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Kurzfassung

Fabriken der nächsten Generation implementieren das Konzept des Industrial Internet
of Things (IIoT) zur Integration hochentwickelter, interoperabler, skalierbarer und ef-
fizienter Automatisierungssysteme. Um eine robuste und zuverlässige Kommunikation
zu gewährleisten, wurden die Kommunikationsstandards Open Portable Communication
Unified Architecture (OPC UA) und Data Distribution Service (DDS) etabliert, welche
jedoch unterschiedliche Kommunikationsschemata verwenden. Da beide Standards in
entgegengesetzten Anwendungsdomänen verwendet werden, implementieren verschiedene
Geräte entsprechend deren Anwendungskontext entweder den einen oder den anderen
Standard. Um die notwendigen Anforderungen in modernen Automatisierungssystemen
zu erfüllen, ist insbesondere die Interoperabilität der integrierten Geräte von großer Be-
deutung. Zu diesem Zweck zielt ein vollständig konfigurierbares formales Modell des OPC
UA/DDS Gateways darauf ab, die IIoT Anforderungen zu gewährleisten. Um dieses Ziel
zu erreichen, präsentiert diese Arbeit den gesamten Implementierungsprozess des OPC
UA/DDS Gateway AADL Modells, die Konformitätsbewertung sowie die spezifischen
Lernergebnisse. Darüber hinaus wird in dieser Arbeit ein Verfahren vorgestellt, anhand
dessen das formale allgemeine AADL Modell konfiguriert werden kann, um eine ausführba-
re spezifische Gateway-Instanz zu erhalten. In Bezug auf die angegebenen Abgrenzungen
wird das AADL Modell anstelle einer ausführbaren Binärdatei zur Weiterentwicklung
bereitgestellt. Zukünftige Forschung sollte sich auf die aufgetretenen Probleme bei der
Codegenerierung, die Modellierung bestimmter OPC UA und DDS Entitäten in AADL
und die Erweiterung des allgemeinen Modells konzentrieren.
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Abstract

Next-generation factories implement the concept of the Industrial Internet of Things (IIoT)
for integrating sophisticated, interoperable, scalable and efficient automation systems.
On the level of communication, Open Portable Communication Unified Architecture
(OPC UA) and Data Distribution Service (DDS) mature to possible standards for
robust and reliable automation systems protocols. The possibility to use both protocols
in various application domains and devices makes them valid candidates. However,
OPC UA and DDS follow two different communication schemes, (i.e. server/client and
publish/subscribe) what makes communication between the protocols very difficult. For
still being able to achieve high interoperability as envisioned in IIoT, a possible solution
is a complete configurable OPC UA/DDS Gateway. This thesis supports the creation of
such a gateway by illustrating the entire implementation process of an OPC UA/DDS
Gateway AADL model, the conformance evaluation, as well as the specific learning
outcomes. Moreover, this thesis introduces a procedure on how to configure the formal
general AADL model in order to acquire an executable specific gateway instance. The
created AADL model can be used for further development. Future research should focus
on the encountered code generation issues, how to model particular OPC UA and DDS
entities in AADL and the extension of the general model.
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CHAPTER 1
Introduction

As the production throughput is supposed to steadily increase and the production methods
become more and more complex, modern factories have to integrate highly sophisticated,
scalable and efficient automation systems to meet all necessary requirements [1]. Most
modern automation systems attempt to implement the concept of the Industry 4.0
standard or also known as the Industrial Internet of Things (IIoT) [2]. IIoT intends on
integrating a vast number of low-level field devices into a common distributed cloud system
so that communication, monitoring and maintenance over all layers of the automation
pyramid is vastly improved [3]. Especially at the Programmable Logic Controller (PLC)
level and the sensor/actuator level of the automation pyramid [4], up to millions of
different devices are in use which communicate with each other and are supposed to
exchange data while there may not be any guarantees about the interoperability of the
individual devices. Due to the wide number of manufacturers, many devices support
different communication protocols and communication schemes which are designed to
efficiently perform in some specific application context [5]. Although standards in terms
of low-level communication protocols like ASI and Profibus have been introduced and are
comprehensively used, major interoperability issues between the protocols integrated in
the lower levels are still present [3]. For this reason, the Open Portable Communication
Unified Architecture (OPC UA) [6] and the Data Distribution Service (DDS) [5] standards
were introduced at the Supervisory Control and Data Acquisition (SCADA) [7] level to
resolve this issues. OPC UA and DDS are designed to provide interoperability, flexibility,
scalability and efficient and robust data communication. Yet, they implement completely
different approaches in terms of overall system and communication design which makes
it impossible to combine the benefits of both system designs without implementing any
kind of gateway [8]. For this purpose, the Object Management Group, Inc. (OMG)
introduced the specification for an OPC UA/DDS Gateway solution which is intended to
represent a standard for bidirectional communication between OPC UA and DDS [8].
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1. Introduction

Supplementary, the goal of the OPC UA/DDS Gateway specification is to establish
well-defined conformance points. These allow specific OPC UA/DDS Gateway implemen-
tations to either provide basic or complete communication support between OPC UA
and DDS entities depending on the implemented OPC UA to DDS Mapping and the
implemented DDS to OPC UA Mapping. The specification comprehensively describes
and defines the mapping of OPC UA entities to the corresponding DDS entities and vice
versa, yet, few implementations exist while some only partially implement the standard
and consider specific cases relevant for the individual application context [9]. Moreover,
there are no formal model implementations, yet. An complete formal model implemen-
tation of the OPC UA/DDS Gateway would have the benefit of allowing to perform
a full analysis of the model and later on to build a more optimized implementation or
even generate code for different platforms and languages based on the formal model.
Furthermore, an implementation generated from a formal model has the advantage that
the implementation fully complies with the standard provided by the specification as the
formal model already complies with the specification. The implementation may also be
generated for multiple platforms and languages individually without performing major
changes on the formal model. In order to be able to formally describe the software
and the hardware specifications of the target platform necessary for the OPC UA/DDS
Gateway model, a formal description language unlike the Unified Modeling Language
(UML) which does not only allow the modeling of software components of a system is
required. An extended formal description language is needed which also allows to specify
real-time constraints and the hardware properties for the target architecture. For this
reason, the Architecture Analysis & Design Language (AADL) [10] is introduced at this
point.

AADL is a formal architecture description language which allows to model the software
components as well as the hardware components of a system. The software components
are generally represented by processes, threads, subprograms or data models. The
hardware components are generally represented by processors, memories, buses and
devices. AADL further supports the specification of properties for each component type.
In general, the design of real-time, reliable and safety-critical systems proves to be a
challenging and error-prone task. The formal verification of AADL system models as
stated in [11] and [12] illustrates possible design flaws e.g. in terms of real-time constraints
or safety requirements and ensures the development of a refined system implementation
by supporting the overall development process of real-time, reliable and/or safety-critical
systems.

Moreover, few implementations as provided by [9] and [13] attempt on connecting OPC
UA and DDS. Unfortunately, those implementations are not based on a formal model and
simply rely on a static mapping of OPC UA entities to DDS entities and vice versa. Based
on this approach, the implementation may be optimized for some specific application
context, but must be redesigned or reprogrammed if the application context is intended
to be changed e.g. a new OPC UA type or DDS type is added to the model. This does
not only result in a lot of engineering overhead, but also increases the cost and the time
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required for comitting these changes. In order to create a flexible and scalable system
implementation, another approach for the design of a dynamically configurable system
implementation has to be applied.

To that end, this thesis discusses and implements the development of an OPC UA/DDS
Gateway AADL system model that allows the generation and configuration of platform-
specific implementations, instances and code. The basic principle is described in two
parts. In a first step, the OPC UA/DDS Gateway is modeled in OSATE [14] using AADL
according to the specification provided by the OMG [8]. Later on, the platform-specific
OPC UA/DDS Gateway implementation is generated from the formal OPC UA/DDS
Gateway AADL system model. For this purpose, the Ocarina toolchain [15] is used which
integrates the Polyorb Hi-C middleware in order to generate a C code implementation
for a Linux/Unix 64bit system architecture based on the formal OPC UA/DDS Gateway
AADL specification.

Therefore the aim of this thesis is to model the OPC UA/DDS Gateway using AADL
and to discuss on how the OPC UA/DDS Gateway can be dynamically configured based
on the formal AADL model. In order to achieve this research aim, the following research
questions have been formulated:

RQ 1: How to implement the OPC UA/DDS Gateway in AADL?

RQ 2: How to dynamically configure the OPC UA/DDS Gateway for several application
platforms?

The focus of the work relies on the modeling of the OPC UA/DDS Gateway in AADL
and the discussion on how the OPC UA/DDS Gateway can be configured based on the
formal AADL model. Thus, the following delimitations are made. This thesis does not
implement the verification of the OPC UA/DDS Gateway AADL system model in terms
of several safety analysis methods. Furthermore, this thesis does not provide a concrete
implementation or a binary executable of the OPC UA/DDS Gateway.

Another objective of this thesis is to provide an Open Source AADL code for the OPC
UA/DDS Gateway model implementation.
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CHAPTER 2
Scientific Background

According to the state-of-the-art on this research topic and the stated problem description
in Chapter 1, this chapter intends on giving a basic overview of the scientific work that
has already been done on developing approaches to establish a communication between
OPC UA and DDS entities. Furthermore, relevant scientific work that has been done
on similar research topics as well as the technical background this thesis builds on is
discussed. For this reason, the first section describes the related work while the second
section and onward provide a principle introduction on the technical background of this
thesis.

2.1 Related Work
Preceding this thesis, few scientific research has been done on this topic. The following
paragraphs summarize the approaches and main points of the related work and outline
the foundation of this thesis.

The design of real-time systems emerges to be a vastly error-prone development process
as the analysis of real-time systems is a challenging task which arises the need for a
comprehensive formal verification model. For this purpose, Hana Mkaouar, Bechir Zalila,
Jérôme Hugues and Mohamed Jmaiel illustrate the formal verification of AADL real-time
system models by defining formal semantics of an AADL behavioural subset using the
LNT language [11]. Furthermore, they demonstrate their results in form of a robot case
study.

But as challenging as the analysis of real-time systems, the safety-critical software
engineering process also represents a delicate task. Thus, Hana Mkaouar, Bechir Zalila,
Jérôme Hugues and Mohamed Jmaiel state an approach to formally map a real-time
task model and introduce a formal verification phase in terms of an AADL model-based
software engineering development process [12]. In addition to their results shown with
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2. Scientific Background

the Flight control system and Line follower robot case studies, they provide a tool-chain
for an automatic model transformation and formal verification of AADL models.

Aside from the formal verification of real-time systems modeled in AADL, few results
have also been achieved to lay the foundations for a formal AADL system model of the
OPC UA/DDS Gateway specification.

As OPC UA represents one of the main industrial standards and messaging protocols for
the client-server communication model [6] and DDS represents one of the main industrial
standards and messaging protocols for the publish-subscribe communication model [5],
the idea to combine the benefits of these two system architectures arises. For achieving
this objective, Ranti Endeley, Tom Fleming, Nanlin Jin, Gerhard Fehringer and Steve
Cammish proposed the concept of a smart gateway in form of a middleware connecting
the OPC UA architecture and the DDS system [9]. In their article, they illustrate how
their middleware solution works and evaluate their concept by an application scenario
using a Raspberry Pi.

The approach proposed in [13] tackles the idea to combine the benefits of both, OPC UA
features and DDS features, in terms of a hybrid implementation. In their article, Julius
Pfrommer, Sten Grüner and Florian Palm define the mapping of OPC UA data types to
DDS data types and give a set of DDS QoS policies that fulfill the requirements of the
OPC UA QoS specification.

The latter two concepts challenge the goal of an interoperable and comprehensive software
solution to efficiently interconnect the OPC UA standard and the DDS standard in terms
of the IIoT. But as these approaches set the basics for a realisation, they do not provide a
mature formal model of the specification. A formal system model integrating the software
and the hardware architecture would allow to refine a possible system implementation
and could be used for a more specific and extensive system analysis concerning several
system issues. For that reason, this thesis builds upon the insights of the related work
and states a formal AADL system model of the OPC UA/DDS Gateway specification
with the primary focus on the configuration aspect, respectively.
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2.2. OPC UA

2.2 OPC UA
The abbreviation OPC UA [16] is an acronym for Open Portable Communication Unified
Architecture and represents an industrial standard introduced with the IEC 62541 norm.
The standard specifies a generic infrastructure model according to the concept of the
automation pyramid with the purpose of establishing an efficient, robust, scalable and
interoperable horizontal and vertical data exchange. Fundamental components of the
OPC UA system architecture are the information and communication model as well as
the message passing and the compliance model. These models define the structure of the
passed information, the behaviour of the available services, the general information and
control flow and the semantics of the information and how they have to be interpreted
by high-level applications and field devices alike.

The OPC UA system architecture is based on an object-oriented modeling approach and
relies on the classical client-server communication model. OPC UA clients are composed
of an OPC UA communication stack, an integrated API and the client application which
is shown in Figure 2.1. OPC UA servers are composed of an OPC UA communication
stack, an integrated API and the server application which is shown in Figure 2.2. OPC
UA servers define specific sets of services to interact with the resources of a server. These
services are accessible by any OPC UA clients allowing them to connect to the address
space of the appropriate OPC UA server. The address space of an OPC UA server is
represented by a coherent graph of nodes which may be ordered hierarchically but may
also have references to different nodes of any level. Each node identifies an object which
relates to a resource of the server and is characterized by a type, attribute values, object
relationships, methods and events. The topology of the graph may depend on the object
relationships but generally the organisation of the address space only depends on the
needs of the server application and can be adapted dynamically.

Figure 2.1: General architecture of an OPC UA client illustrating all the major components
[17])
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2. Scientific Background

Figure 2.2: General architecture of an OPC UA server illustrating all the major compo-
nents [17]

According to the specification, OPC UA defines two different types of client-server
interactions. First, clients may send asynchronous service requests. These requests are
used to access certain nodes or fractions of the address space based on specified criteria.
For this purpose, OPC UA servers are able to provide views which define a subset of
the overall address space. This allows for a more efficient service implementation as
only a relevant fraction of the address space has to be analyzed. Second, clients are
able to create monitored elements called MonitoredItems within the server application
allowing them to monitor specific or a certain set of nodes. A client may subscribe to
any type of notification like alarm notifications for selective MonitoredItems using the
subscription mechanism of the server application. Thus, if an event is triggered or an
attribute changes its value, the subscription mechanism propagates this change of state
to all subscribed clients in form of notification messages. In addition, clients may also
subscribe to periodic status updates of a node or a set of nodes. The rate these messages
are sent can be configured by the subscribed client individually.

But as standard client-server communication is only based on a horizontal level, a server-
to-server communication has to be established to also enable a vertical data exchange.
An interlinked server structure with a bidirectional communication between two servers
of different levels is required. This means that a server connecting two levels acts as a
server on its own level but as a client on the other level. In order to satisfy the extensive
requirements of the specification, OPC UA provides many sets of services to offer a large
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number of functional flexibility while also ensuring data consistency, integrity, scalability,
security and redundancy.

2.3 DDS
The Data Distribution Service (DDS) [18] represents an industrial standard which
relies on the publish/subscribe communication model and guarantees an efficient and
high-performance approach to exchange information between information producers
and consumers in distributed applications. In the context of the publish/ subscribe
communication model, an information producer is called a publisher and an information
consumer is called a subscriber. The DDS communication model operates data-centric
meaning that the primary focus of the system relates to the data itself. For that purpose,
any subscriber knows the type of data to be expected from any publisher as the type
of data to be transmitted is already pre-defined. Furthermore, DDS guarantees high-
performance and data consistency. Thus, once a publisher transmits data into the global
data space of a DDS domain, all applications which are interested in that specific type of
data instantaneously have access to it. A data-centric publish/subscribe communication
model has the advantage that any selective data from a vast pool of information can
specifically be provided for any application within the network, while publishers and
subscribers are strictly decoupled from each other. Figure 2.3, adapted from [19] shows a
general overview of the DDS architecture including all its major components.

Figure 2.3: General architecture of the DDS system illustrating all the major components.
The cloud represents the global data space of a DDS domain

The core of the DDS concept is the middleware which creates a virtual global data space
by propagating any data published by a publisher to any subscriber which subscribed
for that type of data. The middleware provides a standardized interface for application
portability and ensures an efficient, robust, predictable and secure exchange of information.
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2. Scientific Background

Additionally the middleware precisely defines the communication routine and semantics
between the publishers and subscribers as well as the integrated API. To meet these
requirements, the DDS middleware uses typed interfaces and further relies on Quality of
Service (QoS) measures. Typed Interfaces specify the structure and the actually used data
types of the data to be transmitted. This allows to guarantee a certain level of type safety.
On the other hand, QoS defines the behaviour of the service and the communication
excellence from the perspective of the application. Several QoS policies describe what
properties have to be implemented to enable the middleware to pre-allocate resources
and assign them to the most critical sections to efficiently fulfill real-time communication
requirements. Moreover, the specification requires the separability between publishers and
subscribers, which means that an application only needs to implement the appropriate
part of the communication participant it intends to represent. The strict decoupling of
the publisher and subscriber role leads to a higher flexibility and scalability concerning
the number of participants within the network.

The principle of the Data-Centric Publish/Subscribe (DCPS) model builds on the data
model which specifies how distinct parts of the global data space are accessible and which
data structures are used to represent the necessary information. In order to uniquely
identify each portion of the global data space, an identifier in the format of a topic is
introduced.

The functionality an application can implement to publish and subscribe to any data
objects via their topics is specified through the Data-Centric Publish-Subscribe Platform
Independent Model (DCPS PIM). The DCPS PIM implements the concept of the DDS
specification using the UML modeling language where modeling is based on classes.
These classes are characterized by several attributes and operations. Attributes consist
of names and types while operations define an operation name, a return type and several
parameters and parameter types.

The general conceptual outline specifies data objects which are identified by a topic
identifier, the constructs publisher and data writer for the producer and the constructs
subscriber and data reader for the consumer. The publisher represents an object which
distributes information to one or many subscribers. The data writer represents the
connection between the publisher and the producer application. The subscriber represents
an object which receives information from one or more publishers. The data reader equals
the interface between the subscriber and the consumer application. These abstractions are
necessary to provide a portable, standardized and typed representation of the transmitted
data independent of the application. In addition, all DCPS communication entities are
part of a domain participant. The domain participant specifies to which logical domain a
distributed application is assigned as DDS may be organised in more than one logical
domain. Thus, publishers and subscribers are bound to a domain and may only interact
if they are members of the same logical domain (even if they are members of the same
physical network).

The description of the DCPS PIM is further composed of five modules. The infrastructure
module defines all the abstract classes and standardized interfaces implemented by the
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other modules. The domain module represents all classes and interfaces needed for
the organisation and the management of the domains. The topic-definition module
specifies all components necessary for the definition of topics. The publication module
and the subscription module define all the relevant classes and interfaces needed for the
publication and subscription of any data.

2.4 OPC UA/DDS Gateway

Both industrial standards, OPC UA and DDS, which are located at the SCADA level of
the automation pyramid are used to provide an efficient, robust and scalable infrastructure
for the IIoT [8]. As each standard is based on another concept and communication model,
both have many individual advantages but also weaknesses. Moreover, there are many
differences between these approaches. OPC UA offers a common information model of the
industrial automation and relies on a strong client-server architecture where clients can
access resources mapped by the address space of the server using many different sets of
services. The general concept is based on a Remote Procedure Call (RPC) meaning that
the client invokes a service which is executed on the server manipulating or navigating
through the address space and returning some result. The client-server communication
model tightly couples each client with a server leading to a pure one-to-one communication
scheme. On the contrary, DDS defines a data-centric publish/subscribe communication
model, where the middleware distributes information provided by producers, also called
publishers, to consumers, also called subscribers. This approach strictly separates both
communication ends, offering a one-to-many or many-to-many communication as well as
a vastly scalable network architecture.

In order to combine the benefits of both concepts, OPC UA and DDS have to be efficiently
connected and integrated into a common system architecture. On large scale, DDS is
used to guarantee scalability, performance and a global data space, while OPC UA is
used in form of multiple subsystems to provide a standardized information model and
data exchange for all low-level and field devices. But to realize this common system
architecture, OPC UA and DDS have to agree on mutual communication semantics which
is quite difficult between two distinct communication models. The first step towards
this goal is made by the DDS family of standards when adding the RPC over DDS
specification. This extends the DDS system to support RPC by using a RPC framework
which enables request-reply semantics via its own native communication constructs.

With this extension of the DDS system, a standardized, interoperable, vendor-independent
and configurable gateway can be specified to enable a performant and robust commu-
nication between OPC UA and DDS. The specification of the OPC UA/DDS Gateway
defines two separate functional components. These functional components represent
bridges which connect the OPC UA and the DDS domain but operate unidirectionally
based on the intended information control flow between both domains. The OPC UA
to DDS bridge ensures that DDS applications can communicate with different OPC
UA servers, navigate through their address space, manipulate nodes and data within
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nodes and fetch information. Complementarily, the DDS to OPC UA bridge allows OPC
UA client applications to participate in the global data space of the DDS system as a
publisher and/or a subscriber.

The following two subsections describe the OPC UA to DDS bridge and the DDS to
OPC UA bridge in more detail.

2.4.1 OPC UA to DDS Bridge

The OPC UA to DDS Bridge 2.4 establishes the communication between DomainPartici-
pants of the DDS domain on the one side and OPC UA servers of the OPC UA system on
the other side. With the integration of the OPC UA to DDS Bridge, DDS applications
are able to access (read, write, modify) and receive notifications on resources provided
through the address space of an OPC UA server. Hence, the OPC UA to DDS Bridge
must provide one interface for each architecture to connect them. The DDS endpoints
integrated in the OPC UA to DDS Bridge act as an interface for DomainParticipants of
any DDS domain. The DDS endpoints participate in any DDS domain and are able to
publish and subscribe to topics and receive notifications on these topics. The OPC UA
clients integrated in the OPC UA to DDS Bridge act as an interface for OPC UA servers
of the OPC UA system. These OPC UA clients are part of the OPC UA system and
interact with OPC UA servers like any other ordinary OPC UA clients using standardized
OPC UA request-reply semantics.

When a DDS application wants to interact or communicate with an OPC UA server, it
sends its request to a DDS endpoint. The OPC UA to DDS Bridge then forwards this
request to an OPC UA client which forwards the request to the appropriate OPC UA
server. Upon completion, the OPC UA server sends a response to the OPC UA client
which is forwarded to the DDS endpoint and finally back to the original DDS application.

In order to efficiently and correctly handle incoming requests and responses, the OPC
UA to DDS Bridge defines three types of mappings to appropriately map all types of
interactions and communications taking place. First, OPC UA type system to DDS type
system mappings. These generally correspond to syntax mappings including data types,
array definitions and structural mappings. Second, OPC UA Service Sets to DDS Service
Sets mappings. These map the service routines of the OPC UA domain to the equivalent
service routines of the DDS domain and vice versa. Third, OPC UA Subscription to
DDS Subscription mappings so that any DDS application may also subscribe to data
items via MonitoredItems within an address space of an OPC UA server. The OPC
UA/DDS Gateway specification also defines a configuration interface for these mappings,
so that any types of mappings can directly be adapted and configured to the immediate
requirements of the user.
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Figure 2.4: Structure diagram of the AADL system model for the OPC UA to DDS
Bridge

2.4.2 DDS to OPC UA Bridge

The DDS to OPC UA Bridge 2.5 equals the complementary part of the OPC UA to
DDS Bridge and establishes the communication between OPC UA clients of the OPC
UA system on the one side and DomainParticipants of the DDS domain on the other
side. With the integration of the DDS to OPC UA Bridge, OPC UA client applications
are able to access (read, write, modify) and receive notifications on resources provided
through the global data space of any DDS domain. Thus, the OPC UA/DDS Gateway
must provide one additional interface for each architecture to connect them via the DDS
to OPC UA Bridge. The DDS endpoints integrated in the DDS to OPC UA Bridge
further act as an interface for DomainParticipants of any DDS domain. For the OPC
UA system, an OPC UA server acts as an interface for the OPC UA clients of the OPC
UA domain. The OPC UA server interface replicates the global data space of any DDS
domain using the nodes and references of its address space. In this way, OPC UA client
applications may either use the View Service Set, the Subscription and MonitoredItems
Service Set or the Attribute Service Set to access the global data space of any DDS
domain and publish and/or subscribe to topics like any other ordinary DDS applications.

When an OPC UA client application wants to interact or communicate with a DDS
application, it sends its request to the OPC UA server of the DDS to OPC UA Bridge.
The DDS to OPC UA Bridge then forwards this request to a DDS endpoint which
forwards the request to the appropriate DDS application. Upon request completion, the
DDS application sends a response to the DDS endpoint which is forwarded to the OPC
UA server of the DDS to OPC UA Bridge and finally back to the original OPC UA client
application.

In order to efficiently and correctly handle incoming requests and responses, the DDS to
OPC UA bridge defines two different types of mappings to appropriately map all types
of interactions and communications. First, DDS type system to OPC UA type system
mappings. These represent the counterpart to the syntax mappings used for the OPC UA
to DDS Bridge. Second, OPC UA specifies a precise information model which is applied
to correctly represent the global data space of the DDS system within an address space
of an OPC UA server. Similarly to the OPC UA to DDS Bridge, the OPC UA/DDS
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Gateway specification also defines a configuration interface for the mappings of the DDS
to OPC UA Bridge so that any types of mappings can directly be adapted and configured
to the immediate requirements of the user.

Figure 2.5: Structure diagram of the AADL system model for the DDS to OPC UA
Bridge

2.5 Information Models

In order to appropriately model all the communication semantics needed by the OPC
UA/DDS Gateway for the correct mapping of OPC UA syntax, semantics and services
to DDS syntax, semantics and services and vice versa, precise information semantics as
well as syntax mappings and interaction relations are required to be included into some
standardized model. In general, information models fill this gap by specifying well-defined
communication semantics, individual interaction processes and an arbitrary number of
relationships between several different components and the syntax used to represent these
components. One realization of such an information model for software architectures is
provided by the UML which allows to model different software components and their
relationships into an overall model of the common system. In this context, UML is a
very powerful modeling language as several aspects of the software engineering process
(specification, documentation, analysis, etc.) are considered. But in the presence of
safety-critical real-time embedded systems that mostly rely on tasks to complete within
hard deadlines, where additional hardware modeling support is required to guarantee the
specification of the system (avionics systems in aircrafts for instance), the boundaries of
UML are exceeded. For this purpose, a modeling language is needed which allows the
modeling of software components and their relationships on the one hand, but also the
respective computer architectures, their individual hardware components and all their
properties that apply when the system is deployed on the other hand. For achieving
hardware modeling and real-time analysis support, an extended information modeling
language called AADL is introduced.
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2.6 AADL Modeling

The Architecture Analysis & Design Language (AADL) allows to define a system model
which considers the entire software architecture with all its components and their rela-
tionships while also providing hardware modeling, safety and real-time analysis support
[10]. This enables AADL to additionally model physical components of a system and
further satisfy the requirements of a real-time embedded systems model. Moreover,
AADL supports availability & reliability analysis, security analysis, data quality and
real-time performance analysis as well as resource consumption analysis. In synergy
with the information model of the software architecture, each aspect of a system may
be analyzed to find any possible exploits or flaws within the overall system that may
cause severe problems later in the development cycle of the system or once the system
is deployed. The necessity of this comprehensive analysis is best shown as the later
case could not only result in costly counter-measures but also catastrophic outcomes
leading to the physical destruction of system components, ecological or collateral damage
or even human deaths depending on the type of application the system is responsible
for. In order to guarantee all of these requirements and still enable an efficient and
agile modeling process, AADL builds on a hierarchical system model and splits all of its
components into three categories: software, hardware and hybrid components (also called
composite components). This allows an individual, clear and performant modeling of
both the software and the hardware domain while the analysis can either be performed
for each model individually or for the overall system as a whole. The modeling process
in AADL may be performed textually and/or graphically. Thus, AADL can be used
like any ordinary high-level programming language while the system model can also be
graphically illustrated and modified to maintain a better overview of the system model.
In order to get familiarized with the AADL syntax though, the AADL modeling basics
explained in this section are described by textually represented system models.

The basic concept of AADL relies on a hierarchical system model with one top-level
system component where each component may have several subcomponents and a system
model may be a subsystem of another hierarchically higher system model. Analog to
the object-oriented paradigm, components are able to inherit features and properties
from their parent. AADL also specifies a certain level of abstraction as each component
defines a type and an implementation separately. The type of a component identifies
the representation of that component and how it may interact with other components
(interfaces, etc.). The implementation of a component defines its functionality and internal
structure. Therefore, the implementation of a component represents the realization of
the component’s specific type. Though components are restricted to only one type, a
component may have several implementations related to that type. Besides having an
arbitrary number of subcomponents, components are also able to communicate with
other components using features and connections to define different types of component
communication. Furthermore, AADL allows to specify properties for each type of software,
hardware or hybrid component. These properties enable the additional specification
and application of assumptions related to real components to guarantee a more realistic
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analysis of the system once it is deployed. For software components, such properties
may be the dispatch protocol used, the information control flow of a connection between
components or the period of some thread that is executed for instance. Related to
hardware components, timing requirements, scheduling algorithms, power consumption
of specific hardware units or bus bandwidth and processor frequency are certain points of
interest for example. However, the precise specification of these properties for any type
of software or hardware component is explained in Section 2.6.2 in more detail.

2.6.1 Modeling Basics

Regarding the modeling process, all software, hardware and composite components which
intend to be part of the system model are modeled as subcomponents of the system
implementation. The generic syntax to model some component as a subcomponent of a
system model is shown by code Listing 2.1 below.

1 system <System name> // type definition of the system model
2 end <System name>;
3
4 system implementation <System name>.<System implementation name> //

implementation of the system model
5 subcomponents
6 <internal component name>: <software/hardware type

identifier> <external component name>;
7 end <System name>.<System implementation name>;

Listing 2.1: Generic definition of a system model integrating a subcomponent

In order to provide a concrete example on how to define a component and specify its type
and implementation, Listing 2.2 shows the component type and implementation of some
exemplary system model which has a subcomponent called Controller. Assume that the
Controller device component is already defined (the modeling of hardware components is
explained in Section 2.6.3).

1 system ExampleSystem // type definition of the system model
2 end ExampleSystem;
3
4 system implementation ExampleSystem.including_controller //

implementation of the system model integrating the Controller
device

5 subcomponents
6 sys_controller: device Controller; // device refers

to some hardware device named Controller
7 end ExampleSystem.including_controller;

Listing 2.2: Definition of a device named Controller as subcomponent of the system
model

AADL is case-insensitive meaning that each name declaration and definition is uniquely
identified by its writing. Additionally, AADL models may be structured into one or many
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packages (libraries, source files, etc.) where component types and implementations can
be outsourced and later reintegrated into other components, subsystems or the system
model by importing the corresponding packages and referring to the components within
those packages. The name space of a package is divided into public and private segments
though. A component in the public segment of the package may be accessed from another
package using that package as a reference to that component. A component in the private
segment of the package must not be accessed from another package as it is only visible
within the package its type and implementation are defined. Although software, hardware
and composite components are basically modeled within the same top-level system model,
the following subsections individually refer to the modeling basics of software components
2.6.2, hardware components 2.6.3 and composite components 2.6.5 in AADL to provide a
better overview.

2.6.2 Modeling Software Components

AADL defines four different types of components that may be used to identify and
represent entities which occur in the software architecture of a system: processes, threads,
data and subprograms.

Equally to processes within any operating system, processes in AADL represent executable
application instances assumed to run on a processor. Therefore, components of the process
type model processes of a real system within the system model. Similarly, AADL thread
type or thread group type components model threads or groups of threads of a real
system within the system model.

The following Listing 2.3 shows how a process component and a thread component can
be modeled within the system model.

1 system ExampleSSystem // type definition of the system model
2 end ExampleSSystem;
3
4 system implementation ExampleSSystem.processes_threads //

implementation of the system model integrating a process unit and
a thread unit

5 subcomponents
6 sys_process: process P1.impl; // process refers to

some process component named P1
7 end ExampleSSystem.processes_threads;
8
9 process P1 // type definition of P1

10 end P1;
11
12 process implementation P1.impl // implementation of P1
13 subcomponents
14 t1: thread T1; // thread T1 as subcomponent of

process P1
15 end P1.impl;
16
17 thread T1 // type definition of T1
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18 end T1;

Listing 2.3: Definition of a process unit named P1 and a thread unit called T1 as
subcomponents of the system model

Compared to threads and processes in an operating system, thread type components are
supposed to be part of process type components and represent individual executables
for specific application purposes. For example, thread T1 in Listing 2.3 may refer to
reading and monitoring a sensor node and communicate its value. For this purpose,
different processes and threads have to share and communicate information which yields
the need for a common interface. Thus, AADL specifies two communication constructs
to communicate between components in form of features and connections.

Features provide a common communication link where one feature uses a port as interface
for example that triggers either on an event and/or consistently communicates data
depending on the type of communication which is intended. Supplementary, it must
be specified, if the communication is incoming or outgoing. A feature is identified by a
feature name and has the following definition syntax in a component:

<feature name>: <in/out> <data/event/eventdata> port;

The syntax shown above is used to define a feature by a port. Furthermore, features
may also use component access, subprogram calls and parameter interfaces (connectors)
instead of ports to enable communication between components.

Connections provide a common communication construct which defines the mapping of
one communication interface to another communication interface (one feature to another
feature for example). Thereby, each connection is defined by a connection name and has
the following syntax when used in combination with feature ports:

<connection name>: port <component name>.<outgoing port name> -> <component
name>.<incoming port name>

Connections can also be specified for buses where the syntax is similar to the syntax of
mapping feature ports (described in Section 2.6.3 in more detail). Analog to features,
connections define many interfaces used to establish links between components. These
are identified by the data, event, eventdata, dataaccess, busaccess and port classifier.

For illustrating how the communication between two processes (or threads) works, Listing
2.4 shows the process, thread, feature and connection definitions required for process P1
to communicate with thread T1 and for thread T1 to communicate with thread T2.

1 system ExampleSSystem // type definition of the system model
2 end ExampleSSystem;
3
4 system implementation ExampleSSystem.features_connections //

implementation of the system model integrating a process unit and
two thread units

5 subcomponents
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6 sys_process: process P1.impl; // process refers to
some process component named P1

7 end ExampleSSystem.features_connections;
8
9 process P1 // type definition of P1

10 features
11 T1_event: in event port; // wait for event
12 end P1;
13
14 process implementation P1.impl // implementation of P1
15 subcomponents
16 P1_thread1: thread T1; // name of thread T1 in P1.

impl
17 P1_thread2: thread T2; // name of thread T2 in P1.

impl
18 connections
19 connect_P1T1: port T1_event -> P1_thread1.T1_event;

// forward input from process P1 to thread T1
20 connect_T1T2: port P1_thread1.send_value ->

P1_thread2.read_value; // forward output from
thread T1 to thread T2

21 end P1.impl;
22
23 thread T1 // type definition of T1
24 features
25 T1_event: in event port; // wait for event
26 send_value: out data port; // propagate data
27 end T1;
28
29 thread T2 // type definition of T2
30 features
31 read_value: in data port; // consume data
32 end T2;

Listing 2.4: Established communication between two thread units named T1 and T2 via
features and connections

In the example system model shown by Listing 2.4, the event triggered input provided
by feature T1_event of process P1 is forwarded to the event triggered input provided
by feature T1_event of thread T1 using the connection connect_P1T1. In general, this
means that any input received by P1 on feature T1_event is directly forwarded to T1’s
corresponding input feature. Equally, any data output produced by feature send_value of
T1 is directly forwarded to be consumed by feature read_value of T2 using the connection
connect_T1T2. This demonstrates that by extending the system model with features
and connections, AADL allows to model interthread and interprocess communication for
the software model of the system regarding any certain type of application context.

However, besides features and connections, AADL further allows the definition of an
information flow for any link between one or more components using the flows operator.
In this way, an information producer called a source and an information consumer called
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a sink can be specified for the corresponding interfaces. This provides enhanced analysis
capabilities as the particular flow of data is well defined which is especially important for
analyzing the communication and interaction of different components.

AADL also allows to model data type components which act as data placeholders and
represent static data records in a system model. Like any other component type, data
type components may be composed of several data type subcomponents resulting in the
mapping of hierarchical data models that allow to distinct between generic data type
components and more specific data type components. Exemplary, AADL data models
can be compared to structs of the C/C++ programming language. Analog to structs,
data type components can specify one or more internal data fields (primitive or nested
data type components) of which the data record is composed of using the properties or
the subcomponent operator. For this purpose, AADL provides a set of supported built-in
data types that can be used to represent scalars, arrays or sequences of primitive data
types. Listing 2.5 shows the data model of a structure in AADL.

1 data NodeId // generic data type component
2 properties
3 Data_Model::Data_Representation => Struct; //

represents structure
4 end NodeId;
5
6 data implementation NodeId.impl
7 subcomponents
8 namespace_index: data Base_Types::Unsigned_16;
9 identifier_type: data NodeIdentifierType; // some

data model of an enumeration type
10 end NodeId.impl;
11
12 data ExpandedNodeId extends NodeId // specific data type component

which extends the generic data type component
13 properties
14 Data_Model::Data_Representation => Struct; // also

represents a structure
15 end ExpandedNodeId;
16
17 data implementation ExpandedNodeId.impl
18 subcomponents
19 namespace_uri: data Base_Types::String;
20 server_index: data Base_Types::Unsigned_32;
21 end ExpandedNodeId.impl;

Listing 2.5: Definition of a hierarchical data model. The generic data type component is
called NodeId while the specific data type component is called ExpandedNodeId

Besides the common structure data model, data type components alternatively allow to
represent other complex types like enumerations, arrays and unions. Listing 2.6 illustrates
the data type component NodeClass which represents an enumeration data type.

1 data NodeClass // type definition of the data type component
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2 properties
3 Data_Model::Data_Representation => Enum; //

represents enumeration
4 Data_Model::Enumerators => ("OBJECT_NODE_CLASS", "

VARIABLE_NODE_CLASS", "METHOD_NODE_CLASS",
5 "OBJECT_TYPE_NODE_CLASS", "VARIABLE_TYPE_NODE_CLASS",

"REFERENCE_TYPE_NODE_CLASS", "
DATA_TYPE_NODE_CLASS",

6 "VIEW_NODE_CLASS"); // specify enumerators
7 end NodeClass;

Listing 2.6: Definition of an enumeration data type component called NodeClass

Moreover, subprograms or subprogram groups (later indicate libraries of subprograms)
may also be specified by components in AADL. Although the actual behaviour of a
subprogram is represented by the semantics of the source code of the program or the
model, AADL allows the integration of subprograms into the system model and enables
the analyses of these subprograms in the system model to define which impact they
enforce on the software model and the overall requirements of the system. In order to
model a subprogram in AADL, certain properties like the implementation language, the
function or method name and the source file have to be stated.

Similar to the modeling of connections and features, properties may also be integrated into
components to approximate their (physical) constraints and boundaries, define additional
parameters and to make the overall system model more realistic and better analyzable
compared to the real system. Although the properties operator is explained within
this section in more detail, properties may also be specified for hardware components,
composite components or even the system model as already stated earlier.

Applied to a general component type definition, any property specified is defined by the
following syntax shown below.

<property name> => <property value>;

Listing 2.7 shows an example usage of the properties operator where a C subprogram
function CheckSensor with the source file name CheckSensor.c is called by a thread
named T1 on each periodic dispatch.

1 subprogram CheckSensor // subprogram component representing a C
function

2 features
3 value: in parameter sensor_reading; // function

CheckSensor has one input parameter
4 properties
5 Source_Language => (C); // source language is C
6 Source_Name => "CheckSensor"; // name of the function
7 Source_Text => ("CheckSensor.c"); // name of the

source file
8 end CheckSensor;
9
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10 thread T1 // type definition of thread T1
11 features
12 T1_value: in data port sensor_reading;
13 properties
14 Dispatch_Protocol => Periodic; // periodic dispatch
15 Period => 1000ms; // period of the thread
16 Deadline => Period; // relevant for the scheduling of

the processor
17 Priority => 1; // relevant for the scheduling of the

processor
18 Compute_Execution_Time => 1ms .. 2ms; // execution

time of T1 is estimated between 1ms and 2ms
19 end T1;
20
21 thread implementation T1.impl // implementation of Thread T1
22 calls C : { // calls are executed at each dispatch
23 call_sensor: subprogram CheckSensor; // specify that

subprogram CheckSensor is executed at each
dispatch

24 };
25 connections
26 sensor_par1: parameter T1_value -> CheckSensor.value;

// map thread input parameter to subprogram
input parameter

27 end T1.impl;

Listing 2.7: Definition of a C subprogram function CheckSensor with the source file name
CheckSensor.c and a thread unit called T1

Last but not least, AADL defines modes which correspond to the state of a component, a
subsystem or the system model. The mode of a component may affect the integration of
subcomponents, the existence of connections or specific property values. The transition of
a mode to another state may be indicated by the occurrence of a received event followed
by a reconfiguration based on that event.

2.6.3 Modeling Hardware Components

In order to model the physical components of a real system, AADL specifies four distinct
types of components that may be used to identify and represent entities of the hardware
architecture of a system: processors, buses, memories and devices.

Based on the common understanding of processors, processor components modeled in
AADL are hardware components which represent processor units of a real system within
the system model. Analog to the processor component, memory components equally
represent memory units of the real system within the system model. Listing 2.8 shows
how a processor unit and a memory unit of a real system can be integrated into the
system model.

1 system ExampleHSystem // type definition of the system model
2 end ExampleHSystem;
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3
4 system implementation ExampleHSystem.processor_memory //

implementation of the system model integrating a processor unit
and a memory unit

5 subcomponents
6 sys_processor: processor P1.impl; // processor refers

to some processor component named P1
7 end ExampleHSystem.processor_memory;
8
9 processor P1 // type definition of P1

10 end P1;
11
12 processor implementation P1.impl // implementation of P1
13 subcomponents
14 P1_memory: memory M1;
15 end P1.impl;
16
17 memory M1 // type definition of M1
18 end M1;

Listing 2.8: Definition of a processor unit named P1 and a memory unit called M1 as
subcomponents of the system model

The memory unit M1 can be modeled as part of P1’s processor implementation as the
memory unit may be assumed to be a subcomponent of the processor while P1 represents
a subcomponent of the system model. As illustrated in Listing 2.8, M1 is a subcomponent
of P1 which is a subcomponent of the system model, thus M1 is transitively also a
subcomponent of the system model.

But according to the hardware architecture of a real system, more hardware components
are present than processor cores and memory units. In order to identify and represent
these components in the system model as well, the device type identifier and the bus type
identifier are introduced. Compared to any classical hardware architecture, the device
type identifier generally represents any hardware component which corresponds to an
Input/Output (IO) device. The bus type identifier enables a component to act as hardware
bus and for establishing the communication between all hardware components which are
connected to the bus. For instance, some processor component may communicate with
one or many device components.

In order to enable the bus access for any hardware component, four configuration steps
are required. First, the bus type component has to be integrated as a subcomponent
of the system model. Second, the hardware component that wants to access the bus
has to be integrated as a subcomponent of the system model. Third, any hardware
component that wants to access a bus has to define which bus it wants to access. This
can be specified within the features interface by the following syntax:

<feature name>: required bus access <bus name>;

Fourth, the connection between the bus component and the corresponding hardware
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component has to be mapped by a connection name within the system model. In order
to grant bus access to any hardware component identified by the system model, the
following syntax is provided:

<connection name>: bus access <internal bus name> -> <internal component name>.<feature
name>;

In order to get a better understanding for the modeling of hardware buses in AADL,
Listing 2.9 shows how to integrate a bus type component and a device type component
into the existing system model of Listing 2.8. In this case, processor P1 and device Dev1
are both granted access to bus HWBus.

1 system ExampleHSystem // type definition of the system model
2 end ExampleHSystem;
3
4 system implementation ExampleHSystem.processor_device_bus //

implementation of the system model integrating a processor unit,
a memory unit, a device unit and a bus unit

5 subcomponents
6 sys_processor: processor P1.impl; // processor refers

to some processor component named P1
7 sys_device: device Dev1; // device refers to some

device component named Dev1
8 sys_bus: bus HWBus.impl; // bus refers to some bus

component named HWBus
9 connections

10 bus_processor: bus access sys_bus -> sys_processor.
bus_access; // grant bus access to processor P1

11 bus_device: bus access sys_bus -> sys_device.
bus_access; // grant bus access to device Dev1

12 end ExampleHSystem.processor_device_bus;
13
14 processor P1 // type definition of P1
15 features
16 bus_access: requires bus access HWBus; // P1 wants to

access bus HWBus
17 end P1;
18
19 processor implementation P1.impl // implementation of P1
20 subcomponents
21 P1_memory: memory M1;
22 end P1.impl;
23
24 memory M1 // type definition of M1
25 end M1;
26
27 device Dev1 // type definition of Dev1
28 features
29 bus_access: requires bus access HWBus; // Dev1 wants

to access bus HWBus
30 end Dev1;
31
32 device implementation Dev1.impl // implementation of Dev1
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33 end Dev1.impl;

Listing 2.9: Established communication between device Dev1 and processor P1 via bus
HWBus

2.6.4 Binding Software and Hardware

A primary benefit of AADL is the capability to model and analyze the interaction of the
software architecture and the hardware architecture within one common system model.
With the introduction of binding properties, components of the software architecture can
be mapped to components of the hardware architecture and specifically assigned usable
resources. For this purpose, three types of binding properties exist: processor binding,
memory binding and connection binding.

The Processor Binding property defines the precise scheduling and execution of selected
processes and threads on a processor.

The Memory Binding property defines which memory components are particularly
responsible for storing selective processes, threads and their data.

The Connection Binding property precisely defines the physical communication channels
used for the existing logical connections.

2.6.5 Modeling Composite Components

In extension to the classical models of software and hardware components of a system
model, AADL further allows to describe components which are neither identified as pure
software components or pure hardware components at the time of definition and may
even be composed of several subsystem models. These components are called hybrid or
composite components and are introduced by AADL to make the system model even
more realistic compared to the real system. The benefit of these components is that
they allow to combine software and hardware components to guarantee a more flexible
modeling process in terms of software/hardware architecture interaction as real system
subcomponents may also consist of software and hardware parts. The term composite,
hybrid or also called abstract or generic is not a type identifier of a component definition
or implementation though, rather than a concept to improve the modeling capabilities of
the AADL.

25





CHAPTER 3
Scientific Methodology

The research method applied in this thesis follows a design and creation research strategy
and builds upon academic literature as well as relevant specifications [20]. In computing
research, the design and creation strategy focuses on developing new IT products called
artefacts [21]. Such artefacts include constructs, models, methods and instantiations
[22], whereby in most research, a combination of several artefacts contribute in creating
new knowledge. As artefacts often represent computer-based products, the design and
creation research strategy emphasises on analysis, explanation, argument, justification,
and critical evaluation of the results to distinguish itself from product development.

In the context of design and creation research, the focus lies either on the artefact itself,
(e.g. the IT application incorporates a new theory), the artefact as a vehicle to create
new knowledge (e.g. the IT application in use) or on the process to create an artefact to
create knowledge [23]. Within this thesis, the focus is two-fold and lies in the creation
process as well as on how the artefact performs in its application domain. Specifically,
the project creates knowledge in applying the AADL modeling language and insights on
configuration challenges related to the OPC UA/DDS Gateway.

Design and creation research is a problem-solving approach and builds upon the princi-
ples of system development [24]. The process involves typically five steps—awareness,
suggestion, development, evaluation and conclusion. Whereby the steps are not rigid in
order instead form an interative cycle. As a significant effort in computer-based research
often concentrates in the development step, it is necessary to apply a specific system
development method (analysis, design, implementation and testing). This research project
uses the UML systems development methodology [25], as it covers modeling techniques.

Figure 3.1 visualises the research method and the underlying applied strategies and data
sources applied in this research project.

The following paragraphs give a short introduction about the used tools respectively
applications. The first described tool is the open-source toolchain OSATE which is the
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Figure 3.1: Research method overview and elements based on [20]

Integrated Development Environment (IDE) used for the creation of the AADL system
model for the OPC UA/DDS Gateway. The Ocarina toolchain allows generating C or
Ada code from the specification of an AADL system model.

Chapter 4 presents further details about the modeling process of the OPC UA/DDS
gateway and Chapter 5 the results related to the gateway configuration discussion.

3.1 OSATE

OSATE is an open-source tool platform [14] supporting the modeling and analysis process
of real-time system models using AADL. It allows to view and edit the AADL system
model textually as well as graphically. While the graphical editor provides a very high-
level abstraction of the system model by illustrating all its major components, their
features and the connection between those components in form of a variety of diagrams,
the textual editor enables a more detailed in-depth representation and configuration of
the AADL system model e.g. individual specification of certain properties. Furthermore,
OSATE is highly extensible meaning that it allows the integration of different real-time
analysis tools e.g. Cheddar which is a real-time scheduling simulator. Moreover, OSATE
also provides a plugin for integrating Ocarina 3.2 and generating target specific C or Ada
code based on the AADL system model specification. The OSATE version that was used
for modeling the OPC UA/DDS Gateway AADL system model is OSATE2-2.6.1.

3.2 Ocarina

Ocarina is an open-source toolchain [15] used for building and analyzing applications
based on AADL specifications. For generating code from an AADL system model, Ocarina
uses the PolyOrb-Hi-C or PolyOrb-Hi-Ada high-integrity middleware to generate POSIX
conform C or Ada code. For this purpose, Ocarina provides all the functionalities necessary
to parse and semantically check an AADL system model before the corresponding
middleware uses its built-in constructs to translate the AADL system model description
into PolyOrb-Hi-C C or PolyOrb-Hi-Ada Ada conform code. Supplementary, Ocarina
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also supports the feature to build applications for specific target platforms. The Ocarina
version that was used to generate the C source code from the OPC UA/DDS Gateway
AADL system model is Ocarina 2017.x.

3.3 Chronological Development Process
In the following, Figure 3.2 illustrates the chronological development process in form of a
timeline which describes when each of the stated toolchains was primarily used.

Figure 3.2: Timeline of the main toolchain usage used for development
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CHAPTER 4
AADL Model for the OPC

UA/DDS Gateway

The primary focus of this thesis relies on the formal AADL system model for the OPC
UA/DDS Gateway specification and the dynamic configurability of the OPC UA/DDS
Gateway. As the formal AADL system model lays the foundation for the dynamic
configurability of the OPC UA/DDS Gateway, the latter is discussed in Chapter 5 to
maintain a better structure of the results. In comparison with the results of the scientific
work stated in Section 2.1, this chapter of the thesis aims at providing a formal AADL
system model for the OPC UA/DDS Gateway specification [8]. Furthermore, this chapter
visualizes the overall modeling process, the structuring of the AADL models, the different
approaches that were used in order to model certain aspects of the OPC UA/DDS
Gateway specification in the AADL system model and the variety of problems that were
found and solved during the modeling process. This chapter does not contain the entire
code of the AADL system model for the OPC UA/DDS Gateway though, as the full
code can be accessed via the GitLab project link provided in Section 8.1.

4.1 General Structure of the AADL system model

The OPC UA/DDS Gateway is modeled in OSATE2-2.6.1 using the AADL 2 standard.
According to the description of Section 2.4, the general structure of the OPC UA/DDS
Gateway AADL system model is shown in Fig. 4.1.

The AADL system model is composed of an array of multiple OPC UA to DDS bridges
and an array of multiple DDS to OPC UA bridges which each connect the OPC UA
domain with the DDS domain and vice versa, allowing requests from OPC UA clients to
the DDS domain and requests (publish/subscribe) from DDS applications to the OPC
UA domain to be processed and responses to be received. The advantage of having
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Figure 4.1: Structure diagram of the general architecture of the OPC UA/DDS Gateway
AADL system model

many OPC UA to DDS Bridges and many DDS to OPC UA Bridges instead of only one
Bridge each is that each Bridge may be configured individually and serve some specific
application context. The following section illustrates the AADL model of the OPC UA
to DDS Bridge. The AADL model of the DDS to OPC UA Bridge is demonstrated in
Section 4.3.

Apart from the general structure of the OPC UA/DDS Gateway AADL system model,
the overall AADL system model also includes several AADL models representing relevant
entities of the OPC UA domain and the DDS domain. Concerning the AADL models
of the OPC UA domain, the system model implements the AADL models for the OPC
UA client and the OPC UA server and all the OPC UA datatype specifications. The
OPC UA datatypes are distributed on multiple AADL files and categorized by OPC UA
Service Set assignment if they are related to specific OPC UA Service Sets. The AADL
models of the DDS domain include the general DDS datatypes specifications and the
AADL model for the DDS application.

4.2 AADL Model for the OPC UA to DDS Bridge
The OPC UA to DDS Bridge 2.4.1 is modeled in AADL as shown by Fig. 4.2.

The OPC UA to DDS Bridge consists of an array of integrated DDS domain participants
which each specify some generic DDS datatype as input/output and an array of integrated
OPC UA clients which each specify some generic OPC UA datatype as input/output. The
benefit of integrating multiple DDS domain participants and multiple OPC UA clients
results in an improvement of overall performance and latency as many simultaneous
requests and responses may be processed.
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Figure 4.2: Structure diagram of the AADL system model for the OPC UA to DDS
Bridge

4.3 AADL Model for the DDS to OPC UA Bridge

The AADL model for the DDS to OPC UA Bridge 2.4.2 is illustrated by Fig. 4.3.

Figure 4.3: Structure diagram of the AADL system model for the DDS to OPC UA
Bridge

The DDS to OPC UA Bridge consists of an array of integrated DDS domain partic-
ipants which each specify some generic DDS datatype as input/output and an array
of integrated OPC UA servers which each specify some generic OPC UA datatype as
input/output. Analog to the OPC UA to DDS Bridge, the benefit of integrating multiple
DDS domain participants and multiple OPC UA servers results in an improvement of
overall performance and latency as many simultaneous requests and responses may be
processed.

4.4 Modeling of OPC UA Components

The overall AADL system model of the OPC UA architecture is basically split into three
AADL models: the AADL model for the OPC UA domain, the AADL model for the OPC
UA client system and the AADL model for the OPC UA server system. In extension
to the AADL model for the OPC UA domain, several additional AADL models for the
OPC UA Service Set specific data model definitions exist.
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The AADL model for the OPC UA specifies the general architecture of the OPC UA
including the subcomponent specification of OPC UA clients, OPC UA servers as well as
the data model definitions of all generic OPC UA datatypes and the OPC UA Service
Set representations in AADL. The latter is discussed in Section 4.4.2 in more detail.
Moreover, the AADL model for the OPC UA clients is also used for the integrated OPC
UA clients in the OPCUA to DDS Bridge. The AADL model for the OPC UA is shown
in Fig. 4.4.

Figure 4.4: Structure diagram of the AADL system model for the OPC UA

4.4.1 Modeling of OPC UA Types in DDS

This section provides an overview on how certain component models and data models
have been realized in compliance with the OPC UA/DDS Gateway specification [8] and
describes the modeling approaches of OPC UA Types in DDS which are used by the
OPC UA to DDS Bridges in order to establish communication and appropriately map
the corresponding datatypes. Exemplary, three simple data models on how to represent
structures, unions and enumerations are illustrated below. Afterwards a more complex
data model is discussed.

According to the OPC UA/DDS Gateway specification, several OPC UA Types are
specified as non-primitive DDS Types meaning that they cannot just be replaced with
any native DDS Type. For this purpose, these OPC UA Types are represented by enu-
merations, unions, structures or more complex DDS Types (combination of enumerations,
structures and/or unions). The following illustration of an OPC UA type to DDS type
mapping refers to the FieldAssignment Type.

1 OPC UA type DDS type
2 ----------------------------------------------------------------
3 FieldAssignment enum AssignmentKind {
4 DATA_ITEM_ASSIGNMENT,
5 EVENT_FIELD_ASSIGNMENT,
6 CONSTANT_VALUE_ASSIGNMENT
7 };
8 struct DataItemRef {
9 string data_item_name;
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10 };
11 struct EventFieldRef {
12 string event_name;
13 uint32 event_field_index;
14 };
15
16 union AssignmentInput switch (AssignmentKind)

{
17 case DATA_ITEM_ASSIGNMENT:
18 DataItemRef data_item;
19 case EVENT_FIELD_ASSIGNMENT:
20 EventFieldRef event_field;
21 case CONSTANT_VALUE_ASSIGNMENT:
22 Variant constant_value;
23 };
24
25 struct FieldAssignment {
26 string dds_output_field_ref; // name

of output field
27 OpcUaInput opcua_input_ref;
28 AssignmentInput assignment_input;
29 };

Listing 4.1: OPC UA type to DDS type mapping for the FieldAssignment OPC UA type

For modeling the FieldAssignment OPC UA Type in AADL, the following enumeration,
union and structures have to be modeled first. The data model of the AssignmentKind
enumeration type is shown below.

1 data AssignmentKind
2 properties
3 Data_Model::Data_Representation => Enum;
4 Data_Model::Enumerators => ("DATA_ITEM_ASSIGNMENT", "

EVENT_FIELD_ASSIGNMENT", "
CONSTANT_VALUE_ASSIGNMENT");

5 end AssignmentKind;

Listing 4.2: Data model of the AssignmentKind enumeration type

The data models of the DataItemRef and the EventItemRef structure types are also
shown below.

1 data DataItemRef
2 properties
3 Data_Model::Data_Representation => Struct;
4 Data_Model::Base_Type => (classifier (Base_Types::

String));
5 Data_Model::Element_Names => ("data_item_name");
6 end DataItemRef;
7
8 data EventFieldRef
9 properties
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10 Data_Model::Data_Representation => Struct;
11 Data_Model::Base_Type => (classifier (Base_Types::

String), classifier (Base_Types::Unsigned_32));
12 Data_Model::Element_Names => ("event_name", "

event_field_index");
13 end EventFieldRef;

Listing 4.3: Data models of the DataItemRef and EventItemRef structure types

The data model of the AssignmentInput union type is already more complex, as the
switch construct which is shown in the specification also needs to be integrated into the
union type data model. Although there is no way of statically modeling the dynamic
control flow of the switch construct in AADL, one way to still model this functionality in
AADL is to integrate the AssignmentKind enumeration type as subcomponent of the
union type data model and later define possible analysis constraints to approximate the
dynamic behavior.

1 data AssignmentInput
2 properties
3 Data_Model::Data_Representation => Union;
4 end AssignmentInput;
5
6 data implementation AssignmentInput.impl
7 subcomponents
8 assignmentkind: data AssignmentKind;
9 data_item: data DataItemRef;

10 event_field: data EventFieldRef;
11 constant_value: data opcua::Variant.impl;
12 end AssignmentInput.impl;

Listing 4.4: Data model of the AssignmentInput union type

After the successful modeling of the previous data models, the FieldAssignment structure
type can be modeled as follows.

1 data FieldAssignment
2 properties
3 Data_Model::Data_Representation => Struct;
4 end FieldAssignment;
5
6 data implementation FieldAssignment.impl
7 subcomponents
8 dds_output_field_ref: data Base_Types::String; //

name of output field
9 opcua_input_ref: data opcua::OPCUAInput;

10 assignment_input: data AssignmentInput.impl;
11 end FieldAssignment.impl;

Listing 4.5: Data model of the FieldAssignment structure type
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4.4.2 Modeling of OPC UA Service Sets

In extension to the modeling of the appropriate OPC UA type to DDS type mapping and
the basic OPC UA client and OPC UA server models, the OPC UA Service Sets that are
specified by the OPC UA have to be integrated in the OPC UA AADL system model.
In order to explain and state the implementation of an OPC UA Service Set in AADL,
the AADL model of an OPC UA Service Set is shown by the OPC UA Subscription
Service Set. The model of an OPC UA Service Set in AADL is implemented using
the following approach: The general execution model of each Service Set is represented
in form of a process type component which is a subcomponent of the OPC UA client
system model. As all services within a service set shall be non-blocking meaning that
if two clients simultaneously try to request a specific service, both requests shall be
executed concurrently, thus the execution of such services or methods is modeled in
form of thread type subcomponent arrays, respectively. In this way, multiple identical
requests may be executed at once. The specific method realization is provided in form
of subprograms which specify the parameters according to the OPC UA/DDS Gateway
specification. The following Listing exemplary illustrates the abstract hierarchy of the
OPC UA Subscription Service Set implementation as it is modeled in AADL.

1 OPC UA SubscriptionServiceSetProcess // indicates the Service
Set interface (process type component)

2 / \
3 CreateSubscriptionThread[] CreateMonitoredItemThread[] // thread

type components
4 / \
5 CreateSubscription CreateMonitoredItem
6 // subprogram type components

Listing 4.6: Abstract AADL system model for the OPC UA Subscription Service Set

The concrete implementation of the OPC UA Subscription Service Set AADL model is
shown below.

1 process OPCUASubscriptionServiceSetProcess // Subscription Service Set
interface

2 features
3 output: out data port opcua::OPCUAData.impl;
4 input: in data port opcua::OPCUAData.impl;
5 end OPCUASubscriptionServiceSetProcess;
6
7 process implementation OPCUASubscriptionServiceSetProcess.impl
8 subcomponents
9 create_subscription_thread: thread CreateSubscriptionThread.

impl[]; // assign thread as subcomponent of client
process

10 create_monitored_item_thread: thread
CreateMonitoredItemThread.impl[];

11 connections // map thread inputs/outputs to process inputs/outputs
12 connect_ss_sub_out: port create_subscription_thread.output ->

output;
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13 connect_ss_sub_in: port input -> create_subscription_thread.
input;

14 connect_ss_mon_out: port create_monitored_item_thread.output
-> output;

15 connect_ss_mon_in: port input -> create_monitored_item_thread
.input;

16 end OPCUASubscriptionServiceSetProcess.impl;
17
18 ---- OPC UA CreateSubscription service ----
19 subprogram CreateSubscription // represents ResponseHeader

create_subscription(...)
20 features
21 response_header: out parameter opcua::ResponseHeader.impl; //

identifies the ResponseHeader type to be returned
22 subscription_id: out parameter opcua::IntegerId;
23 revised_publishing_interval: out parameter opcua::Duration;
24 revised_lifetime_count: out parameter opcua::Counter;
25 revised_max_keep_alive_count: out parameter opcua::Counter;
26 requested_publishing_interval: in parameter opcua::Duration;
27 requested_lifetime_count: in parameter opcua::Counter;
28 requested_max_keep_alive_count: in parameter opcua::Counter;
29 max_notifications_per_publish: in parameter opcua::Counter;
30 publishing_enabled: in parameter Base_Types::Boolean;
31 priority: in parameter Base_Types::Integer; // Integer to be

assumed as Integer_8 which is used instead of octet
according to the specification

32 properties
33 Source_Language => (C); // implementation language is C
34 Source_Name => "CreateSubscription"; // name of the

corresponding C function
35 Source_Text => ("opcuaservicesetmethods.c"); //

implementation file
36 end CreateSubscription;
37
38 thread CreateSubscriptionThread
39 features
40 output: out data port opcua::OPCUAData.impl;
41 input: in data port opcua::OPCUAData.impl;
42 properties
43 Dispatch_Protocol => Aperiodic; // as service requests are

asynchronous
44 Compute_Execution_Time => 10 ms .. 30 ms; // estimation of

the time required for generating a proper response to a
service request

45 end CreateSubscriptionThread;
46
47 thread implementation CreateSubscriptionThread.impl
48 calls
49 mycalls: {
50 cs_spg: subprogram CreateSubscription;
51 };
52 end CreateSubscriptionThread.impl;
53
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54 ---- OPC UA CreateMonitoredItem service ----
55 subprogram CreateMonitoredItem // represents ResponseHeader

create_monitored_items(...)
56 features
57 response_header: out parameter opcua::ResponseHeader.impl; //

identifies the ResponseHeader type to be returned
58 results: out parameter opcuaddssub::

MonitoredItemCreateResults.impl;
59 diagnostic_infos: out parameter opcua::DiagnosticInfos.impl;
60 subscription_id: in parameter opcua::IntegerId;
61 timestamps_to_return: in parameter opcua::TimestampsToReturn;
62 items_to_create: in parameter opcuaddssub::

MonitoredItemCreateRequests.impl;
63 properties
64 Source_Language => (C); // implementation language is C
65 Source_Name => "CreateMonitoredItem"; // name of the

corresponding C function
66 Source_Text => ("opcuaservicesetmethods.c"); //

implementation file
67 end CreateMonitoredItem;
68
69 thread CreateMonitoredItemThread
70 features
71 output: out data port opcua::OPCUAData.impl;
72 input: in data port opcua::OPCUAData.impl;
73 properties
74 Dispatch_Protocol => Aperiodic; // as service requests are

asynchronous
75 Compute_Execution_Time => 10 ms .. 30 ms; // estimation of

the time required for generating a proper response to a
service request

76 end CreateMonitoredItemThread;
77
78 thread implementation CreateMonitoredItemThread.impl
79 calls
80 mycalls: {
81 cmi_spg: subprogram CreateMonitoredItem;
82 };
83 end CreateMonitoredItemThread.impl;

Listing 4.7: AADL model implementation for the OPC UA Subscription Service Set

Analog to the OPC UA Subscription Service Set AADL model, all Service Set models are
specified accordingly and in compliance with the OPC UA/DDS Gateway specification.

4.5 Modeling of DDS Components

As a counterpart of the OPC UA AADL system model, the DDS AADL system model
is composed of two different AADL models which each specifies relevant entities of the
DDS domain required for the integration of the DDS system and the validation of the
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OPC UA/DSS Gateway system model. The DDS system model generally defines all
DDS types and entities as data models that are specified by the OPC UA/DDS Gateway
specification for the DDS domain [8]. In addition, the DDSApplication system model
represents DDS domain participants (including the integrated DDS endpoints used in the
OPC UA to DDS Bridges and the DDS to OPC UA Bridges), the DDS domain mapping
to OPC UA, the representation of DDS topics in OPC UA and the DDS instance methods
model (including the representation of instances and samples in OPC UA). The latter is
debated in Section 4.5.2. The AADL model for the DDS is illustrated in Fig. 4.5.

Figure 4.5: Structure diagram of the AADL system model for the DDS

4.5.1 Modeling of DDS types in OPC UA

Analog to the modeling of OPC UA types in DDS 4.5.1, the AADL data modeling of
DDS types in OPC UA is exemplary introduced by defining the DDS structure type
named ShapeType which is associated to the DDS topic Circle and later on integrated in
the AddressSpace of some OPC UA server inside the OPC UA/DDS Gateway AADL
system model. The representation of DDS types in OPC UA is used by the DDS to OPC
UA Bridges to appropriately map the data types between the domains. The ShapeType
DDS type is represented in XML format in Listing 4.8.

1 <types>
2 <struct name="ShapeType">
3 <member name="color" stringMaxLength="128" type="string" key=

"true"/>
4 <member name="x" type="int32"/>
5 <member name="y" type="int32"/>
6 <member name="shapesize" type="int32"/>
7 </struct>
8 </types>

Listing 4.8: XML representation of the ShapeType DDS type
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The XML format specifies the types clause which defines the description of new DDS
types in OPC UA. The struct clause identifies the ShapeType as DDS structure type
which is composed of four members called color, x, y and shapesize. Besides the member
named color which is a string type, each member represents a 32 bit integer type. The
color member type also specifies a maximum length of 128 characters and the keyed type
property. The ShapeType DDS type has the following representation in AADL as shown
in Listing 4.9.

1 data ShapeTypeDataType
2 properties
3 Data_Model::Data_Representation => Struct;
4 end ShapeTypeDataType;
5
6 data implementation ShapeTypeDataType.impl -- data type
7 subcomponents
8 BrowseName: data String8.impl; -- <StructureTypeName>DataType

-> ShapeTypeDataType
9 color: data ShapeTypeColor.impl; -- keyed type -> key = true

; stringMaxLength="128"
10 x: data ShapeTypeX.impl;
11 y: data ShapeTypeY.impl;
12 shapesize: data ShapeTypeShapeSize.impl;
13 end ShapeTypeDataType.impl;
14
15 data ShapeTypeVariableType extends BaseDataVariableType
16 properties
17 Data_Model::Data_Representation => Struct;
18 end ShapeTypeVariableType;
19
20 data implementation ShapeTypeVariableType.impl -- variable type
21 subcomponents
22 BrowseName: data String8.impl; -- <StructureTypeName>

VariableType -> ShapeTypeVariableType
23 DataType: data ShapeTypeDataType.impl; -- shape type data

type
24 end ShapeTypeVariableType.impl;
25
26 data ShapeTypeInstance
27 properties
28 Data_Model::Data_Representation => Struct;
29 end ShapeTypeInstance;
30
31 data implementation ShapeTypeInstance.impl -- variable/instance
32 subcomponents
33 BrowseName: data String8.impl; -- Name of the

ShapeTypeInstance instance of ShapeTypeDataType
34 ValueRank: data UInt32.impl; -- If the Variable represents a

Primitive Type, ValueRank shall be set to 0
35 color: data ShapeTypeColor.impl;
36 x: data ShapeTypeX.impl;
37 y: data ShapeTypeY.impl;
38 shapesize: data ShapeTypeShapeSize.impl;

41



4. AADL Model for the OPC UA/DDS Gateway

39 end ShapeTypeInstance.impl;
40
41 data ShapeTypeColor -- variable
42 properties
43 Data_Model::Data_Representation => Struct;
44 end ShapeTypeColor;
45
46 data implementation ShapeTypeColor.impl
47 subcomponents
48 BrowseName: data String8.impl; -- ShapeTypeColor
49 DataType: data String8.impl; -- stringMaxLength="128"
50 ValueRank: data UInt32.impl; -- If the Variable represents a

Primitive Type, ValueRank shall be set to 0
51 end ShapeTypeColor.impl;
52
53 data ShapeTypeX -- variable
54 properties
55 Data_Model::Data_Representation => Struct;
56 end ShapeTypeX;
57
58 data implementation ShapeTypeX.impl
59 subcomponents
60 BrowseName: data String8.impl; -- ShapeTypeX
61 DataType: data Int32.impl;
62 ValueRank: data UInt32.impl; -- If the Variable represents a

Primitive Type, ValueRank shall be set to 0
63 end ShapeTypeX.impl;
64
65 data ShapeTypeY -- variable
66 properties
67 Data_Model::Data_Representation => Struct;
68 end ShapeTypeY;
69
70 data implementation ShapeTypeY.impl
71 subcomponents
72 BrowseName: data String8.impl; -- ShapeTypeY
73 DataType: data Int32.impl;
74 ValueRank: data UInt32.impl; -- If the Variable represents a

Primitive Type, ValueRank shall be set to 0
75 end ShapeTypeY.impl;
76
77 data ShapeTypeShapeSize -- variable
78 properties
79 Data_Model::Data_Representation => Struct;
80 end ShapeTypeShapeSize;
81
82 data implementation ShapeTypeShapeSize.impl
83 subcomponents
84 BrowseName: data String8.impl; -- ShapeTypeShapeSize
85 DataType: data Int32.impl;
86 ValueRank: data UInt32.impl; -- If the Variable represents a

Primitive Type, ValueRank shall be set to 0
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87 end ShapeTypeShapeSize.impl;

Listing 4.9: AADL representation of the ShapeType DDS type

According to the OPC UA/DDS Gateway specification [8] on mapping DDS types to
OPC UA, the ShapeType DDS type first defines a ShapeTypeDataType data model
specifying the ShapeType datatype as OPC UA type. Second, a data model representing
the ShapeType variable type (ShapeTypeVariableType) and the ShapeType instance
(ShapeTypeInstance) was created. Last but not least, a data model for each member of
the ShapeType DDS type was created to allow OPC UA to represent instances of the
ShapeType.

In comparison with the mapping of DDS enumeration types, bitmask types, union types
and collection types, the general approach of modeling more complex DDS types in OPC
UA like the ShapeType DDS structure type shown above is the same, thus a detailed
explanation of the mapping of all other complex DDS types including sequence types,
array types and map types is left out at this point. In order to view those, the entire DDS
type to OPC UA type mapping is included in the AADL code of the GitLab project for
the OPC UA/DDS Gateway AADL system model which is referenced in the Appendix
Chapter 8.

Another example demonstrating the mapping of DDS types to OPC UA is shown by the
mapping of DDS topics to OPC UA. The mapping of the DDS TopicType also includes a
data model for the RegisteredTypeName DDS type which is shown below in Listing 4.10.

1 data TopicType extends dds::BaseObjectType
2 properties
3 Data_Model::Data_Representation => Struct;
4 end TopicType;
5
6 data implementation TopicType.impl
7 subcomponents
8 BrowseName: data Base_Types::String; -- TopicType
9 RegisteredTypeName: data RegisteredTypeName.impl;

10 end TopicType.impl;
11
12 data RegisteredTypeName
13 properties
14 Data_Model::Data_Representation => Struct;
15 end RegisteredTypeName;
16
17 data implementation RegisteredTypeName.impl
18 subcomponents
19 BrowseName: data Base_Types::String; -- RegisteredTypeName
20 DataType: data Base_Types::String;
21 end RegisteredTypeName.impl;

Listing 4.10: Representation of DDS topics in OPC UA
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4.5.2 Modeling of DDS Instance Methods

Similar to the mapping of OPC UA Service Sets in DDS 4.4.2 which are represented
by a hierarchical structure of processes, threads and subprogram component types and
component implementations, the AADL model of DDS instance methods in OPC UA
was designed using the same approach. Listing 4.11 shows the overall execution model
for the DDS instance methods mapping to OPC UA.

1 process DDSAppInstanceProcess -- OPCUAService interface Instance
2 features
3 output: out data port dds::DDSData.impl;
4 input: in data port dds::DDSData.impl;
5 end DDSAppInstanceProcess;
6
7 process implementation DDSAppInstanceProcess.impl
8 subcomponents
9 register_instance_thread: thread RegisterInstanceThread.impl

[];
10 unregister_instance_thread: thread UnregisterInstanceThread.

impl[];
11 dispose_instance_thread: thread DisposeInstanceThread.impl[];
12 connections -- map thread inputs/outputs to process inputs/

outputs
13 connect_reginst_out: port register_instance_thread.output ->

output;
14 connect_reginst_in: port input -> register_instance_thread.

input;
15 connect_unreginst_out: port unregister_instance_thread.output

-> output;
16 connect_unreginst_in: port input ->

unregister_instance_thread.input;
17 connect_dispinst_out: port dispose_instance_thread.output ->

output;
18 connect_dispinst_in: port input -> dispose_instance_thread.

input;
19 end DDSAppInstanceProcess.impl;
20
21 -- Return Values for StatusCode:
22 -- Good - The operation was successful.
23 -- Bad_InvalidArgument - One or more arguments are invalid.
24 -- Bad_NodeExists - The Node to be created as a consequence of the invocation

to RegisterInstance already exists.
25
26 -- only for topics with a keyed type
27 subprogram RegisterInstance -- represents StatusCode RegisterInstance(...)
28 features
29 BrowseName: in parameter Base_Types::String; --

RegisterInstance
30 -- in <EquivalentType> <key_member_1_name>;
31 -- [...in <EquivalentType> <key_member_N_name>;]
32 InputArguments: in parameter ddsopcuabridge::Arguments.impl;
33 statuscode: out parameter opcua::StatusCode.impl; --

identifies the StatusCode type to be returned
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34 properties
35 Source_Language => (C); -- implementation language is C
36 Source_Name => "RegisterInstance"; -- name of the

corresponding C function
37 Source_Text => ("ddsinstancemethods.c"); -- implementation

file
38 end RegisterInstance;
39
40 thread RegisterInstanceThread
41 features
42 output: out data port dds::DDSData.impl;
43 input: in data port dds::DDSData.impl;
44 properties
45 Dispatch_Protocol => Aperiodic; -- as service requests are

asynchronous
46 Compute_Execution_Time => 10 ms .. 30 ms; -- estimation of

the time required for generating a proper response to a
service request

47 end RegisterInstanceThread;
48
49 thread implementation RegisterInstanceThread.impl
50 calls
51 mycalls: {
52 ri_spg : subprogram RegisterInstance;
53 };
54 end RegisterInstanceThread.impl;
55
56 -- Return Values for StatusCode:
57 -- Good - The operation was successful.
58 -- Bad_InvalidArgument - One or more arguments are invalid.
59
60 -- only for topics with a keyed type
61 subprogram UnregisterInstance -- represents StatusCode UnregisterInstance

(...)
62 features
63 BrowseName: in parameter Base_Types::String; --

UnregisterInstance
64 -- in <EquivalentType> <key_member_1_name>;
65 -- [...in <EquivalentType> <key_member_N_name>;]
66 InputArguments: in parameter ddsopcuabridge::Arguments.impl;
67 statuscode: out parameter opcua::StatusCode.impl; --

identifies the StatusCode type to be returned
68 properties
69 Source_Language => (C); -- implementation language is C
70 Source_Name => "UnregisterInstance"; -- name of the

corresponding C function
71 Source_Text => ("ddsinstancemethods.c"); -- implementation

file
72 end UnregisterInstance;
73
74 thread UnregisterInstanceThread
75 features
76 output: out data port dds::DDSData.impl;
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77 input: in data port dds::DDSData.impl;
78 properties
79 Dispatch_Protocol => Aperiodic; -- as service requests are

asynchronous
80 Compute_Execution_Time => 10 ms .. 30 ms; -- estimation of

the time required for generating a proper response to a
service request

81 end UnregisterInstanceThread;
82
83 thread implementation UnregisterInstanceThread.impl
84 calls
85 mycalls: {
86 ui_spg: subprogram UnregisterInstance;
87 };
88 end UnregisterInstanceThread.impl;
89
90 -- Return Values for StatusCode:
91 -- Good - The operation was successful.
92 -- Bad_InvalidArgument - One or more arguments are invalid.
93
94 -- only for topics with a keyed type
95 subprogram DisposeInstance -- represents StatusCode DisposeInstance(...)
96 features
97 BrowseName: in parameter Base_Types::String; --

DisposeInstance
98 -- in <EquivalentType> <key_member_1_name>;
99 -- [...in <EquivalentType> <key_member_N_name>;]

100 InputArguments: in parameter ddsopcuabridge::Arguments.impl;
101 statuscode: out parameter opcua::StatusCode.impl; --

identifies the StatusCode type to be returned
102 properties
103 Source_Language => (C); -- implementation language is C
104 Source_Name => "DisposeInstance"; -- name of the

corresponding C function
105 Source_Text => ("ddsinstancemethods.c"); -- implementation

file
106 end DisposeInstance;
107
108 thread DisposeInstanceThread
109 features
110 output: out data port dds::DDSData.impl;
111 input: in data port dds::DDSData.impl;
112 properties
113 Dispatch_Protocol => Aperiodic; -- as service requests are

asynchronous
114 Compute_Execution_Time => 10 ms .. 30 ms; -- estimation of

the time required for generating a proper response to a
service request

115 end DisposeInstanceThread;
116
117 thread implementation DisposeInstanceThread.impl
118 calls
119 mycalls: {
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120 di_spg: subprogram DisposeInstance;
121 };
122 end DisposeInstanceThread.impl;

Listing 4.11: Representation of DDS instance methods in OPC UA
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CHAPTER 5
Dynamic Configurability of the

OPC UA/DDS Gateway

Based on the formal AADL system model for the OPC UA/DDS Gateway presented in
Chapter 4, this chapter describes how to create a dynamically configurable OPC UA/DDS
Gateway implementation using the formal AADL system model. For this reason, the
code generation process, which creates an equivalent C code representation of the AADL
system model using Ocarina is outlined in Section 5.1. Furthermore, the problems that
occurred during the code generation using Ocarina are discussed in Section 5.2. To
that end, the approach of creating a dynamically configurable OPC UA/DDS Gateway
application is illustrated in Section 5.3.

5.1 Code generation process using Ocarina
The C code generation for the AADL model of the OPC UA/DDS Gateway using Ocarina
was performed on a Linux Mint 19 x86_64 system architecture. In order to start with
the code generation process, the Ocarina build script has to be downloaded from the
stated GitHub source [26] 1. An important note at this point is that the Ocarina build
script requires a GNAT/Ada compiler, gprbuild, autoconf and automake. By using the
packet management system Advanced Packaging Tool (APT) [27] for instance, all of
the dependencies can be installed with the sudo apt− get install command. After the
successful installation of the required tools, the following command installs Ocarina as a
fresh installation after cloning the GitHub repository:

./build_ocarina.sh−−scenario = fresh−install −−prefix = $PWD/ocarina_install
−t

1The README.md provides detailed information on how the setup of the script works and how to
perform a fresh installation
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Once the Ocarina build script is executed, the Ocarina repository, the PolyOrb-Hi-
Ada/PolyOrb-Hi-C runtime and the aadlib are updated. Afterwards, make and make
install are called to setup and configure Ocarina. Additionally, we specified the command
line option −t to run the provided test suite on Ocarina and to verify the installation.

In order to execute the Ocarina code generation script, located in the ocarina_install/bin
folder, several command-line options and arguments have to be specified to parse the
AADL model correctly. As Ocarina includes the PolyOrb-Hi-Ada and the PolyOrb-
Hi-C middleware, either Ada or C source code may be generated based on the AADL
specification. For this particular case, the following command line string generates the C
source code based on the OPC UA/DDS Gateway AADL model for the target platform:

./ocarina −aadlv2 −f −p −g polyorb_hi_c −r Complete.impl −o
/git/aadl_opcuaddsgateway/aadl
/git/aadl_opcuaddsgateway/aadl/ddsapp.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaddsattribute.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaddssub.aadl
/git/aadl_opcuaddsgateway/aadl/dds.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaddsmethod.aadl
/git/aadl_opcuaddsgateway/aadl/overview.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaclient.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaddsgateway.aadl
/git/aadl_opcuaddsgateway/aadl/opcua.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaddsview.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaserver.aadl
/git/aadl_opcuaddsgateway/aadl/ddsopcuabridge.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaddsquery.aadl
/git/aadl_opcuaddsgateway/aadl/opcuaddsbridge.aadl

The flag −aadlv2 specifies that AADLv2 is used to interpret the AADL specification.
The flag −f parses pre-defined non-standard property sets while the flag −p parses and
instantiates the AADL models. The option −g specifies the middleware that has to be
used for the code generation process. The option −r defines the name of the AADL root
system implementation and the flag −o declares the output directory. The arguments
provided to the Ocarina script represent all the AADL files necessary to successfully parse
the AADL model of the specified AADL root system implementation. If the Ocarina
script does not print any output on the command line and returns, this means that the
code generation process for the provided AADL model has been finished successfully.
Otherwise, the errors, as stated by the command line output of the Ocarina script have
to be checked, and the AADL model has to be modified, respectively. For providing a
general overview, the basic code generation process using Ocarina is visualised in Fig.
5.1. 2.

2For further details on the command line options provided by Ocarina please check:
https://ocarina.readthedocs.io/en/latest/usage.html
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Figure 5.1: Flow chart illustrating the code generation process using Ocarina

According to the mapping of AADL entities/components, as specified by PolyOrb-Hi-C
[28], a target folder with the name of the AADL root system implementation is created.
This folder further contains several node folders which each represent a process within
the generated distributed application. Each node folder is composed of a Makefile and
several C source files specifying all the related PolyOrb-Hi-C components relevant for
building the executable/node including subprogram interfaces, types, requests, activities,
naming, deployment, marshallers as well as the main and a Doxygen description of the
node.

5.2 Experienced Problems
This section states all problems encountered during the setup of Ocarina and the AADL
specification of the OPC UA/DDS Gateway model. It also points out the specific issues
discovered during the code generation process of the modeled AADL system model for
the OPC UA/DDS Gateway.

First off, it was tried to setup Ocarina on a machine featuring Windows 10 Home 64
bit. For this purpose, the Ocarina build script [26] was used, and all the prerequisites as
discussed in Section 5.1 have been installed for Windows accordingly. During the update
process of the Ocarina build script, some errors concerning the autoconf and automake
configuration occurred though (some modules could not be adequately loaded). It was
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not possible to solve this issue and required a switch to a Linux Mint 19 64 bit virtual
machine. On the Linux VM, it was possible to install Ocarina.

In a first attempt to start the code generation process, the Ocarina plugin for OSATE was
installed and configured in OSATE. This plugin should allow starting the code generation
process from inside OSATE by selecting an AADL root system implementation from
the Outline. Unfortunately, Ocarina did not create a proper C code implementation as
expected from the explanation of the documentation. As there were no traceable errors
that could explain the malfunctioning of the plugin, the next code generation attempt
focused on using Ocarina from the command line interface.

After the first execution of the Ocarina script on the command line by providing the
necessary options and arguments in order to parse the AADL model, several errors
appeared. Ocarina could not semantically parse some data models, modeled as Structure
Type (Data_Representation => Struct) besides being syntactically correct according
to the AADL specification. In order to resolve this problem, remodeling the particular
data models was the only option. Moreover, Ocarina stated an error regarding the
Base_Types::String component type as the maximum length of a string has to be defined.
The error has been resolved by modifying the Base_Types package and specifying the
Source_Data_Bits property (set to 8) and the Dimension property (set to (128)) which
are defined by the Data_Model package for the String component type (represents a 128
bytes bounded string). Furthermore, the AADL specification of how a thread is supposed
to call a subprogram using the Compute_Entrypoint property for some particular thread
had to be changed. A thread component now specifies the calls clause in its component
implementation and explicitly declares the subprogram call by referencing the name of
the subprogram component type.

Additionally, Ocarina does not support the modeling of data models that represent union
types. The fix for this issue is that these data models also specify a structure type using
the Data_Representation property. In order to distinguish between an actual structure
type and a union type, the first subcomponent in a union type component implementation
has to represent the identifier indicated by an enumeration type.

Ocarina further requires the binding of connections between features of system imple-
mentation and process implementation to a dedicated bus component implementation of
the particular system model which caused the error that a connection has to be bound
to a bus. After defining a designated bus component for the system model and by
specifying the Actual_Connection_Binding property to bind each connection to the bus
subcomponent implementation, this issue was solved.

The last error is caused by calling make for some arbitrary node after the Ocarina
toolchain seemingly successfully generated a C code implementation. Specifically, the
error states that some variable declaration is faulty, although Ocarina generated the
corresponding C file. Until the end of the thesis, it was not possible to fix this problem.
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5.3 A dynamically configurable OPC UA/DDS Gateway
application

Based on the problem description stated in Section 5.2, this section discusses all the essen-
tial steps that are assumed to be necessary in order to create a dynamically configurable
OPC UA/DDS Gateway application.

Once the Ocarina code generation completes the C code based on the formal OPC
UA/DDS Gateway AADL system model appears in the specified output directory. The
output directory which corresponds to the AADL root system implementation represents
the root node of a hierarchical structure of nodes as described in Section 5.1. In order
to run the distributed application, each node may be compiled individually using the
provided Makefile for each node or the Makefile in the root directory can be used to
compile all nodes at once. Each node executes, after running the dedicated binary
executables,

The dynamic configurability of the OPC UA/DDS Gateway is supposed to be guaranteed
by the invocation of two steps depending on the intended runtime configuration.

5.3.1 Dynamic Data type compile-time configuration

In the first case, the generated PolyOrb-Hi-C code implementation defines the configura-
tion of the OPC UA/DDS Gateway. For this purpose, the first scenario assumes that
only some values concerning a particular set of data types/data models need to change
in order to meet the new runtime requirements.

PolyOrb-Hi-C generally creates an application skeleton and declares the data types
for each node in the corresponding types.h file. These data types are parameters for
some specific subprogram in AADL. At the same time, they are defined as parameters
of subprogram corresponding functions in the PolyOrb-Hi-C code (as specified in the
subprograms.c/subprograms.h files). Each subprogram or set of subprograms is executed
by some dedicated type of thread or also called job. The activity.c file of each node
describes the set of threads that are executed by a node and each thread’s implementation.
Therefore, the initialisation/configuration of the specific data type values is located at
the startup routine of each thread. All threads only specify input parameters though,
as output parameters do not require initialisation values because they depend on the
functional aspects of the subprogram/function. In order to guarantee a high configurability
of the application, a DDS Consolidated XML (XSD) to C parser is proposed based on the
OPC UA/DDS Gateway specification [8] which translates/maps the XML configuration
accordingly for all the specified data types and initialises the corresponding data types of
all threads in the activity.c file with the pre-defined values from the XML file. Thereby,
the XSD file contains all the required configuration values for the existing type definition
in order to enable the intended configuration of the OPC UA/DDS Gateway. After the
parser completes, the new configuration is loaded, and the application can be compiled
and run again.
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5.3.2 Dynamic Data model extension for the compile-time
configuration

In the second case, the configuration of the OPC UA/DDS Gateway relies on additional
data types necessary to meet the runtime requirements specified by the user. For efficiently
achieving this, an additional parser is proposed which receives an XML file as input
that corresponds to XSD syntax (.xds files) as stated by the OPC UA/DDS Gateway
specification [8]. The XSD file is composed of all the new type definitions required for the
intended configuration of the OPC UA/DDS Gateway. The parser then fetches all type
definitions, translates/maps the XML syntax of the type definitions into AADL syntax
and supplementary writes/appends the type definitions based on the correct modeling
approach for the specific data types to the designated AADL models. After the AADL
system model contains all the required data models for the new configuration, Ocarina is
used to parse the AADL model into PolyOrb-Hi-C code. The remaining steps can be
performed analogue to the description in Section 5.3.1.

With the concept of having two separate parsing mechanisms, one for adding new type
definitions and one for assigning a dedicated compile-time configuration to all existing type
definitions and entities specifically, a XSD syntax may be easily parsed and configured for
the OPC UA/DDS Gateway application by combining the benefits of both mechanisms as
illustrated in Fig. 5.2. Thus, it shall also be possible to provide one XSD file which enables
the XSD to AADL parser to add new type definitions/data types to the AADL model.
In contrast, the XSD to C parser allows interpreting the remaining XML specification to
create a valid compile-time configuration for the application (Ocarina has to be called
before the XSD to C parser can operate on the updated version of the application).
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Figure 5.2: Flow chart illustrating the process of dynamically configuring the OPC
UA/DDS Gateway
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CHAPTER 6
Discussion on the dynamically
configurable OPC UA/DDS

Gateway

Subsequent to the modeling of the OPC UA/DDS Gateway in AADL 4 and the dynamic
configurability of the OPC UA/DDS Gateway 5, this chapter outlines and discusses the
work that was done in this thesis. First off, the compliance of the implemented OPC
UA/DDS Gateway AADL system model with the OPC UA/DDS Gateway specification
[8] is discussed 6.1. This section also demonstrates the relevance of the OPC UA/DDS
Gateway AADL model and compares our AADL model with the previous work that has
been done as stated in the Related Work Section 2.1. Finally, in Section 6.2, we conclude
our discussion by answering the research questions that have been formulated in Chapter
1.

6.1 Conformance of the OPC UA/DDS Gateway AADL
model with the OPC UA/DDS Gateway specification

According to the OPC UA/DDS Gateway specification, the conformance of an OPC
UA/DDS Gateway implementation or model is based on the corresponding building
blocks that have been implemented/modeled. These building blocks specify the level
of accuracy between an implementation/model and the specification. For this purpose,
the second chapter of the OPC UA/DDS Gateway specification [8] states corresponding
conformance criteria by defining four individual conformance points which are composed
of specific build blocks that have to be considered in order to reason about the compliance
of the OPC UA/DDS Gateway AADL model with the specification.
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The first two conformance points define the compliance level of the OPC UA to DDS
Mapping. Thus, an implementation/model either satisfies the basic or the complete
compliance criteria. For the basic compliance, an implementation/model requires the
implementation of the OPC UA Type System Mapping and the OPC UA Subscription
Model Mapping. In order to guarantee complete compliance, the basic compliance require-
ments have to be satisfied while the OPC UA Service Sets Mapping additionally has to
be implemented. Regarding the provided implementation of the OPC UA/DDS Gateway
AADL system model, the basic OPC UA to DDS Mapping compliance requirements
are satisfied as the OPC UA Type System Mapping and the OPC UA Subscription
Model Mapping are completely modeled and specified by the OPC UA to DDS Bridge
AADL model, the OPC UA AADL model and the OPC UA Subscription Service Set
AADL model. The complete compliance with the OPC UA to DDS Mapping is achieved
through the implementation of the OPC UA Service Sets Mapping which is supplementary
modeled and specified by the following AADL models/packages: OPC UA Client, OPC
UA View Service Set, OPC UA Query Service Set, OPC UA Method Service Set and
OPC UA Attribute Service Set. For this reason, the OPC UA/DDS Gateway AADL
model fully conforms with the OPC UA to DDS Mapping.

Analog to the first two conformance points, the third and the fourth conformance point
specify the compliance level of the DDS to OPC UA Mapping. In this scenario, the
third conformance point targets the basic compliance of the DDS to OPC UA Mapping
by the implementation of the DDS Type System Mapping and the DDS Global Data
Space Mapping building blocks except for the sub clause: Reading Historical Data From
Instance Nodes. In order to satisfy the DDS to OPC UA Mapping basic conformance
requirements, the DDS to OPC UA Bridge AADL model and the DDS AADL model
completely model and implement the appropriate building blocks. For guaranteeing the
complete conformance with the DDS to OPC UA Mapping, the sub clause: Reading
Historical Data From Instance Nodes has also been implemented in the DDS AADL
model. To that end, the provided implementation of the OPC UA/DDS Gateway AADL
model further completely complies with the DDS to OPC UA Mapping.

Based on the satisfaction of the requirements necessary for the complete conformance
with the OPC UA to DDS Mapping and the DDS to OPC UA Mapping, our formal
AADL model implementation of the OPC UA/DDS Gateway 4 fully conforms with the
OPC UA/DDS Gateway specification and provides a formal and complete bi-directional
communication model between OPC UA and DDS applications. Contrarily, the AADL
system model represents a frame for the concrete implementation though, as further data
models may be added for the OPC UA to DDS Mapping or the DDS to OPC UA Mapping
by a provided XSD configuration file for certain use cases. In some specific application
scenario, the XSD to AADL parser receives the appropriate XSD configuration file as
input and converts the XSD specification of the type definitions into corresponding AADL
data models in order to generate the specific OPC UA/DDS Gateway AADL model
based on the generic OPC UA/DDS Gateway AADL model.
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In extension, the provided formal AADL model implementation of the OPC UA/DDS
Gateway may also be used in order to create a dynamically configurable OPC UA/DDS
Gateway application as comprehensively discussed and visualised in Chapter 5. For this
purpose, the AADL model may serve as a complete formal model reference implementation
which can be built upon and used to generate a platform specific configurable OPC
UA/DDS Gateway application.

In comparison with Section 2.1, specifically the hybrid implementation proposed in [13]
which defines the mapping of OPC UA data types to DDS data types, our formal AADL
model implementation also defines the DDS to OPC UA Mapping and is fully conformant
with the OPC UA/DDS Gateway specification respectively. In relation to the concept
of a smart gateway middleware connecting the OPC UA and the DDS [9], we do not
provide an evaluation of our AADL model compared to the evaluation of the concept for
the smart gateway middleware using a Raspberry Pi. Instead, we provide a complete
formal model implementation and state the concept on how to create an application
based on our model and how to make the application dynamically configurable.

6.2 Discussion of the results regarding the research
questions

To that end, we want to discuss and illustrate the results of this thesis by answering the
research questions that have been formulated in Chapter 1.

Research question one (RQ1) aims towards gaining knowledge on how to create an
artefact (OPC UA/DDS Gateway) by using the AADL model language.

RQ 1: How to implement the OPC UA/DDS Gateway in the AADL?

Following the design and creation research strategy, as described in Chapter 3, Chapter
4 presents the entire creation process of the OPC UA/DDS Gateway implementation.
Further, it contains the primary concept and the hierarchical structure of the AADL
system and component types and implementations, accompanied by insights and learnings
about the creation process. A particular focus lies on the used AADL modeling approaches
for the OPC UA to DDS Mapping and the DDS to OPC UA Mapping according to
the specification [8]. Chapter 8, Section 8.1 provides the link to the GitLab project of
the thesis containing the entire AADL code of the OPC UA/DDS Gateway root system
model, including all corresponding AADL models. The previous Section 6.1 evaluated
the model according to the specification and added valuable insights. Therefore, the sum
of all gained knowledge answers RQ1.

The second research question RQ2 aims towards how the artifact performs in its ap-
plication domain. In particular, what are the necessary steps to create a dynamically
configurable OPC UA/DDS Gateway for several application platforms.
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RQ 2: How to dynamically configure the OPC UA/DDS Gateway for several application
platforms?

For answering RQ2, Chapter 5 presents a process to transform the formal AADL model
into a specific OPC UA/DDS Gateway instance. The chapter displays the code generation
process using Ocarina and experienced problems. By introducing a XSD to AADL parser
and a XSD to C parser, it is possible to configure the generic AADL model and the
application C source code based on a specific XSD configuration file at compile-time. In
the last step, all nodes are compiled into appropriately configured executables for the
distributed application. Due to the not solvable problems during the code generation
process, it was not possible to evaluate a specific OPC UA/DDS Gateway instance.

In order to sum up the results of this thesis, the discussion of the presented work fulfils
the aims of the thesis to model the OPC UA/DDS Gateway using the AADL and to
discuss on how the OPC UA/DDS Gateway can be dynamically configured based on the
formal AADL model.
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CHAPTER 7
Conclusion

In modern automation industry, IIoT [2] represents the primary concept of developing
highly sophisticated, scalable and efficient automation systems. These types of systems
have to be reliable, interoperable and adaptable in order to satisfy the requirements.
As OPC UA and DDS represent common standards used in the domain of automation
systems, a complete configurable formal model of the OPC UA/DDS Gateway would
satisfy the IIoT requirements regarding interoperability, scalability and reliability while
also preserving efficiency. Based on this motivation, this thesis presents the entire AADL
model implementation process for the OPC UA/DDS Gateway, the conformity evaluation
and the specific learning outcomes. It further contains a procedure on how to configure
the formal general model towards an executable specific gateway instance. The work
provides knowledge about the used toolchain and subsequently answers two research
questions to fulfil the scientific requirements for a bachelor thesis.

Following the stated delimitations, the thesis provides the AADL model for further
development instead of an executable binary. Future activities should focus on the
encountered code generation issues, how to model particular OPC UA and DDS entities
in AADL and the extension of the general model. Moreover, the final gateway artefact
should be extensively tested concerning reconfigurability, scalability, safety and security.
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CHAPTER 8
Appendix

This chapter provides a link to the GitLab project of the thesis which contains the entire
AADL code of the OPC UA/DDS Gateway system model 8.1 as well as additionally
gives some supplementary, more in-depth technical background on the modeling language
AADL regarding the safety analysis and the error model annex 8.2.

8.1 AADL Code for the OPC UA/DDS Gateway system
model

The AADL code for the OPC UA/DDS Gateway system model can be accessed via the
following link which leads to the GitLab project of the thesis:

https://git.auto.tuwien.ac.at/dramsauer/aadl_opcuaddsgateway/

8.2 Safety Analysis in AADL

The safety analysis in AADL provides many different analysis methods for which the
system model may be analyzed to detect several distinct types of possible design, modeling
or future implementation flaws. The difference between these analysis methods is that
each considers various issues. For this purpose, AADL provides many analysis methods
to verify and guarantee schedulability of processes and threads, expected throughput
of processors, latency requirements of a logical or physical connection, correct memory
resource utilization, proper error analysis of faulty software and hardware components,
reliability requirements and last but not least security requirements of the system. Two
specific analysis methods AADL uses to verify the reliability requirements of a system
model are the Failure Modes and Effects Analysis (FMEA) and the Fault-Tree Analysis
(FTA) for instance.
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8. Appendix

In order to efficiently and clearly integrate the analysis capabilites provided by AADL into
the system model, AADL defines the error model annex. The error model annex specifies
how error analysis is correctly done by defining error sources and how the occurrence of
errors is correctly handled by relying on error propagations for each relevant component
and subsystem individually. For getting a general overview of the error model annex, the
model is discussed in Section 8.2.1 in more detail.

8.2.1 AADL Error Model Annex

In this Section, the general basics of the error model annex are explained as well as an
introduction to hazards and hazard modeling is given. First off, this thesis considers
version 2.0 of the AADL error model annex which is also referenced as Error Model
Version 2.0 (EMV2) in the AADL error modeling framework [29]. The main objective
of the error model annex is to assess the dependability of a system and guarantee its
compliance with the specified fault tolerance strategies for the entire system architecture.
The basic concept of the error model annex builds on the definition of error sources to
specify where errors may occur and which types of errors are possible for a certain type of
component. Thus, the change of a components state to a faulty state has to be monitored
which can be specified by error transitions. These define the change of a components
state based on an event. Additionally, the error behaviour of that component has to be
considered and specified. For example, if some component is fail-safe or fail-operational
or more general if a component is operational or already failed. Once an error occurs,
the error needs to be propagated to the component or subsystem of the next higher level
(hierarchical model-based design). This mechanism is provided by the error propagation
specification and is required to generally identify that an error occurred and for which
component that error occurred, so that a reaction to that error from the next higher level
component or subsystem is possible (fault interaction of components). Complementary,
to contain the affects of an error within certain boundaries or at a specific level of the
system hierarchy (not every fault needs to be propagated to the very top-level system
model), the error containment mechanism may be used to immediately deal with the
error at the current level. Supplementary to the error propagation mechanism, the error
path also needs to be specified for each component in the system to mitigate the impact
of a fault as each component or subsystem in the system model must know its next higher
level component or subsystem to which the error has to be propagated.

For that reason, annex uses error type libraries which already provide default/standard
error types but also allow the declaration of an arbitrary number of application specific
error types. One error model library may be specified per AADL package. Each error
model library consists of multiple error type libraries that each may have a hierarchy
of multiple error types and error type sets. An error type indicates the actual type of
fault of a component category. An error type set represents a set of error type instances.
Error types are unique and provide the benefit of defining specific types of faults related
to a component that are actually relevant for the considered component or component
group. Error type hierarchies enable the separation of fault categories as one error type
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hierarchy may correspond to another fault category than another error type hierarchy.
For example, one error type hierarchy may be related to value faults while another error
type hierarchy may be related to timing faults. In addition, severity and likelihood of
individual faults and/or fault categories for one or many components may be specified.

In order to illustrate the integration of the error model annex in an application context
of a component, the following example shown by Listing 8.1 demonstrates a device type
component named TempSensor1 that represents a temperature sensor and defines several
sensor-specific error types and enables error propagation for selective error sources. This
example is similar to the example provided by Figure 8 of Section "ERROR MODELING
WITH AADL" in [29].

1 device TempSensor1 // type definition of TempSensor1
2 features
3 current_temp: out data port; // current temperature reading of TempSensor1
4 Iso_Variables::current_temp; // specify current_temp as iso variable to

enable the definition of error type severity and propability for
current_temp

5 annex EMV2
6 {**
7 error types
8 ValueError : type; // value returned out of expected bounds
9 TimingError : type; // value not returned during a valid time interval

10 LowerBoundValueError : type extends ValueError; // value less than lower
bound (still value error)

11 UpperBoundValueError : type extends ValueError; // value greater than upper
bound (still value error)

12 end types;
13 use behavior ErrorModel::TempSensorErrorModel; // specify error behaviour by

the usage of the external error model called TempSensorErrorModel of the
ErrorModel package

14 error propagations
15 use types ErrorLibrary; // useful if error types are intended to be

externally defined. Not necessary in this example though, as error types
are internally defined

16 current_temp : out propagation {ValueError, TimingError}; // propagate only
errors of type ValueError and TimingError

17 flows
18 flow_temp: error source current_temp {ValueError, TimingError}; // specify

current_temp as potential error source
19 properties
20 EMV2::Occurrence => Iso_Properties::TemperatureSensorValueError applies to

current_temp.ValueError; // defines the temperature sensor value error
propability (propability pre-defined in iso properties)

21 EMV2::Occurrence => Iso_Properties::TemperatureSensorTimingError applies to
current_temp.TimingError; // defines the temperature sensor timing error
propability (propability pre-defined in iso properties)

22 end propagations;
23 **}
24 end TempSensor1;
25
26 device implementation TempSensor1.impl // implementation of TempSensor1
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27 end TempSensor1.impl;

Listing 8.1: Error types and error propagation of a temperature sensor device named
TempSensor1

The hardware device with the functional intent as temperature sensor defines one data
output port returning the current temperature reading of the sensor. The current_temp
feature is also defined as iso variable to further specify error type probabilities using
properties and the "applies to" operator which assigns an iso property to the correspond-
ing error type of current_temp. The error types clause defines four types of errors for
the temperature sensor: ValueError, TimingError, LowerBoundValueError and Upper-
BoundValueError. The later two error types are subtypes of the ValueError type which
is indicated by the extends clause used in the definition of the two error types. The
use behavior clause imports the externally specified error model and its error behaviour
from a declared package which is applied to the component. For internally defining the
requested error behaviour, the error behavior clause may be used. Additionally, the
composite error behavior clause allows to configure multiple state transitions between the
operational and failed state of a component. For instance, if one or more subcomponents
fail, the component transitions from the operational state into the failed state as well.
The error propagations clause defines the propagation of certain error types for each
interface. In the example shown by Listing 8.1, the current_temp feature defines to
propagate an error if the error type is either a ValueError or a TimingError. The "out"
operator specifies that the error is propagated onwards to another component and not
received from another component. Finally, the flows clause specifies the origin of the
fault (error source) and/or the forwarding source and destination interface for the fault
(error path).

Furthermore, annex enables the specification of component hazards to allow a functional
hazard assessment of the system model [30]. Hazards are erroneous states indicating a
deviation of the expected behavior of a component. The analysis of hazards and hazard
sources is of great importance as the origin of hazards and their impact on the overall
system may cause severe safety violations and lead to the malfunction of the system.
Thus, the following example illustrated by Listing 8.2 visualizes the application of several
hazard definitions for a device type component using the hazard model library.

1 device TempSensor2 // type definition of TempSensor2
2 features
3 current_temp: out data port; // current temperature reading of TempSensor2
4 annex EMV2 // error type model
5 {**
6 ...
7 **}
8 annex Hazard_ErrorModel // hazard model
9 {**

10 hazard types HazardTypes // define hazard types
11 hazards
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12 overheating: hazard{Severity => B}; // overheating of the temperature sensor
may lead to heat control or general system failures

13 outage: hazard{Severity => A}; // outage of the temperature sensor due to
some issue may cause severe malfunctions in the system

14 end types;
15 hazard behavior HazardBehavior
16 hazard trigger mechanism // defines how hazards may occur
17 spark: trigger {Occurrence => poisson 0.01}; // occurrence of a spark with

poisson distribution and propability 0.01
18 cooling_error : trigger {Occurrence => latency 3.0} // occurrence of a

cooling malfunction with latency 3.0
19 transitions // defines the transitions between hazards
20 overheating - [spark] -> outage; // overheating hazard may lead to an outage

hazard of a greater severity level when triggered by a spark
21 end behavior;
22 hazard sources
23 device_malfunction: error state => device_failed; // hazard triggered
24 hazard propagations
25 state device_malfunction - [cooling_error] -> overheating; // failed state of

the temperature sensor and a cooling failure lead to overheating of the
temperature sensor

26 **}
27 end TempSensor2;
28
29 device implementation TempSensor2.impl // implementation of TempSensor2
30 end TempSensor2.impl;

Listing 8.2: Hazard definition for a temperature sensor device named TempSensor2

In extension to the component type definition of the temperature sensor TempSensor1 in
Listing 8.1, TempSensor2 also includes certain types of hazard definitions which is shown
by Listing 8.2. For this purpose, annex allows the definition of multiple error models for
any type of component separating individual error models to provide a better overview
and enable a modular configuration of a components error specification. In this example,
TempSensor2 was extended by a hazard model which includes the definition of the hazard
types overheating and outage. Both hazard types are also identified by their severity
level that is assumed to equal the criticality level of an error. Furthermore, the hazard
behavior defines mechanisms of how hazards may be triggered and transitions of how
the individual hazard types may affect other hazard types. Additionally, hazard sources
and hazard propagations are specified to state the origin of a hazard and which hazard
source may lead to another more severe hazard. Analog to the error model library, the
hazard model library builds on the concept of the fault, error and failure definitions as
a single fault in a subcomponent may affect other components or subsystems leading
to a possible malfunction of the overall system if not properly handled. For instance, a
fault in the temperature sensor may result in an error in the heat control algorithm of a
controller subsystem and further in a malfunction of the controller system.

Once all the necessary safety analysis specifications, definitions and properties are
integrated in the components of the system model using the error model annex, the
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system model may be analysed by performing any type of supported and relevant analysis
method for the verification of the system model in any particular application context. In
order to get an overview of the supported analysis methods by AADL/OSATE and how
certain analysis methods may be performed for the verification of the OPC UA/DDS
Gateway system model depends on the toolchain that is used in the modeling process
which is further discussed in Section 8.3.

8.3 Analysis Methods

In order to verify the integrity of the OPC UA/DDS Gateway system model, several
analysis methods supported by OSATE may be applied to the system model which each
considers a different aspect of application required to satisfy the safety specification of the
OPC UA/DDS Gateway. All of these analysis methods propose an individual approach
with its own benefits and drawbacks. Hence, the following subsections describe each
analysis method individually.

8.3.1 Fault Hazard Assessment

The Fault Hazard Assessment (FHA) generates a detailed document of the system
examination that identifies and classifies all potential failures which occur in a system
architecture according to their severity. The FHA creates a report for each identified
failure and describes possible impacts and design constraints of the system due to that
failure.

8.3.2 Fault-Tree Analysis

The Fault-Tree Analysis (FTA) may be performed for one particular type of error and
has the objective to specify any cause of that error which may occur in the system
design. Thus, the FTA sets up a fault-tree where the root of the tree represents that
particular error and its respective leaves represent the causes of that error. The fault-tree
is a hierarchical tree that may has two or more levels depending on the type of error,
the system model and the application context to be analysed. The FTA analyses each
path and therefore each possible origin leading to that particular error (hence the name
Fault-Tree Analysis).

8.3.3 Markov Analysis

The Markov Analysis (MA) transforms the system model into a markov chain model
which allows the validation and verification of system safety properties using the notation
of the markov chain model. An example of such a system safety property may be the
failure probability of a component.
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8.3.4 Failure Mode and Effects Analysis

The Failure Mode and Effects Analysis (FMEA) represents the complementary analysis
method to the Fault-Tree Analysis (FTA). Contrarily to the FTA which intends to find
all possible causes of a particular error, the FMEA analyses the impact of a particular
error on other components and the overall system architecture. For that purpose, the
FMEA intends to specify the severity of any particular type of error and in which degree
that error affects or constrains the system design.

69





List of Figures

2.1 General architecture of an OPC UA client illustrating all the major components
[17]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 General architecture of an OPC UA server illustrating all the major compo-
nents [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 General architecture of the DDS system illustrating all the major components.
The cloud represents the global data space of a DDS domain . . . . . . . 9

2.4 Structure diagram of the AADL system model for the OPC UA to DDS Bridge 13
2.5 Structure diagram of the AADL system model for the DDS to OPC UA Bridge 14

3.1 Research method overview and elements based on [20] . . . . . . . . . . . 28
3.2 Timeline of the main toolchain usage used for development . . . . . . . . 29

4.1 Structure diagram of the general architecture of the OPC UA/DDS Gateway
AADL system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Structure diagram of the AADL system model for the OPC UA to DDS Bridge 33
4.3 Structure diagram of the AADL system model for the DDS to OPC UA Bridge 33
4.4 Structure diagram of the AADL system model for the OPC UA . . . . . . 34
4.5 Structure diagram of the AADL system model for the DDS . . . . . . . . 40

5.1 Flow chart illustrating the code generation process using Ocarina . . . . . . 51
5.2 Flow chart illustrating the process of dynamically configuring the OPC

UA/DDS Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

71





Acronyms

AADL Architecture Analysis & Design Language. 2, 13

APT Advanced Packaging Tool. 47

DCPS Data-Centric Publish/Subscribe. 9

DCPS PIM Data-Centric Publish-Subscribe Platform Independent Model. 10

DDS Data Distribution Service. 1

EMV2 Error Model Version 2.0. 62

FHA Fault Hazard Assessment. 66

FMEA Failure Modes and Effects Analysis. 61

FTA Fault-Tree Analysis. 61

IDE Integrated Development Environment. 26

IIoT Industrial Internet of Things. 1, 10, 59

IO Input/Output. 22

MA Markov Analysis. 66

OMG Object Management Group, Inc.. 1

OPC UA Open Portable Communication Unified Architecture. 1

PLC Programmable Logic Controller. 1

QoS Quality of Service. 9

RPC Remote Procedure Call. 10

73



SCADA Supervisory Control and Data Acquisition. 1

UML Unified Modeling Language. 2, 13

XSD DDS Consolidated XML. 51, 52

74



Bibliography

[1] D. Kiel, C. Arnold, and K.-I. Voigt, “The influence of the Industrial Internet of
Things on business models of established manufacturing companies – A business
level perspective,” Technovation, vol. 68, no. C, pp. 4–19, 2017.

[2] H. Lasi, P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business and Information Systems Engineering, vol. 6, no. 4, pp. 239–242, 2014.

[3] Harp, Derek R and Gregory-Brown, Bengt, “IT / OT Convergence Bridging the
Divide,” NexDefense, p. 23, 2015.

[4] T. J. Williams, “The purdue enterprise reference architecture,” in Proceedings of
the JSPE/IFIP TC5/WG5.3 Workshop on the Design of Information Infrastructure
Systems for Manufacturing, DIISM ’93, (NLD), p. 43–64, North-Holland Publishing
Co., 1993.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
of things: A survey on enabling technologies, protocols, and applications,” IEEE
Communications Surveys Tutorials, vol. 17, pp. 2347–2376, Fourthquarter 2015.

[6] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture. Springer
Science \& Business Media, 2009.

[7] S. A. Boyer, Scada: Supervisory Control And Data Acquisition. Research Triangle
Park, NC, USA: International Society of Automation, 4th ed., 2009.

[8] I. O. Object Management Group, OPC UA/DDS Gateway, February 2019.

[9] R. Endeley, T. Fleming, N. Jin, G. Fehringer, and S. Cammish, “A smart gateway
enabling opc ua and dds interoperability,” 2019 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing
& Communications, Cloud & Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), August
2019.

[10] S. R. a. C. M. U. . S. E. I. Jérôme Hugues, “Open aadl.” Website:
http://www.openaadl.org/, 2009. Online; accessed 21 April 2020.

75



[11] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, “Towards a formal specification
for an aadl behavioural subset using the lnt language,” International Journal of
Business and Systems Research, 2020, vol. Vol.14 No.2, pp. 162–190, March 2020.

[12] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, “A formal approach to aadl
model-based software engineering,” International Journal on Software Tools for
Technology Transfer (2020), vol. 22, pp. 219–247, March 2019.

[13] J. Pfrommer, S. Grüner, and F. Palm, “Hybrid opc ua and dds: Combining archi-
tectural styles for the industrial internet,” 2016 IEEE World Conference on Factory
Communication Systems (WFCS), May 2016.

[14] C. M. U. . S. E. Institute, “Osate.” Website: https://osate.org/, 2016 - 2020. Online;
accessed 29 June 2020.

[15] T. ParisTech, “Ocarina.” Website: https://ocarina.readthedocs.io/en/latest/, 2003 -
2009. Online; accessed 29 June 2020.

[16] nationales Arbeitsgremium K 931 „Systemaspekte“ der DKE Deutsche Kommission
Elektrotechnik Elektronik Informationstechnik, OPC unified architecture – Part 1:
Overview and concepts (IEC/TR 62541-1:2010), July 2011.

[17] I. O. Object Management Group, OPC Unified Architecture – Part 1: Overview and
Concepts, November 2017.

[18] I. O. Object Management Group, Data Distribution Service (DDS), April 2015.

[19] P. Angelo Corsaro, “The data distribution ser-
vice tutorial.” Website: https://www.danskebank.com/en-
uk/ir/Documents/2015/Q4/PresentationQ42015-Press.pdf, June 2015. Online;
accessed 16 April 2020.

[20] B. J. Oates, Researching Information Systems and Computing. SAGE Publications,
Ltd., 2012 ed., 2005.

[21] S. T. March and G. F. Smith, “Design and natural science research on information
technology,” Decision Support Systems, vol. 15, no. 4, pp. 251–266, 1995.

[22] P. Checkland, “Soft Systems Methodology: A Thirty Year Retrospective,” Systems
Research and Behavioral Science, vol. 17, pp. S11–S58, 2000.

[23] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information
Systems Research,” MIS Quarterly, vol. 28, pp. 75–105, 3 2004.

[24] J. Hughes and T. Wood-Harper, “Systems development as a research act,” Journal
of Information Technology, vol. 14, no. 1, pp. 83–94, 1999.

[25] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference
Manual. Addison Wesley Longman, Inc., 1999.

76



[26] B. Zalila and J. Hugues, “Ocarina build script.” Website:
https://github.com/OpenAADL/ocarina-build, 2020. Online; accessed 30
June 2020.

[27] ubuntuusers.de, “Advanced packaging tool.” Website:
https://wiki.ubuntuusers.de/APT/, 2004 - 2020. Online; accessed 30 June
2020.

[28] T. ParisTech, “Polyorb-hi/c.” Website: https://ocarina.readthedocs.io/en/latest/polyorb-
hi-c.html#generating-code-from-an-aadl-model, 2003 - 2009. Online; accessed 30
June 2020.

[29] B. Larson, J. Hatcliff, K. Fowler, and J. Delange, “Illustrating the aadl error modeling
annex (v. 2) using a simple safety-critical medical device,” November 2013.

[30] X. Wei, Y. Dong, M. Yang, N. HU, and H. YE, “Hazard analysis for aadl model,”
August 2014.

77


	Kurzfassung
	Abstract
	Contents
	Introduction
	Scientific Background
	Related Work
	OPC UA
	DDS
	OPC UA/DDS Gateway
	Information Models
	AADL Modeling

	Scientific Methodology
	OSATE
	Ocarina
	Chronological Development Process

	AADL Model for the OPC UA/DDS Gateway
	General Structure of the AADL system model
	AADL Model for the OPC UA to DDS Bridge
	AADL Model for the DDS to OPC UA Bridge
	Modeling of OPC UA Components
	Modeling of DDS Components

	Dynamic Configurability of the OPC UA/DDS Gateway
	Code generation process using Ocarina
	Experienced Problems
	A dynamically configurable OPC UA/DDS Gateway application

	Discussion on the dynamically configurable OPC UA/DDS Gateway
	Conformance of the OPC UA/DDS Gateway AADL model with the OPC UA/DDS Gateway specification
	Discussion of the results regarding the research questions

	Conclusion
	Appendix
	AADL Code for the OPC UA/DDS Gateway system model
	Safety Analysis in AADL
	Analysis Methods

	List of Figures
	Acronyms
	Bibliography

