this, t);
47 }
48 }
49 void logic_trigg_sampl::lambda(double t)

60

A.5. LogicTriggeredSampling atomic

50 {
51 printLogAtLevel(_INFO, "%s, %d, t=%G: lambda \n", name, myself, t);
52 if (sigma == 0) {
53 for (int i = 0; i < int(init_output.size()); i++) {
54 DEVSLogicMessage C(init_output[i]);
55 C.index = i;
56 printLogAtLevel(_DEBUG_ROUGH, "%s, %d, t=%G: output(%d) = %c\n"

↪→ , name,
57 myself, t, i, C.getChar());
58 add_output(&C, 0);
59 }
60 }
61
62 if (!input_bag_empty()) {
63 auto resolved_inputs = resolver.resolve_lambda(*this, t);
64 bool rising, falling;
65 try {
66 rising = logicfunction_rising(old_inputs.at(0).at(1),
67 resolved_inputs.at(0).at(1));
68 falling = logicfunction_falling(old_inputs.at(0).at(1),
69 resolved_inputs.at(0).at(1));
70 } catch (std::out_of_range &e) {
71 // no edge
72 return;
73 }
74
75 printLogAtLevel(_DEBUG, "%s, %d, t=%G: rising=%d falling=%d\n",

↪→ name, myself, t,
76 rising, falling);
77
78 if ((which_edge == RISING && rising) || (which_edge == FALLING &&

↪→ falling) ||
79 (which_edge == BOTH && (rising || falling))) {
80 printLogAtLevel(_DEBUG, "%s, %d, t=%G: triggered\n", name,

↪→ myself, t,
81 rising, falling);
82
83 const resolved_inputs_map *output = &old_inputs;
84 if (left_limit == false) {
85 output = &resolved_inputs;
86 }
87 for (const auto &p : *output) {
88 DEVSLogicMessage C(p.second[0]);
89 C.index = p.first;
90 add_output(&C, 0);
91 }
92 }
93 }
94 }

61

A. Code of Implementation

95 void logic_trigg_sampl::exit()
96 {
97 // Code executed at the end of the simulation.
98 printLogAtLevel(_INFO, "%s, %d: exit \n", name, myself);
99 }

62

List of Figures

3.1 PowerRPDEVS Model Editor . 10
3.2 PowerRPDEVS Simulation Dialog . 11
3.3 PowerRPDEVS Atomic Editor . 12
3.4 Message Passing class hierarchy . 14
3.5 Example object-oriented model and class hierarchy 15

4.1 Multivalue Logic Library – all blocks . 21

5.1 static RS flip-flop variants by Junglas . 26
5.2 static RS flip-flop – model A . 29
5.3 static RS flip-flop – model B . 29
5.4 NOR gate coupling of model B . 30
5.5 Simulation results of static RS flip-flop . 30
5.6 Coupling that detects falling edges . 31
5.7 Triggered RS flip-flop in PowerRPDEVS – model A 32
5.8 Triggered RS flip-flop in PowerRPDEVS – model B 32
5.9 Simulation results of triggered RS flip-flop – model A 33
5.10 Simulation results of triggered RS flip-flop – model B 33
5.11 D flip-flop in PowerRPDEVS . 34
5.12 Simulation results of D flip-flop . 34
5.13 Shift register in PowerRPDEVS . 35
5.14 Simulation results of the shift register . 36
5.15 Serial bus model . 38
5.16 Sender coupling (Sender1 and Sender2 in Figure 5.15) 38
5.17 Result of simulation – Serial bus . 39

63

List of Tables

2.1 9 logic values in IEEE 1164-1993 . 8

5.1 RS latch truth table obtained by Boolean algebra 27
5.2 Solutions of Equation 5.4. 28
5.3 Solutions of Equation 5.6. 28
5.4 Message format of the bus . 37
5.5 Data in the bus example . 38

65

Acronyms

CAN Controller Area Network. 36, 39

CSMA Carrier-Sense Multiple Access. 36

CSMA/CR Carrier-Sense Multiple Access/Collision Resolution. 36

DEVS Discrete Event System Specification. 1–6, 39

FIFO first in – first out. 35

FSA finite state automaton. 4, 6

IEEE Institute of Electrical and Electronics Engineers. 2, 7, 8, 15, 19–22, 39, 57

PDEVS Parallel DEVS. 1, 2, 4–6

QSS Quantized State System. 14

RPDEVS Revised Parallel DEVS. 1, 2, 5, 6, 9, 11, 15, 39

VHDL Very High Speed Integrated Circuit Hardware Description Language. 2, 7

67

Bibliography

[CZ94] Alex Chung Hen Chow and Bernard P Zeigler. Parallel DEVS: A parallel, hier-
archical, modular modeling formalism. In Simulation Conference Proceedings,
1994. Winter, pages 716–722. IEEE, 1994.

[IEE93] IEEE Design Automation Standards Committee and others. IEEE
Standard Multivalue Logic System for VHDL Model Interoperability
(Std_logic_1164)(ANSI): IEEE Standard 1164-1993. IEEE, New York, 1993.

[Jos96] C Joslyn. The process theoretical approach to qualitative DEVS. 1996.

[Jun16] Peter Junglas. Pitfalls using discrete event blocks in simulink and modelica.
ASIM, 2016.

[PHK17] Franz Preyser, Bernhard Heinzl, and Wolfgang Kastner. RPDEVS: Revising
the Parallel Discrete Event System Specification. 12 2017.

[PHKB19] Franz Josef Preyser, Bernhard Heinzl, Wolfgang Kastner, and Felix Breite-
necker. RPDEVS Abstract Simulator. In Proc. of ASIM-Workshop Simulation
technischer Systeme/Grundlagen und Methoden in Modellbildung und Simula-
tion, page 6, 02 2019.

[PHRK16] Franz Josef Preyser, Bernhard Heinzl, Philipp Raich, and Wolfgang Kastner.
Towards Extending the Parallel-DEVS Formalism to Improve Component
Modularity. In Thorsten Pawletta Dmitrij Tikhomirov, Heinz-Theo Mammen,
editor, Beiträge zum Work. der ASIM/GI-Fachgruppen STS und GMMS
2016, pages 83–89, Lippstadt, 2016. ARGESIM Verlag Wien, Hochschule
Hamm-Lippstadt 2016.

[POWa] PowerDEVS repository on sourceforge.org. https://sourceforge.net/
projects/powerdevs/. Accessed: 5th March, 2019.

[POWb] PowerRPDEVS repository on sourceforge.org. https://sourceforge.
net/projects/powerrpdevs/. Accessed: 5th March, 2019.

[ZPK00] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of modeling
and simulation: integrating discrete event and continuous complex dynamic
systems. Academic press, 2000.

69

https://sourceforge.net/projects/powerdevs/
https://sourceforge.net/projects/powerdevs/
https://sourceforge.net/projects/powerrpdevs/
https://sourceforge.net/projects/powerrpdevs/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Theoretical Background
	PowerRPDEVS
	Multivalue Logic Library
	Example Logic Circuits
	Conclusion and Outlook
	Code of Implementation
	List of Figures
	List of Tables
	Acronyms
	Bibliography

