
Implementation of an OPC UA
Server for a Robot Controller

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Hannes Brantner
Matrikelnummer 01614466

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Univ.Ass. Dipl.-Ing.(FH) Dieter Etz, MBA

Wien, 30. September 2019
Hannes Brantner Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Implementation of an OPC UA
Server for a Robot Controller

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Hannes Brantner
Registration Number 01614466

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Univ.Ass. Dipl.-Ing.(FH) Dieter Etz, MBA

Vienna, 30th September, 2019
Hannes Brantner Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Hannes Brantner

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. September 2019
Hannes Brantner

v

Acknowledgements

I must thank Ao. Univ.-Prof. Dr. Wolfgang Kastner for handing me out a topic for the
bachelor thesis immediately after asking him in the oral exam of Distributed Automation
Systems. Thanks also to Dipl.-Ing. Thomas Frühwirth, who gave me an introduction
to OPC UA and helped me when having problems in the lab. I also must thank ORev
Heinz Deinhart, BSc who provided me with lab access and helped me with software
license problems. Special thanks to Univ.Ass. Dipl.-Ing.(FH) Dieter Etz, MBA for his
many wise tips and help regarding the implementation of the OPC UA Server and for
establishing communication to Dr. Franz Eder who is the head of robotics and drive
technology at GEVA Elektronik-Handels GmbH in Baden and provided us with many
helpful manuals and documents to speed up the implementation process. I also want to
thank Bernhard Müllner, BSc for providing support regarding the flashing and execution
of robot programs. Last but not least, I have to thank my whole family for the fantastic
support throughout my whole study time.

vii

Abstract

As the OPC UA standard is quickly spreading in the field of industrial automation,
the need arises to integrate existing devices that are non-compliant with this standard.
The integrated device, in our case, was an industrial robot system that offered a telnet
interface with proprietary commands. As the manipulation of proprietary robot controller
software is tricky, an additional single-board computer was used as a gateway to host the
OPC UA server and to wrap its services to proprietary telnet commands understood by
the robot controller. If the developers use the right requisites, software for gateway devices
can be implemented with reasonable effort. The advantages of complete interoperability
are the rapid and painless exchange of information between all integrated devices and
therefore, also between different levels of the automation pyramid.

ix

Contents

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 Aim of the work . 2
1.4 Methodological approach . 2

2 Communication platform 3
2.1 Possibilities of machine-to-machine communication 3
2.2 Basics of OPC UA . 4
2.3 OPC UA Server . 7
2.4 OPC UA Client . 9
2.5 Address Space . 10
2.6 Information Modeling . 13
2.7 Data Typing . 15
2.8 OPC UA Companion Specifications . 16
2.9 OPC UA over TSN . 18
2.10 Comparison of existing approaches to migrating non-compliant devices 19

3 Explanation of software, models, and interfaces 21
3.1 Programming language . 21
3.2 OPC UA server framework methods . 21
3.3 Creation of a new OPC UA namespace 24
3.4 Proprietary telnet commands of the robot controller 25
3.5 Validation of the implementation . 28
3.6 Solution to move the robot in real-time 28

4 Implementation 31
4.1 Implementation overview . 31
4.2 Hardware . 32
4.3 Program structure of the implementation 33
4.4 Functions of the implementation . 37

xi

5 Critical reflection 45
5.1 Comparison with related work . 45
5.2 Discussion of open issues . 45

6 Summary and future work 47
6.1 Summary . 47
6.2 Future Work . 47

7 Appendix 49
7.1 Bash scripts . 49
7.2 Python sources . 50
7.3 Robot programs . 62

List of Figures 63

List of Tables 65

Bibliography 67

CHAPTER 1
Introduction

1.1 Motivation
Many industrial devices only offer proprietary communication interfaces. All these differ-
ent interfaces lead to a complicated exchange of information and a lot of implementation
work to do so. The high hurdle to exchange information can limit the performance of an
entire plant because some essential communication channels might not get implemented
due to high costs. Out of this dilemma arises the demand for a common standard, that
unifies the spoken language between all devices in the automation pyramid. Accessible
communication makes painless information exchange possible and helps to increase the
utilization of many industrial devices using a higher amount of information provided.
The ultimate goal is to achieve complete interoperability. The motivation came up to
integrate the industrial robot system in our lab into the interoperable world of OPC UA
to test the rising standard OPC UA in the interoperability domain on a small scale and
check the feasibility to integrate devices initially non-compliant with this standard.

1.2 Problem statement
The initial problem was to write software for a single-board computer that acts as
a gateway between the proprietary telnet commands of the robot controller and the
high-level services offered by the OPC UA server which is also hosted on this single-board
computer. At start-up, the single-board computer should wait for the availability of the
robot controller’s telnet interface and should then start offering its services. The software
must at least support separate resuming and stopping of all robot programs currently
loaded into the robot controller. Furthermore, there must be a way to ask the controller
if it is currently idle or executing a robot program. All these features have to be provided
using OPC UA functionalities via the hosted OPC UA server. Figure 1.1 shows a simple
SysML block diagram of the target system.

1

1. Introduction

«block»
Industrial robot system

with OPC UA server

«block»
Industrial robot system

with OPC UA server

«block»
Industrial robot system

«block»
Industrial robot system

«block»
Single-board computer

hosting the OPC UA server

«block»
Single-board computer

hosting the OPC UA server

«block»
Industrial robot

«block»
Industrial robot

«block»
Robot controller

«block»
Robot controller

Figure 1.1: Block diagram of the target system

1.3 Aim of the work
The target of this thesis is to show the feasibility of integrating non-compliant devices
into the OPC UA world with reasonable effort if the right requisites are used. This thesis
should also show how the software used during the implementation process works and
that the implementation of basic OPC UA features can be achieved with reasonable effort.
Another aim is to demonstrate that legacy hardware can be made OPC UA compliant
using gateway devices as described in this thesis. This option for retrofitting eliminates
the need to buy new devices with OPC UA capability.

1.4 Methodological approach
The methodological approach is to study the manuals regarding the robot controller first.
Then the telnet interface of the robot controller is going to be investigated, and many
different commands with many different parameters should be issued to the controller
to get a deep understanding, how this interface works. After this task, an OPC UA
server framework should be chosen to speed up the implementation process and to
enable working on a high abstraction level. This framework will also determine the
programming language. The documentation regarding the OPC UA framework must be
studied in-depth, and then the OPC UA services should be set up on the server and later
called by an OPC UA client. The last task is to call the most suitable robot controller
commands after activating the corresponding OPC UA service. The final application is
then loaded to the single-board computer, and the whole system should then be tested
extensively.

2

CHAPTER 2
Communication platform

2.1 Possibilities of machine-to-machine communication
The most common standards used for machine-to-machine communication are MQTT
(Message Queuing Telemetry Transport), OPC UA, OPC Classic, and MTConnect
(MT stands for manufacturing technology). The mentioned technologies are compared
regarding interoperability, scalability, transportability, modeling, extensibility, conformity,
and security. OPC UA and MQTT dominate the interoperability domain because they
can be used on any system. OPC Classic is restricted to Windows and MTConnect is a
read-only standard, meaning that it is only used to offer collected data from the shop floor
via a RESTful interface. OPC UA and MQTT are also dominating the topic scalability
because of the technologies support both simple and complex data structures. MQTT
offers the highest data transmission rate. OPC UA dominates the modeling domain as
the concept of a node guarantees extensibility and the feature to structure large amounts
of data. OPC UA and OPC Classic products are tested by the OPC Foundation to
ensure conformity with the standards. There is no such mandatory testing procedure for
the two other standards. OPC UA is the only technology in the comparison that has also
standardized the security aspects. As most of the points in the comparison are headed
by OPC UA; this technology was chosen to work within this thesis. This paragraph is
a summary of the comparison in [1, page 27-28]. Table 2.1 shows the used comparison
table, which is a recreated and translated version of the original table from [1, page 27].

3

2. Communication platform

Property

Interoperability
high due to

base model
Windows only via adapters Pub/Sub

Scalability individual
single

specification
shop floor only almost arbitrary

Security
several

concepts
individual

HTTPS

possible

not in the

protocol

Transportability
multiple

technologies

COM

technology
HTTP

high

performance

Modeling
complex

models

single

specification
rigid model

arbitrary

structures

Extensibility
Pub/Sub,

discovery
pronounced agent function Pub/Sub

Conformity
multi-stage

tests

multi-stage

tests
non-existent open standard

Degree of Popularity
has risen in

recent years
high in Europe

primarily in the

USA
IoT

Use in companies
clients and

simple servers

decreases due

to OPC UA
in the USA

for sensors,

simple devices

OPC UA OPC Classic MTConnect MQTT

Table 2.1: Comparison of machine-to-machine technologies [1, page 27]

2.2 Basics of OPC UA

2.2.1 OPC UA is not a protocol

It is a common misconception that OPC UA is just another communication protocol.
Although OPC UA defines how the conversation between two parties starts and ends, and
how to structure the message, it also systemizes how to model data, systems, machines,
and entire plants. It is all about complete interoperability, and there is the ability to
model everything. The technology allows to change the way data is organized, and
information is presented. The most significant advantage of OPC UA as mentioned in [2,
page 9] is that it organizes processes, systems, data, and information in a way that is
unique to the experience of the industrial automation industry. UA is very scalable so
that it can be used in embedded systems and large enterprise servers. The standard
also supports state of the art security. It is the successor to OPC, which is now referred
to as OPC Classic, but OPC UA outperforms the old standard in terms of platform
independence, sophisticated data models, and security concerns. As mentioned in [2,
page 26], OPC UA is still a developing technology, and changes will be made as feedback
from adopters arrives. All the statements in this paragraph with no source specification
can be found in [2, page 20-21].

2.2.2 Supported communication paradigms

An OPC UA server can be configured to serve an arbitrary number of clients. That is not
true for many other industrial automation protocols like Modbus TCP, Modbus RTU,
EtherNet/IP, and BACnet. Once a client/master takes ownership of the server/slave in

4

2.2. Basics of OPC UA

these technologies, no other client or master can access it. This drawback is an advantage
for OPC UA, which does not have this limitation. The core difference is that an OPC UA
server can allow clients to discover the level of interoperability it supports dynamically.
This level of interoperability means the discovery of services, the supported levels of
security, and even type definitions for custom data and object types, for example. The
above statements in this paragraph were taken from [2, page 22]. The newest version of
OPC UA also supports a publisher-subscriber model for data exchange, which allows an
encrypted one-to-many data transfer that was not possible beforehand. If a real-time
capable technology as layer 2 of the OSI (Open Systems Interconnection) model is used,
this data transfer can also be real-time capable and would stand in competition to many
other factory floor protocols. Such a technology regarding layer two will be described
in a section below. The claims about the publisher-subscriber model are taken from [3,
page 66-67].

2.2.3 Platform-independent and scalable technology

The only requirements for OPC UA are the Ethernet capability and to know the current
date and time. Current implementations of OPC UA are deployed on everything from
small chips with less than 64K of code space to large workstations. As there are different
layers of security available, one can choose an encoding mechanism that matches the
hardware capabilities of the device. The scalability also applies to the address space of
an OPC UA server. It can be comprised of a few objects with few variables or a complex
set of interrelated objects in the case of a whole industrial plant. As OPC UA does
not define expected behavior in the data link layer of the OSI model, new technology
in this layer can be integrated seamlessly. OPC UA also integrates well with other IT
systems because it supports the technologies SOAP and HTTP. SOAP describes the
XML-based message format for communicating with Web Services. The term stood for
“Simple Object Access Protocol”, but it is no acronym anymore because SOAP 1.2 is
not simple and not suitable to access objects. A SOAP message is an XML document,
which has a root element called a SOAP envelope that specifies the version of the SOAP
specification. It has up to two child elements called SOAP header and SOAP body. The
SOAP header is optional, and its content is not standardized; in most cases, the header
contains security-relevant information. The SOAP body is mandatory and contains
the payload of the message, which is an XML document itself and not standardized.
The structure of the XML document in the body must be known in advance by both
communication partners. The statements regarding SOAP were taken from [4, page 84,
87-90]. The following listing [4, page 94] shows a necessary SOAP request that calls a
procedure remotely by handing over the procedure name "bestellen" and the argument
"1234":

5

2. Communication platform

<?xml version=" 1 .0 " ?>
<env:Envelope xmlns:env=" h t tp : //www.w3 . org /2003/05/ soap−

enve lope ">
<env:Header>

<t : t r a n s a c t i o n
xmlns : t=" h t tp : // th i rdpar ty . example . org /

Auftragsabwicklung "
env : encod ingSty l e=" h t tp : // example . com/ encoding "
env:mustUnderstand=" true " />

</env:Header>
<env:Body>

<m:be s t e l l e n
env : encod ingSty l e=" h t tp : //www.w3 . org /2003/05/ soap−

encoding "
xmlns:m=" ht tp : //ws . soa−buch . de/Annahme/ ">

<m:nr>
1234

</m:nr>
</m:be s t e l l e n>

</env:Body>
</ env:Envelope>

Listing 2.1: Structure of a SOAP request

The response to this request would also be an XML-based SOAP message. Encoding in
the OPC UA architecture is done using XML encoding or OPC UA Secure Conversion,
which is an efficient, binary encoding for devices with limited resources. The intellectual
property in the above sentences without source specification in this paragraph is taken
from [2, page 22-23].

2.2.4 Address space model and information modeling

The fundamental building block of an OPC UA address space is a node. A node
is described by its attributes/characteristics and interconnections to other nodes via
references and relationships. All nodes share common attributes with other nodes in its
NodeClass, where nodes are instantiations of its NodeClass. This concept is comparable
to the object-oriented programming paradigm in the programming language domain.
NodeClasses include the Variable NodeClass for defining variables, Reference NodeClass
for defining references to other nodes and the Object Type NodeClass which provides
type information for objects. A node can have up to twenty-two possible attributes.
Some mandatory attributes are NodeClass, browse name, display name, and Node Id.
An optional attribute would be the value attribute which is instantiated in nodes of
the Variable NodeClass. The superior capabilities of nodes lead to the capability to
form hierarchical relationships that represent systems, processes, and information. The

6

2.3. OPC UA Server

sum of all the nodes is called the information model, which can be documented and
communicated as an XML schema. It is the first technology of its kind to load, transport
and references those information models in a running system. The above intellectual
property was taken from [2, page 23-24].

2.2.5 Certifiable standard

There is a process to validate an OPC UA implementation, and there is an electronic
test certificate being transmitted to the server in case of a successful compliance test.
This certificate is documented evidence for the status of this server being a certified OPC
UA device. Due to the scalable nature of OPC UA, different profiles exist that support
different features and services. The Nano Profile is the profile supporting the least amount
of functionality and services, and the Standard Profile supports the most amount of
functionality and services. Each profile is composed of small sets of certifiable features
called Conformance Units which are tested individually by the OPC UA Conformance
Test Tool. This test tool also takes the supported transports and security profiles into
account. If every Conformance Unit was tested successfully, the whole implementation
is approved. The above statements in this paragraph were paraphrased from [2, page
25-26].

2.3 OPC UA Server

2.3.1 Basics of an OPC UA server

Just like other servers, OPC UA servers are endpoint devices that measure and digitize
inputs and transform outputs to their analog equivalents. As mentioned above, an OPC
UA server supports specific features of the OPC UA specification which are described
as a profile. The profile also identifies the transport to be used, for example, HTTPS,
HTTP, OPC UA Binary TCP or something else. The profile also determines the type
and level of security supported by the server. Every server implements an address space
which was also described above. Client requests are issued to the address space of the
server or the server’s OPC UA communication stack. The first type of request could be a
read operation on a variable, a browse operation on the address space, adding or deletion
of nodes or a request to get historical data and diagnostics. Keep in mind that only
the services specified in the server’s profile are supported. The other type of requests
identify the type and level of security available or the supported transports. Supporting
only one transport is enough for a server. This information is essential when creating
new connections and sessions. All OPC UA servers support a discovery service that
clients use to discover OPC UA servers that are available in the current network. When
the discovery server is integrated into the same platform as the application server, it is
called the Local Discovery Server (LDS). If the discovery server catalogs available servers
in its address space, it is known as a Global Discovery Server (GDS). There is also an
LDS with a multicast extension, which is called LDS-ME. The above paragraph was a
summary of [2, page 27-35].

7

2. Communication platform

2.3.2 OPC UA server software architecture

The software architecture of an OPC UA server consists of the following three parts:

• System - The system provides the operating system and the transport layer for
data communication.

• OPC UA software stack - This stack takes the client messages, for example, from
the TCP/IP layer and tries to authenticate the client if a security strategy is active.
The request is then decoded and further processed by so-called service sets. After
processing is complete, a response is created, encoded, securitized, and then sent
to the client. This part of the software architecture also maintains the Session
management.

• User application space - The user application implements the information model
and the OPC UA address space. This program code synchronizes real-world data
to the OPC UA address space, and the real work of the application happens. Also,
output data from the address space are written to the real world outputs. The user
application space also processes method calls from the OPC UA server to start an
electric motor, for example. The interface between the user application and the
OPC UA software stack is called UA Server API.

The above paragraph was a summary of [2, page 30-32].

2.3.3 The Server object

The Server object is a node in a server’s address space and is organized by the Objects
folder object which is itself organized by the Root object which is the top-level object in
an OPC UA address space. This object provides all the identification information of a
device. This object is not mandatory for the low-end Nano Profile. It includes numerous
variables like:

• Server Array - This variable is a set of pointers to remote OPC UA servers that
are referenced in the server’s address space.

• Namespace Array - This variable is a table of all URIs of namespaces used by nodes
in the address space. Index 0 forms the OPC Foundation namespace, index 1 is
the local OPC UA server namespace, and index two and above can be used for
defining nodes of other organizations.

• Server Status - The Server status includes information like manufacturer, product
codes, and software revision.

• Service Level - The quality of the service level is represented as a number from
0 to 255 (best) that clients can use to judge the relative reliability of servers in
redundant server networks.

8

2.4. OPC UA Client

• Auditing - This variable is a Boolean indicating if the server is generating auditing
events.

Some of the variables will be discussed further below. The server object also has four
other important and mandatory objects as components:

• ServerCapabilities - This object contains a list of supported profiles, a list of signed
software certificates from certification testing, the local IDs used for supporting
multiple languages and many other variables. An OPC UA accesses this object first
when connecting to an unfamiliar server to understand the supported functionality.

• ServerDiagnostics - This object contains variables like session count, view count,
subscription counts, session timeout, and many more variables assisting the trou-
bleshooting of the server.

• VendorServerInfo - This object exists to allow vendors to add additional proprietary
information to the Server object.

• ServerRedundancy - This object describes the redundancy capabilities provided by
the server.

The above paragraph was a summary of [2, page 32-33].

2.4 OPC UA Client

2.4.1 Basics of an OPC UA client

The controlling device in the OPC UA architecture is called the OPC UA client. A
controller in almost all architectures sends outputs, receives inputs, and sends command
requests to and from various devices. An OPC UA client furthermore supports the above
described OPC UA discovery process to get the functionalities of a specific server, secure
and authenticated connections, execution of service requests, and configuring notification
send triggers from server to client. Keep in mind that there are no restrictions on how
many clients can be connected to a single server or how many servers can be connected to
a single client. The corresponding services for discovering servers are called Find Servers
for LDS/GDS and Find Servers in Network for LDS-ME. The above statements were
taken from [2, page 36-41].

2.4.2 How clients connect to and access servers

The Get Endpoints request is issued to the server which responses with an array of End-
point Descriptions using the discovered or configured endpoint. An endpoint description
consists of the supported transports, security mode, the server’s application instance
certificate, and the application description for the server. Then an appropriate endpoint

9

2. Communication platform

is chosen. Knowing all relevant information, the client first must establish a connection to
the server using the valid transport and security mode. Second, the client must establish
a secure communication path between itself and the server. This so-called channel is a
long-running, secure, and authenticated connection between the client and the server.
The security key exchange takes place in this step. Certificates signed by Certification
Authorities (CA) provide proof of the client’s and server’s identity. The last step is to
establish a logical connection between the client application and the server application
called a session. These sessions typically have a lifetime, and they must be renewed
from time to time. Sessions do not need active underlying channels and are used for
authorization. The server is allowed to reject the requests corresponding to step two and
three. The above statements were taken from [2, page 39-40].

2.5 Address Space

2.5.1 Node

The address space in OPC UA is simple, incredibly flexible and can easily be stored as
an XML file. Its base element is called a node which is a highly structured data element
consisting of a set of predefined attributes and relationships/references to other nodes.
Processes, systems, and information are represented as objects which are a collection of
nodes. The intellectual property of this paragraph was taken from [2, page 64-69]. There
are a total of eight NodeClasses, which are displayed in Figure 2.1.

10

2.5. Address Space

A
ppendix B

: N
odeC

lasses and A
ttributes

333

Figure 2.1: A class diagram of all eight NodeClasses and their attributes [5, page 333]

The three most important NodeClasses are the Object, the Variable, and the Method
NodeClass. These concepts are known from the object-oriented programming paradigm.
Objects can fire events and have methods and variables. They are used for organizing
and could represent a real-world machine, process, system, or component of it. The root
node is also a node of the Object NodeClass. Nodes of the Variable NodeClass are the
only nodes in OPC UA that mandatorily contain data values. Nodes of the NodeClass
Method represent a method that can be called by the client. The input arguments the
client has to provide, and output arguments the client can expect are specified in the
Method node. The above statements were taken from [5, page 30-31]. Views and events
will not be discussed in this thesis, as they were not used in the implementation.

2.5.2 Attributes

Every node of an OPC UA NodeClass is described by some of the twenty-two predefined
attributes. These attributes can be mandatory, optional, or disallowed for a specific
NodeClass. The figure above shows the available attributes for every NodeClass. The
four mandatory attributes used by all NodeClasses are the NodeId, the NodeClass, the
BrowseName, and the DisplayName. These attributes are displayed as properties of the
BaseAttributes class, which is only a class in the diagram and no NodeClass in the OPC

11

2. Communication platform

UA architecture. The above statements in this paragraph were taken from [2, page 65-71].
A short description of all attributes can be found in Table 2.2.

Appendix B: NodeClasses and Attributes 334

Table B.1 List of Attributes

Attribute ID Description
NodeId 1 The server unique identifier for the node
NodeClass 2 The base type of the node
BrowseName 3 A nonlocalized, human readable name for the node
DisplayName 4 A localized, human readable name for the node
Description 5 A localized description for the node
WriteMask 6 Indicates which attributes are writeable
UserWriteMask 7 Indicates which attributes are writeable by the cur-

rent user
IsAbstract 8 Indicates that a type node may not be instantiated
Symmetric 9 Indicates that forward and inverse references have

the same meaning
InverseName 10 The browse name for an inverse reference
ContainsNoLoops 11 Indicates that following forward references within a

view will not cause a loop
EventNotifier 12 Indicates that the node can be used to subscribe to

events
Value 13 The value of a variable
DataType 14 The node id of the data type for the variable value
ValueRank 15 The number of dimensions in the value
ArrayDimensions 16 The length for each dimension of an array value
AccessLevel 17 How a variable value may be accessed
UserAccessLevel 18 How a variable value may be accessed after taking

the user’s access rights into account
MinimumSam-
plingInterval

19 Specifies (in milliseconds) how fast the server can
reasonably sample the value for changes

Historizing 20 Specifies whether the server is actively collecting
historical data for the variable

Executable 21 Whether the method can be called
UserExecutable 22 Whether the method can be called by the current user

Table 2.2: List of all attributes with a short description [5, page 334]

2.5.3 References

References are links that relate nodes to one another. A reference is of a specific
type and identifies both the source and the target node. These types are specified

12

2.6. Information Modeling

via nodes of the NodeClass ReferenceType. There are hierarchical reference types
like HasComponent, Organizes, and HasProperty, but also non-hierarchical reference
types like HasTypeDefinition. The reference type HasTypeDefinition is used to link
nodes of the Variable and Object NodeClass to their corresponding definition nodes
of the NodeClasses VariableType and ObjectType. The above information was taken
from [2, page 65]. References are also distinguished between symmetric and nonsymmetric
references. A nonsymmetric reference would be the reference type HasEncoding, which
is only valid in the direction of the reference. For example, the custom reference type
IsSiblingOf would be symmetric because the reference is valid from source to target an
vice versa. The information about reference symmetry is taken from [5, page 23-24]. The
hierarchy of all base reference types is shown in Figure 2.2.

Appendix C: Base Information Model Reference

Fig. C.1 ReferenceType Hierarchy

Fig. C.2 DataType Hierarchy

References

HierarchicalReferences NonHierarchicalReferences

HasEventSource

HasNotifier

HasChildOrganizes

AggregatesHasSubtype

HasProperty HasComponent

HasOrderedComponent

HasModellingRule

HasTypeDefinition

HasEncoding

HasModelParent

GeneratesEvent

HasDescription

BaseDataType

Boolean

ByteString

DateTime

DataValue

Diagnostic
Info

Enumeration

Expanded
NodeId

Guid

Localized
Text

NodeId

NumberQualifiedName

String

Structure

XmlElement

Integer UIntegerDouble Float

SByte UInt16 UInt32 UInt64ByteInt16 Int64Int32

LocaleId
Numeric
Range

UtcTime

Image

Image
BMP

Image
GIF

Image
JPG

Image
PNG

335

Figure 2.2: Hierarchy of all base reference types [5, page 335]

2.6 Information Modeling
OPC UA has standardized the documentation, implementation, reference, and access
to information models. An information model is a logical representation applied to
a physical process. The concept of a node allows the modeling of real-world entities
as objects that have variables and methods, as mentioned before. Which real-world

13

2. Communication platform

parameters are modeled as variables, which real-world functionalities are modeled as
methods and how the references of the modeled nodes are created and their attributes
are filled is up to the designer of the information model. There are lots of different
possibilities to model real-world entities in information models. Therefore there will
always be differences between two independently created information models of these
entities. These differences in modeling would end up in repeating the integration process
and would, later on, lead to interfacing problems. Standardized information models called
OPC UA companion specifications were introduced, which will be described later, to
avoid these problems. OPC UA Information Modeling is different from other technologies
in many ways:

• Consistent structure and standardized definitions

• Consistent and standard structure to the documentation of the model (XML)

• A mechanism for translating the information model into a real-time address space

• Standard mechanism for clients to identify the model and access component defini-
tions and type information at run time

• The encoding, securing and transporting of values in the real-time address space
are independent of the information model development

For type definitions common to multiple installations or throughout an industry domain,
the type definitions can be located remotely. In this case, the type definition reference
includes a common URI (Uniform Resource Identifier) used for all definitions of that
type. This URI can be converted with the help of the server’s Namespace Array to the
namespace index. This index is a component of the NodeID, which is an attribute every
node has. Clients need the namespace index to know, where to look up type definition,
for example. This whole topic is critical to trade associations, which understand that
integration costs can be dramatically lowered if everyone uses a standard definition for
entities. Most of the system problems lie in the interfacing between vendors, and these
problems often arise at the worst possible time: deployment and start-up. Standardized
information models that are implemented by an OPC UA server could solve this problem
with ease. Most information models are currently created using advanced GUI tools.
There is a difference between the address space and the information model. However,
both use the same organization based on nodes. The information model specifies the
high-level organization of an entity. It consists most often of nodes defined in OPC UA
companion specifications and vendor-specific nodes. The address space model describes
the specifics and how that model is deployed in an OPC UA server device. The specifics
of the address space are mapped to the real world by accessing sensors and actuators.
The above statements were taken from [2, page 76-87]. Figure 2.3 shows the overall
infrastructure. The red wavy lines under the word "PLCopen" have been removed from
the original image, and the resulting image has been vectorized.

14

2.7. Data Typing

Figure 2.3: OPC UA Base Services Architecture [6]

2.7 Data Typing
OPC UA is a strongly-typed technology, and there are four kinds of DataTypes: Built-In
DataTypes, Simple DataTypes, Enumeration DataTypes, and Structured DataTypes.
All DataTypes are modeled as nodes of NodeClass DataType. All attributes of a
node have a fixed data type excluding the Value attribute. The ValueRank attribute
of the NodeClasses Variable and VariableType determines if the Value is scalar, an
array or any of these two and the array dimensions can optionally be specified with the
ArrayDimensions attribute. Built-in DataTypes are a predefined set of DataTypes defined
by the OPC UA specification that all clients and servers must inherently understand.
They cannot be extended by vendor-specific or standardized information models. Some
representatives of this kind would be Int32, Boolean, Double, NodeId, LocalizedText,
and QualifiedName. The following three kinds of DataTypes can be extended with
custom DataTypes by information models. Clients can identify and match types from
different servers as identical types by observing origins and derivations [2, page 89].
Simple DataTypes are subtypes of Built-In DataTypes. The concrete data values cannot
be distinguished between the actual type and supertype. The representation on the
wire is also the same. Simple DataTypes should add more semantics to a data variable.
An example would be the Duration DataType, which is a subtype of Double defining a
time interval in milliseconds. Enumeration DataTypes represent a discrete set of named
values and are represented as the Built-In DataType Int32 on the wire. The mapping
from integer to named values is implemented by using a property called EnumStrings.
EnumStrings is an array of LocalizedText that allows the mentioned mapping. Structured
DataTypes represent structured data. They are a struct consisting of several DataTypes.
An example would be the DataType Argument, which is used to define an argument of
a Method. It contains the description, data type, and name of the modeled argument.
There are also Abstract DataTypes like Number and BaseDataType, which are only used
to structure the DataType hierarchy. The node BaseDataType specifies the root of this
hierarchy. The above statements without source specification were taken from [5, page

15

2. Communication platform

61-71]. Figure 2.4 shows the hierarchy of DataTypes in OPC UA.

Appendix C: Base Information Model Reference

Fig. C.1 ReferenceType Hierarchy

Fig. C.2 DataType Hierarchy

References

HierarchicalReferences NonHierarchicalReferences

HasEventSource

HasNotifier

HasChildOrganizes

AggregatesHasSubtype

HasProperty HasComponent

HasOrderedComponent

HasModellingRule

HasTypeDefinition

HasEncoding

HasModelParent

GeneratesEvent

HasDescription

BaseDataType

Boolean

ByteString

DateTime

DataValue

Diagnostic
Info

Enumeration

Expanded
NodeId

Guid

Localized
Text

NodeId

NumberQualifiedName

String

Structure

XmlElement

Integer UIntegerDouble Float

SByte UInt16 UInt32 UInt64ByteInt16 Int64Int32

LocaleId
Numeric
Range

UtcTime

Image

Image
BMP

Image
GIF

Image
JPG

Image
PNG

335

Figure 2.4: OPC UA DataType hierarchy [5, page 335]

2.8 OPC UA Companion Specifications
OPC UA companion specifications are information models that address dedicated industry
problems and are defined by specific working groups. These working groups consist of
members of the OPC Foundation and members of another organization, which must be a
relevant one in the specific industry domain. To yield a high acceptance of the defined
information model, the OPC Foundation cooperates with several organizations like ISA1,
MIMOSA2, VDMA3 or OMAC4. These organizations can harmonize the information
model with their standards. All published companion specifications are available as
nodeset files following the links on [7]. Companion specifications enable interoperability
at the semantic level and speed up the implementation process. There are three different
types of companion specifications:

• Internal - OPC-internal working groups create these information models.

• Joint - These are models created in a joint working group between the OPC
Foundation and another organization.

• External - These are models created independent of the OPC Foundation.
1International Society of Automation
2Machinery Information Management Open Systems Alliance
3Verband Deutscher Maschinen- und Anlagenbau
4Organization for Machine Automation and Control

16

2.8. OPC UA Companion Specifications

This list can also be found on [7]. The other information in this paragraph was taken
from [3, page 27].

2.8.1 OPC UA Standard Model

This standard information model defines all Built-In DataTypes and is furthermore
known as the base model, from which all other models derive. It was only designed by
the OPC Foundation and can be labeled as an internal companion specification. The
standard model is the agglomeration of the various standardized single models listed
on the website [8]. For example, the Boolean, Double, NodeID, and Byte data types
are defined here. The model is hosted on https://github.com/OPCFoundation/
UA-Nodeset/blob/master/Schema/Opc.Ua.NodeSet2.xml.

2.8.2 OPC UA Devices

This internal companion specification builds upon the standard model and defines
additional types used to model devices. It defines the TopologyElementType, which is
the base object type for elements in a device topology. The TopologyElementType has a
ParameterSet to model all parameters of a device and a MethodSet to list all supported
method calls. The defined ComponentType is a subtype of the TopologyElementType,
and the DeviceType of this model is a subtype of the ComponentType. The DeviceType
is typically used to model field devices. It also models the DeviceSet, which is an instance
of the BaseObjectType and is organized in the Objects folder. All devices in this model
must be instantiated under the DeviceSet using HasComponent references to locate the
devices in the address space quickly. The above information was taken from [9, page 22-
23, 37-38]. It is hosted on https://github.com/OPCFoundation/UA-Nodeset/
blob/master/DI/Opc.Ua.Di.NodeSet2.xml.

2.8.3 OPC UA for Robotics

This information model was created by a joint working group of the OPC Foundation
and VDMA, so it is called a joint companion specification. It builds upon the standard
model and the device model, which are both described above. The model defines the
MotionDeviceSystemType as a subtype of the ComponentType from the OPC UA Devices
model. This newly defined type should be instantiated in the DeviceSet to model a
real-world robot system. The MotionDeviceSystemType consists of three components:
MotionDevices, Controllers, and SafetyStates. These nodes should consist of as many
MotionDeviceType, ControllerType, and SafetyStateType nodes as applicable to the
real world robot system. The above intellectual property was taken from [10, page 27].
Maybe this model will also be hosted on Github in the future.

17

https://github.com/OPCFoundation/UA-Nodeset/blob/master/Schema/Opc.Ua.NodeSet2.xml
https://github.com/OPCFoundation/UA-Nodeset/blob/master/Schema/Opc.Ua.NodeSet2.xml
https://github.com/OPCFoundation/UA-Nodeset/blob/master/DI/Opc.Ua.Di.NodeSet2.xml
https://github.com/OPCFoundation/UA-Nodeset/blob/master/DI/Opc.Ua.Di.NodeSet2.xml

2. Communication platform

2.9 OPC UA over TSN
Time-Sensitive Networking (TSN) can be used on the field level of the automation
pyramid because it is real-time capable. This feature is achieved by adding real-time
extension standards to the Ethernet standard, which belongs to layer 2 of the OSI model.
These extensions address the following problems in the time-sensitive traffic domain:
time synchronization, bounded latency, reliability, and resource management:

• Time synchronization must maintain a common notion of time across all links even
in case of failure of a link or the grandmaster. This behavior is described in the
two standards, IEEE 802.1AS-2011 and IEEE 802.1AS-Rev. Implementations of
the first standard have demonstrated to achieve a reference time with an accuracy
better than one microsecond. The standard IEEE 802.1AS-Rev has improved
redundancy compared to the IEEE 802.1AS-2011 standard and also fixes the time
jump issue of the IEEE 802.1AS-2011 standard if a new grandmaster in case of
failure is elected. The intellectual property in this bullet point was taken from [11,
page 1097-1098].

• Bounded low latency is an essential goal for messages with real-time constraints.
There are currently three standards in the TSN domain that are trying to achieve
this requirement: IEEE 802.1Qbv, IEEE 802.1Qbu, and IEEE 802.1Qcr. The
standard IEEE 802.1Qbv defines schedule-driven communication that uses the
synchronized time in transmission and forwarding decisions for messages in the
network. The next standard IEEE 802.1Qbu specifies a preemption algorithm that
allows time-critical messages to interrupt ongoing non-time-critical transmissions.
The last standard IEEE 802.1Qcr standardizes asynchronous traffic shaping that
uses an urgency-based scheduler. The intellectual property in this bullet point was
taken from [11, page 1099].

• High reliability is another essential requirement because most TSN applications
cannot tolerate the delay due to retransmissions of lost frames. The standard IEEE
802.1CB achieves high reliability by specifying redundant packet transmission over
separate paths through the network and the elimination of duplicated packets at
or nearby the destination. Another standard that tries to achieve high reliability
is IEEE 802.1Qca. This standard offers precise path control and integrates a tool
for bandwidth and stream reservation along the forwarding path and resiliency
control mechanisms for data traffic. The last standard regarding reliability is IEEE
802.1Qci. It defines procedures to make filtering decisions and enforce policing on a
per-stream basis. The standard also offers a quality of service protection to streams
by taking mitigating actions to non-conforming streams. The intellectual property
in this bullet point was taken from [11, page 1099].

• Resource management is needed to achieve deterministic networking. Bandwidth
reservation is made by establishing and enforcing a bandwidth contract between
the network and the application. This contract limits the source of a TSN flow to

18

2.10. Comparison of existing approaches to migrating non-compliant devices

comply with a maximum packet size and the number of packets transmitted per
time intervals. All needed network resources can, therefore, be reserved for specific
traffic streams traversing a bridged local area network. This task is achieved by
the stream reservation protocol (SRP) in the IEEE 802.1Qat standard and its
enhancements in the IEEE 802.1Qcc standard. Another standard in this domain
is IEEE 802.1CS, which defines procedures to replicate an extensive registration
database from one end to the other of a point-to-point link. The intellectual
property in this bullet point was taken from [11, page 1099-1100].

TSN also addresses the demand for high bandwidth in some application areas, a high
level of security, and a high level of interoperability. Therefore, TSN can transport all
the data in and between all the different layers of the automation pyramid. The aim of
OPC UA over TSN is the establishment of an open, uniform, and compatible Industrial
Internet of Things (IIoT) solution for real-time capable peer-to-peer communication.
TSN is responsible for synchronization and the deterministic delivery of data packets.
OPC UA is responsible for a standard format of the application data to be understood
by the sender and the receiver. When comparing this situation to a phone call, TSN
ensures a proper connection quality and OPC UA ensures the same language of the
participants so that they can communicate in real-time. This combination could replace
all other technologies for exchanging information in the automation pyramid over a single
network. This standard is suitable for not time-critical report data, but also suitable for
time-critical data packets between control units, for example. The statements without
source specification in this paragraph were taken from [3, page 181-184].

2.10 Comparison of existing approaches to migrating
non-compliant devices

The industrial engineering is focused on maintaining current installations and on installing
device upgrades only from time to time [3, page 79]. There are two scenarios when
migrating to IIoT technologies. The first scenario is called the "Brownfield" installation
and deals with legacy equipment and legacy software that performs discrete functions
in isolation. The first step of the migration process is called "Retrofitting" and involves
adding sensors to legacy hardware if necessary to gain more relevant information about
the industrial process. The second step is called "Bridging the gap", and it involves
adding a gateway device that can acquire and offer the process data on the Internet as a
server. The second scenario is called the "Greenfield" installation and indicates a situation
where no preexisting equipment is present. This situation allows the installation of smart
cyber-physical systems, which are interoperable with each other. Open communication
protocols and open standards like OPC UA are used to satisfy complete interoperability.
The above statements are taken from [12, page 3]. To utilize all the advantages of OPC
UA like plug-and-play functionality and efficient and reliable data communication, one
must migrate the current installation to be compatible with OPC UA. This necessary
migration can be achieved using the following approaches:

19

2. Communication platform

2.10.1 Rapid mass migration

When using this approach, the OPC UA compatibility of all devices is implemented at
once. Every device can reference every other device in this consistent system, and this
gives an immediate advantage. In the long term, system maintenance will be simplified
as a reduction of proprietary protocols and devices takes place. If a device must be
replaced, there is no compulsion to repurchase it at the same manufacturer. Problems
with unreliable data communication between heterogeneous devices belong to the past.
The bigger the complexity of the industrial automation plant, the more complex the rapid
mass migration approach will get. This approach is more feasible for smaller industrial
companies, where plant complexity is manageable. Also, total migration costs must be
considered in the decision-making process. This paragraph summarizes the statements
from [3, page 80-81].

2.10.2 Slow migration with support for multiple legacy protocols

This method is the most straightforward approach when migrating to OPC UA because
it takes little time, effort, and costs in the beginning. Every time an old device is replaced
or upgraded, it must provide OPC UA functionality afterward. This process can proceed
very slowly, but eventually, in the future, all devices in an industrial plant will support
OPC UA. The disadvantage of using this approach is that many different protocols are
used during the migration period. This drawback leads to an increasing effort in the
configuration of software in the automation pyramid and increasing operating costs. This
step-by-step approach is more feasible for big industrial plants but can take more than a
decade. This paragraph summarizes the statements from [3, page 81-82].

2.10.3 Migration via OPC UA gateways

This approach is like our approach to the migration problem of the industrial robot system.
Devices called OPC UA gateways convert proprietary protocols and expose their data
using an OPC UA server to the clients. These OPC UA clients will mostly be applications
in the MES and SCADA layer of the automation pyramid. The communication of the
lower levels of the automation pyramid can take place using proprietary protocols as
before and is not interfered with using this approach. Legacy devices can be upgraded
with OPC UA functionality by this approach, and rapid migration is also possible in this
case. This paragraph summarizes the statements from [3, page 82-84].

20

CHAPTER 3
Explanation of software, models,

and interfaces

3.1 Programming language
The high-level programming language Python was used to implement the OPC UA
server because the problem statement is not critical regarding time and operating on a
high-level was never a bad idea when looking back in computer science history. Python
offers great language constructs to ease and speed up the development process like string
slicing, method references, context managers, easy-to-use packages distributed via pip,
and excellent error handling. For embedded devices, Python is well-suited because python
files are compiled to platform-independent bytecode and then interpreted directly and do
not need an entire compilation into machine code to run correctly, so fewer compatibility
problems arise. All the programming language’s mentioned, and unmentioned features
can be found on [13]. For this project, the chosen Python implementation was CPython,
which is hosted on https://github.com/python/cpython. The source code was
written using the Pycharm Python IDE developed by JetBrains because of the code
analyzer, the debugger, and the run configurations. All features of Pycharm can be found
on [14]. Git was used to tracking the source code changes during the developing process.
All features of Git can be found on [15].

3.2 OPC UA server framework methods
Most of the time, an OPC UA server is implemented, this is done with the help of
frameworks. The library python-opcua was used, which is hosted on https://github.
com/FreeOpcUa/python-opcua and distributed as the package opcua on pip. This
library can be used for the implementation of OPC UA clients and servers. The framework
can start and stop servers and set up clients. Nodes of the server’s address space can

21

https://github.com/python/cpython
https://github.com/FreeOpcUa/python-opcua
https://github.com/FreeOpcUa/python-opcua

3. Explanation of software, models, and interfaces

be created/modified, and an XML importer/exporter is also present on the server-side.
Methods imported from XML nodeset files are linked to Python method references using
a framework function, and the documentation is entirely proper. The features mentioned
above, the methods/functions used and described below and lots of other features can
be found on the documentation website [16]. Code samples are listed in the Appendix
chapter.

3.2.1 Server(shelffile=None, iserver=None)

This constructor creates an OPC UA server instance with default values. During start-
up, the initial address space is created using the standard model, which was described
above. A call to this method can be very time consuming on less powerful devices.
Therefore, a cache file path can be passed using the shelffile parameter, where a cache
file will be created to speed up future start-ups. The iserver parameter is a reference
to an InternalServer object if an existing object should be used. All methods below are
methods of the Server class:

set_endpoint(url)

This method sets the endpoint, where the OPC UA server exposes its services.

set_security_policy(security_policy)

This method is used to set the supported security policy of the server. The argument is
a list of security policy type values taken from the enumeration ua.SecurityPolicyType.
If the list contains an actual security policy type that uses encryption, a private key and
a certificate must be set.

set_server_name(name)

This method sets the name of the server, that is going to be displayed in the OPC UA
client.

import_xml(path=None, xmlstring=None)

This method imports nodes defined in information models, which are saved in XML
format, into the server address space. A path to the XML file or a string with the file
content can be passed via the parameter xmlstring.

get_node(nodeid)

This method returns a node from the server’s address space that matches the NodeId
object or a string representing a NodeId.

22

3.2. OPC UA server framework methods

link_method(node, callback)

This method links a python function using the callback parameter to a node object
representing an OPC UA method.

start()

When calling this method, the server starts to listen to the network and will serve clients.

3.2.2 Node(server, nodeid)

This constructor returns a node from the server’s address space that matches the NodeId
object or a string representing a NodeId. The Node constructor is called when executing
the server method get_node(nodeid). All methods below are methods of the NodeClass:

delete(delete_references=True, recursive=False)

This method deletes a node from the address space. The parameter delete_references
specifies if the references should also be deleted and the parameter recursive specifies
if also all nodes should be deleted that have hierarchical references pointing up to that
node that is going to be deleted. Therefore, for example, all components of the deleted
node will be deleted, too.

add_object(nodeid, bname, objecttype=None)

This method adds an instantiated object type to the calling node using the HasComponent
reference. The object type can be specified using a NodeId string or NodeId object.
Furthermore, a NodeId string or NodeId object for the new node must be specified. Keep
in mind that nodes created by the server should reside in the namespace with index 0.
The bname parameter specifies the browse name of the node that is going to be created.

get_child(path)

This method follows the path to a child node starting by the calling node. The path can
be a list of strings that represent browse names of the child nodes.

set_data_value(value, varianttype=None)

If the calling node is a variable, this method sets the Value attribute. The variant-
type parameter is used to parse the built-in Python types to VariantTypes using the
ua.VariantType enumeration. Optionally, the argument could be passed directly using
the ua.Variant(value) constructor.

delete_reference((target, reftype, forward=True, bidirectional=True))

This method tries to delete a reference from the calling node. The ReferenceType must
be specified by the reftype parameter, and the destination of the reference must be

23

3. Explanation of software, models, and interfaces

specified by the target parameter. The parameter reftype can be passed using the enum
ua.ObjectIds and the target node must be passed by using a NodeId.

add_reference(target, reftype, forward=True, bidirectional=True)

This method adds a reference to the calling node and has the same arguments as its
inverse method above.

3.2.3 uamethod(func)

This method decorator automatically converts arguments and the output of a function to
and from variants. This conversion ensures that a python method linked to an OPC UA
method will get arguments of built-in Python types, and the outputs will be converted
to variants again using the ua.Variant(value) constructor as described above.

3.2.4 ua.StatusCode(code)

This constructor creates a status code object that can be returned to a client from an
OPC UA method to report that an error has occurred. The code parameter should be
passed using the ua.StatusCodes enumeration.

3.3 Creation of a new OPC UA namespace
The Siemens OPC UA Modelling Editor (SiOME) was used to create a new information
model matching the problem statement. On top of the OPC UA Standard model, the
OPC UA Devices model and the OPC UA for Robotics model, the fourth nodeset file
Tuw.Auto.MitsubishiElectricRobot.NodeSet2.xml was defined representing the problem-
specific information model. The model is defined to use the namespace index four because
the namespace index one is reserved for dynamically created nodes of the server, as
mentioned above. This tool is convenient because it operates only on XML files and
saves only XML files without having any internal, proprietary format. XML is also the
format the python-opcua framework uses for importing information models. SiOME
also offers a pretty good search function to find nodes in currently open XML files. All
mentioned, and other features can be found on [17]. The newly created information
model instantiates the MotionDeviceSystem, an object of type MotionDeviceSystemType
under the node DeviceSet using the HasComponent reference as stated in the OPC UA
for Robotics specification [10, page 28]. Some types were added and modified to better
match the real-world system. Also, some static nodes were added to some components
of the instantiated MotionDeviceSystem like model type and manufacturer name of
various parts. The additional functionality includes the ability to start/stop task controls,
call safety functions, and getter/setter methods in the ParameterSet of the controller.
The modifications were necessary because the OPC UA for Robotics specification is
not complete and the first part that was released only focusses on monitoring, not on

24

3.4. Proprietary telnet commands of the robot controller

the operation. For the whole list of supported and implemented features, refer to the
Functions of the implementation section.

3.4 Proprietary telnet commands of the robot controller
By far, the most importing document while implementing the OPC UA server was the
manual [18]. It describes how to form the request and how the response will be formed.
The exact structure can be looked up at [18, page 8]. The request is formed [<Robot
No.>];[<Slot No.>];<Command><Argument>. The robot number has a range from
zero to three, and the slot number can have values from zero to thirty-three. If unsure
which robot number and slot number to pick, take one, for both. The command and
argument section differs in each command and will be described below. The response
is either formed QoK<Answer> or QeR<Error No.>; the first one signals success, and
the second one signals that an error has occurred. The error number can be translated
using the troubleshooting manual [19]. The answer in case of a successful response also
differs in each command and will also be described below. The service described above
can easily be accessed using a standard telnet client. Only the robot controller’s IP and
correct port must be provided. The following list will contain only clarifications about
the argument part of the request and the answer part of a successful response. The
command equals the headline. For example, calls, refer to the Appendix chapter. All
the proprietary commands used for the implementation, including a short description of
their functionalities and syntax, are:

3.4.1 CNTLON

This command has no arguments and no answer and enables the operation right for
the connected client. This right is needed when executing the SRVON/SRVOFF, RUN
and SLOTINIT commands. Otherwise, an error number will be returned in the error
response. For more detailed information, refer to [18, page 17].

3.4.2 TIME

This command has no arguments and returns <DATE><TIME>. The date is formatted
as yy-mm-dd and the time is formatted as hh:mm:ss. For more detailed information,
refer to [18, page 64].

3.4.3 SLOTINIT

This command has no arguments and no answer. By executing this command, all program
slots will be reset. Therefore, all the robot programs in the slots will resume execution
from the start. This command must be called before a call to PRGUP and PRGLOAD=.
For more detailed information, refer to [18, page 44].

25

3. Explanation of software, models, and interfaces

3.4.4 PRGUP

This command has no arguments and no answer. The controller loads the next program
in the list of available programs into the slot specified in the command. For more detailed
information, refer to [18, page 37].

3.4.5 PRGRD

This command has no arguments and returns the name of the program loaded in the
specified slot. For more detailed information, refer to [18, page 37].

3.4.6 OVRD

This command has no arguments and returns the operation override in percent. The
override is a factor slowing down the programmed robot movement speed of a program.
For more detailed information, refer to [18, page 41].

3.4.7 OVRD=

This command takes a single integer as argument and returns the set override value as
the answer. The integer argument specifies the override and should have a value between
one and one-hundred. For more detailed information, refer to [18, page 40].

3.4.8 PAR

This command takes a parameter name as argument and returns <Parameter name>;
<Value>;<Value count> as answer. The Value field describes the current value of the
parameter. For more detailed information, refer to [18, page 85].

3.4.9 PAW=

The argument of this command consists of <Parameter name>;<Value> and the argument
itself has no answer. The parameter of the robot controller matching the Parameter
name field will be changed according to the Value field. For more detailed information,
refer to [18, page 86].

3.4.10 STOP

This command has no arguments and no answer. It will stop an eventual running program
execution and therefore also the moving robot. For more detailed information, refer to
[18, page 42].

3.4.11 CSTOP

This command has no arguments and no answer. It will stop the executing robot program
at the next cycle start. For more detailed information, refer to [18, page 43].

26

3.4. Proprietary telnet commands of the robot controller

3.4.12 STATE

This command has no arguments and returns <Program name>;<Line no.>;<Override>;
<Edit sts.>;<Run sts.><Stop sts.><Error no.>; <Step no.>;<Mech info.>;;;;;;;;;<Task
prg.name>;<Task mode>;<Task cond.>;<Task pri.>;<Mech no.> as the answer. The
most important member in this answer is the integer run status specified as Run sts. in
the manual. If this number is written in binary, the set bit at index six represents if a
program is currently started. For more detailed information, refer to [18, page 52].

3.4.13 MOVSP

This command has no arguments and no answer. It makes the controller move to the
position specified by the parameter JSAFE. For more detailed information, refer to [18,
page 47].

3.4.14 PRGLOAD=

This command takes the program name as an argument and has no answer. The controller
will load the program specified by the program name into the corresponding slot. For
more detailed information, refer to [18, page 36].

3.4.15 RUN

This command takes the argument formed as <Program name>;<Mode> and has no
answer. The program name can be omitted to execute the program under the selection.
The Mode field is an integer that can have the values zero for a repeated start, therefore
continuous operation, or one for a cycle start, which only executes the program until the
beginning of the next cycle. For more detailed information, refer to [18, page 41].

3.4.16 RSTALRM

This command has no arguments and no answer. The current active controller error is
reset when executing this command. For more detailed information, refer to [18, page
43].

3.4.17 RSTPRG

This command has no arguments and no answer. It resets the program loaded into the
specified slot. For more detailed information, refer to [18, page 44].

3.4.18 SRVON

This command has no arguments and no answer. The servo power supply is turned on,
and this enables joint movement. For more detailed information, refer to [18, page 40].

27

3. Explanation of software, models, and interfaces

3.4.19 SRVOFF

This command has no arguments and no answer. The servo power supply is turned off,
and this disables joint movement. For more detailed information, refer to [18, page 40].

3.4.20 ERRORLOG

This command takes the history number as argument and returns <DATE>;<TIME>;
<Error no.>;<Error contents>;<Error level>;<Program name>;<Line no.>;<Error
detail no.> as answer. The most important part of the answer is the Error contents field,
which is an English error description. The argument history number could be specified to
TOP for the newest error, END for the oldest error or +1/-1 to scroll backward/forward
in time. For more detailed information, refer to [18, page 68].

3.5 Validation of the implementation
The UaExpert OPC UA Client from Unified Automation was used to verify the server
implementation. This GUI tool offers an appropriate layout to discover the nodes,
and all errors are printed to the log, which helps a lot in the debugging process. The
software is free and can be downloaded on [20]. Additional not-mentioned features can
be found there as well. One test run included read operations to all written variables,
and all implemented methods were called in different states of the robot system. A
simple robot program was written, that keeps the robot moving between positions, which
are defined in the corresponding position list to ease testing. The MB5 and POS files
make up the described robot program that can be found in the Appendix chapter. The
ResumeProgram OPC UA method of the specific task control object has to be called
with the parameter Repeated set to enabled to run the robot program continuously.

3.6 Solution to move the robot in real-time
The robot controller also supports a real-time external control function, which allows a
computer to control a robot controller that is connected via a one-on-one cross cable. At
first, the robot controller must open a communication line. Then the robot controller has
to execute an MXT command somewhere in the robot program code. While executing
the MXT command, the robot motion movement control can retrieve the position data
from the personal computer in real-time every approximately seven milliseconds and
move to the commanded position. This period is called the motion movement control
cycle. The external control function can easily be set up by following the tutorial starting
on [21, page 3-9]. The tutorial is somewhat time-consuming and therefore not explicitly
described. The information about the real-time external control function is taken from [21,
page 3-9,4-5]. Real-time communication provides guaranteed latencies. This predictable
behavior is required if the motion sequence of the industrial robot is dependent on
various other devices’ movements used in an industrial process. The computer, which
controls the industrial robot, has to compute the motion sequence for the next motion

28

3.6. Solution to move the robot in real-time

movement control cycle and must consider all the movements of all other industrial devices
interleaving in this industrial process during the computation. If computations regarding
motion sequences are made, computers need a sense of time and also an upper bound of
signal delay to coordinate all the computed movements. Real-time communication is used
to accomplish these requirements. Therefore, if the movement of the robot is dependent
on many other devices, it is better to control the robot externally by using the real-time
external control function. Complex temporal and spatial dependencies cannot be satisfied
if the robot is controlled internally by its controller following a sequential robot program.
The thesis’ problem statement does not require the usage of the external robot control
function, but for complex industrial processes, this function gives the programmer full
control over the robot’s motion sequence.

29

CHAPTER 4
Implementation

4.1 Implementation overview
The SysML block diagram in Figure 4.1 shows all hardware and software components
of the implementation and makes the information flow between all components visible.
The type of information flow is also presented in the figure. It also shows how OPC UA
clients interact with the whole system. The mentioned OPC UA information models
were imported in the opcuaserver.py script.

«block»

OPC UA clients

«block»

OPC UA clients

«block»

CPython

«block»

CPython

«block»

Raspberry Pi 3B

«block»

Raspberry Pi 3B

«block»

Mitsubishi Electric

CR750-D

«block»

Mitsubishi Electric

CR750-D

«block»

Mitsubishi Electric

RV-2FB-D1-S15

«block»

Mitsubishi Electric

RV-2FB-D1-S15

«block»

startserver.py

«block»

startserver.py

«block»

opcuaserver.py

«block»

opcuaserver.py

«block»

robotcontroller

client.py

«block»

robotcontroller

client.py

«block»

telnetclient.py

«block»

telnetclient.py

«block»

python-opcua

«block»

python-opcua

«flow»
Program
execution

«flow»
Telnet

interface

«flow»
Proprietary
interface

«flow»
Ethernet
interface

«flow»
Interpretation

«flow»
Software

dependency

«flow»
Software

dependency

«flow»
Software

dependency

«flow»
Software

dependency

Figure 4.1: Implementation components and their interactions

31

4. Implementation

4.2 Hardware

4.2.1 Raspberry Pi 3B

The Raspberry Pi 3B used was from revision 1.2 and was chosen to host the OPC UA server
and to process the communication with the robot controller. This single-board computer
offered 1 gigabyte of RAM and was manufactured by Sony UK. The 64-bit processor of
this Raspberry Pi has the model name BCM2837 and was manufactured by Broadcom.
The chip features the same underlying architecture as its predecessor BCM2836 but uses
a quad-core ARM Cortex A53 (ARMv8) cluster instead of an ARMv7 quad-core cluster.
The clock frequency measures 1.2 gigahertz, and the integrated VideoCore IV is clocked
at 400 megahertz. The processor information was taken from [22]. As this Raspberry Pi
model offers a 100Base-T Ethernet interface, the communication to the robot controller
is accomplished via Ethernet, and the OPC UA server is also only accessible via Ethernet.
The single-board computer runs the default Raspbian operating system. The hardware
specification was looked up based on the revision code a02082 on the website [23].

4.2.2 Mitsubishi Electric CR750-D

As stated in [24, page 2-6] the installation of this robot controller consists of the controller
itself, four proprietary connectors, ferrite cores for the emergency stop wiring, a noise
filter, and different fuses. Two out of the four proprietary ports are used to exchange
the external emergency stop signals, the door switch signals, the switching operation
mode signals, emergency stop active signals, safety measure signals for teaching mode
and the mode output signals which determine the controller operation mode. Another
proprietary port serves for connecting a decoder when using the tracking function. The
last proprietary port is used to exchange monitoring signals from the robot to be operated
by our controller. Our installation also includes a teaching pendant (T/B) which is used
to operate on joints directly to get the coordinates of specific points that are used in the
position lists of the robot programs. The controller must be in manual mode (switching
the operation mode switch on the front of the controller in the correct position), and the
T/B enable switch must be pressed on the backside of the teaching pendant to use this
device. The T/B is also used for setting internal parameters of the controller to alter the
controller’s behavior, for example, the speed override, which is a factor in slowing down
the programmed operation speed. There is also the possibility to press the emergency
stop button on the T/B to stop the controller operation. The thesis’ OPC UA server
implementation will cover some of the teaching pendant’s functions. It should also be
mentioned that the controller has, of course, an Ethernet port to be able to connect to
the local network as described in [21, page 2-1].

4.2.3 Mitsubishi Electric RV-2FB-D1-S15

This robot has six degrees of freedom as described in the table on [25, page 2-9 to 2-10].
It operates via AC servo motors, has an absolute decoder, an absolute maximum velocity
of 4.95 meters per second and can carry a maximum load of three kilograms. The robot

32

4.3. Program structure of the implementation

needs a power cable and a signal cable which are both connected to the controller. The
correct ports on the controller to connect the wires are CN1 (motor power) and CN2
(motor signal) as taken from [25, page 2-33].

4.3 Program structure of the implementation
The main project folder consists of the three folders model, src, and script. All four
XML information models, which were described before, are in the model folder. These
models are going to be imported by the OPC UA server framework. The four Python
source files are in the src folder. The script folder contains two shell scripts responsible
for the deployment. They automatically load the newest files from Google Drive and
start the OPC UA server afterward. These scripts were convenient while operating
with the Raspberry Pi because transferring files via the cloud is much easier than with
command-line tools like scp. Figure 4.2 shows a sequence diagram representing the
invocation of the OPC UA method GetParameter by an OPC UA client. This figure
should help to understand the information flow of the implementation described in the
following sections. The Python file startserver.py is not present in the diagram because
it only starts the OPC UA server and has no further functionality. The framework
python-opcua maps the requested method invocation from the OPC UA client to a
Python method of the server class in opcuaserver.py and also builds the response for the
OPC UA client by using the return value of the corresponding Python method.

opcuaserver.pyopcuaserver.py robotcontrollerclient.pyrobotcontrollerclient.py telnetclient.pytelnetclient.pypython-opcuapython-opcua

get_parameter("NETIP")

get_paramater("NETIP")

"192.168.162.82"

process_request("1;1;PARNETIP")

send_request_and_return_response("1;1;PARNETIP")

"QoKNETIP;192.168.162.82;1"

"192.168.162.82"

["NETIP","192.168.162.82","1"]

OPC UA clientOPC UA client

GetParameter("NETIP")

"192.168.162.82"

Figure 4.2: Sequence diagram representing a sample OPC UA method invocation

The following paragraphs will describe the program structure based on the Python source
files:

33

4. Implementation

4.3.1 telnetclient.py

In this Python file, the TelnetClient class is defined, which is used by the robot controller
client class to communicate with the robot controller over TCP/IP. The Python module
telnetlib was used, which already implements a standard telnet client. The constructor
saves IP address, port, timeout, setup_method, test_command, and the encoding to
instance variables. Furthermore, a lock is created to get mutual exclusion when accessing
the telnet client. Then the telnet instance is created in the constructor using the method
connect_to_server. This method creates a new telnet client by handing over the IP
address, the port, and the timeout for the connection build-up. There is also a Connec-
tionMaintainer thread started in the constructor that checks the connection periodically
using the test_command passed with the constructor. If the connection is broken, the
connect_to_server method is called, and after that, the setup_method method is called
too, which issues the first command to the telnet server. The robot controller client
specifies this command. Then there is the send_request_and_return_response method,
which clears all buffers using the read_very_eager method and then sends the request
to the telnet server, the robot controller. Then the client waits for a specific timeout.
This timeout can be specified via the standard timeout as a parameter of the constructor
and an individual timeout factor. After the waiting period, the telnet client tries to read
everything it can without blocking in I/O, and this string is returned as a response. Since
there is no clear separator between two responses, the implementation uses a timeout.
The request must be encoded, and the response must be decoded according to the given
constructor parameter encoding.

4.3.2 robotcontrollerclient.py

In this Python file, the RobotControllerClient class is defined, which is responsible
for sending the right strings to the robot controller to implement concrete application
logic. The OPC UA server must only call the methods of the robot controller client to
implement the abstract model in the address space. There are many class constants
in the RobotControllerClient class like the TEST_COMMAND, the ENCODING, the
START_SEQUENCE_SUCCESS, and the DELIMITER string. First, the constructor
saves the IP address and the port as instance variables. Then, the TelnetClient class used
for the communication with the robot controller is instantiated using the constructor
described above. After this instantiation, the operation right is retrieved using the
setup_controller method, which calls the CNTLON command. Then the list of available
programs is initialized in the constructor, which is used by the OPC UA server to create
task control nodes dynamically. First, the SLOTINIT command is issued to the controller
using the initialize_all_slots method to make to call to the following commands possible
and valid. Since there is no convenient way specified in the telnet manual [18] for getting
a list of all programs stored on the controller, the list is scrolled through with the PRGUP
command in a specified slot until the program at start-up is reached. The command
PRGRD retrieves the program name currently loaded in the specified slot. Then, the
constructor returns. Every time the controller issues a command to the robot controller,

34

4.3. Program structure of the implementation

the command is sent via the process_request method as parameter req, which uses the
send_request_and_return_response method from the telnet client. It is also possible to
pass a timeout_factor in the calling method. After the response is returned by this method,
it is checked if it starts with START_SEQUENCE_SUCCESS. If it does, the rest of the
response is split every semicolon, and the resulting list is returned. Otherwise, an error
must have occurred, and the application signals this by raising a RobotControllerError.
This error takes a single value from the ua.StatusCodes enumeration as a parameter
that will be sent to the OPC UA client by the OpcUaServerForRobotController class,
which is described below. The value ua.StatusCodes.BadCommunicationError is used as
a status parameter to the RobotControllerError in this case because most of the time, a
broken connection will cause the exception to be raised. Optionally, also an error code
can be passed to the RobotControllerError, which is done in this case by using the rest of
the response string when cutting away the START_SEQUENCE_ERROR. This result
signals the error code as described in the above chapters. Most of the methods of the
RobotControllerClient class are one-liners that return some part of the response or do
not return anything when only the state of the robot controller is changed. They only
map the function calls to the robot controller methods in a one-to-one fashion. All the
methods that are sending requests to target robot number one and slot number one if
the corresponding parameters are omitted, and therefore, the default parameters are
used. The turn_servos_on method includes a delay because the enabling process takes
some time. The turn_servos_off method specifies a timeout_factor because the robot
controller needs more time to answer than is specified in the standard timeout. The only
more sophisticated method of the RobotControllerClass is the resume_program method.
This method first checks if the given program_name as a parameter is valid, therefore if
the parameter is in the program_list that was filled before. If not a RobotControllerError
is raised with the status code ua.StatusCodes.BadInvalidArgument. Also, if the robot
controller is currently executing a robot program, no more robot programs can be
started, therefore the ua.StatusCodes.BadInvalidState code is passed on to the error as
a parameter. If a program_name is specified that is different from the program name
currently loaded in the slot; all slots must be initialized, and the correct program must
be loaded into the correct slot. Then the servos are turned on, and then the program is
started using the above-described RUN command with correct parameters.

4.3.3 opcuaserver.py

In this Python file, the OpcUaServerForRobotController class is defined. The first thing
in the constructor of the OpcUaServerForRobotController class is the instantiation of
the RobotControllerClient class to be able to call its methods, which are described above.
The IP address and the port of the robot controller are passed on from constructor to
constructor. The next step is the instantiation of the Server class from the python-opcua
framework. Then, the endpoint and the name of the Server instance are set. As the
specified endpoint starts with "opc.tcp://", the OPC UA Binary TCP transport is used.
Next, the security policy is set to no encryption. The next step is to import all four
information models described in the above chapters and integrate them into the server’s
address space. As the framework imports the OPC UA standard model itself, some will

35

4. Implementation

ask why this file is imported twice. This second import is necessary because the imported
standard model is in version 1.04 and from the publication date 2017/11/22, which does
not contain all the nodes required by the OPC UA Devices and OPC UA Robotics nodeset
files. Therefore, a minimal necessary nodeset amendment file was created, which defines
all the nodes that the two other nodeset files needed. The nodes were looked up in version
1.04 and publication date 2019/05/01 of the OPC UA standard model. It was looked up
on how to change the imported standard nodeset file, but this is rather complicated, and
most likely the version of the nodeset file is going to be updated in a future release. After
that, all Python methods that are not concerning the dynamically created task controls
of the robot controller can be linked statically to the OPC UA methods. This linking is
done using the link_method method of the OpcUaServerForRobotController class, which
only calls the link_method method from the framework with the correct parameters. The
task control nodes are then created dynamically by executing the generate_task_controls
method. At first, a placeholder node from the OPC UA for Robotics nodeset file is
deleted. Then for every program loaded into the robot controller, a single task control
node is created using the add_object method, which instantiates the TaskControlType
of the model. The calling node is the TaskControls node of the ControllerType instance.
As the framework uses an Organizes reference as default to link the added object to the
parent, the ReferenceType was changed to HasComponent to be conformant to the OPC
UA for Robotics companion specification. Then the Python methods reset_program,
stop_at_next_cycle and resume_program are linked to newly created nodes. Then the
optional motion device node is deleted from the newly created task control object. The
name of the task control is also set accordingly. This part of the script makes excessive
use of the get_child method of the NodeClass to navigate through the address space.
When calling the start method, not only the Server instance from the framework is
started, but also the PeriodicWorker thread, which executes the periodic_routine method
periodically. This call actualizes the OPC UA variables IsMoving and SpeedOverride
of the controller in the address space. Also, this call updates the TaskProgramLoaded
variable of every task control. All the OPC UA methods use the uamethod decorator of
the framework and delegate the requests to the RobotControllerClient instance. Every
Python method that was linked to an OPC UA method excepts the RobotControllerError
and send a corresponding error response to the OPC UA client using the error_response
method. The three methods linked to the task controls, check if the calling parent node
models the current running program, otherwise an error response is returned with the
status_code ua.StatusCodes.BadInvalidState.

4.3.4 startserver.py

In this Python file, the OpcUaServerForRobotController class is instantiated and started
in the last line. The sys module is imported to be able to read the command line
arguments. The IPy module is used to check if the given IP addresses are valid. The
third import is the OpcUaServerForRobotController class. Then, the two constants
MAX_PORT and MIN_PORT are defined, which are used in error message strings but
also in the check_port_number function. After the definition of this function, the length

36

4.4. Functions of the implementation

of the argument list is checked. If we have not got all five command line parameters,
the program exits with the USAGE string. Only if the correct number of arguments is
passed, all arguments are checked for correct values. If an argument, which is passed
from the command line, cannot be converted to a port or an IP address, the program
exits with a corresponding error message. If all given parameters are valid, they are
passed on to the constructor of the OpcUaServerForRobotController class to instantiate
it. After the constructor returns, the start method of this instance is called to make the
server visible to OPC UA clients on the same network.

4.4 Functions of the implementation
All functions that are mentioned in the current version of the OPC UA for Robotics
companion specification but are not discussed in this section will not work as expected.
From the Root node, navigate to the Objects Node, then to the DeviceSet node and
then finally to the MotionDeviceSystem node following the Organizes references. The
MotionDeviceSystem node represents our robot system. This node has three folders as
components: the Controllers folder, the MotionDevices folder, and the SafetyStates folder.
All folders only contain one object, which is a single Controller, a single MotionDevice,
and a single SafetyState object. The functionality of the implementation will be discussed
object by object. The following figures were created using the standard OPC UA graphical
notation. Table 4.1 describes the modeling of nodes and Table 4.2 describes the modeling
of references. The OPC UA figures only contain parts of all the nodes and references of
the address space. Figure 4.3 shows the ObjectType hierarchy of the implementation,
and the information model they belong to, Figure 4.4 shows the VariableType hierarchy,
which only contains nodes of the OPC UA Standard information model. Figure 4.5 shows
an overview of the address space, which was described above.

37

4. Implementation

Notation

The graphical notation defined by OPC UA gives you a view on an OPC UA
Address Space. The granularity of details can vary, and you can, for example,
visualize the Attributes of a Node, but you do not have to. You can also combine
this by only exposing some Attributes of a Node that are important for the dia-
gram. The same is true for References of a Node; you can expose a few and do not
expose other.

Each NodeClass has its own graphical element as shown in Table A.1. The Dis-
playName of the Node is shown as text inside the Node. NodeClasses representing
types always have a shadow beneath it; otherwise they have the same graphical
representation as there instances (only applicable for Objects and variables since
DataType instances and ReferenceType instances are not represented as Nodes).

and concrete types do not use italic. In the OPC UA specification, all types use

seems more suitable for us.
References between Nodes are represented by lines between them. Arrows expose

the direction. There are some special forms for specific base ReferenceTypes, as

Appendix A: Graphical Notation 328

Table A.1 Notation of NodeClasses

NodeClass Graphical Representation Comment
Object

Can contain the TypeDefini-

“Object1::Type1”
ObjectType Abstract types use italic,

Variable

Can contain the TypeDefini-

“Variable1::Type1”
VariableType Abstract types use italic,

DataType Abstract types use italic,

ReferenceType Abstract types use italic,

Method

–

View

–

Unlike defined by OPC UA, we use italic font style to expose that a type is abstract,

exposed in Table A.2. All other ReferenceTypes must put in the ReferenceType

italic, independent if they are abstract or not. The UML way of dealing with this

tion separated by “::”, e.g.,

tion separated by “::”, e.g.,

ObjectType

VariableType

DataType

ReferenceType

concrete types not

concrete types not

concrete types not

concrete types not

Table 4.1: OPC UA graphical notation of nodes based on NodeClasses [5, page 328]

name on the line and use the notation of a symmetric, asymmetric, or hierarchical
ReferenceType exposed in Table A.2.1 Please note that the HasSubtype Reference
points with the arrow in the inverse direction to point from the subtype to the
supertype like in all other graphical notations known to the authors.

The Attributes of a Node can be put inside the graphical element representing
the Node. This is exemplified using an Object in Fig. A.1, but it can be applied on
any NodeClass. As shown in Fig. A.1, you can either provide all Attributes (A) or
only some Attributes (B). Since this makes it ambiguous for optional Attributes
whether they are provided, you can make this explicit by striking that Attribute
out, as shown in (C).

Fig. A.1 Attributes included in Node

There are some built-in DataTypes having internally a structure that are often
used in OPC UA diagrams like LocalizedText (e.g., in the DisplayName) or
QualifiedName (in the BrowseName). For those it is not needed to provide the whole

1 Please be aware that each Reference connects two concrete Nodes, thus you do not have any
cardinality restrictions or role names on them like you would have in UML class diagrams. We
are on the level of UML object diagrams where you do not have those things either.

 Notation 329

Table A.2 Notation of References based on ReferenceTypes

ReferenceType Graphical Representation
Any symmetric ReferenceType

Any asymmetric ReferenceType

Any hierarchical ReferenceType

HasComponent
HasProperty
HasTypeDefinition
HasSubtype
HasEventSource

Table 4.2: OPC UA graphical notation of references based on ReferenceTypes [5, page
329]

38

4.4. Functions of the implementation

BaseObjectType FolderTypeServerType

MotionDeviceSystemType

ComponentType

TopologyElementType

ControllerType

MotionDeviceType

SafetyStateType

UserType

SoftwareType

TaskControlType

FunctionalGroupType

LockingServicesType

AxisType

PowerTrainType

EmergencyStopFunctionType

ErrorLogFunctionType MoveToSafeStateFunctionType ResetErrorFunctionType

MitsubishiElectricRobot

OPC UA Standard Model

OPC UA Devices

OPC UA for Robotics

Figure 4.3: The ObjectType hierarchy of the implementation 39

4. Implementation

BaseVariableType

PropertyType BaseDataVariableType

Figure 4.4: The VariableType hierarchy of the implementation

Root::
FolderType

Types::
FolderType

Objects::
FolderType

Views::
FolderType

OrganizesOrganizesOrganizes

Server::
ServerType

DeviceSet::
BaseObjectType

NetworkSet::
BaseObjectType

DeviceTopology::
BaseObjectType

OrganizesOrganizes

MotionDeviceSystem::
MotionDeviceSystemType

DeviceFeatures::
BaseObjectType

Organizes Organizes

OrganizesOrganizes

Controllers::
FolderType

MotionDevices::
FolderType

SafetyStates::
FolderType

Controller::
ControllerType

MotionDevice::
MotionDeviceType

SafetyState::
SafetyStateType

Figure 4.5: The complete address space of the OPC UA server

4.4.1 Controller

The Controller object offers a valid Model and Manufacturer variable. It also has a
component called ParameterSet, which has itself three methods as components. The
three methods are GetParameter, SetParameter, and SetOverride. GetParameter needs a
parameter name to retrieve its value, SetParameter needs a parameter name and a value
to set a value, and SetOverride only needs a value to set the override. The functionality

40

4.4. Functions of the implementation

should be clear as the methods use telling names. The controller itself also has the
TaskControls folder as a component, which itself organizes the dynamically created
TaskControls. Each TaskControl has a ParameterSet as a component, which has the two
variables, TaskProgramLoaded and TaskProgramName. These two variables are filled
by the application. TaskProgramLoaded is true if the program is currently loaded into
the slot. Each TaskControl also supports the methods ResetProgram, ResumeProgram,
and StopAtNextCycle, which are components of the MethodSet object. The MethodSet
is a component of the task control object itself. A paused program can be reset to the
start by executing the ResetProgram method. The ResumeProgram method can be used
with the parameter Repeated, which should be true for continuous operation, to start or
resume a program. If the method StopAtNextCycle is called, the program in execution
finishes the current cycle and then stops the program. The controller object part of the
address space and a task control object are shown in Figures 4.6 and 4.7.

Controller::
ControllerType

CurrentUser::
UserType

ParameterSet::
BaseObjectType

Software::
FolderType

TaskControls::
FolderType

Manufacturer::
PropertyType

Model::
PropertyType

ProductCode::
PropertyType

SerialNumber::
PropertyType

Software::
SoftwareType

GetParameter

SetParameter

SetOverride

TaskControlForASSEMBLE::
TaskControlType

TaskControlForLOOP::
TaskControlType

TaskControlForPRJ::
TaskControlType

Figure 4.6: The controller object part of the address space

41

4. Implementation

TaskControlForPRJ::
TaskControlType

GroupIdentifier::
FunctionalGroupType

Identification::
FunctionalGroupType

Lock::
LockingServicesType

MethodSet::
BaseObjectType

ParameterSet::
BaseObjectType

ResetProgram

ResumeProgram

StopAtNextCycle
ExecutionMode::

BaseDataVariableType

TaskProgramLoaded::
BaseDataVariableType

TaskProgramName::
BaseDataVariableType

AssetId::
PropertyType

ComponentName::
PropertyType

DeviceClass::
PropertyType

DeviceManual::
PropertyType

DeviceRevision::
PropertyType

HardwareRevision::
PropertyType

Manufacturer::
PropertyType

ManufacturerUri::
PropertyType

Model::
PropertyType

ProductCode::
PropertyType

ProductInstanceUri::
PropertyType

RevisionCounter::
PropertyType

SerialNumber::
PropertyType

SoftwareRevision::
PropertyType

Figure 4.7: The task control object part of the address space

4.4.2 MotionDevice

The MotionDevice object offers a valid Model and Manufacturer variable. It also has a
component called ParameterSet, which itself organizes two variables. The SpeedOverride
variable holds the current override value, and the IsMoving variable holds a Boolean
value that indicates if the MotionDevice moves or not. The motion device object part of
the address space is shown in Figure 4.8.

42

4.4. Functions of the implementation

MotionDevice::
MotionDeviceType

Axes::
FolderType

ParameterSet::
BaseObjectType

PowerTrains::
FolderType

PowerTrain::
PowerTrainType

Axe::
AxisType

IsMoving::
BaseDataVariableType

SpeedOverride::
BaseDataVariableType

Manufacturer::
PropertyType

Model::
PropertyType

MotionDeviceCategory::
PropertyType

ProductCode::
PropertyType

SerialNumber::
PropertyType

Figure 4.8: The motion device object part of the address space

4.4.3 SafetyState

The SafetyState object offers four folders, which contain objects that abstract safety
functions. The four folders are the EmergencyStop Functions, the ErrorLog Functions,
the MoveToSafeState Functions and the ResetError Functions folder. The structure
of all the objects in the folders is the same. All the objects have a method as a
component called CallFunction. All four methods have no input parameters. The
functionality of the methods is the same as the name of the objects in the folder.
There is the StopImmediately object with a function to stop robot movement and a
GetMostRecentError object with a function to retrieve the last critical error as English
text. There is also a MoveToSafePosition object with a function to make the robot move
to the position specified by the robot controller parameter JSAFE and the ResetError
object with a function to reset a currently active error state. The safety state object part
of the address space is shown in Figure 4.9.

43

4. Implementation

SafetyState::
SafetyStateType

ParamterSet::
BaseObjectType

EmergencyStop Functions::
FolderType

ErrorLog Functions::
FolderType

MoveToSafeState Functions::
FolderType

ResetError Functions::
FolderType

StopImmediately::
EmergencyStopFunctionType

CallFunction

Name::
PropertyType

Active::
BaseDataVariableType

GetMostRecentError::
ErrorLogFunctionType

CallFunction

Name::
PropertyType

Active::
BaseDataVariableType

ResetError::
ResetErrorFunctionType

CallFunction

Name::
PropertyType

Active::
BaseDataVariableType

MoveToSafePosition::
MoveToSafeStateFunctionType

CallFunction

Name::
PropertyType

Active::
BaseDataVariableType

Figure 4.9: The safety state object part of the address space

44

CHAPTER 5
Critical reflection

5.1 Comparison with related work
This thesis was compared to the thesis [26], which implements an OPC UA server for
a numerical control machine. The author had to define a custom information model
because there was no companion specification available for this industry domain at this
time. The model is described beginning on [26, page 18]. The ability to use the OPC UA
for Robotics information model guided the implementation process of this thesis because
it provided a basic structure. Also contrary to this thesis, the OPC UA Server for the
numerical control machine was constructed with a closed source server framework from
Unified Automation GmbH. This was mentioned in [26, page 18]. Also mentioned on
the same site of the comparing thesis, the used programming language was C++. The
other thesis took the conservative approach by using a low-level programming language
and a closed source framework. At this time, there were not as many usable open-source
OPC UA server frameworks, so it was an understandable decision. Furthermore, the
framework used by the other thesis supports code generation from the information model,
which dramatically speeds up the implementation process and helps to establish a clean
project structure.

5.2 Discussion of open issues
One of the open issues is the fact that a self-written amendment information model had
to be imported to get all the nodes of the OPC UA standard model with the newer
publication date. The used companion specification models need these additional nodes.
A proper solution would be to update the imported OPC UA standard model nodeset
file in the framework. This change could be committed, pushed, and merged to the
python-opcua master branch via a pull request and will then be included in future releases.
The Python package python-opcua does not provide any information in the essential

45

5. Critical reflection

OPC UA Server object, which is a big downside of this framework. Furthermore, the
robot programs read from the robot controller and used to instantiate the task controls
are only determined at the start-up of the OPC UA server. Currently, there is no periodic
update routine for the task controls. When executing the MoveToSafePosition OPC
UA method, the servos are turned on, but upon completion, they are not turned off
again. This issue also appears after other method calls. The servos stay active. The
missing separator in the response of the robot controller is also an issue to the application.
Currently, the end of a command is determined via a timeout, but this is a bad solution
because it wastes resources. If stricter spatial and temporal requirements regarding the
thesis’ problem statement arise, it will be a future issue that the OPC UA server uses the
proprietary telnet interface of the robot controller to control the robot’s motion sequence.
The supported robot program commands and the internal control by the robot controller
will most likely not be able to meet these requirements. Therefore, the application should
be updated to interface with the real-time external control function in the future to meet
all future requirements.

46

CHAPTER 6
Summary and future work

6.1 Summary
This thesis shows, how to integrate a non-compliant device into the OPC UA architecture
by adding a network gateway device with an OPC UA server implementation between the
proprietary device interface and the OPC UA client. In the case of the thesis’ problem
statement, the target device is an industrial robot system. An OPC UA client connected
to the same network as the gateway device can call services of the OPC UA server hosted
by the gateway device, which was a Raspberry Pi in this implementation. The client
has to use the supported transport method OPC UA Binary TCP. If a client issues a
call to the server, the gateway device maps the OPC UA service to a suitable command
understood by the proprietary device interface. In the case of the industrial robot system,
this interface is a telnet server. This telnet server only supports a text-based, proprietary
protocol. The information model of the implementation is based on the nodeset file of the
OPC UA for Robotics companion specification. Not all nodes are working as described in
the specification, and some nodes were added to solve the problem statement. The thesis’
Python program, which adds functionality to the information model, is divided into four
files. There is a startup script, a telnet client class to abstract the communication to
the industrial robot system, a robot controller client class, which builds the proprietary
telnet commands and a server class, which offers the OPC UA services described in the
information model using the two previous classes. The open-source Python framework
python-opcua is used in the server class to abstract the sophisticated software architecture
of an OPC UA server.

6.2 Future Work
As new parts of the OPC UA for Robotics companion specification will be released
in the future, the information model could be updated based on a new release of the

47

6. Summary and future work

companion specification and implemented with updated source files. Another task would
be to create an implementation, which is fully compliant with the current version of the
OPC UA for Robotics companion specification. Maybe some other open-source OPC
UA server frameworks arise, which can be evaluated and used for the implementation of
an updated OPC UA server application for this thesis’s problem statement. There are
also many open issues at the Github repository of the python-opcua framework, which
are waiting for a pull request that fixes them. Notably, the framework’s imported OPC
UA standard model should be updated. Also, the OPC UA Server object should be
filled with default values and should list the Standard Profile in the ServerCapabilities
as default. There is also some future work to implement the periodic update routine
for the task controls. As described in the open issues discussion section, the servos are
sometimes not turned off properly. This issue should be fixed in the future. Furthermore,
a better way has to be found to separate different robot controller responses. The current
solution with a timeout is slowing down the whole application. Another future work
would be to integrate the industrial robot system with the OPC UA server into a small
scale production process in our lab to evaluate the usage of OPC UA in the context of
an industrial automation plant. The controlling and monitoring of the industrial robot
system could be done via OPC UA, so only a corresponding OPC UA client has to be
implemented.

48

CHAPTER 7
Appendix

7.1 Bash scripts
#!/ bin / bash
#d e l e t e o l d s t a r t s e r v e r s c r i p t
rm −r f / opc_ua_server_for_robot_control ler / s c r i p t /

start_opc_ua_server_for_robot_contro l ler . sh
#t e s t name r e s o l u t i o n
host " d r i v e . goog l e . com"
#download new s t a r t s e r v e r s c r i p t
wget " https : // dr i v e . goog l e . com/uc? export=download&id=1

Dnm2mi5h0FWqCHeWzO029lpN7XisxSdq" −O /
opc_ua_server_for_robot_control ler / s c r i p t /
start_opc_ua_server_for_robot_contro l ler . sh

#change permiss ions o f new s t a r t s e r v e r s c r i p t
chmod 777 / opc_ua_server_for_robot_control ler / s c r i p t /

start_opc_ua_server_for_robot_contro l ler . sh
#execu te new s t a r t s e r v e r s c r i p t
/ opc_ua_server_for_robot_control ler / s c r i p t /

start_opc_ua_server_for_robot_contro l ler . sh
Listing 7.1: download_script_and_start_server.sh

#!/ bin / bash
#remove the source f o l d e r and crea t e a new d i r e c t o r y
rm −r f / opc_ua_server_for_robot_control ler / s r c
mkdir / opc_ua_server_for_robot_control ler / s r c
#load the source f i l e s i n t o the source f o l d e r

49

7. Appendix

wget " https : // dr i v e . goog l e . com/uc? export=download&id=1
VKtkIH0WAxGEpYv6w_t−3WdtkpiSmp3f " −O /
opc_ua_server_for_robot_control ler / s r c / opcuaserver . py

wget " https : // dr i v e . goog l e . com/uc? export=download&id=1
urfzHXuKsbhjV1yYcANURMQYAKfkwP5x" −O /
opc_ua_server_for_robot_control ler / s r c / r o b o t c o n t r o l l e r c l i e n t
. py

wget " https : // dr i v e . goog l e . com/uc? export=download&id=1
iFTGB7agEejhrK3VUtrLUXkGqXC−iUUu" −O /
opc_ua_server_for_robot_control ler / s r c / t e l n e t c l i e n t . py

wget " https : // dr i v e . goog l e . com/uc? export=download&id=1
zYGmbjHZTlKPuOGWs86gCYleAGrGaxzG" −O /
opc_ua_server_for_robot_control ler / s r c / s t a r t s e r v e r . py

#remove the model f o l d e r and crea t e a new d i r e c t o r y
rm −r f / opc_ua_server_for_robot_control ler /model
mkdir / opc_ua_server_for_robot_control ler /model
#load the in format ion models i n t o the model f o l d e r
wget " https : // dr i v e . goog l e . com/uc? export=download&id=1

dV9v0t1w5d9BtKorEbXY6je5qQlKm8DJ" −O /
opc_ua_server_for_robot_control ler /model/Opc .Ua . NodeSet2 . xml

wget " https : // dr i v e . goog l e . com/uc? export=download&id=1
DtPKP6gu8aNQuxX28es_Gn−HZmPoOtpp" −O /
opc_ua_server_for_robot_control ler /model/Opc .Ua . Di . NodeSet2 .
xml

wget " https : // dr i v e . goog l e . com/uc? export=download&id=11
f845aFJnfpB2WPz2YgTgPFE_elcMcp5 " −O /
opc_ua_server_for_robot_control ler /model/Opc .Ua . Robot ics .
NodeSet2 . xml

wget " https : // dr i v e . goog l e . com/uc? export=download&id=19
tJz5HMbypFlZITh94XsWotozbXtZKyM" −O /
opc_ua_server_for_robot_control ler /model/Tuw. Auto .
Mi t sub i sh iE l e c t r i cRobot . NodeSet2 . xml

#k i l l p roces s t ha t e v e n t u a l l y uses por t 4840
f u s e r −k 4840/ tcp
#s t a r t opc ua s e r v e r f o r robo t c o n t r o l l e r
/ usr / bin /python3 . 7 / opc_ua_server_for_robot_control ler / s r c /

s t a r t s e r v e r . py 192 . 168 . 162 . 84 4840 192 . 168 . 162 . 82 10003
Listing 7.2: start_opc_ua_server_for_robot_controller.sh

7.2 Python sources
import time
from thread ing import Thread

50

7.2. Python sources

from opcua import Server , ua , uamethod

from r o b o t c o n t r o l l e r c l i e n t import RobotContro l l e rC l i ent as
RCClient , RobotContro l l e rError

class OpcUaServerForRobotControl ler :

def __init__(s e l f , ip_os , port_os , ip_rc , port_rc) :
s e l f . r c_c l i e n t = RCClient (ip_rc , port_rc)

s e l f . opc_ua_server = Server ()
s e l f . opc_ua_server . set_endpoint (f ’ opc . tcp ://{ ip_os } :{

port_os }/ ’)
s e l f . opc_ua_server . s e t_secur i ty_po l i cy ([ua .

Secur i tyPol i cyType . NoSecurity])
s e l f . opc_ua_server . set_server_name (s e l f . __class__ .

__name__)
s e l f . opc_ua_server . import_xml (’ /

opc_ua_server_for_robot_control ler /model/Opc .Ua .
NodeSet2 . xml ’)

s e l f . opc_ua_server . import_xml (’ /
opc_ua_server_for_robot_control ler /model/Opc .Ua . Di .
NodeSet2 . xml ’)

s e l f . opc_ua_server . import_xml (’ /
opc_ua_server_for_robot_control ler /model/Opc .Ua .
Robot ics . NodeSet2 . xml ’)

s e l f . opc_ua_server . import_xml (
’ / opc_ua_server_for_robot_control ler /model/Tuw. Auto

. Mi t sub i sh iE l e c t r i cRobot . NodeSet2 . xml ’)

s e l f . link_method (’ ns=4; i =1115 ’ , s e l f .
move_to_safe_position)

s e l f . link_method (’ ns=4; i =1069 ’ , s e l f . s e t_over r ide)
s e l f . link_method (’ ns=4; i =1075 ’ , s e l f . set_parameter)
s e l f . link_method (’ ns=4; i =1072 ’ , s e l f . get_parameter)
s e l f . link_method (’ ns=4; i =1105 ’ , s e l f .

get_most_recent_error)
s e l f . link_method (’ ns=4; i =1119 ’ , s e l f . stop_immediately)
s e l f . link_method (’ ns=4; i =1108 ’ , s e l f . r e s e t_e r ro r)

s e l f . generate_task_contro l s ()

51

7. Appendix

def link_method (s e l f , nodeid , method) :
s e l f . opc_ua_server . link_method (s e l f . opc_ua_server .

get_node (nodeid) , method)

def generate_task_contro l s (s e l f) :
s e l f . opc_ua_server . get_node (’ ns=4; i =1038 ’) . d e l e t e (

r e c u r s i v e=True)
task_contro l s_object = s e l f . opc_ua_server . get_node (’ ns

=4; i =1022 ’)
for index , program_name in enumerate(s e l f . r c_c l i e n t .

program_list) :
task_contro l_object = task_contro l s_object \

. add_object (f ’ ns=1; i={index ␣+␣1} ’ , f ’
TaskControlFor{program_name} ’ , ’ ns=3; i =1011 ’
)

task_contro l s_object . d e l e t e_r e f e r en c e (
task_contro l_object . nodeid , r e f t yp e=ua . Object Ids
. Organizes)

task_contro l s_object . add_reference (
task_contro l_object . nodeid , r e f t yp e=ua . Object Ids
. HasComponent)

task_contro l_object . get_chi ld ([’ 3:<
Mot ionDev i c e Ident i f i e r>’]) . d e l e t e (r e c u r s i v e=True
)

task_contro l_object . get_chi ld ([’ 2 : ParameterSet ’ , ’
3 : TaskProgramName ’]) . set_data_value (program_name
)

s e l f . link_method (task_contro l_object . get_chi ld ([’ 2 :
MethodSet ’ , ’ 4 : ResetProgram ’]) .

nodeid , s e l f . reset_program)
s e l f . link_method (task_contro l_object . get_chi ld ([’ 2 :

MethodSet ’ , ’ 4 : StopAtNextCycle ’]) .
nodeid , s e l f . stop_at_next_cycle)

s e l f . link_method (task_contro l_object . get_chi ld ([’ 2 :
MethodSet ’ , ’ 4 : ResumeProgram ’]) .

nodeid , s e l f . resume_program)

def pe r i od i c_rout ine (s e l f) :
s e l f . opc_ua_server . get_node (’ ns=4; i =1033 ’) .

set_data_value (s e l f . r c_c l i e n t . get_overr ide ())
s e l f . opc_ua_server . get_node (’ ns=4; i =1122 ’) .

set_data_value (s e l f . r c_c l i e n t . i s_running ())

52

7.2. Python sources

for index , program_name in enumerate(s e l f . r c_c l i e n t .
program_list) :
s e l f . opc_ua_server . get_node (’ ns=4; i =1022 ’) \

. get_chi ld ([f ’ 0 : TaskControlFor{program_name} ’ ,
’ 2 : ParameterSet ’ , ’ 3 : TaskProgramLoaded ’]) \

. set_data_value (program_name == s e l f . r c_c l i e n t .
get_current_program ())

def get_program_name_from_parent_node (s e l f , parent) :
return s e l f . opc_ua_server . get_node (parent) . get_parent ()

\
. get_chi ld ([’ 2 : ParameterSet ’ , ’ 3 : TaskProgramName ’])

. get_data_value () . Value . Value

def s t a r t (s e l f) :
s e l f . opc_ua_server . s t a r t ()
PeriodicWorker (s e l f) . s t a r t ()

@staticmethod
def er ror_response (status_code) :

return ua . StatusCode (status_code)

@uamethod
def s e t_over r ide (s e l f , parent , percentage) :

try :
s e l f . r c_c l i e n t . s e t_over r ide (percentage)

except RobotContro l l e rError as r ce :
return s e l f . e r ror_response (r ce . status_code)

@uamethod
def get_parameter (s e l f , parent , name) :

try :
return s e l f . r c_c l i e n t . get_parameter (name)

except RobotContro l l e rError as r ce :
return s e l f . e r ror_response (r ce . status_code)

@uamethod
def set_parameter (s e l f , parent , name , va lue) :

try :
return s e l f . r c_c l i e n t . set_parameter (name , va lue)

except RobotContro l l e rError as r ce :
return s e l f . e r ror_response (r ce . status_code)

53

7. Appendix

@uamethod
def stop_immediately (s e l f , parent) :

try :
s e l f . r c_c l i e n t . stop_immediately ()

except RobotContro l l e rError as r ce :
return s e l f . e r ror_response (r ce . status_code)

@uamethod
def stop_at_next_cycle (s e l f , parent) :

i f s e l f . get_program_name_from_parent_node (parent) ==
s e l f . r c_c l i e n t . get_current_program () :
try :

return s e l f . r c_c l i e n t . stop_at_next_cycle ()
except RobotContro l l e rError as r ce :

return s e l f . e r ror_response (r ce . status_code)
else :

return s e l f . e r ror_response (ua . StatusCodes .
BadInva l idState)

@uamethod
def move_to_safe_position (s e l f , parent) :

try :
return s e l f . r c_c l i e n t . move_to_safe_position ()

except RobotContro l l e rError as r ce :
return s e l f . e r ror_response (r ce . status_code)

@uamethod
def resume_program (s e l f , parent , repeated) :

try :
program_name = s e l f .

get_program_name_from_parent_node (parent)
return s e l f . r c_c l i e n t . resume_program (program_name ,

repeated)
except RobotContro l l e rError as r ce :

return s e l f . e r ror_response (r ce . status_code)

@uamethod
def r e s e t_e r r o r (s e l f , parent) :

try :
return s e l f . r c_c l i e n t . r e s e t_e r r o r ()

except RobotContro l l e rError as r ce :
return s e l f . e r ror_response (r ce . status_code)

54

7.2. Python sources

@uamethod
def reset_program (s e l f , parent) :

i f s e l f . get_program_name_from_parent_node (parent) ==
s e l f . r c_c l i e n t . get_current_program () :
try :

s e l f . r c_c l i e n t . reset_program ()
except RobotContro l l e rError as r ce :

return s e l f . e r ror_response (r ce . status_code)
else :

return s e l f . e r ror_response (ua . StatusCodes .
BadInva l idState)

@uamethod
def get_most_recent_error (s e l f , parent) :

try :
return s e l f . r c_c l i e n t . get_most_recent_error ()

except RobotContro l l e rError as r ce :
return s e l f . e r ror_response (r ce . status_code)

class PeriodicWorker (Thread) :
def __init__(s e l f , s e r v e r) :

Thread . __init__(s e l f)
s e l f . s e r v e r = s e r v e r

def run (s e l f) :
while True :

try :
s e l f . s e r v e r . pe r i od i c_rout ine ()

except RobotContro l l e rError :
pass

time . s l e e p (10)
Listing 7.3: opcuaserver.py

import time

from opcua import ua

from t e l n e t c l i e n t import Te lne tC l i en t

class RobotContro l l e rC l i ent :
TEST_COMMAND = ’ 1 ; 1 ;TIME ’

55

7. Appendix

ENCODING = ’ a s c i i ’
START_SEQUENCE_SUCCESS = ’QoK ’
START_SEQUENCE_ERROR = ’QeR ’
DELIMITER = ’ ; ’
TIMEOUT = 0.1

def __init__(s e l f , ip , port) :
s e l f . ip = ip
s e l f . port = port
s e l f . c l i e n t = Te lne tC l i en t (s e l f . ip , s e l f . port , t imeout=

s e l f .TIMEOUT, setup_method=s e l f . s e tup_cont ro l l e r ,
test_command=s e l f .

TEST_COMMAND, encoding=
s e l f .ENCODING)

s e l f . s e tup_cont ro l l e r ()
s e l f . program_list = []
s e l f . i n i t i a l i z e_p r o g r am_ l i s t ()

def i n i t i a l i z e_p r og r am_ l i s t (s e l f , robot_number=1,
slot_number=1) :
while True :

try :
s e l f . program_list . c l e a r ()
s e l f . i n i t i a l i z e _ a l l _ s l o t s (robot_number ,

slot_number)
while s e l f . get_current_program (robot_number ,

slot_number) not in s e l f . program_list :
s e l f . program_list . append (s e l f .

get_current_program (robot_number ,
slot_number))

s e l f . scroll_up_to_next_program (robot_number
, slot_number)

break
except RobotContro l l e rError :

time . s l e e p (1)

def i n i t i a l i z e _ a l l _ s l o t s (s e l f , robot_number=1, slot_number
=1) :
i f not s e l f . i s_running (robot_number , slot_number) :

s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number
} ;SLOTINIT ’)

else :
raise RobotContro l l e rError (ua . StatusCodes .

56

7.2. Python sources

BadInva l idState)

def proces s_request (s e l f , req , t imeout_factor=1) :
r e s = s e l f . c l i e n t . send_request_and_return_response (req ,

t imeout_factor)
i f r e s . s t a r t sw i t h (s e l f .START_SEQUENCE_SUCCESS) :

return r e s [len (s e l f .START_SEQUENCE_SUCCESS) :] . s p l i t
(s e l f .DELIMITER)

else :
raise RobotContro l l e rError (ua . StatusCodes .

BadCommunicationError , r e s [len (s e l f .
START_SEQUENCE_ERROR) :])

def scroll_up_to_next_program (s e l f , robot_number=1,
slot_number=1) :
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;

PRGUP’)

def get_current_program (s e l f , robot_number=1, slot_number
=1) :
return s e l f . p roces s_request (f ’ {robot_number } ;{

slot_number } ;PRGRD’) [0] [: − 4]

def get_overr ide (s e l f , robot_number=1, slot_number=1) :
return int (s e l f . p roces s_request (f ’ {robot_number } ;{

slot_number } ;OVRD’) [0])

def s e t_over r ide (s e l f , percentage , robot_number=1,
slot_number=1) :
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;

OVRD={percentage } ’)

def get_parameter (s e l f , name , robot_number=1, slot_number
=1) :
return s e l f . p roces s_request (f ’ {robot_number } ;{

slot_number } ;PAR{name} ’) [1]

def set_parameter (s e l f , name , value , robot_number=1,
slot_number=1) :
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;PAW

={name} ;{ value } ’)

def stop_immediately (s e l f , robot_number=1, slot_number=1) :

57

7. Appendix

s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;
STOP ’)

s e l f . turn_servos_of f (robot_number , slot_number)

def stop_at_next_cycle (s e l f , robot_number=1, slot_number=1)
:
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;

CSTOP’)

def i s_running (s e l f , robot_number=1, slot_number=1) :
run_status = int (s e l f . p roces s_request (f ’ {robot_number

} ;{ slot_number } ;STATE’) [4] [: 2] , 16)
return bool (int (f ’ { run_status : 08b} ’ [1]))

def move_to_safe_position (s e l f , robot_number=1, slot_number
=1) :
i f not s e l f . i s_running (robot_number , slot_number) :

s e l f . turn_servos_on (robot_number , slot_number)
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number

} ;MOVSP’)
else :

raise RobotContro l l e rError (ua . StatusCodes .
BadInva l idState)

def resume_program (s e l f , program_name , repeated ,
robot_number=1, slot_number=1) :
i f program_name not in s e l f . program_list :

raise RobotContro l l e rError (ua . StatusCodes .
BadInvalidArgument)

i f s e l f . i s_running (robot_number , slot_number) :
raise RobotContro l l e rError (ua . StatusCodes .

BadInva l idState)
i f s e l f . get_current_program (robot_number , slot_number)

!= program_name :
s e l f . i n i t i a l i z e _ a l l _ s l o t s (robot_number , slot_number

)
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number

} ;PRGLOAD={program_name} ’)
s e l f . turn_servos_on (robot_number , slot_number)
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;RUN

{program_name } ;{ i n t (not␣ repeated) } ’)

def r e s e t_e r r o r (s e l f , robot_number=1, slot_number=1) :

58

7.2. Python sources

s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;
RSTALRM’)

def reset_program (s e l f , robot_number=1, slot_number=1) :
i f not s e l f . i s_running (robot_number , slot_number) :

s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number
} ;RSTPRG’)

else :
raise RobotContro l l e rError (ua . StatusCodes .

BadInva l idState)

def turn_servos_on (s e l f , robot_number=1, slot_number=1) :
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;

SRVON’)
time . s l e e p (2)

def turn_servos_of f (s e l f , robot_number=1, slot_number=1) :
s e l f . p roces s_request (f ’ {robot_number } ;{ slot_number } ;

SRVOFF’ , t imeout_factor=20)

def get_most_recent_error (s e l f , robot_number=1, slot_number
=1) :
return s e l f . p roces s_request (f ’ {robot_number } ;{

slot_number } ;ERRORLOGTOP’) [3]

def s e tup_cont ro l l e r (s e l f , robot_number=1, slot_number=1) :
while True :

try :
s e l f . p roces s_request (f ’ {robot_number } ;{

slot_number } ;CNTLON’)
break

except RobotContro l l e rError :
time . s l e e p (1)

class RobotContro l l e rError (Exception) :
def __init__(s e l f , status_code , error_code=None) :

Exception . __init__(s e l f)
s e l f . status_code = status_code
s e l f . error_code = error_code

Listing 7.4: robotcontrollerclient.py

import time

59

7. Appendix

from t e l n e t l i b import Telnet
from thread ing import Thread , Lock

class Te lne tC l i en t :
def __init__(s e l f , ip , port , timeout , setup_method ,

test_command , encoding) :
s e l f . ip = ip
s e l f . port = port
s e l f . t imeout = timeout
s e l f . setup_method = setup_method
s e l f . test_command = test_command
s e l f . encoding = encoding
s e l f . c l i e n t_ l o ck = Lock ()
s e l f . c l i e n t = None
s e l f . connect_to_server ()
Connect ionMaintainer (s e l f) . s t a r t ()

def connect_to_server (s e l f) :
while True :

try :
with s e l f . c l i e n t_ l o ck :

s e l f . c l i e n t = Telnet (s e l f . ip , s e l f . port ,
s e l f . t imeout)

break
except OSError :

time . s l e e p (1)

def send_request_and_return_response (s e l f , req ,
t imeout_factor=1) :
try :

with s e l f . c l i e n t_ l o ck :
s e l f . c l i e n t . read_very_eager ()
s e l f . c l i e n t . wr i t e (req . encode (s e l f . encoding))
time . s l e e p (s e l f . t imeout ∗ t imeout_factor)
return s e l f . c l i e n t . read_very_eager () . decode (

s e l f . encoding)
except EOFError :

return ’ ’

class Connect ionMaintainer (Thread) :
def __init__(s e l f , t e l n e t_ c l i e n t) :

60

7.2. Python sources

Thread . __init__(s e l f)
s e l f . t e l n e t_c l i e n t = t e l n e t_ c l i e n t

def run (s e l f) :
while True :

i f s e l f . t e l n e t_c l i e n t .
send_request_and_return_response (s e l f .
t e l n e t_ c l i e n t . test_command) == ’ ’ :
s e l f . t e l n e t_c l i e n t . connect_to_server ()
s e l f . t e l n e t_c l i e n t . setup_method ()

time . s l e e p (10)
Listing 7.5: telnetclient.py

import sys

from IPy import IP

from opcuaserver import OpcUaServerForRobotControl ler

MAX_PORT = 65535
MIN_PORT = 0
USAGE = f ’USAGE: ␣python␣{__file__}␣<IP_OS>␣<PORT_OS>␣<IP_RC>␣<

PORT_RC>’
INCORRECT_IP = ’ Please ␣ s p e c i f y ␣ c o r r e c t ␣IP␣ addre s s e s ! ’
INCORRECT_PORT = f ’ P lease ␣ s p e c i f y ␣ por t s ␣between␣{MIN_PORT}␣and␣

{MAX_PORT} ! ’

def check_port_number (port_number) :
i f port_number < MIN_PORT or port_number > MAX_PORT:

raise ValueError ()

i f len (sys . argv) != 5 :
sys . e x i t (USAGE)

try :
ip_os = str (IP (sys . argv [1]))
ip_rc = str (IP (sys . argv [3]))

except ValueError :
sys . e x i t (INCORRECT_IP)

try :

61

7. Appendix

port_os = int (sys . argv [2])
port_rc = int (sys . argv [4])
check_port_number (port_os)
check_port_number (port_rc)

except ValueError :
sys . e x i t (INCORRECT_PORT)

OpcUaServerForRobotControl ler (ip_os , port_os , ip_rc , port_rc) .
s t a r t ()

Listing 7.6: startserver.py

7.3 Robot programs
1 Ovrd 20
2 Mov P15 ,40
3 Mov P50 ,40
4 Mov P14 ,40
5 Mov P10 ,40
6 Mov P16 ,40
7 End
8

Listing 7.7: prj.mb5

DEF POS P15=(230 . 0 3 , 0 . 0 0 , 3 78 . 0 0 , 0 . 0 0 , 0 . 0 0 , 9 0 . 0 0) (7 , 0) ∗// HOME
DEF POS P50=(238 .63 , −17 .24 ,60 . 81 , 0 . 00 , 0 . 00 , 90 . 15) (7 , 0) ∗//

Color Measurement
DEF POS P14=(234 .60 , −69 .11 ,70 .25 ,20 .82 ,0 . 47 ,152 .63) (7 , 0) ∗//

Chute
DEF POS P10=(351 .12 , −14 .42 ,57 . 68 , 0 . 00 , 0 . 00 , 90 . 00) (7 , 0) ∗//

Assembly Socket High
DEF POS P16=(320 .90 , −30 .91 ,62 . 72 , 0 . 00 , 0 . 00 , 90 . 00) (7 , 0) ∗//

Search f o r Hole in Bottom
Listing 7.8: prj.pos

62

List of Figures

1.1 Block diagram of the target system . 2

2.1 A class diagram of all eight NodeClasses and their attributes [5, page 333] . 11
2.2 Hierarchy of all base reference types [5, page 335] 13
2.3 OPC UA Base Services Architecture [6] 15
2.4 OPC UA DataType hierarchy [5, page 335] 16

4.1 Implementation components and their interactions 31
4.2 Sequence diagram representing a sample OPC UA method invocation . . 33
4.3 The ObjectType hierarchy of the implementation 39
4.4 The VariableType hierarchy of the implementation 40
4.5 The complete address space of the OPC UA server 40
4.6 The controller object part of the address space 41
4.7 The task control object part of the address space 42
4.8 The motion device object part of the address space 43
4.9 The safety state object part of the address space 44

63

List of Tables

2.1 Comparison of machine-to-machine technologies [1, page 27] 4
2.2 List of all attributes with a short description [5, page 334] 12

4.1 OPC UA graphical notation of nodes based on NodeClasses [5, page 328] 38
4.2 OPC UA graphical notation of references based on ReferenceTypes [5, page

329] . 38

65

Bibliography

[1] F. Pauker, OPC UA Information Model Design - Informationsmodellierung für
Cyber-Physical Production Systems. 2019.

[2] J. Rinaldi, OPC UA : the everyman’s guide to the most important communica-
tions architecture of industrial automation. [North Charleston, SC]: [CreateSpace
Independent Publishing Platform], 2016.

[3] H. Mersch, M. Schleipen, J. Aro, J. Bajorat, and C. Berger, Praxishandbuch OPC
UA : Grundlagen – Implementierung – Nachrüstung – Praxisbeispiele. Würzburg:
Vogel Business Media, 1. auflage. ed., 2018.

[4] “Soap,” in Service-orientierte Architekturen mit Web Services: Konzepte – Standards
– Praxis, pp. 83–114, Heidelberg: Spektrum Akademischer Verlag, 4 ed., 2010.

[5] M. Damm, S.-H. Leitner, and W. Mahnke, OPC Unified Architecture. Berlin,
Heidelberg: Springer Berlin Heidelberg : Imprint: Springer, 2009.

[6] “Unified architecture.” https://opcfoundation.org/about/
opc-technologies/opc-ua/. last accessed on 2019/07/24.

[7] “Ua companion specifications.” https://opcfoundation.org/about/
opc-technologies/opc-ua/ua-companion-specifications/. last
accessed on 2019/06/30.

[8] “Opcfoundation/ua-nodeset/schema.” https://github.com/OPCFoundation/
UA-Nodeset/tree/master/Schema. last accessed on 2019/07/01.

[9] O. Foundation, OPC Unified Architecture Part 100: Devices. 2019.

[10] V. e.V., OPC 40010-1 OPC UA for Robotics Part 1: Vertical Integration Edition
1.0. 2019.

[11] L. Lo Bello and W. Steiner, “A perspective on ieee time-sensitive networking
for industrial communication and automation systems,” Proceedings of the IEEE,
vol. 107, no. 6, pp. 1094–1120, 2019.

67

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
https://github.com/OPCFoundation/UA-Nodeset/tree/master/Schema
https://github.com/OPCFoundation/UA-Nodeset/tree/master/Schema

[12] “What’s the difference between “brownfield” and “greenfield” iiot sce-
narios?.” https://www.machinedesign.com/sites/machinedesign.com/
files/0617_GreenBrown_PDFlayout.pdf. last accessed on 2019/07/22.

[13] “Python 3.7.3 documentation.” https://docs.python.org/3/. last accessed
on 2019/06/18.

[14] “Pycharm features.” https://www.jetbrains.com/pycharm/features/.
last accessed on 2019/06/18.

[15] “Reference.” https://git-scm.com/docs. last accessed on 2019/07/01.

[16] “Python opc-ua documentation.” https://python-opcua.readthedocs.io/
en/latest/. last accessed on 2019/06/18.

[17] “Siemens opc ua modeling editor (siome) zur umsetzung von opc ua com-
panion spezifikationen.” https://support.industry.siemens.com/cs/
document/109755133/siemens-opc-ua-modeling-editor-(siome)
-zur-umsetzung-von-opc-ua-companion-spezifikationen?dti=0&
lc=de-WW. last accessed on 2019/06/18.

[18] M. E. Corporation, Connection with personal computer. 2015.

[19] M. E. Corporation, Mitsubishi Industrial Robot CR750/CR751/CR760 Series Con-
troller INSTRUCTION MANUAL Troubleshooting. 2017.

[20] “Uaexpert – ein vollausgestatteter opc ua client.” https://www.
unified-automation.com/de/produkte/entwicklerwerkzeuge/
uaexpert.html. last accessed on 2019/06/18.

[21] M. E. Corporation, Mitsubishi Industrial Robot CR750/CR751 series controller
Ethernet Function Instruction Manual. 2014.

[22] “Bcm2837.” https://www.raspberrypi.org/documentation/hardware/
raspberrypi/bcm2837/README.md. last accessed on 2019/06/17.

[23] “Raspberry pi revision codes.” https://www.raspberrypi.org/
documentation/hardware/raspberrypi/revision-codes/README.md.
last accessed on 2019/06/17.

[24] M. E. Corporation, Mitsubishi Industrial Robot CR750-D/CR751-D/CR760-D Con-
troller INSTRUCTION MANUAL Controller setup, basic operation, and mainte-
nance. 2017.

[25] M. E. Corporation, Mitsubishi Industrial Robot CR750-D/CR751-D Controller
RV-2F-D Series Standard Specifications Manual. 2017.

[26] I. Ayatollahi, Entwicklung eines OPC UA Servers für eine NC-Maschine. 2014.

68

https://www.machinedesign.com/sites/machinedesign.com/files/0617_GreenBrown_PDFlayout.pdf
https://www.machinedesign.com/sites/machinedesign.com/files/0617_GreenBrown_PDFlayout.pdf
https://docs.python.org/3/
https://www.jetbrains.com/pycharm/features/
https://git-scm.com/docs
https://python-opcua.readthedocs.io/en/latest/
https://python-opcua.readthedocs.io/en/latest/
https://support.industry.siemens.com/cs/document/109755133/siemens-opc-ua-modeling-editor-(siome)-zur-umsetzung-von-opc-ua-companion-spezifikationen?dti=0&lc=de-WW
https://support.industry.siemens.com/cs/document/109755133/siemens-opc-ua-modeling-editor-(siome)-zur-umsetzung-von-opc-ua-companion-spezifikationen?dti=0&lc=de-WW
https://support.industry.siemens.com/cs/document/109755133/siemens-opc-ua-modeling-editor-(siome)-zur-umsetzung-von-opc-ua-companion-spezifikationen?dti=0&lc=de-WW
https://support.industry.siemens.com/cs/document/109755133/siemens-opc-ua-modeling-editor-(siome)-zur-umsetzung-von-opc-ua-companion-spezifikationen?dti=0&lc=de-WW
https://www.unified-automation.com/de/produkte/entwicklerwerkzeuge/uaexpert.html
https://www.unified-automation.com/de/produkte/entwicklerwerkzeuge/uaexpert.html
https://www.unified-automation.com/de/produkte/entwicklerwerkzeuge/uaexpert.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md

	Abstract
	Introduction
	Motivation
	Problem statement
	Aim of the work
	Methodological approach

	Communication platform
	Possibilities of machine-to-machine communication
	Basics of OPC UA
	OPC UA Server
	OPC UA Client
	Address Space
	Information Modeling
	Data Typing
	OPC UA Companion Specifications
	OPC UA over TSN
	Comparison of existing approaches to migrating non-compliant devices

	Explanation of software, models, and interfaces
	Programming language
	OPC UA server framework methods
	Creation of a new OPC UA namespace
	Proprietary telnet commands of the robot controller
	Validation of the implementation
	Solution to move the robot in real-time

	Implementation
	Implementation overview
	Hardware
	Program structure of the implementation
	Functions of the implementation

	Critical reflection
	Comparison with related work
	Discussion of open issues

	Summary and future work
	Summary
	Future Work

	Appendix
	Bash scripts
	Python sources
	Robot programs

	List of Figures
	List of Tables
	Bibliography

