
Evaluation of Operating Systems
for Embedded Low-Power

Wireless Systems
Contiki, Riot OS, Zephyr

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Theodor Mittermair
Matrikelnummer 1426389

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Wolfgang Kastner, Dipl.-Ing. Dr.techn.
Mitwirkung: Stefan Seifried, Dipl.-Ing., BSc.

Philipp Raich, Dipl.-Ing., BSc.

Wien, 14. März 2019
Theodor Mittermair Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Evaluation of Operating Systems
for Embedded Low-Power

Wireless Systems
Contiki, Riot OS, Zephyr

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Theodor Mittermair
Registration Number 1426389

to the Faculty of Informatics

at the TU Wien

Advisor: Wolfgang Kastner, Dipl.-Ing. Dr.techn.
Assistance: Stefan Seifried, Dipl.-Ing., BSc.

Philipp Raich, Dipl.-Ing., BSc.

Vienna, 14th March, 2019
Theodor Mittermair Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Theodor Mittermair
Scheibenweg 2, 2211 Pillichsdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. März 2019
Theodor Mittermair

v

Danksagung

Zuallererst möchte ich meiner Familie danken, die meine absurden Essens- & Schlafens-
zeiten ertragen hat.

Ein Danke gilt auch meinem ersten Betreuer, Stefan Seifried, welcher mir diese zwar sehr
umfangreiche, aber auch lehrreiche Arbeit übergeben hat, sowie meinem zweiten Betreuer,
Philipp Raich, der mich trotz großer Verzögerungen motiviert hat nicht aufzugeben.

Desweiteren möchte ich mich bei meinem Studienkollegen David Kaufmann für Unter-
stützung bei der Fehlersuche im Kontext von IPv6 bedanken.

Und zum Schluss ein Danke an die Hersteller jenes koffeinhaltigen Getränks in dem ich
viele meiner Sorgen dieser Arbeit ertrunken habe.

vii

Acknowledgements

To begin with, a very large thank you to my family, which had to endure my absurd food
and bedtimes.

Additional thanks go to my first supervisor, Stefan Seifried, who gave me this compre-
hensive but also instructive work, as well as to my second supervisor, Philipp Raich, who
kept motivating me even though my work was often delayed.

Furthermore i’d like to thank my colleague David Kaufmann, who supported me with
his knowledge on IPv6 when debugging.

And finally, thanks to the manufacturer of that caffeinated drink I drowned so many
sorrows in.

ix

Kurzfassung

Diese Arbeit evaluiert die Funktionalität der drei Betriebssysteme Zephyr [urld], Riot
OS [urlc] und Contiki [urlb] durch exemplarische Beispielanwendungen orientiert an
IoT-Geräten. Dazu zählen Textausgabe an eine serielle Konsole, Umschalten von GPIOs
sowie Senden von Nachrichten über ein Wireless-Netzwerk. Der Fokus dieser Arbeit liegt
mehr auf allgemeinen Aussagen über gewählte Kriterien als Aussagen über spezifische
Anwendungen. Es soll keine Antwort auf die Frage „Was ist das Beste?“ gefunden werden
(was im Allgemeinen auch nicht möglich ist, da die Realität solch eine allgemeine Aussage
nicht zulässt), vielmehr soll es Hinweise für die Richtung tiefergehender Untersuchungen
hinsichtlich speziellerer Anwendungen geben.

xi

Abstract

This paper evaluates the three operating systems Zephyr [urld], Riot OS [urlc], Con-
tiki [urlb] by examining various functionality using sample applications with IoT in mind.
This includes external interfacing with a serial console, toggling GPIOs and wireless
networking. The evaluation is focused more around general than specific use cases and
attempts to make general statements on evaluation criteria. This paper does not and
is not intended to find a definite answer to the question „Which is the best?“ (which
in general is impossible to answer, since reality always has trade-offs), instead it should
provide hints for the direction of further, more in-depth, application and use case specific
research.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Evaluation Criteria . 2
1.3 Problem Statement . 4
1.4 Aim of the Work . 4
1.5 Structure of the Work . 5

2 State of the Art 7

3 Methodology 9
3.1 Quantitative Criteria . 9
3.2 Qualitative Criteria . 10
3.3 Indirect Measurements . 10

4 Methods 11
4.1 Hardware Platform . 11
4.2 Time Difference Measurement . 12
4.3 Power Consumption . 12
4.4 Memory Usage . 14

5 Implementation 17
5.1 Software Versions & Configuration . 17
5.2 Networking . 18
5.3 Resource Usage . 20
5.4 GPIO Capabilities . 21

6 Results 23
6.1 GPIO Capabilities . 23

xv

6.2 Resource Usage . 24
6.3 Networking . 27
6.4 Security - Memory Protection . 32
6.5 Multitasking . 33
6.6 Modularisation & Hardware Support 33

7 Conclusion 35

Glossary 37

Acronyms 39

Bibliography 41

CHAPTER 1
Introduction

1.1 Motivation
Home-automation sensors, security cameras, garage doors, watches, fridges, washing
machines, rice cookers, toasters; in some regard they have more in common than it
might seem at first glance. All of these embedded systems have representatives in the
vastly growing field of Internet of Things (IoT), are comprised of a rising number of
hardware and software components, growing in complexity, and are often unconsciously
encountered in each of our daily lives.

In the area of hardware and software, it is not unusual for technology to change very
rapidly. While microcontroller hardware is improved and equipped with additional
features (such as built-in wireless communication peripherals), microcontroller operating
systems are continuously improved and adapted as well (e.g., hardware support, new
software features). As a result, the natural question arises whether or not a combination
of hardware and software, forming an embedded system, is the correct choice for an
application.

Motivated by the constant desire for technological improvement as well as continuous
development, this work aims to (re-)evaluate and compare similar software projects used
for IoT products regarding their features and performance.

Continuous development on software projects often leads to legacy code, hindering further
development, reducing usability or even performance. However, software projects which
are alive for an extended period may profit from experience that the developers have
made with it (e.g., the reason being the way features are implemented). In comparison
to that, a younger software project might have less legacy code and might learn from
other projects failures/success and improve upon it, but also allows to repeat old or
introduce new mistakes. It also fans out possible choices, on the one hand, a positive
argument for constructive competition, on the other hand, splitting resources (i.e., time

1

1. Introduction

and effort of developers) for improvement between existing software projects. Due to
this ever-changing nature of technology, it is necessary to reevaluate existing solutions,
as well as reviewing new and upcoming ones.

Therefore this work will consider the operating systems Riot OS [urlc] (developed
since 2008’) and Contiki [urlb] (first release in 2003) as well-known, and Zephyr [urld]
as a relatively new software project (public presentation 2016), with a focus on IoT
relevant performance metrics. Being motivated by IoT applications, metrics included are
networking performance, power consumption and resource usage (i.e., Random Access
Memory (RAM) / Read Only Memory (ROM) / Central Processing Unit (CPU)). Other
works [WSS09][TA09] also evaluate IPC (inter process communication) and similar metrics
(e.g., performance of semaphores, mailboxes, messages, events), which is considered out-
of-scope for this work.

That being said, generally, it is hard or even impossible to provide a definitive answer to
what is best since there are too many variables and there is most likely no one-fits-all
solution. Therefore, it makes sense to give the results of multiple, generalized comparisons
which can be mapped to different use cases, serving as a base for further research and
product design decisions.

1.2 Evaluation Criteria
The operating systems are to be evaluated in regard to the following criteria:

• Functional Criteria

– Networking
∗ Delay / Latency
∗ Throughput
∗ Reliability

– Resources
∗ Memory Usage
∗ CPU Usage
∗ Power Consumption

– Security
∗ Memory Protection

• Non Functional Criteria

– Support for Concurrency
– Modularisation
– Hardware Support

2

1.2. Evaluation Criteria

Networking has different aspects of different importance defined by the application of an
embedded system. For example, to an application including a sensor reading the room
temperature it might be relatively irrelevant how long exactly it takes to transmit a
temperature value to a central station, as long as it reaches its destination. In that case
reliability is of greater importance than throughput (low overall data volume) or delay
(data use is often deferred, e.g., room temperature control). Another example is the
transmission of image data from a live camera, where high throughput and small delay is
desired to transmit the frames in (close to real-)time, whereas reliability is non-critical
(e.g., the loss of some frames).

The resource usage of an operating system is an important factor in the design of an
embedded system. Lower resource usage enables cheaper designs and longer battery life.
However, in reality, trade-offs have to be made between (program-)space, (run-)time and
cost for the design of an embedded system. For that reason, the power usage, RAM and
ROM requirements as well as CPU usage are considered in this work.

This work also includes evaluation on GPIO capabilities. One of the reasons to use
an operating system in conjunction with an embedded system is the abstraction of
hardware provided. Therefore, interaction with GPIOs usually is performed via the
functionality provided by the operating system. Some applications make use of Pulse
Width Modulation (PWM) or want to use communication protocols such as Universal
(Serial) Asynchronous Receiver Transmitter (U(S)ART), Inter-Integrated Circuit (I2C),
Serial Peripheral Interface (SPI). If no dedicated hardware is available, such functionality
can be implemented using digital GPIOs for emulation. Another aspect is the interaction
with external components (i.e., sensors, actuators), which often makes use of asynchronous
notification signals (i.e., external interrupts). An application designer and/or application
software developer is likely to want to receive such information promptly. Depending on
the implementation, the performance can vary, implying some interesting metrics. For
aforementioned reasons, this work introduces the following metrics:

• maximum toggling frequency, serving as an indicator for how fast a software gener-
ated PWM could be

• minimum on-/off-times, serving as an indicator for the possible speed a software
emulated protocol could reach considering a protocol’s timing constraints.

• input to output delay, serving as an indicator for response time to asynchronous
external signals.

Specific applications (especially those working with untrusted user input) profit from
additional security features, including but not limited to, public accessible devices or
devices reachable through networking. Apart from deliberate attacks on embedded
systems, such features can also protect against unintentional faults such as mistakes made
during design and/or implementation of an embedded system. A possible preventive
measure is to use memory access privileges, which in case of an application software that

3

1. Introduction

would introduce memory corruption, could prevent crashing the operating system. It
has to be noted that for some of the mentioned functionality an operating system might
require hardware support (e.g., virtual memory) and therefore might not be applicable
to all hardware and software combinations.

Non-functional criteria can ease development and maintenance of an embedded system.
Modularisation and Concurrency often work hand in hand, allowing multiple independent
modules to run parallel with minimal influence on each other, makes software design more
comfortable. Support for additional hardware provided by an operating system allows
for rapid development of prototypes and standardized, controlled interaction within the
operating systems environment. Of course, an operating system should be stable, which
means that it does not produce unrecoverable errors by itself. Otherwise most other
criteria would be violated from the start.

1.3 Problem Statement
The microcontroller operating systems Zephyr [urld], Riot OS [urlc] and Contiki [urlb]
need to be compared to each other according to the criteria (see section 1.2): network
behavior (delay, throughput, reliability), resource usage (CPU time, memory us-
age, power consumption), security (memory protection), support for concurrency,
modularisation, hardware support.

The comparison aims to be based on prototypical application software running on a
representative hardware platform (see section 4.1) to provide benchmark results where
possible. Minimal application software is to be implemented, this should be understood
as not including anything additionally beyond what a certain use case requires, but does
not imply additional attempts to exclude possibly removable operating system specific
parts. If possible, existing sample code provided by the software projects around the
operating systems should be reused. Attempts to optimize the implementation based
on the underlying operating system should not be made, because for general use case
scenarios it is assumed that the application software developer does not want to spend
time with that task.

1.4 Aim of the Work
This work aims to be an initial effort in creating application independent, generalized
approach to compare operating systems running on microcontrollers.

Such comparison could yield benefits for operating system developers, application devel-
opers as well as embedded system designers, including, but not limited to:

• qualitative and quantitative improvements to the operating systems as a result of
identified weaknesses

• ease of hardware and software component selection during project planing

4

1.5. Structure of the Work

• greater success in prototype development due to easier requirement evaluation

• educational purposes in academical use

In the possible case that such a general comparison does not seem to be viable, in parts
or as a whole, it should provide reasoning for future work.

Otherwise, the results of the comparison should show if and which of the considered
operating systems has significant advantages or drawbacks compared to their competitors,
with a focus on IoT and wireless networks.

1.5 Structure of the Work
In Chapter 1 "Introduction" the reader is introduced to this work, including characteristics
of the evaluation criteria and the hardware platform used as test environment. Chapter 2
"State of the Art" discusses existing comparisons in general and in relation to the operating
systems to be compared. Reasoning to why and how certain criteria are evaluated as
well as relevant scientific aspects are explained in Chapter 3 "Methodology". Chapter 4
"Methods" introduces the methods used for the experiments described in Chapter 5
"Implementation". Results of aforementioned experiments are presented and discussed
in Chapter 6 "Results" to be summed up in Chapter 7 "Conclusion" with IoT, future
research and academical use in mind.

5

CHAPTER 2
State of the Art

One of the most common metrics that can be found in related work are static analysis
of RAM and ROM usage (e.g., [WSS09, Table 1], [BHG+13, Table 1]). This is due to
the fact that nearly every project around an embedded system has to deal with these
constraints when selecting hardware as well as software components and is therefore also
part of this work.

[TA09] makes observations on various time related behavior of operating system level
behavior (e.g., task switch time, message passing). Provided metrics are very important
but are already coupled more tightly to implementation details, which might be unknown
at the time of component selection. While it makes sense to include especially inter-
process communication in a generalized comparison such as this work aims to create, it
is considered out of scope due to the focus of this work on IoT and respectively wireless
networks.

Slightly different timing related behavior is studied in [AC09] with a focus on real-time.
While real-time is a field of study on its own, their test setup using an oscilloscope is very
similar to what is used for this work and will be explained in section 3.3. The criteria
Latency and Worst Case Response Time evaluated are in their nature quite similar to
what has been described in section 1.2 for GPIO capabilities.

While work has been done evaluating both, specific aspects of microcontroller operating
systems (e.g., wireless networking performance [FG13][LDMM+05], stability and depend-
ability [VDKGGT15]), as well as certain microcontroller operating systems in depth
(e.g., RIOT OS [BHG+13], Contiki [DGV04]), it does not appear that a lot of direct
comparison between microcontroller operating systems themselves, independent from
application, exist.

7

CHAPTER 3
Methodology

3.1 Quantitative Criteria
Quantitative criteria are evaluated by example and/or performing experiments in a
constructed scenario close to real world conditions. While the the experiments themselves
might not be full applications, they serve as proof of functionality and provide a guiding
information.

In this work, quantitative evaluation criteria can be split into two categories:

1. those that can be evaluated completely deterministic using known methods and
available (software-)tools.

2. those that must be carried out as a real world experiments (i.e., possibly dependent
on the surrounding environment) allowing for observation by external measurement
instruments.

Regarding the first category, the results generated by available tools are assumed to have
no uncertainty. Therefore, such results are either directly copied as reported or where
necessary filtered and accumulated.

In the second category, uncertainty can be introduced by several sources (e.g., finite
precision of measurement instruments, influence of a measurement method on the observed
system, methodical errors, rounding errors). Where possible with reasonable expenditure,
steps are taken to reduce the error as much as possible and described for reproducability.

Results of experiments which are expected to vary due to mostly unpredictable sur-
roundings (i.e., network performance metrics) are sampled multiple times in the same
environment to suppress random errors and edge cases. The number of repeated measure-
ments has been selected as n=20 by rule of thumb to not break the scope of this work.

9

3. Methodology

Resulting data is presented numerically as minimum, maximum and median (to reject
one-time-off errors) as well as graphically, using box-plots1 to hint at result distribution
or bar-plot for comparison.

If not stated explicitly otherwise, all numeric values that are calculated or provided by a
measurement instrument at a higher precision are rounded to 2 decimal places.

3.2 Qualitative Criteria
Qualitative criteria are mostly evaluated on the information and documentation provided
by the software project themselves. Assuming that the software projects do not present
themselves better than they actually are, that should be the most qualified source of
information. If necessary, as either clarification or for additional information, the source
code of the software project can be used. Additionally, other work conducted in the past
may provide a base to extend on as well as an indicator for recent developments.

3.3 Indirect Measurements
Some of the evaluation criteria can not be measured directly (on the test platform
itself), or would introduce an additional error. These problems are also hinted at in
[AC09] and corresponding references. A very simple possibility would be to use the
serial connection that probably most of the operating systems provide for log messages,
but would also introduce additional uncertainty (buffering and delays on both sides).
Therefore, such criteria are mapped to an equivalent time measurement using GPIOs
providing external signals (see section 4.2), allowing the calculation of the original
performance metric. Additional errors introduced by this approach should be neglect-able
in direct comparisons.

1http://www.physics.csbsju.edu/stats/box2.html

10

http://www.physics.csbsju.edu/stats/box2.html

CHAPTER 4
Methods

4.1 Hardware Platform
This work evaluates the three operating systems Zephyr [urld], Riot OS [urlc] and
Contiki [urlb] by examining various functionality and typical use cases by example and
conducting experiments on real hardware.

The hardware used is the CC2538 Development Kit [urla] produced by Texas Instruments1.
Some of its features are:

• CC2538EM (evaluation module with microcontroller)

– ARM Cortex M3 based CPU
– 32 MHz crystal oscillator
– 2.4 GHz RF transceiver with IEEE 802.15.4 support
– 512 KB FLASH memory (ROM)
– 32 KB SRAM memory (RAM)
– Encryption Hardware Support
– U(S)ART, SPI, I2C

• SmartRF06 (peripheral board)

– XDS 100v3 Programming and Debugging Interface
– 5 Buttons
– 4 LEDs

1http://www.ti.com/

11

http://www.ti.com/

4. Methods

– LCD
– SD Card Slot

Especially the IEEE 802.15.4 RF transceiver is essential to this evaluation since it is used
as a wireless network interface.

4.2 Time Difference Measurement
A 2-channel Digital Storage Oscilloscope (DSO) is used to record the state transitions
(i.e., transitions from low to high or vica versa) of up to two digital signals. The DSO can
then be used to measure the time difference between either consecutive state transitions
of one signal (figure 4.1 (left)) or between corresponding state transitions of two signals
(figure 4.1 (right)).

Figure 4.1: A time difference measurement performed on one signal (left) or two signals
(right)

4.3 Power Consumption
A multitude of possibilities to measure the power consumption of a device with different
measurement instruments exist. Depending on the capabilities of the selected methods and
measurement instruments, the accuracy of the result can vary. The following subsections
describe two different possibilities with their advantages and drawbacks.

4.3.1 USB-Meter

Since the testing hardware (SmartRF06 Board, see section 4.1) can be supplied via
Universal Serial Bus (USB) connectors, a relatively cheap USB-Power-Meter (available
for less than 10e in online stores) is a convenient option to obtain a measurement, but
should be considered more as a rough estimate. A drawback is, that in the absence of an
exact product-name or specification, no data-sheet stating the internals (i.e., measurement
circuitry used, method and accuracy of the measurement) could be found at the time of
writing. Due to the low price compared to (qualitative feature-) comparable measurement
instruments, it appears reasonable to expect that the electrical power and charge values

12

4.3. Power Consumption

recorded are only rough estimations calculated from voltage and current (using discrete
time step integration).

Figure 4.2 shows the USB-Power-Meter that is used in this work. The interface shows
the electrical voltage in volt, electrical current in ampere, electrical power in watt and
electrical charge that went through the device in milliampere hours.

Figure 4.2: The USB-Power-Meter in operation

4.3.2 Oscilloscope, Shunt

Using a 2-channel DSO in combination with a shunt (a low value high precision resistor)
in the devices supply path allows to measure both, the supply voltage and voltage present
at the shunt (see figure 4.3). Subsequently, the current flowing through the shunt can
be calculated. By doing that, continuous measurement data can be recorded and used
to calculate power consumption (using discrete time step integration). Accuracy is now
closely coupled to the quality of the measurement equipment (i.e., the resolution of the
DSO and precision of the shunt). Compared to cheaper Analog Digital Conversion (ADC)
equipment (e.g., Multimeter, USB-Meter as described in section 4.3.1) a typical DSO
is expected to yield better results. An undesired side effect is the measurement error
introduced by the additional resistor in the devices supply path, slightly limiting the
current flowing. Assuming an unaffected current of less than 10 mA at 5V supply voltage
results in an estimation of the electrical load to be greater than 500Ω. A shunt smaller
than 1Ω would introduce an error of less than 0.2%, small enough not to influence the
results of this work relevantly.

Additionally, when making these two measurements at the same time (i.e., voltage and
current) one of the two measurement instruments introduces a measurement error to the

13

4. Methods

Figure 4.3: A shunt with a voltage meter attached

other measurement. This happens due to non-ideal measurement instruments (i.e., non-
zero internal resistance of ampere-meter, non-infinite internal resistance of volt-meter).
Figure 4.4 shows two possible measurement setups where the one of the measurements is
influenced by the other.

Figure 4.4: Comparison between current correct measurement (left) and voltage correct
measurement (right)

For this work, it makes sense to set up the measurement in a way that the current
measurement is not influenced by the voltage measurement as depicted in figure 4.5. The
voltage is expected to be regulated by the power supply and therefore more stable, while
current peaks are expected as result of varying modes of operation (e.g., use of sleep
modes, wireless activity).

The testing hardware already features circuitry to ease the current measurement, including
a shunt and measurement amplification. This circuitry is shown in figure 4.6 and has
the added benefit of almost eliminating the previously described influence of the second
measurement instrument, replacing it with a small error independent of the measurement
instrument. Said error could be calculated using the equivalent parallel resistance, but is
also neglected as insignificantly small for the purpose of this work.

4.4 Memory Usage

Many operating systems that target embedded systems do not provide dynamic memory
management at all or avoid it as much as possible. Reasons for this are at least partially
the very constrained amount of resources, harder predictable runtime behaviour and

14

4.4. Memory Usage

Figure 4.5: Schematic of current correct measurement setup

Figure 4.6: Schematic of the current sense circuitry provided by the SmartRF06. (Source:
[72s17])

the additional trouble to prevent or analyze programming mistakes. Therefore, often
memory blocks larger than absolutely required (e.g., message buffer(s) of maximum
message length) or larger than required at all times (e.g., preallocated message queue(s)
of fixed size) are allocated statically for a very specific purpose. This allows this work to
derive both, the ROM and RAM usage, directly from result of the compiler. Otherwise,
a run time evaluation, using (additional) debugging hardware or accepting overhead to
perform the measurement, would be necessary.

Information about the ROM and RAM usage can be extracted from the compiled
binary (which includes both, operating system as well as application), using available

15

4. Methods

software tools. For example, this can be done by using the command arm-none-eabi-size
programm.elf on a computer running Linux where the required software packages are
installed.

As shown in figure 4.7, the column text (i.e., executable program) lists the content that
will be placed in ROM, where as both data (i.e., initialized program data) and bss (i.e.,
uninitialized program data) occupy space in RAM.

Figure 4.7: Exemplary output of the "size" tool

While the hardware only differentiates between two types of memories, ROM and
RAM, software could differentiate to greater detail (e.g., kernel vs. application, per
driver/module/application, initialized vs. uninitialized). For the sake of generalization
and simplicity, this work focuses on ROM and RAM, with RAM subdivided into initialized
and uninitialized memory. The subdivision of RAM serves the idea to hint at buffer
allocation mechanisms already mentioned.

16

CHAPTER 5
Implementation

5.1 Software Versions & Configuration

Zephyr [urld]
used https://github.com/KillerLink/zephyr/tree/e0bd9e264dd17a5dc4fb
based on https://github.com/zephyrproject-rtos/zephyr/tree/26c9c7480ec0a379809e

Riot OS [urlc]
used https://github.com/KillerLink/RIOT/tree/96885577e487d4c22ce7
based on https://github.com/RIOT-OS/RIOT/tree/1d693403b65231b6784a

Contiki [urlb]
used https://github.com/KillerLink/contiki/tree/8679b37c3d80444b3b06
based on https://github.com/contiki-os/contiki/tree/32b5b17f674232867c22

GCC: 8.2.1 20180831
arm-none-eabi-gcc: 8.2.0

To compare the operating system Zephyr [urld] in this work, preliminary implementation
work, which has not yet been fully published had to be done. Both, modifications and
experiment implementations are published via git repositories listed above1.

Working with a congested network (i.e., sending data as fast as possible) showed network
stability issues in Riot OS [urlc]. These issues are presumably caused due to loosing
IEEE 802.15.4 frames at the receiver, coming in at a very high rate. For this reason
1commit hashes are shortened to 20 characters but should still be unique

17

5. Implementation

the link layer driver had been modified from flushing the hardware receive buffer after
reception of a complete IEEE 802.15.4 frame to keeping the remaining data. Additionally,
to prevent buffer underflows, it now waits for data to be available instead of expecting it
to be already there. Some of these problems are also hinted at in various issues in the
repository2.

To exclude as much external influence as possible, this work uses a direct connection
between 2 communicating nodes, therefore there are no routers, no routing protocols
and no auto-configuration. For this purpose, the devices were configured to have the
following Internet Protocol Version 6 (IPV6) link-local addresses:

• Server (Receiver): fd0b:ad46:74e5:de4c::1

• Client (Transmitter): fd0b:ad46:74e5:de4c::2

5.2 Networking

For all network experiments described below, the decision to send data in only one
direction as opposed to request-response based communications was intentionally and
serves the purpose to exclude unnecessary interactions between the application software
and operating system from polluting the measurement with noise (e.g., additional system-
calls, waiting on the availability of memory buffers).

Additionally, it has been tried to keep code in places that would influence the results short
(e.g., in between return of a send/receive function and the generation of the corresponding
external signal, when generating the signals using direct memory access to the General
Purpose Input Output (GPIO) peripheral).

This work uses User Datagram Protocol (UDP) because of the following reasons:

• UDP is a well-known, widely used protocol that can be used as a common func-
tionality provided by all comparison candidates. Many other protocols can be
implemented on top of UDP, including TCP-over-UDP3[LBS] if Transfer Control
Protocol (TCP) is not natively supported but required.

• UDP eases the modeling of experiments where data transmission would be too
large for single packets on the link layer of the OSI Network Model. 4

• UDP has lower resource requirements (i.e., RAM, CPU time) compared to TCP,
which might be important depending on the available hardware resources.

2https://github.com/RIOT-OS/RIOT/projects/5
3https://tools.ietf.org/id/draft-baset-tsvwg-tcp-over-udp-01.html
4If the required fragmentation capabilities are implemented.

18

https://github.com/RIOT-OS/RIOT/projects/5
https://tools.ietf.org/id/draft-baset-tsvwg-tcp-over-udp-01.html

5.2. Networking

• Measuring reliability from the view point of the application only makes sense in
the context where data loss is not already prevented by a lower layer in the OSI
Network Model, like TCP would.

The implementations use the functionality provided by the different operating systems
that is closest to the concept of Unix-sockets, if that choice is available. Also, if applicable,
the Media Access Control (MAC) is chosen to be be as simple as possible (i.e., sending
data exactly once if possible, opposed to sending the same data multiple times to increase
the chance of successful transmission). These decisions aim to create experiments that
can be implemented less dependent on the underlying operating system and are more
comparable to future experiments.

When choosing the amount of data sent per packet, one needs to consider possible
implications. On the one hand, small packets introduce a relatively large overhead (e.g.,
addressing, packet frames), that can influence throughput negatively. On the other hand,
large packets reduce that overhead, but might need to be split into fragments to be
transmitted over the link-layer, relying on intermediate network-layers to handle this,
possibly having a negative impact on latency and/or reliability. For aforementioned
reasons, 2 sets of measurement series are taken, with either 50 or 1000 bytes per UDP
packet.

5.2.1 Latency

Measuring the latency is done by sending a fixed amount of data repeatedly from one
device to another, measuring the delay from start of transmission to completing reception.
The transmitting device raises an external signal just before the application issues the
call to start sending data, while the receiving device raises an external signal immediately
after the program execution returns from the call to receiving data. The time difference
between those 2 signals is measured as described in section 4.2.

5.2.2 Throughput

The throughput can be observed by measuring how much data can be sent in a fixed
amount of time or sending a fixed amount of data and measuring the time it took. For
both cases, the amount of transmitted data can be divided by the time taken to obtain an
indicator for throughput. This work will use fixed amount of data, purposely neglecting
lost data by continuous transmission/reception until the desired amount of data has
been received. Assuming data is continuously transmitted and received, an external
signal can be generated whenever the chosen amount of data (for 1000 Byte packets:
TOTAL_DATA = 100kilobyte, for 50 Byte packets: TOTAL_DATA = 50kilobyte)
has been sent / received. The time difference between two consecutive signals can be
measured, for both, receiver and transmitter, as described in section 4.2. The throughput
is then calculated from the receivers’ measurement ∆treceiver as shown in equation (5.1).

19

5. Implementation

throughputkilobyte/s = TOTAL_DATA

∆treceiver
(5.1)

5.2.3 Reliability

Evaluation of network communication reliability can be done by sending a fixed amount
of data from one device to an other and asses how much of it was either lost or successfully
transmitted. There are more intricate methods (e.g., using identifiable packets) that
could provide a better result, but were not chosen due to higher complexity and possible
impact on the result (e.g., missing a packet because a buffer ran over while the previous
packet is checked).

The receiver transmits a fixed amount of data (TOTAL_DATA = 100kilobyte) once,
while the receiver reports all data received (e.g., using the serial interface). Data
transmission is done without special handling of data loss on layers below the transport
layer of the OSI Network Model from within the application implementation. Here,
the implementation of this experiment relies on the operating systems’ capabilities to
provide textual output, reporting the amount of received data. Using the output of the
receiver after the transmitter has completed sending TOTAL_DATA bytes, a value for
Bytesreceived can be obtained. From the difference between the amount of data sent and
received, the data loss (in percent) can be inferred as shown in equation (5.2).

losspercent = (1− Bytesreceived

TOTAL_DATA) ∗ 100 (5.2)

5.3 Resource Usage

5.3.1 Memory Usage

Because this experiment’s metrics depend on the specific application, 3 different scenarios
are selected to be representative of expected typical uses:

• GPIO: includes reading and writing from and to GPIOs. The implementation for
the input to output delay experiment described in section 5.4.3 is used.

• serial: includes writing text over a U(S)ART. Implemented as an application that
writes "Hello World!" approximately every second.

• networking: includes transmission of data over a wireless network. The imple-
mentation for the network throughput (server/receiver side) experiment described
in section 5.2.2 is used.

Results can be obtained as described in section 4.4.

20

5.4. GPIO Capabilities

5.3.2 CPU Usage

Comparing the CPU usage of an operating system is possible by estimating how much
time is spent in the operating system itself as opposed to the application software.
Of course this depends on the application software, since there are tasks that involve
interaction with the operating system as well as tasks that can run independently. While
the former are very specific to implementation and application, only the latter will be
evaluated here as a more generalized approach, simulating a best-case scenario. Evaluating
this can be done by raising an external signal, advancing a simple counter in the user
application until it reaches a certain value, and finally lowering the external signal again.
The time difference is measured as described in section 4.2. By comparing the measured
time to the theoretical time it would take, the difference can be used to indicate how much
time was not spent in the user application (i.e., the operating system). Reference times
can be either obtained summing the execution times of the assembly instructions used
in the loop that increases the counter or running the same loop on the microcontroller
without an underlying operating system.

5.3.3 Power Consumption

The power consumption of a device can be measured as described in section 4.3. Since
this metric also depends on the application, the same scenarios described in section 5.3.1
are tested as representatives.

5.4 GPIO Capabilities

5.4.1 Maximum Toggling Frequency

Evaluating the maximum toggling frequency of a GPIO can be done by configuring it
as an output, toggling it as fast as possible and measuring the frequency of the generated
signal with a DSO. Section 4.2 describes the measurement, figure 4.1 (left) shows a
corresponding example.

Some operating systems provide a dedicated "toggle" command for GPIOs, which possibly
makes use of hardware support for toggling the state of a GPIO configured as output.
If no such functionality is provided, the dedicated "on" and "off" commands must be
used, as described in section 5.4.2. In this case, the maximum toggle frequency can be
calculated as shown in equation (5.3) instead.

fmaximum_toggling = 1
tmin_on + tmin_off

(5.3)

5.4.2 Minimum On-/Off-Times

The minimum on-/off-times tmin_on and tmin_off can be measured using a DSO on a
GPIO configured as output, alternating its state via dedicated "on" and "off" commands

21

5. Implementation

provided by the operating system. Section 4.2 describes the measurement.

5.4.3 Input to Output Delay

The input to output delay can be observed with a DSO on a GPIO configured as
output and changing its value when the external interrupt is handled by the application
software. Section 4.2 describes the measurement, figure 4.1 (right) shows an example.

22

CHAPTER 6
Results

6.1 GPIO Capabilities

The results presented in table 6.1 are obtained from the experiment described in sec-
tion 5.4.

Zephyr [urld] did not provide any direct digital output toggle capabilities, which is why
the maximum toggle frequency is calculated from the sum of the minimal on-/off-times
as described in section 5.4.1. The explanation to the resulting lower frequency from
already higher minimum on-/off-times is that the current implementation is a wrapper
to the Texas Instruments HAL (Hardware Abstraction Library), adding another layer of
indirection.

Riot OS [urlc] unexpectedly exhibited different on-/off-times when using digital write
functionality, even though toggling had an even mark-space ratio. This could not yet be
explained.

Contiki [urlb] has shown significant longer input to output delay, most likely because it
uses threads and events, adding additional overhead from scheduling and event generation.
Since the difference in performance is this large, a setup mistake or failure in experiment
design is deemed to be possible, but could not be determined clearly.

GPIO Zephyr Riot OS Contiki
maximum toggle frequency (223 kHz) 379 kHz 362 kHz
minimal on-time 2.24 us 1.88 us 1.48 us
minimal off-time 2.24 us 1.36 us 1.48 us
input to output delay 6.4 us 7.2 us 92.0 ms

Table 6.1: Measurement results for GPIO capabilities

23

6. Results

As a reference, the CC2538 User’s Guide [71c13] states that the microcontroller is capable
of "Fast toggle capable of a change every two clock cycles". Using the 32MHz oscillator as
system clock, this would theoretically result in 16MHz maximum toggling frequency when
implemented as device specific instructions. Because the flash is limited to 16MHz, this
is only true when executing from RAM or possible with good prefetching performance.

6.2 Resource Usage

6.2.1 CPU Usage

This experiment has proven to be difficult to implement as would have been described in
section 5.3.2 which also has led to questioning its design.

Figure 6.1: Exemplary assembler delay loop

Figure 6.1 shows the delay loop written in assembly to implement what has been described
in section 5.3.2. To obtain a reference time value, this loop was executed from RAM in
a baremetal environment (i.e., no operating system, no interrupts). While testing and
developing this implementation, a few problems became apparent:

• Some limitations to this test are implied by the hardware. The CC2538 Development
Kit [urla] used in this work features a CPU running at 32MHz, but its execution
speed from flash is limited to 16MHz without prefetching, increasing its platform
dependency.

• If prefetching would be used to circumvent the limitation, the result would be
hard to predict. While the influences of prefetching could be calculated in an
environment without interrupts, it seems to be unfeasible when interrupt could
occur frequently.

• When executing from RAM (which is not available to all targets) to circumvent
both, flash limitations as well as prefetching in-determinism, branch prediction
seems to slow down the loop. Documentation [70c07, Table 18-1] states that for

24

6.2. Resource Usage

memory usage
[bytes] Zephyr Riot OS Contiki

GPIO
.text (ROM) 12002 8600 43534
.data (RAM) 1712 144 481
.bss (RAM) 4720 2860 12591

serial
.text (ROM) 14242 10072 43636
.data (RAM) 1716 136 465
.bss (RAM) 4696 2660 12607

networking
.text (ROM) 52362 44568 39700
.data (RAM) 3360 176 440
.bss (RAM) 22880 17640 28980

Table 6.2: Memory usage per application, grouped by use (executable, initialized, unini-
tialized)

the hardware used in this work, any branch requires a fixed amount of cycles plus a
value P, ranging from 1 to 3 inclusive, depending on the pipeline as well as alignment
and width of (branch-) target instruction. Tests in the baremetal environment
lead to the conclusion that in this very specific setup P would be always 3, but no
documentation or authoritative confirmation to this assumption was found. It also
hints at problems with generalization and portability of this approach.

• Implementing execution from RAM would not be possible on all platforms (due
to lack of hardware support). Even if it is possible on the CC2538 Development
Kit [urla], doing so would most likely require unreasonable modifications to the
current build system (i.e., compiler flags, linker scripts) to ensure that the delay
loop is compiled equally in all systems and placed in / executed from RAM.

Additionally, Contiki [urlb] handles multitasking (see section 6.5) very differently. While
preemptive scheduling is supported by means of a library, by default multitasking is
cooperative. As a result, the delay loop would just block the CPU.

In conclusion, the experiment design has been found to be inapplicable and unsuitable. A
possible alternative could be to use a specific workload and define constraints that would
require the application to interact with the operating system in a limited and defined
way that allows for comparison.

6.2.2 Memory Usage

The results presented in table 6.2 are obtained from the experiment described in sec-
tion 5.3.1.

For the ROM usage, Zephyr [urld] and Riot OS [urlc] perform very similar, with the
later using less in all three scenarios. As to be expected, the ROM usage is larger for the
networking scenario, due to additional functionality required compared to the other two.

25

6. Results

Power Usage Zephyr Riot OS Contiki

USB Meter [W] GPIO 0,395 0,395 0,354
Networking 0,503 0,503 0,503

Shunt, Amplifier, DSO [mW] GPIO 2,93 2,60 0,24
Networking 9,11 9,76 9,11

Table 6.3: Power consumption per application

Contiki [urlb] uses a much larger amount of ROM for the GPIO and serial scenario,
because it seems to always include the networking functionality. This is very likely a
configuration error and attempts to improve the situation have been made (i.e., explicitly
trying to exclude certain parts, adding optimizations), but led to almost the same result
or a failing build process. The drop in ROM usage for Contiki [urlb] in the networking
scenario probably is a result of explicitly selecting interchangeable functionality different
from default.

Regarding the RAM usage, the results differ a lot over both, different scenarios as well
as operating systems.

Most notably here is the difference for initialized and uninitialized memory of Zephyr [urld]
in comparison to the other two. While the results are not obviously wrong, it might be
possible that Riot OS [urlc] and Zephyr [urld] have customized their build process in
a way that interferes with the size tool. A possible explanation is that the linker script
and startup code have been customized.

If the sum of initialized and uninitialized data is observed, Riot OS [urlc] used the least
RAM in all three scenarios.

Also note the large jump in use of RAM for uninitialized data in the network scenario,
caused at least partially by buffers reserved for the required functionality. As already
mentioned in section 4.4, the size of these buffers is defined at compile time and possibly
larger than ever needed, depending on the application and surrounding environment.

6.2.3 Power Consumption

The results presented in table 6.3 are obtained from the experiment described in sec-
tion 5.3.3.

The first thing to note is the different unit scale used for the USB-Power-Meter and
oscilloscope. This is due to the fact that the USB-Power-Meter, as visible in figure 4.2,
reports the power consumption in watt, while the measurements taken with the DSO
have been recorded in millivolt and resulted in calculations of milliwatt. Observing this,
as well as the order of magnitude the recorded results differ, is enough of an indicator that
the USB-Power-Meter is absolutely unsuitable for this type of measurements. Further
reasons are that the USB-Power-Meter is unable to measure only the microcontroller
alone, but measures even before the voltage regulator and including any peripherals that

26

6.3. Networking

are included on the CC2538 Development Kit [urla]. Therefore the following observations
will be made based on the results obtained from the DSO.

As to be expected, measurements with active networking have increased power consump-
tion compared to the GPIO application due to the use of the RF hardware. While Riot
OS does have a slightly higher power consumption in this case, it does not seem to be
significant and is most likely a measurement error, introduced by recording a singular
value (see figure 6.2) (opposed to obtaining an average over time by means of numeric
integration).

Figure 6.2: Power consumption measurement using a DSO connected to a shunt over
a measurement amplifier circuit (see figure 4.6). Measurement errors: underestimation
(left), overestimation (right)

An interesting fact is that Contiki [urlb] exhibits vastly lower power consumption in
the GPIO application than the other two. It appears that Contiki [urlb] makes use of
some power saving features (e.g., CPU sleep modes) by default. According to respective
documentation, it seems that equivalent features should be supported in both, Riot
OS [urlc] as well as Zephyr [urld], but are either not implemented or enabled.

6.3 Networking
Following remarks apply to all of the networking experiments.

The network setup described in section 5.2 was difficult to implement in Riot OS [urlc]
and Contiki [urlb], because both generally seem to assume that router, routing protocols
and auto-configuration should be used. Due to these assumptions, there was few to no
documentation or examples regarding this configuration, requiring significant amount of
trial and error to archive the desired results. Zephyr [urld] in contrast to that allowed
simple configuration of the desired IPV6 addresses through its configuration system.

The results in the following sections are presented in multiple ways to allow for better
interpretation:

• tabular for readability and exact results,

• side by side of

27

6. Results

– either a combined box- or bar-plot, allowing for direct comparison
– a set of separate box-plots, highlighting the sample distribution

Also consider that these experiments have been carried out under very favorable conditions
(i.e., low distance, low interference). While this is very important and should definitely
not be neglected for real world deployments, it has been considered out of scope of
this work, which is more focused on the maximum achievable performance under good
conditions. A considerable amount of work exists that focuses on reliable low power
transmission for IoT applications.

Out of interest and given opportunity an additional experiment was conducted, where
measurements were taken using timestamps attached to serial output of the device, as
briefly mentioned in section 3.3. The timestamps were created on the computer, using a
tool called ts from a software package called moreutils. Using the command ts "[%.s]"
allows prefixing of the input with system local timestamps, which in theory could be
used to make relative measurements.

Figure 6.3 shows 2 sets of measurements taken per operating system for throughput, using
1000 bytes per packet and 100KB total, as described in section 5.2. The numerical results,
compared to the ones obtained using external signaling and a DSO (see section 6.3.2,
section 6.3.2), are very similar and appear to be good indicators. Upon closer inspection,
the distribution of measurement results visible in figure 6.3 hints at some problems.
Measurements taken for Zephyr [urld] show a very small interquartile range, with some
very atypical outliers, all of which sharing almost the same value. Similar cues can be
found for Contiki [urlb], even though the interquartile range is much larger, it almost
matches the range from minimum to maximum. Additionally, the median is located close
to the maximum instead of somewhere in the middle. Most likely due to buffering, only
a few discrete values have been sampled for at least some of the operating systems. It
can be concluded that this approach (i.e., attaching timestamps to serial textual output)
is particularly susceptible to errors of this kind. Furthermore, it has implications on
possible experiment designs that would use a serial connection to a computer (e.g., to
emulate a network interface) which would then perform measurements.

Figure 6.3: Network throughput measured using timestamps generated on serial output

28

6.3. Networking

6.3.1 Latency

The results presented in table 6.4, figure 6.4 and figure 6.5 are obtained from the
experiment described in section 5.2.1.

As to be expected, the latency is shorter for smaller packets. Neglecting the exact amount
of overhead, effectively assuming that both fit in a single IEEE802.15.4 frame, the latency
of a 100 byte UDP packet would be the same as for a 50 byte UDP packet. Conducting
a thought experiment, the 10 times larger 1000 byte UDP packet should take (at least)
10 times as long, which seems to hold true.

While the total difference in results seems rather small, an interesting observation can be
made comparing the 2 different experiment configurations with another. Zephyr [urld]
had the best result for smaller packets, but the worst for larger ones. Almost the inverse
seems to happen for Riot OS [urlc], which is close to the worst result, obtained from
Contiki [urlb] for smaller packets, but has significantly better results for larger packets
than both of its competitors.

The obtained results can be compared with the theoretical analysis provided by [LDMM+05,
Table3, 16 bit address, no ack] and appear to be plausible.

Latency [ms]
1 Meter @ 0 dbm

50 byte packets 1000 byte packets
Zephyr Riot OS Contiki Zephyr Riot OS Contiki

minimum 5,16 6,36 6,92 68,40 55,20 68,00
maximum 5,20 6,52 6,92 68,80 55,60 68,00
median 5,16 6,36 6,92 68,80 55,20 68,00

Table 6.4: Network latency measurement results, combined

Figure 6.4: Network latency, 50 byte packets, comparison (left) and distribution (right)

29

6. Results

Figure 6.5: Network latency, 1000 byte packets, comparison (left) and distribution (right)

6.3.2 Throughput

The results presented in table 6.5, figure 6.6 and figure 6.7 are obtained from the
experiment described in section 5.2.2.

As to be expected, the throughput for smaller packets is worse than for larger packets,
due to the overhead introduced by IPV6 and UDP. The 50 byte UDP packets perform
particularly bad due to the inefficient use of IEEE802.15.4 frames, which can be up to
125 bytes large, whereas the 1000 byte UDP packets fill these frames completely except
the last fragment.

In [LDMM+05, Table2, 16 bit address, no ack], the theoretical maximum throughput of
raw data was determined to be 151596bps == 18.9495kilobyte/s. The result obtained
for 1000 byte UDP packets almost reaches these numbers, with Contiki [urlb] reaching
76.04%, Zephyr [urld] 80.42% and Riot OS [urlc] 92.56%. The difference is most likely
due to protocol overhead and unreliable data transmission.

Throughput [kilobyte/s]
1 Meter @ 0 dbm

50 byte packets
50 kilobyte total

1000 byte packets
100 kilobyte total

Zephyr Riot OS Contiki Zephyr Riot OS Contiki
minimum 8,20 8,20 7,90 14,12 15,53 14,20
maximum 8,28 9,26 7,96 15,24 18,25 14,79
median 8,30 9,20 7,90 15,24 17,54 14,41

Table 6.5: Network throughput measurement results, combined

30

6.3. Networking

Figure 6.6: Network throughput, 50 byte packets, comparison (left) and distribution
(right)

Figure 6.7: Network throughput, 1000 byte packets, comparison (left) and distribution
(right)

6.3.3 Reliability

The results presented in table 6.6, figure 6.8 and figure 6.9 are obtained from the
experiment described in section 5.2.3.

As to be expected, using larger UDP packets yields greater loss, because the entire UDP
packet is lost if a single fragment is lost.

Assuming p is the probability to lose any IEEE802.15.4 frame, the probability q to not
loose any of n frames can be calculated as (1− ((1− p)n). This formula can be used to
linear interpolate the results obtained from 50 byte UDP packets (p← 0.0065) to 1000
byte UDP packets (n← 11). The calculated results are very similar to the experimental
results for 1000 byte UDP packets for Zephyr [urld] and Riot OS [urlc], but differ for
Contiki [urlb], having higher loss rate in the experiments performed.

Surprisingly, the best and the worst result, for both 50 and 1000 byte UDP packets, differ
by approximately factor 2.

31

6. Results

Loss [%]
1 Meter @ 0 dbm

50 byte packets
100 kilobyte total

1000 byte packets
100 kilobyte total

Zephyr Riot OS Contiki Zephyr Riot OS Contiki
minimum 0,60 0,10 1,20 4,00 6,00 16,00
maximum 3,55 1,25 1,50 37,00 12,00 28,00
median 0,65 0,95 1,25 9,00 8,00 19,00

Table 6.6: Network loss measurement results, combined

Figure 6.8: Network loss, 50 byte packets, comparison (left) and distribution (right)

Figure 6.9: Network loss, 1000 byte packets, comparison (left) and distribution (right)

6.4 Security - Memory Protection

Zephyr [urld] provides an option to split application memory and kernel memory, as
well as support for a Memory Protection Unit (MPU) on specific CPUs.

Riot OS [urlc] does not seem to have special support for memory protection at the

32

6.5. Multitasking

moment, but there has been preliminary work1 for supporting MPUs.

According to [DGV04], Contiki [urlb] is specifically not designed to support memory
protection, though source code shows that some CPUs have specific implementations
that seem provide relevant features.

6.5 Multitasking

In the context of this work and considering the typical microprocessor available in current
hardware, multitasking is understood as the ability to define multiple entry points to
application code that can run interleaved depending on certain conditions (e.g., input
data being available).

All of the operating systems compared support a form of multitasking, however there are
important differences.

Zephyr [urld] and Riot OS [urlc] provide the widely known and used concepts of
threads and typical synchronization primitives (e.g., semaphores, mutexes). Both of
the aforementioned operating systems are capable of cooperative as well as preemptive
multitasking.

In contrast to that, Contiki [urlb] uses Protothreads2 [DSVA06] as their primary concept
of multitasking. This has implications on how application code needs to be written, but
can have advantages on severely resource constrained systems (i.e., less CPU and RAM
overhead). However, an auxiliary library3 provides functionality for the more typical
concept of threads.

6.6 Modularisation & Hardware Support

Due to the very different structure and dimensions of modularisation described it is
difficult to make a general comparison. For this reason, the general structure and quantity
are described loosely for each of the compared operating systems below. Please note that
the numbers below are extracted from the software repositories by counting indicators
(e.g., directories, specific strings) and are very likely to be inexact or even wrong due to
irregularities in project structures.

Zephyr [urld] structures modules in its software repository by CPUs, boards, and drivers.
CPUs are grouped by architecture and family. Common drivers are grouped by their
purpose (e.g., GPIO, I2C, SPI, PWM). At the time of writing, there were 7 architectures4,
with a total of 81 CPUs / CPU-families, 134 boards and 177 drivers in 37 subgroups. This
1https://github.com/RIOT-OS/RIOT/issues/3284
2http://contiki.sourceforge.net/docs/2.6/a01802.html
3https://github.com/contiki-os/contiki/wiki/Multithreading
4arc, arm, nios2, riscv32, x86, x86_64, xtensa, (posix was not included here, since it rather describes an
interface than a CPU)

33

https://github.com/RIOT-OS/RIOT/issues/3284
http://contiki.sourceforge.net/docs/2.6/a01802.html
https://github.com/contiki-os/contiki/wiki/Multithreading

6. Results

information has been obtained by counting the respective directories or configuration
files5. Configuration of an application is managed via Kconfig6, which has different
front-ends available.

Riot OS [urlc] is structured by CPU-families, boards and drivers. At the time of
writing, there were 49 CPUs from 5 architectures7, 143 boards and 100 drivers. This
information has been obtained by counting the respective directories or configuration
files8. Configuration of an application is managed via variables declared in a Makefile,
split into modules to be included and configuration options (identified by documentation).

Contiki [urlb] is structured by a unclear mix of CPU-families and architectures, platforms
and add-on devices. At the time of writing, there were a not exactly enumerable amount
of CPUs (estimated 30+) from 7 architectures9, 64 platforms and 9 devices. This
information has been obtained by counting the respective directories or configuration
files10. Configuration of an application is managed via setting variables or pre-processor
directives in the Makefile or an included c-header file.

From the experience gained implementing several of the experiments within the operating
systems, the more declarative approach used in Zephyr [urld] was very convenient in
terms of configuration and dependency management. The included configuration tool
(available using "make menuconfig") listed all possible configurations options and manages
dependencies. Opposed to that, the current configuration, available options or functional
interdependence was often unclear when working with Riot OS [urlc] and Contiki [urlb].

Furthermore, during the work on Zephyr [urld], it has shown that the strong modulari-
sation approach is conducive to platform development, reusability and combinability. In
contrast to that, in Contiki [urlb] there were problems when trying to configure some
options that had default values and were not meant to be changed. For both, Riot
OS [urlc] and Contiki [urlb] the available configuration capabilities and options had to
be extracted from either source or separately available documentation.

5Kconfig.soc for CPUs, Kconfig.board for boards, Kconfig.* for drivers
6https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
7arm, xtensa, x86, x86_64, 8051 variant
8directories for CPUs and boards, Makefiles for drivers
9avr, arm, 6502, 8051, MIPS M4K, x86, x86_64
10directories and Makefiles for CPUs, Makefiles for platforms, directories for devices

34

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

CHAPTER 7
Conclusion

This work showed differences and similarities in the three operating systems Zephyr [urld],
Riot OS [urlc] and Contiki [urlb] in regard to various generalized performance criteria
with a focus on wireless networks. Both, characteristics relevant to the selection of
software as well as problems with some evaluation criteria and methods have become
apparent.

In regard to the evaluation goals described in section 1.4, the comparatively young
operating system Zephyr [urld] has shown to be mostly on par with its competitors
for quantitative criteria, especially showing advantages for qualitative criteria (e.g.,
configuration, modularisation).

Riot OS [urlc] has performed very well in network performance, with some drawbacks
in configuration and application implementation.

While Contiki [urlb] as the oldest competitor has a very rich and stable environment
(e.g., network simulator, development virtual machine), it had small drawbacks in many
areas (e.g., worst network performance, unclear modularisation structure, no first class
support for platform independent interrupt handling).

The most important fact to take away from this work is: general comparison of operating
systems is hard. This is due to a multitude of reasons, some of which are:

• Difference in (typical) use-case (e.g., hardware platforms, applications). Likely due
to the age difference of the competitors, they seem to focus on slightly different
hardware and applications.

• Difference in usage (e.g., configuration, modularisation, writing an application).
This makes it hard to configure the competitors as "comparable". Experiment
results might be straight out false if the configuration is incomplete or wrong.

35

7. Conclusion

• Difference in (default) configuration (e.g., network setup, buffer sizes, power sav-
ing). Certain defaults, originating in assumptions on use cases, can influence
several evaluation criteria. Especially for networking performance, there are many
different configurations that work, but perform very differently depending on vari-
ous conditions such as the surrounding environment, the hardware platform and
application.

• Difference in design (e.g., memory allocation, multitasking, modularisation). The
way a functionality is intended to be used, described by an interface, can make a
huge difference. For example, functionality to send data could either „consume“
or „copy“ given input. The earlier can be faster and more efficient by avoiding
unnecessary copies, while the later might increase ease of use by providing an
additional layer of abstraction.

While it does not seem impossible to find, document and conduct general comparisons,
it needs even greater effort. Also, the criteria, methodology and methods should be
discussed by a larger group, to avoid pitfalls and achieve a broader view.

This work concludes that while general comparisons give very good hints at whether or
not an operating system can suite specific needs, application specific work is still very
much required to find out if it actually does.

36

Glossary

application Possible or intended purpose of an embedded system (e.g., a motor speed
controller), including the therefore relevant hardware (e.g., motor) and software
(e.g., controller software). 1–4, 7, 9, 15, 16, 19–21, 25–28, 33–37

application software Software component (possibly running within an operating sys-
tem) implementing the application. Also referred to as application task, user
task, user software or user program. 3, 4, 18, 21, 22

compiler Software to convert textual program representation into machine executable
representation. 15

embedded system A conglomerate of hardware and software components tightly cou-
pled to its application. 1, 3, 4, 7, 14, 37

GPIO Multipurpose hardware that can be used as either input or output. Present in
many microcontrollers. 3, 7, 10, 21, 22, 26, 37

Makefile Software configuration stored in a file, describing various steps to generate
desired output. 34

mark-space ratio Ratio between the two states of an alternating digital signal. 23

microcontroller An integrated circuit that includes a processing unit (i.e., a micro-
processor) as well as peripherals such as GPIOs or application specific hardware
interfaces. 1, 4, 7, 11, 21, 24, 26, 37

microprocessor An integrated circuit that usually provides only processing capabilities
and communication interfaces. 33, 37

network Set of components, either physically or virtually connected, able to exchange
information with each other. 5, 7, 18, 20, 35

operating system Software that provides common services and functionality as an
environment for other software to be built and run on. 1–5, 7, 10, 11, 14, 15,
17–22, 25, 26, 28, 33–38

37

OSI Network Model Characterization and standardization of communication func-
tions in 7 layers. 18–20

real-time Terminology commonly used in the context of operating systems used to
describe that a certain functionality (implemented in hardware or software) complies
with defined timing constraints (as opposed to the popular misconception and misuse
of the term for something that is fast). 7

38

Acronyms

ADC Analog Digital Conversion 13

CPU Central Processing Unit 2, 3, 18, 21, 24, 25, 27, 32–34

DSO Digital Storage Oscilloscope 12, 13, 21, 22, 26–28

GPIO General Purpose Input Output 18, 20, 21, 23, 27, 33

I2C Inter-Integrated Circuit 3, 11, 33

IoT Internet of Things 1, 2, 5, 7, 28

IPV6 Internet Protocol Version 6 18, 27, 30

MAC Media Access Control 19

MPU Memory Protection Unit 32, 33

PWM Pulse Width Modulation 3, 33

RAM Random Access Memory 2, 3, 11, 15, 16, 18, 26, 33

ROM Read Only Memory 2, 3, 11, 15, 16, 25, 26

SPI Serial Peripheral Interface 3, 11, 33

TCP Transfer Control Protocol 18, 19

U(S)ART Universal (Serial) Asynchronous Receiver Transmitter 3, 11, 20

UDP User Datagram Protocol 18, 19, 29–31

USB Universal Serial Bus 12

39

Bibliography

[70c07] Cortex M3 Technical Reference Manual. Technical report, ARM Infocenter,
6 2007.

[71c13] CC2538 System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and
ZigBee R©/ZigBee IP R© Applications - User’s Guide. Technical reference,
Texas Instruments, 5 2013.

[72s17] SmartRF06 Evaluation Board (EVM) - User’s Guide. Technical reference,
Texas Instruments, 5 2017.

[AC09] Rafael Vidal Aroca and Glauco Caurin. A real time operating systems
(RTOS) comparison. Sao Carlos, Brasil, 2009.

[BHG+13] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and
Thomas Schmidt. RIOT OS: Towards an OS for the Internet of Things.
In Computer Communications Workshops (INFOCOM WKSHPS), 2013
IEEE Conference, pages 79–80. IEEE, 2013.

[DGV04] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight
and flexible operating system for tiny networked sensors. In Local Com-
puter Networks, 2004. 29th Annual IEEE International Conference, pages
455–462. IEEE, 2004.

[DSVA06] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Pro-
tothreads: Simplifying event-driven programming of memory-constrained
embedded systems. In Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 29–42. Acm, 2006.

[FG13] Hossam Mahmoud Ahmad Fahmy and Salma Ghoneim. Performance
comparison of wireless networks over IPv6 and IPv4 under several operat-
ing systems. In Electronics, Circuits, and Systems (ICECS), 2013 IEEE
20th International Conference, pages 670–673. IEEE, 2013.

[LBS] Cheng-Han Lee, Salman Abdul Baset, and Henning Schulzrinne. TCP
over UDP.

41

[LDMM+05] Benoît Latré, Pieter De Mil, Ingrid Moerman, Niek Van Dierdonck, Bart
Dhoedt, and Piet Demeester. Maximum throughput and minimum delay
in IEEE 802.15.4. In International Conference on Mobile Ad-Hoc and
Sensor Networks, pages 866–876. Springer, 2005.

[TA09] Su Lim Tan and Tran Nguyen Bao Anh. Real-time operating system
(RTOS) for small (16-bit) microcontroller. In 2009 IEEE 13th Inter-
national Symposium on Consumer Electronics, pages 1007–1011, May
2009.

[urla] CC2538DK. http://www.ti.com/tool/cc2538dk/. Accessed:
14.07.2017.

[urlb] Contiki. http://www.contiki-os.org/. Accessed: 13.07.2017.

[urlc] RIOT. https://riot-os.org/. Accessed: 13.07.2017.

[urld] Zephyr Project. https://www.zephyrproject.org/. Accessed:
13.07.2017.

[VDKGGT15] Erik Van Der Kouwe, Cristiano Giuffriday, Razvan Ghituletez, and An-
drew Stuart Tanenbaum. A methodology to efficiently compare operating
system stability. In High Assurance Systems Engineering (HASE), 2015
IEEE 16th International Symposium, pages 93–100. IEEE, 2015.

[WSS09] Heiko Will, Kaspar Schleiser, and Jochen Schiller. A real-time kernel for
wireless sensor networks employed in rescue scenarios. In Local Computer
Networks, 2009. LCN 2009. IEEE 34th Conference, pages 834–841. IEEE,
2009.

42

http://www.ti.com/tool/cc2538dk/
http://www.contiki-os.org/
https://riot-os.org/
https://www.zephyrproject.org/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Evaluation Criteria
	Problem Statement
	Aim of the Work
	Structure of the Work

	State of the Art
	Methodology
	Quantitative Criteria
	Qualitative Criteria
	Indirect Measurements

	Methods
	Hardware Platform
	Time Difference Measurement
	Power Consumption
	Memory Usage

	Implementation
	Software Versions & Configuration
	Networking
	Resource Usage
	GPIO Capabilities

	Results
	GPIO Capabilities
	Resource Usage
	Networking
	Security - Memory Protection
	Multitasking
	Modularisation & Hardware Support

	Conclusion
	Glossary
	Acronyms
	Bibliography

