B Informatics

Multi Agent Systems in Discrete
Manufacturing — Use Case:
Optimising the Tool Life Cycle

BACHELOR’'S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Software and Information Engineering
by

Shahin Mahmody
Registration Number 0926487

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof.Dr. Wolfgang Kastner

Vienna, 51" March, 2021 Ao.Univ.Prof.Dr. Wolfgang
Shahin Mahmody Kastner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Shahin Mahmody

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. Marz 2021

Shahin Mahmody

iii

Kurzfassung

Die Vernetzung von Smart Devices in verschiedensten Bereichen des Lebens schreitet
weiter voran. In der Fertigung hat diese Entwicklung zu hohen Erwartungen an eine
bevorstehende ,vierte Industrielle Revolution® gefiihrt, welche zu grofien Fortschritten in
der Automatisierung von industriellen Prozessen fithren soll. Indem menschliche Planung
und Intervention méglichst durch autonome Steuerung, Uberwachung und Korrektur
ersetzt wird, soll damit ein héheres Niveau an Optimierung erreicht werden kénnen. Viel
theoretische Arbeit ist bereits in mogliche Standards, Potentiale und Konsequenzen dieser
Entwicklung geflossen, allerdings gab es bisher nur beschréinkte konkrete Umsetzungen
in industriellen Prozessen.

Dies ist bei Multiagentensystemen (MAS) der Fall. Dabei befinden sich autonome Soft-
wareagenten in kommunikativem Austausch, womit sie basierend auf ihrer jeweiligen
internen Logik und Zielsetzung emergente Losungen finden. Diese Arbeit implementiert
einen vereinfachten industriellen Anwendungsfall, worin eine CNC-Maschine eingehende
Auftrige sowie die fiir deren Durchfithrung notwendige Werkzeugbeschaffung verhandelt.
Damit sollen aktuell verfiigbare Tools fiir die agentenorientierte Programmierung bewertet
werden sowie die Frage, welche Tauglichkeit dieses Paradigma in der diskreten Fertigung
hat.

Zu diesem Zweck wurde ein simples MAS mit Hilfe des JADE Frameworks in Java
implementiert. Mit kurz gehaltener Entwicklungszeit und ohne Vorerfahrungen mit JADE
wurde ein besonderes Augenmerk auf die Einstiegskosten fiir MAS Umsetzungen gelegt.
Trotz ihrer Limitierungen hat die Implementierung gezeigt, dass JADE an sich und
besonders auch der FIPA-Standard, auf dem es zu weiten Teilen beruht, verstéandlich und
ausgereift genug ist, um zumindest bei Testprojekten und Prototypen hilfreich zu sein.
Mit diesem Befund sowie in der Literatur verzeichneten ersten Erfolgen in der Umsetzung
erscheinen hohe Erwartungen an diesen Forschungsbereich gerechtfertigt.

Abstract

Interconnectivity of smart devices has been increasing in many distinct areas of life.
In manufacturing, this has led to much enthusiasm about a so-called ’fourth industrial
revolution’, which is expected to result in large gains in automation. Self-management,
self-diagnosis and self-correction, among other things, are supposed to lead to greater
optimisation than had been possible using high levels of human intervention. A lot
of theorising has been done about the standards, potential and consequences of this
development, but actual adoption within industrial processes has been slow for some of
its technologies.

This has been the case for Multi Agent Systems (MAS), which equip software agents with
reasoned autonomy, thus relying on emergent communicative interaction between parts
of a process to solve situations. This work implements a simplified industrial use-case, a
CNC machine managing incoming orders and procuring tools for their completion, in
order to inspect current tools for programming MAS and perhaps assess the paradigm’s
suitability to the discrete manufacturing domain as a whole.

For this task, a simple MAS has been implemented using the JADE framework for Java.
Development time has been kept short and no prior experience with the framework
existed, putting emphasis on the initial cost of adopting an MAS project. Though limited
in scope, the design has shown that JADE and the FIPA standard it makes heavy use
of are useful, mostly straightforward tools that are at least sufficiently mature for test
projects and prototypes. With this conclusion and the literature offering preliminary
findings of success, high expectations of MAS in manufacturing seem warranted.

vii

Kurzfassung
Abstract
Contents
1 Introduction
1.1 Problem Statement/.
1.2 Approachl
2 State of the Art

2.1 Definition of Terms/
2.2 MAS in Manufacturing/.
Design

3.1 UseCase
3.2 MASDesign/.
Implementation and Evaluation

4.1 Implementation/
4.2 FEvaluationl.,

Conclusion and Outlook

Appendix: Test Details

6.1 General Information
6.2 Protocol Testsl.
6.3 System Tests|

List of Figures

List of Tables

Bibliography

Contents

................ 10

13

................ 13
................ 17

21

................. 21
................ 36

39

41

................. 41
................ 43
................. 51

53

55

57

ix

CHAPTER

Introduction

1.1 Problem Statement

Technological advancements within the last decades have led to a number of emerging
ideas that are promising to transform large parts of the industrial sector, ranging
from changes in organisational policies between enterprises all the way down to real-
time considerations on the production floor. The still developing technologies that are
supposed to enable this radical transformation are chiefly concerned with increasing the
informational connectedness between various organisational layers, geographical locations,
individual machines and points in time during a product’s or process’ life cycle. [dAI13] At
the same time, new and increasing challenges have grown that necessitate new approaches.
The increased distribution of industrial processes and resources have led to more complex
and dense communication requirements. In addition, the sheer amount of information
produced by sometimes globally distributed supply and value chains presents a problem in
its own right. All these changes are happening on the background of the aforementioned
technologies, generally summed up by the term ‘Industry 4.0’ The term is a reference
to the hope that a paradigm shift within industry, a fourth Industrial Revolution, will
be the result of further developing the associated technologies. Cyber-physical systems
(CPS) are at the core of that shift, a CPS being a system that integrates a network of
virtual abstractions and services with physical components that perceive and act upon the
physical world via sensors and actuators. Forming the basis of CPS are key concepts such
as the Internet of Things (IoT), connecting physical entities via their virtual representation
in a shared virtual space. Those abstracted entities may offer and call upon services in
that shared space, sometimes referred to as a ‘cloud’, thus resulting in an open and flexible
system. [dAI13] Within the paradigm of Industry 4.0, the connectedness of resources and
services is supposed to increase further and decentralise decision-making. Information
and systems will not only be integrated within the organisational hierarchy (vertical
integration) but also across the entire life cycle of a product (horizontal integration).

1

1.

INTRODUCTION

While the ubiquitous connectedness offers an increase of information exchange, it is also
coupled with an increase in complexity in all affected systems. [dAI13] A particularly
interesting part of industry to look at through the lens of Industry 4.0 is manufacturing.
In discrete manufacturing especially, products yield to new models more frequently and
are often subject to customer desired customisation, thus also changing production steps
more frequently and increasing overall process complexity. [BJW04] Since demand changes
more rapidly, orders coming in in an unpredictable fashion, both batch sizes and content
need to be able to change in an adaptive manner. Internally, resources are also subject to
constant change, including the availability of equipment and materials, shifting timetables
and new technology that needs to be integrated into existing processes without causing too
much of a disturbance to running procedures and allotted budget. [CC04] [LF13] In the
past, in order to meet tight monetary and temporal restrictions and reduce susceptibility
to disturbances, production control in manufacturing operated in a way that was highly
hierarchical and dependent on exact scheduling. With changing circumstances, these
solutions are no longer ideal, especially considering the inherently highly distributed
nature of manufacturing resources. [BJW04] One technology that promises decentralised
decision-making, high flexibility and faster reaction time to changing circumstances is the
Multi Agent System (MAS). Within an MAS, autonomous software agents communicate
with each other in pursuit of their own goals. They are the virtual representation of
some physical or organisational real-world unit, equipped with knowledge over their own
state. While they may stand in cooperative or competitive relation to each other, agents
are usually primarily motivated to try to achieve some state which aligns with their
goals rather than follow some overarching hierarchical plan. Since individual parts of the
distributed whole can adapt to local or external changes on their own and reorganise
without outside interference MAS appear well-suited to deal with the current challenges
in manufacturing. Resources becoming available or vanishing no longer need to be the
concern of some central authority when their agents simply communicate their status to
whoever needs to know. Differences in interfaces are hidden between abstracted services,
making heterogeneous systems more easily manageable. [MVKO0G] Despite these apparent
advantages and some development by established industrial companies, [MP11] MAS
are not currently in widespread use in manufacturing. [LE13] This work will attempt
to explore some of the strengths and weaknesses of MAS in that field, along with the
requirements of existing tools for implementation.

1.2 Approach

To assess the viability of MAS in a manufacturing context is a massive undertaking in
its entirety. For that reason this work’s scope is limited to examining the capabilities
of existing frameworks for programming agents. In particular one framework will be
picked among them to have its suitability examined through an example implementation.
The suitability will be judged with regard to the demands of manufacturing control.
The example implementation is an MAS managing part of the tool life cycle of the
manufacturing process. It was provided by Dr. Solmaz Mansour-Duschet in the course of

1.2. Approach

her doctoral thesis (an updated version can be found here: [MD20]), intending to explore
possible improvements to the process through the introduction of agents. Details of the
model are discussed in Section 3. For the framework, JADE [JAD] was requested. With
these parameters set the first step will be to study existing literature concerning the
implementation of MAS. Following established guidelines will ensure that the technology’s
potential is used properly. The next step will be to establish which requirements exist
for manufacturing generally and the example design specifically. Keeping that set of
requirements in mind the example will be implemented next. Finally, the process of
implementation using JADE will be retrospectively evaluated, putting the emphasis on
its suitability for real world manufacturing applications.

CHAPTER

State of the Art

2.1 Definition of Terms

2.1.1 RAMI

Reference Architectural Model Industrie 4.0 (RAMI) is an attempt by 'Plattform Industrie
4.0’, a work group comprised of representatives of public and private German institutions
and enterprises, to establish a standardised reference model for Industry 4.0 topics. The
model has three axes describing a three-dimensional space in which topics can be classified.
Along one axis there are layered views analogous to the interoperability layers of the
Smart Grid Architecture Model [Grol2]. This is the Layers axis. These views show on
which layer or between which layers of abstraction information is exchanged. The Asset
Layer, for example, is at the bottom and contains actual devices as well as human actors,
while the Business Layer at the very top concerns business strategy and processes, legal
circumstances and so on. Another axis is called Hierarchy Levels, sorting by where the
object in question belongs functionally. Is it related to a product, work stations or the
enterprise as a whole? The final axis, Value Stream, maps to points in time within a
product’s life. It is split between a product’s type, meaning its model and the model’s
instances. For types, their phases are development, usage and maintenance. Instances
also have usage and maintenance on the axis, their life cycle begins with production
though. The advantage of these axes is that together they are able to somewhat capture
the complex relations that arise in an Industry 4.0 context with increased distribution
and communication. Smart Products [dAI13|] that may be able to track their own history
and states have also expanded the timeline during which information is generated and
consideration is necessary in novel ways. Having a common basis for discussion in the
form of a reference model should help transition to the more complex world of Industry
4.0. JABD™15]

2.

STATE OF THE ART

2.1.2 Agents

The concept of computational agents arose at least in part following research in distributed
artificial intelligence. [MVEKO6] The current understanding of an agent is an autonomous
piece of software that operates within an environment in pursuit of its own goals. They
are autonomous in the sense that they make their own decisions without explicit orders
from outside. Instead they have control over both their internal state and how they
act within their environment. An agent is considered rational if that behaviour aims
to maximise some value aligning with its goals with the information it has. Intelligent
agents choose their behaviour through a reasoning process and adapt their understanding
of the environment through learning mechanisms. They make plans to act to further
their goals. One model addressing this kind of intelligent agent is the BDI model. In
it, agents have beliefs, desires and intentions. Beliefs are the assumptions the agent has
about its environment. They must be constantly updated and revised for the agent to
operate successfully. Desires are long-term goals that the agent wants to achieve and
sustain. Intentions are the agent’s current and past commitments, which are used to
inform future decisions. Outside input and past actions form a loop of adjustment of
knowledge and plans that are supposed to make the agent act in an informed and coherent
way. When agents act, they can act both reactively and proactively. Reactive behaviour
is triggered by some change in the environment or inner state of the agent. Proactive
behaviour is the deliberate execution of actions in accordance with previously laid plans.
The environment is usually not entirely known or knowable to the agent, so an agent’s
model of their environment can be incomplete or outdated. This makes it particularly
important for them to be able to adapt to unforeseen internal and external states, or at
least to not fail in their execution completely. [MVEKO06] What makes adaptability even
more important is the existence of other agents within the same environment. A system
that has more than one agent operating at the same time is called a multi-agent system
(MAS).

2.1.3 MAS

Within an MAS, multiple agents exist within a shared environment. Within that
environment agents interact directly and indirectly. Acting upon the shared environment
would be interacting indirectly. One agent’s actions can thereby influence other agents’
behaviours without intent or even being aware of one another. Direct interaction is
achieved through messaging, one agent sending data to another over a medium. Since
agent design philosophy strongly favours openness and flexibility, making heterogeneous
agents implemented without knowledge of other agents’ internal workings very likely,
there is a need for standardised communication channels within the environment. They
need to be able to send messages in a shared syntax, as well as how to semantically
interpret them. Such a framework is called an agent communication language (ACL).

One example for a standard of communications is FIPA-ACL developed by the Founda-
tion for Intelligent Physical Agents which is part of the IEEE Computer Society as a
standards organisation. It defines standards for messaging between agents with both the

2.1. Definition of Terms

formal structure and operations of messages as well as how to define semantic content
being covered. At the heart of FIPA-ACL are the messages themselves, which are also
called Communicative Acts. FIPA-ACL messages can be very lean, strictly speaking
only requiring a performative parameter. Performative denotes what kind of
Communicative Act is being executed. Simple examples include agree, which signifies
readiness to perform some action, and confirm, which confirms an uncertain proposition
asked by another. More complex performatives include cfp (call for proposal) which
requests proposals for some action from one or more agents. A noteworthy performa-
tive is not —understood, which has to be sent whenever an unknown, unexpected or
malformed message is received. There are a few additional parameters which are not
required but expected in the vast majority of cases. The sender and receiver parameter
are filled to identify the participants of the message. In the case that a message has
multiple recipients, a set of names can be written into the receiver parameter. The
other highly important parameter is content, in which the actual message content is
contained. FIPA-ACL messages also support custom parameters, which are supposed to
start with the *x—' prefix. MAS generally propose openness to the degree that agents
might interact that have been designed with no knowledge of each other. Thus, in order
to reduce the risk of information being misinterpreted, the content needs to be put in
syntactic and semantic context. The 1anguage parameter contains the formal language
the content is written in, such as FIPA-ACL’s own FIPA Semantic Language [Fou02c].
The way the message is encoded is specified in the encoding parameter. With the
syntax covered by these parameters the agent interprets the meaning contained within
the message with the help of an ontology, which is referenced by an ontology parameter.
Simply put, an ontology gives meaning to symbols. Using an ontology ensures that agents
in the same domain have a common basis of understanding for the symbols in their
messages. On the other hand it also ensures that agents in different domains never falsely
interpret incoming information due to a coincidental similarity in used symbols across
those domains. FIPA has released recommendations on how ontologies should be managed
in an MAS for agents to be able to share knowledge effectively. [Fou01] To help the agent
with associating a given incoming message with a predefined pattern of communication
or previously received messages, the protocol and conversation-id parameters
can be used. Protocol removes the burden of having to dynamically infer much of the
context and intent of a message by its timing and content. Instead, agents know to engage
in a particular pattern of expression without the significant cognitive power required to
identify its appropriateness on the fly. Conversation-id is mandatory at the start of
a protocol initiation and highly encouraged with any messages following, but can be used
with any sent message. It is useful for distinguishing between multiple conversations,
both with different agents and with the same agent. An example would be two agents
starting an extended protocol twice in close succession, resulting in overlapping messages
being sent. Naturally it should be ensured that the assigned conversation ids are globally
unique. [Fou02b] [Fou02a] [Pos07] To be able to send and receive messages to other
agents, they require a set of services. Other than the already mentioned communication
medium, agents need to be able to look up other agents. Checking availability is one of

2.

STATE OF THE ART

the simplest applications of such a mechanism. In a system where other agents and their
traits aren’t known a priori a service-based lookup is an appealing option. Agents register
what services they offer and others find them by looking for the specific service they
require. The system offering these functionalities is generally called the MAS middleware
or MAS platform. In addition to lookup and communication channels the middleware
may offer a large number of other services. Among them are agent life cycle management,
data persistence and diagnostics. The middleware needs not be explicitly designed with
agents in mind as long as it offers adequate services. Identifying which design goals to
strive for when designing a system to serve as an MAS middleware is an ongoing field
of study. It is important to note, in particular given the context of Industry 4.0 and
its extremely high connectedness, that MAS middleware and MAS themselves aren’t
necessarily closed environments. Rather they can communicate with other MAS in
arbitrarily complex organisations. An MAS may be a part of another MAS for example.
It is additionally sometimes even possible for individual agents to migrate from one
system to another. This trait is called mobility. [MVKO06] Given these tools agents can
engage in what can be called social behaviour. They may coordinate, cooperate and
negotiate. This is usually done through the employ of protocols which define possible
exchanges of messages in predefined patterns. Through them it is possible for agents
that were never explicitly designed to work together to cooperate. The result is emergent
behaviour that can solve problems as they arise within the system without designer
intervention. A prominent example of a protocol is the contract net protocol, which
implements a bidding mechanism. Here one agent wishes for a specific task to be executed
by one of multiple potential others. They request a bid from the potentials, choosing a
favourite from among them by evaluating the bid against a measurable criterion. All
participants get informed about their acceptance or rejection and the winning agent then
proceeds to execute the task. [MVKO06]

2.1.4 JADE

JADE (Java Agent DEvelopment Framework) is an MAS framework for Java that puts
emphasis on compliance with FIPA specifications. In addition to the previously discussed
FIPA-ACL, those specifications also outline the key features of an agent platform. The
reference model contains several agents of importance to running such middleware. It
names the Agent Management System, handling registration and authentication of agents
on the platform, as well as the Agent Communication Channel, which routes messages
within the platform and both to and from outside, and finally the Directory Facilitator,
which offers lookup or yellow page services. The motivation of FIPA is to act as a
standard, empowering designers to build MAS with some fundamentals already covered.
FIPA does not specify how to implement the systems it describes. The internal workings
of components are left open to the needs of the developer, only external behaviours being
standardised. This is supposed to leave a large margin of flexibility while hastening the
development process and aiding interoperability. JADE offers the described standard
agents as well as other fundamental services (such as a communication channel) to form a
middleware. Since the resulting agent platform is executed within a Java Virtual Machine,

2.1. Definition of Terms

developers can easily test and deploy their agents across a multitude of hardware. If
necessary the platform can be distributed over several machines, given that no firewall
prevents their communication, via Java RMI. In that case each machine has a container
with its own communication and lifecycle services. An attempt has been made to keep
communications as lightweight as the particular case permits, with container internal
messaging of course causing vastly less overhead than messaging an agent on a wholly
different platform. As a programming framework, JADE includes a large amount of
pre-made interfaces and functionality up to complete FIPA-compliant communication
protocols. Also included is a set of diagnostic tools to assist testing and a GUI to manage
the running MAS. JADE expresses its agents’ actions through Behaviours. A Behaviour
is a set of instructions that can be called through internal and external triggers. They
may be explicitly started by another Behaviour, triggered by a repeating timer or waiting
to be awakened by messages from another agent. They can be added, removed, suspended
and duplicated. Behaviours can be very simple and short-lived or highly complex. JADE
includes several predefined types of Behaviours that can be nested to achieve the desired
pattern of activity. Broadly speaking, JADE differentiates between simple and complex
Behaviours. Simple Behaviours execute atomic actions, so they are not interrupted by
the scheduler until finished. At the end of their activity, they check whether their job is
done and, if the answer is false, they queue up to be executed again from the beginning.
Complex Behaviours are made up of sub-behaviours which give control back to the
scheduler between their executions. Important to note is that every agent only gets a
single thread, so truly executing Behaviours in parallel is impossible. [JAD]

ACL-based messages are the core communicative tool inside the MAS. They contain
information expressed in accordance with a content language. The expressions must be
semantically meaningful, meaning they must be legal constructs within the rule set of a
specific ontology. Constructing messages that adhere to these rules is not done by hand
but delegated to a content manager. That object is fed an expression in the form of a
Java Object, as well as which content language and ontology to use, and attempts to build
a valid message. The various elements that can make up a message are categorised by the
type of meaning they convey. Their structures and relationships are defined in ontologies.
One such type of element (i.e. predicates) makes a statement about the environment
and may be true or false. They can be used to ask whether a statement is true and,
on the flipside, to assert that a state is or isn’t the case. Here ACL’s performatives
show their importance in adding contextual meaning to a message. As an example using
natural language the sentence ‘Machine 123 is online’ will be used as a question with the
QUERY-IF performative, but as a statement of fact (or perhaps it would be better to say
belief) when INFORM is used. The actual enforcement of this standard is, however, left to
the designers and developers. The subjects of predicates are formed by terms, also called
entities, which signify both concrete objects, such as agents or resources, and abstract
ones like numbers or truth-values. The simplest predicates are primitives like numbers,
strings and boolean values. More complex are aggregates, which are groups, such as
lists or maps, of other terms, and concepts, which have structures of any complexity.
Concepts can be compared to objects in object oriented paradigms, being blueprints of

2.

STATE OF THE ART

10

entities with named slots of expected content. A special type of concept is the agent
action. Agent actions are used in messages that aren’t simple queries or statements of
fact, indicating any other actions an agent takes and containing whatever information is
required. Predicates and terms (other than the predefined primitives and aggregates) are
defined as very simple Java classes. They implement the respective interfaces, adding
required fields as well as getter and setter methods. The objects are then registered in
the ontology class they will be a part of and the ontology gets informed about the names
and expected content of their fields. The ontology can then enforce the semantic validity
of incoming or outgoing messages according to its vocabulary. Agents are not bound to a
single semantic domain, able to use ontologies as needed in conversations. [FouOl] The
extent to which JADE delivers on its promises of smooth development through patterns
and FIPA conformity is discussed in the conclusion.

2.2 MAS in Manufacturing

This section introduces an implemented MAS solution in the manufacturing domain and
summarises its mechanisms.

In 1996, DaimlerChrysler started an experimental project with the goal of producing a
production system that offered high availability, tolerance to disturbances and flexibility
while maintaining or improving both the quality and throughput that more traditional
systems offered. The project, dubbed Production 2000+ (P2P), was supposed to design
and construct the prototype of an engine cylinder head manufacturing system. Previously,
cylinder heads were produced in traditional transfer lines, where different stations
performed their particular work step in linear fashion. While availability of individual
stations has reached high levels, disturbances can cause the whole process to be shut
down in the worst case. Additionally, changing to a new kind of workpiece means
having to reprogram the transfer line. As mentioned in the introduction, the demand for
customised products or new models has risen, making these costly switches an unappealing
prospect. [BSAQO] The physical design was therefore changed from the rigid transfer lines
to a series of standardised modules. These modules consist of a CNC machine, several
conveyors as well as switches to move workpieces between them. The conveyors can move
workpieces forwards or backwards along the series of modules, allowing the workpieces
to be moved from a machine to any other machine for further processing. Alternatively
they can be kept in a loop or moved out of the way if there is no machine available to
service them at the moment. Individual machines are set up so that multiple machines
can perform any given work step. This overlap makes the system more robust, ensuring
that a single machine failing does not hold up the entire manufacturing process. On
the virtualised side machines, switches and workpieces got their own agents. Workpiece
agents know what sequence of work steps are required and which ones have already
been performed. They initiate communications with machines and switches as needed.
Whenever a workpiece needs to move to another machine or out of the system, it messages
the next switch agent. The switch agent checks whether it can move the workpiece along
the faster route to its goal. If the way is blocked it increases the workpiece’s priority

2.2. MAS in Manufacturing

(making it more likely to win out when competing for the switch agents’ service) and
checks the alternate route, if one exists.

ﬁ'rm.spormrfon system

<= — AT g= - <

Yo s - i

machines

Figure 2.1: P2P’s setup of conveyors, switches and machines. Source: [BS01]

When a workpiece agent has at least one work step left to be done it calls the machine
agents in an auction for what is left. Machine agents know which tasks they can perform
and additionally manage what is called the virtual buffer. The virtual buffer consists of
the input buffer, containing a list of workpieces in the queue to be processed, and the
output buffer. The output buffer remembers those workpieces that have already been
processed by this machine but have not found a machine to execute their next step, yet.
When receiving a call to bid in an auction a machine agent will check whether it has the
capability to execute at least the first remaining step, otherwise it sends no answer. The
capability is based on the machine’s ability to execute the step at all and also whether its
virtual buffer is full, as compared to a predefined maximum value. A machine that decides
to post a bid includes the size of its virtual buffer and the biggest continuous sequence of
work steps required by the workpiece it can execute, starting with the next required step.
The workpiece agent compares the incoming bids, prioritising machines with smaller
virtual buffer primarily, and those with more work steps in sequence secondarily. When
a winner is decided the awarded machine agent is informed and puts the workpiece
into its input buffer while the workpiece agent initiates routing. If the workpiece agent
receives no bids it repeats its call for auction until it succeeds. This system was tested
in two stages. First, a series of simulations was run, fed with real data typical of that
kind of production. Both the physical configuration setup and disturbance rates were
also kept authentic. In these circumstances, the virtual system performed extremely
well, achieving workpiece throughput in excess of 99% of the theoretically achievable
optimum. [BSAO0] The next stage of tests was to build the physical setup in one of
DaimlerChrysler’s plants, confirming the positive results of the simulations. During the
tests in the plant the agent based control system also turned out to be the least error
prone part of the process. [SB01] In addition to typical loads, an additional test was
conducted with different products and tiny lot sizes. Despite the unusually more difficult
conditions, the system was deemed to perform well. Production 2000+ has shown the
potential for agent based systems in manufacturing outside of theoretical musings, not
only matching but exceeding previous solutions in several metrics. [BSAQQ]

11

CHAPTER

Design

3.1 Use Case

The provided use case chiefly concerns what we will call the tool life cycle. This work
builds heavily on [MEFTPO98] for its theoretical assumptions. The tool life cycle in a
manufacturing process encompasses all steps of tool usage from requisitioning tools from
storage, assembly, to eventual disposal or return to storage. Figure 3.1|shows a simplified
view of the process, expanded to also show orders coming in at the top. Received orders
include the tools required for fulfilling the order, including the durations of usage per tool.
From this order, a tool requirement can be calculated, based on the total usage required
to produce the entire order. Based on this document, components for the assembly of
the required tools are gathered. The tools are then assembled, measured and possibly
adjusted before being sent to the machine for setup. After the production process has
finished, the tools are removed from the machine. Then, they are inspected for their
further viability and either stored for future use or disassembled, worn components being
discarded and the rest returned to the storehouse. Many of these steps are happening
in parallel for different orders to guarantee high machine utilisation. The goal of the
use case is to model this expanded tool cycle via agents, focusing especially on the
effective reuse of material. While the figure shows either a return to storage or salvaging
intact components upon tool removal, tools of low individual price are often discarded
immediately after unmounting if post-usage inspection is deemed too costly. [METP9S]
Tracking the work times of individual tools, much less their constituent components, is
tricky. The information is generated at the machine the tool is mounted on but may not
be communicated to other parts of the system for record keeping. An issue causing this
is that simply keeping track of tools is not entirely trivial. Tools pass many physical
stations during their lifetime, from storage racks to assembly tables, measuring devices
and tool machines. The transport to these stations and many of the operations there
are still usually done by human operators. Even disregarding potential sources of error

13

3.

DEsSIGN

14

_—

NC -Program |

A t fy — 1
Mmen . e
vaduction Order BEEEIEE Tool Disposition
Demand Gross Tool Met Tool Derman
Demand
Componen

Component
Compenent Tool
Storage |Cornm|ssu)n|ng\ Tool Supply

Disposal Maintenance
I ' ! Tool Assembly
Disassembly of the .‘ Tool Cycle Py ,

Assembled Tool

Starage
Assembled Tool

SRSz Tool Presetting

Data Tool
Magazin

Corrective Tooling sheet

program P
ELE

Tool Use

fﬂ Remaining Service

Life

Assembled
Taol Remaval

Setting Up

Figure 3.1: The Tool Cycle. Source: [METP9S§]

that arise from this, such as misplacement or misidentification, any additional time that
arise from a worker ascertaining the identity of a tool and entering it into the computer
system may be costly if it means the tool machines are idle. An estimated 20% - 30%
of time in tool preparation is spent on locating the correct tool. [SAM17] Such tracking
is done in different ways such as with Data Matrix Codes and RFID tags. RFID tags
in particular are useful due to being readable automatically and from a distance. By
expanding tracking via RFID or similar technologies to all physical and procedural steps
of the tool life cycle these numbers may be reduced. Additionally, by more closely
coupling a tool with its virtual representation gains in terms of information retention
can be achieved. Of particular interest here is tracking the duration of a tool’s previous
usage. By having an accurate and reliable way of adhering to producer-given lifetime
recommendations across multiple uses different positive effects appear. First, fewer tools
may be discarded prematurely, a significant gain given that up to a third of production
costs is spent on them. Inventory sizes may also be shrunk as a result of more accurate
planning possibilities. Also significant, having an exact measure of a tool’s previous use
lowers the chance of tool breakage during use, preventing machine idle time. [SAMIT]

The provided use case attempts to show the possibilities of improvements to the mentioned
issues as well as the potential of agents in themselves. It aims to simulate a system
wherein tools’ traceability along with information sharing across the whole tool life-cycle

3.1. Use Case

allows exact tracking of tools’ lifetimes. To facilitate this, machines are expected to
update and propagate information about equipped tools immediately after use. It’s
important for this to occur prior to some of the tools’ removal from the magazine, since
at this point only the machine holds the information on the reduced lifetime of the tools
it just used. The information on tools’ remaining lifetime even after they are returned
to storage makes it possible to more safely reuse them at a later date. Building on this
information, the use case makes use of a net tool list as described in [MEFTP98] With
the knowledge of remaining lifetimes both in the machine as well as on used and fresh
tools in storage the tool requirement sent to storage for requisition can be altered to
a net tool list. That list contains an adjusted number of tools, both newly assembled
and previously used. The savings gained through this process extend further than just
reduced waste of tools; assembling new tools can be time consuming and encouraging
the reuse of previously assembled tools saves time during setup.

In addition to the purely technical aspects the use case wishes to address, there is
also the greater context of exploring the use of MAS within the field of manufacturing.
With the changes brought to industrial processes by Industrie 4.0 pushing towards
greater distribution of decision-making, this is surely an opportune time to examine the
possibilities afforded by its emerging technologies.

With all these motivations in mind, let’s look at the concrete steps to be implemented,
independent of the agents they are assigned to. Figure 3.2/ shows one cycle of processing
in detail. The process starts with an order arriving. These machining orders are assumed
to already be split up in such a way that a single machine can execute the whole order
without a change of tools during processing. Any orders too large to be processed with a
single fully loaded magazine are rejected. The use case is made with CNC machines in
mind that can be filled with a multitude of different tools to execute multiple different
work steps. Their execution is controlled by an NC-programme including the concrete
actions and durations per tool. One such programme is included in each order and a
list of tools can be extracted from it. Along with the NC-programme identifier and the
quantity of workpieces to produce the order contains the maximum accepted costs in
terms of time and money, as seen in Table 3.1. There is also a tolerance factor, which
controls how much additional time can be added if money would be saved overall (or the
order has no spot in the queue, yet).

The tools’ data is queried from a database, most importantly concerning their maximum
lifetimes. Tables 6.1 and 6.2 in the appendix show an example of how that data looks,
per tool and aggregated as a setting sheet. The setting sheet generated to satisfy the
NC-programme contains the utilisation time of tools in total for a single workpiece.
Using this information, a gross tool requirement list is calculated. Importantly, one
cannot simply multiply the time per workpiece from the setting sheet by the number of
workpieces and divide by the tools’ real lifetimes (i.e. the tool’s lifetime minus its so-called
critical time — the amount of lifetime that should be left when the tool is discarded to
reduce the risk of unplanned breakage). Different processes and workpiece materials put
different amounts and kinds of stress on tools, which is accounted for in the setting sheet

15

3.

DEsSIGN

16

It ./’ I . \
. Shop Order];{ Refer i Refer }‘
Release NC-Program Tool List i
hN SR B g

l T D,
}{ Determine Tool S = Determine Tool
Gross Req il Net Req.
5 .
5 X
Magazine Load - i
="
[ToolID][ToolLifeTime] iy /
el

Fidl
‘ ? = i ~ Vi ™
\>(Generate At Assemble Tools & S — P
Picking Order ~| Assign ToollDto RFID | — g
;8 o, . ey X i ‘

f'

r
L/ V" oemersisa
>{ load datain DB [—= oy Read RFID }»
machine tool Magazlne \
~ A L
ol

fie i 5 = ™
I,__ Automatic Request i Assign Magazine 3 z
. — L Processing “~
Correction Data from DB position |
\ A \ 7 . o)

/

e

&
|: [1 / A ic DB A
utomatic
= Tool Ch = ==
| ool Lhange) L Update tool lifetime C D

Figure 3.2: The Process in individual steps. Source:

as an effective lifetime which may differ from the reference data of the tool type. That
programme-specific lifetime is how long a new tool is expected to last if it performs only
that programme.

The tool machine’s current magazine is then used to modify that list so that only the
net requirement of additional tools remains. That list is then turned into a concrete
picking order to be fulfilled by storage. While not explicitly shown in the figure, there is
the possibility of a small order not requiring any tools in addition to the ones already
mounted on a machine. In that case, any steps until ‘processing’ are skipped. Otherwise
the storage looks up any stored reusable tools to involve, then the new tools are assembled
and given a trackable ID. Tools bound for the machine, whether newly assembled or
previously returned to storage, can’t just be mounted without being measured and
possibly adjusted. This happens during the presetting step. After the tools have been
assembled, given an ID and measured for deviation their info is saved. While relevant
data can be delivered directly to the machine when the tools arrive, having it persistently
accessible helps in the event of tools being misplaced or similar mishaps. Next, the
requested tools get delivered to the machine and placed in its magazine. Realistically

3.2. MAS Design

Order ID Quantity Nc Programme ID Max Cost Max Time Time Factor
OA 10 NC12072018 2000 200 1.45

Table 3.1: A shop order as will be used to trigger production in the MAS

speaking, this is also when some old tools get unloaded to make space or because they
are worn out, but unloading is given its own step and will be discussed shortly. When
the tools are loaded their IDs are read and further data loaded from the database.

Lifetimes and deviations are particularly important here to assure error-free processing.
Before processing can begin the magazine slots need to be associated with the tools
they contain. This like most of the setup steps up to this point is done manually, thus
getting its own step. Once everything is in place processing commences, reducing the
lifetimes of mounted tools according to the order’s parameters. Now, we come back to
the unloading of the magazine. Tools are removed based on calculations for the next
order’s tool requirements. This occurs simultaneously to the next mounting, if there is
another order queued up. In fact multiple processes can run in parallel, although it is
prudent to not let successive orders progress too far along the setup phase, since changing
circumstances may invalidate that work. Decisions should be made and implemented
relatively close to the execution of the next steps to prevent inefficiencies. What was
optimal several cycles ago may not be optimal, or even possible, now. The final step
of the process is to return the tools to storage (or discard worn out tools) and update
persistent information about them in the database. At this point, the machine is already
being loaded, new tools are being created for following orders and so on.

3.2 MAS Design

To simulate all the described behaviour in an MAS, we need several agents with distinct
and well-defined competences. The required steps and behaviours are clustered around
the scope and interests of the shop floor real-life analogues. In the following sections,
agents’ names will be space separated when the conceptual agent is meant and camel
cased when talking about the corresponding Java class.

First there’s the Order Agent, representing the interface between the ERP layer and
the shop floor. Its job is to negotiate favourable conditions for the incoming orders’
completion. Those orders come with a number of constraints. Most important is the type
and quantity of product to be made, with the type of product expressed as an associated
NC programme. That programme provides the precise instructions for the tool machines.
Apart from the literal order itself, there are two more limiting factors to the execution:
time and money. The Order Agent will only accept bids during negotiations that project
the monetary and temporal costs to be below a provided maximum. If multiple offers
satisfy that condition, cheaper (referring to their monetary cost) alternatives are preferred.
Apart from the initial negotiation when the order is first created, the Order Agent may

17

3.

DEsSIGN

18

have to renegotiate at a later point in time. An order’s place in the queue is not set in
stone until setup commences, so only the order being worked by a particular machine
and the very next one in line (which is being set up) are immutable. Others’ placement
is subject to change if a new order comes in. For example, the new order may prove to
be more economical somewhere in the middle of the queue because the tool magazine
configuration at that point allows instant reuse of some tools, shortening setup time.
Order Agents will have to consider whether rearranging the queue still satisfies their
restrictions, but the orders are seen in a greater context in this step. Each order has
a factor which expresses the leeway that can be given to the deadline to save money
in the grander scheme. Should a different sorting to the one initially accepted end up
offering cheaper production, the order’s maximum throughput time can be extended by
that much. So, for example, an order with a maximum time of 100 minutes but a time
factor of 1.2 will accept up to 20 minutes of additional delay if it reduces costs. With new
orders expecting a placement within the queue, the question arises as to what happens
in the case of conflicting interests between orders. The model keeps things relatively
simple in this regard. Orders that have already been given a spot in the queue before
will stay in the queue unless they somehow turn out to be unfulfillable. That means that
any change (or addition) to the queue needs the agreement of each order already in it as
well as the newcomer’s. If no configuration can be found in which all orders meet their
conditions, the new order is cancelled. In the case of multiple possible configurations the
greatest cumulative savings win out.

Machine Agents represent individual CNC machines. The machine has a tool magazine
to manage. The lifetimes need to be checked before use and updated after use. Tracking
and predicting the magazine’s state is what allows us to give accurate estimates of costs
to Order Agents. Without knowledge of future states the net tool list is an educated
guess at best. Speaking of orders, the order queue is the second major internal structure
maintained by the Machine Agent. Here the machine remembers the commitments made
to various orders in terms of position, costs and waiting time. More than the magazine
the queue can be very volatile, potentially subject to massive change with every incoming
order. The position and estimated costs are the smaller parts of this. Rather, the
preliminary information gleaned from predictions must be updated when changes occur
further ahead in the queue. Of course this need is predicated on such predictions being
saved in the first place rather than sending them to the order and only checking again
once setup begins. In its role as the second part of negotiations with Order Agents, the
Machine Agent acts with relatively little self-interest. It only cares about whether orders
can be completed without idle time. Other than that it is relegated to calculating the
information for Order Agents and evaluating their responses. In the current use case, the
Machine Agent only checks which proposals have been accepted by all Order Agents and
picks one arrangement, as mentioned above, based on their cumulative lowest cost.

Setup procedures and general tool handling outside of the machine is handled by the
Supply Agent. It models the responsibilities of tool storage in real life. As such it offers
services necessary to the setup process. This is where the duration of the setup process

3.2. MAS Design

is predicted which the Machine Agent uses to give the Order Agent an estimate. It is
also the interface through which persistent tool information is accessed and updated.
For calculations and query results to not be inaccurate, it is important that it is also
records whether tools are currently in storage or elsewhere, where their info may not
be up to date. When performing the preliminary checks for a requested tool setup, the
Supply Agent doesn’t enter into any negotiations with the machine. It simply states its
capabilities given the parameters, although it does have the authority to reject or cancel
a setup order if internal constraints are violated.

While the Supply Agent is in charge of automatic information management for tools
there are some points in the tool cycle where human interaction beyond simple scanning,
transport and mounting is required. This is modelled by the Visual Agent, so called
because it has the only GUI for humans to interact with (orders can also be entered
by a human but aren’t necessarily). There are three points where human processing is
required: when tools are assembled, measured and mounted. These points in time are
also used as breakpoints within the execution of the use case, which does not process in
real time, but progresses only when human input furthers it along. The Visual Agent
thus serves a dual purpose as both the virtual model of some of the work done in the
tool cycle and also the principal point of interaction to advance the test case currently
running. Its value to the theoretical model is that components requiring intensive human
interaction may very well be part of a production system.

The final part of the model is the Database Agent. It was decided that rather than
complicating the system by having data interfaces for each agent they would instead
access a central database service. It represents a layer of persistent data that changes
less frequently than some of the other agents’ internal structures. The Database Agent is
therefore only updated when a permanent change to tools occurs. It is completely reactive
and could easily be modelled as any arbitrary service other than an agent. However,
reasons exist why one would want to design a system in a way where database access
is addressable over communication channels shared with other agents. For instance, an
open system designed for extensibility may want to offer read and write access to a
central repository as a service like any other, simplifying the job of future developers to
implementing the same kind of protocols they use for every other communicative act
within the MAS.

Figure 3.3 shows an overview of the used agents and their planned interaction.

19

3.

DEsSIGN

20

Crder Agent 1

Supply Agent

b

Order Agent 2

Crder Agent 3

*—H——_—‘—)‘ Machine Agent € >

Order Agent 4

N

Wisual Agent

Crder Agent n

DB Agent

Figure 3.3: Outline of the agents’ communication

CHAPTER

Implementation and Evaluation

4.1 Implementation

4.1.1 Constraints

A number of constraints were established before work on a concrete implementation plan
began. Some of them exist to add more realistic working conditions, while others are
concessions in detail for the sake of rapid development — the prototype implementation
was limited to a development time, from the first diagrams to testing, of about 3 months.
They are listed here but may be brought up again where appropriate.

1. No changes are made to orders in position one and two. They are either already
set up or in the process of being set up by the Supply Agent, making any changes
complex to calculate, as well as difficult to accurately track if this was a real-time
system.

2. Potential order spots in the queue are rejected if the setup time’s length would
cause the machine to be idle, i.e. not working or in the process of mounting

3. An order must be finished with a single magazine load, it is assumed larger orders
have already been split up to match that criterion

4. To minimise tool exchanges, orders are rejected if a mounted viable tool would
have to be replaced by a new one of the same type to be able to finish it

5. Only one machine is assumed to exist, coordination between machines and further
competitive negotiations for tools would exceed both the timeframe and scope of
this work

6. The projected duration and costs of an order’s execution should be reliable given
no unexpected changes

21

4.

IMPLEMENTATION AND EVALUATION

22

7. Difference in tool wear between NC-programmes is assumed to be in quantity only,
as well as being accurately known beforehand. Tools of the same type can be used
in different programmes consecutively with their lifetime being affected in simple,
foreseeable ways. A tool’s wear for a specific programme is calculated as

ProgrammeSpeci ficLifetime
CoreDatalLifetime

Usetime * (4.1)

8. Numbers are generally rounded to three decimal points

9. The system does not take partially fulfilled orders into account. The first order in
the queue is either at 0% or 100% progress to simplify calculations.

10. No attempt is made to salvage error states. Recalculation and renegotiation due to
incorrect information requires whole fallback protocols outside of this work’s scope.

4.1.2 Protocols

The communication has been split into four major protocols. They flow into each other
following rules that will be explained. Those parts of the communication were put
together as a protocol where an agent requires services from others that are progressively
dependent on earlier steps and conclude where the communication chunk ends back at
the triggering agent with a result. An incoming shop order triggers the first of them, the
Order Negotiation Protocol, which deals with the negotiation of orders’ feasibility and
queue position. The main actors involved are the Order and Machine Agents. The Order
Agent requests proposals for the execution of their order and ends with rejection or a
place in the execution queue. The Machine Agent has the role of a service provider and is
tasked with acquiring the necessary information and resources to complete the demanded
tasks. Once the Machine Agent receives the call for proposals, it gathers information
to calculate the order’s cost. Then it goes through several checks of feasibility. First
whether the order is too large for a single magazine load’s worth of tools to accomplish
it, then if there are any possible spots for the new order’s tools to be set up without
causing the machine to stand idle. Should any possibility survive those proposals are
sent to each active Order Agent for evaluation. If a spot in the queue is accepted for
the order, the Order Agent is guaranteed its timely completion. Only by renegotiation
with the Order Agent can this be changed later. So it retains control over the handling
of its order at all times. The protocol is initiated by the Order Agent sending a Call
For Proposals. The Machine Agent responds with a number of proposals equal to all
possible slots for the new order to occupy. The Order Agent sends back those proposals
it deems acceptable or a wholesale rejection if none meet its conditions. If a position
is accepted further communication is suspended until one of three things happens: the
order is completed by the machine, the order is cancelled by the machine because of
an unforeseen error or a new order has come in and renegotiation is triggered. When
the protocol concludes due to completion, rejection or cancellation the Order Agent also
terminates, having fulfilled its purpose. Orders are accepted if both time and money

4.1. Implementation

constraints can be met. The Machine Agent calculates not only the absolute values for
duration and cost, also including potential saved costs of various order configurations in
its message to the Order Agents.

QOrder Negotiation Protocol

Order Agent Machine Agent

incoming Order |

>

ProposalListener ™

CFP: MakeOrder

OrderCommunicator &

starts Setup
Information
Protocol

—
PROPOSE: EvaluateProposals

starts handler

<

ProposalAnswerHandler Iﬁ—

ACCEPT_PROPQSAL: EvaluateProposals

may start Tool
Requisition
Protocol

v

Magazine Setup

T
|
| end of
|
1 Protocol

ToolingHandler o

INFORM:OrderCompleted

P
I 1
I |
I |

Figure 4.1: Flow of the Order Negotiation Protocol

To acquire the information necessary to make a proposal, the Machine Agent executes
the Setup Information Protocol. Here, the Machine Agent utilises the Supply Agent’s
services to get the order’s costs in terms of time and money. It starts after the Machine
Agent is requested to make a proposal. It then looks up the tool requirements of the
order as well as any stored tools of those types. This way it can use its knowledge of its
own current (and projected future) magazine to create a net tool list which is taken as
the basis of the Supply Agent’s cost estimate. The Supply Agent is sent a net tool list
for each possible queue position of the incoming order. To be able to create those the
machine projects its magazine as well as stored and newly created tools into the future.
Based on those predictions, the Machine Agent can fill the net tool list with the exact

23

4.

IMPLEMENTATION AND EVALUATION

24

number of required stored as well as completely new tools to be delivered per tool type.
The distinction matters because of possibly varying amounts of preparation time. For
example, stored tools may only have to be measured and delivered, while new tools need
to be assembled first, adding to the delay. The protocol is finished with the delivery of
all projected setup times and costs back to the Machine Agent to be proposed to the
Order Agent.

Setup Information Protocol

Machine Agent Supply Agent DB Agent
I
I

| |

started by | |
| |
| |
|

|

|

|

OrderCommunicator |
»

QUERY_REF: QuerySettingSheet

€ INFORM_REF: NcProgramReferencesSheet
___ 1

OrderCommunicator .

QUERY_REF: QueryStoredTools

»
P

QUERY_REF: QueryStoredTools

A 4

INFORM_REF: StoredTools

- - - NFORM_REF StoredTools

|

starts either |
ProposalAnswerHandler |
or OrderCommunicator |
|

|

|

Figure 4.2: Flow of the Setup Information Protocol

In the Setup Information Protocol, time is calculated based primarily based on the used
NC-programme’s metadata. For reference, tables containing the metadata of programmes
used in testing can be found in the appendix. The duration of the machining process
itself per workpiece is the Throughput Time. This is the sum of the Main Time, which is
itself the sum of all tool usages, and Nonproductive Time, which occurs during machining
but during which no tools operate on the workpiece. It was decided that Setup Time,
which is also included in the metadata should only apply to orders without preceding
orders and that the majority of it can be done by an operator during the preceding
order’s runtime. Machining Time MT is therefore

MT = ThroughputTime x* WorkpieceQty (4.2)

A different time factor is tool requisition. New tools are assembled and both new and
already assembled tools from storage need to be measured before use. The factors for

4.1. Implementation

assembly and measurement are assumed constant and are largely arbitrarily chosen, in
case of our tests AssemblyTime = 5 and MeasurementTime = 2. The Machine
Agent, being provided a list of available tools tries to minimise time and cost by preferring
used tools in their net tool lists. The time RT spent on preparing tools for an order is
calculated as

RT = AssemblyTime * NewTools + MeasurementTime * (NewTools + StoredT ools)
(4.3)

As noted, RT needs to be lower than the previous order’s MT. Note that in every order
after the first this constraint means that the RT, as long as it doesn’t prohibit the order
entirely, does not actually factor into an order’s duration since it can be performed in
parallel with the previous order’s MT. So an order’s Finishing Time FT is

FTy = MT + RT + SetupT'ime (4.4)
for the first order and
n—1
FT,=()_ FT;)+ MT, (4.5)

i=1
for every subsequent one.

An order’s cost is calculated in three parts. First is the Machining Cost MC, giving a
concrete monetary cost to the tool machine performing the order. It is the MT times a
fixed cost by minute, in our case

MC = MT * é (4.6)

Second is the Auxiliary Cost AC, which reflects the time spent changing workpieces and
is set at

AC = Qty +5 (4.7)

Finally there’s the Tooling Cost TC, which includes both new and stored tools with

TC = (NewTools + StoredT ools) * 10 (4.8)

The final cost is the sum of these, resulting in

Cost = MC + AC+TC (4.9)

25

4.

IMPLEMENTATION AND EVALUATION

26

It’s apparent that MC and AC are fixed costs inherent to the order, while TC is heavily
dependent on the existing machine order queue. While it may seem strange that TC
includes stored tools as a cost factor, it was decided that this should be the case for this
model to further bias the system towards choosing order positions that reuse tools on
the magazine.

Once an order in the machine’s queue is available for setup, the Tool Requisition Protocol
is initiated. This happens if an order is the first one to be added to the queue or when
an order advances to the second place in the queue and the first one is done with its
setup. During the protocol the Supply Agent is tasked with procuring the necessary tools
for that order on behalf of the Machine Agent. The Supply Agent is sent the order’s
previously generated net tool list and starts off by requesting the picking list from the
database, containing the list of components necessary for each tool’s construction. After
assembly the new tools are shown via the Visual Agent. After confirmation by a user,
stored tools are retrieved by the Supply Agent as well. The new and retrieved tools get
measured for deviation and once again displayed through the Visual Agent. Finally, the
measured tools’ information is sent to the Machine Agent.

The last protocol is the Magazine Setup Protocol. Its goal is to handle the communication
necessary for the Machine Agent to change its magazine’s tools and execute the current
order. In contrast to the previous protocols the Magazine Setup Protocol behaves slightly
differently. The others could be characterised as consisting of a requesting agent expecting
some service and another agent going through several steps to attempt to fulfil that
request. This one instead revolves around the Machine Agent contacting other agents on
its own to get its work done. It gets triggered whenever an order is put into the first
position of the machine queue directly after it has been delivered the necessary tools
or when an order advances to the first spot right after the previous Magazine Setup
Protocol has finished. Before the first message is sent, the magazine’s content is swapped
out. Following this exchange, the tools that are bound for storage get sent to the Visual
Agent for inspection. The Visual Agent then sends a confirmation back to the Machine
Agent and an update to the Database Agent to inform it of the tools returning to storage.
Upon receiving confirmation the Machine Agent’s setup for that order is complete and it
can finally execute. After execution is finished, the Supply Agent is sent information on
the tools that have to be discarded.

In attempting to follow FIPA guidelines, there are some rules that are followed across
all protocols. [Fou0O2a] Each protocol is assigned a protocol id which is sent along with
all messages that are directly involved. The exception are incidental messages sent for
‘housekeeping’. Those are lookup of other agents on the middleware and some updates
pushed to the persistence layer through the Database Agent. Messages also have a
conversation ID to more easily differentiate between potentially multiple instances of
the same protocol running in parallel. In the testing scenario presented here, this
only occurs with the Order Negotiation Protocol. Any unexpected messages during a
protocol — in terms of message type, performative or content — is responded to with
a NOT_UNDERSTOOD performative and includes the content of the triggering message

4.1. Implementation

Tool Requisition Protocol

IMachine Agent Supply Agent Visual Agent DB Agent

|
started by |
ProposalAnswerHandler |
or SetupHandler |

REQUEST: MakeToolSupplyCrder

»

MachineListener ™

SetupHandler B

QUERY_REF: QueryComponentsForDynamicSettingSheet

INFORM_REF: GemeréledP\ckmgList
- - T e |ttty B

REQUEST: DisplayPickingList

o
>
1
!
|
i

INFORM: ToolAssemblyFinished
-+

QUERY_REF: QueryStoredTools
T

| |

QUERY_REF: RequisitionTools |
T |

|

1
INFORM_REF: FoundTools 1

INFORM: ToolInspectionFinished

may start Tool
Requisition Protocol
and/or Magazine Setup
_, Protocol
<

n
|
i
|
|
|
|
|
|
|
|

Figure 4.3: Flow of the Tool Requisition Protocol

for reference. One notable break with FIPA recommendations is the lack of use of the
reply-by parameter in messages. It is theoretically supposed to impose a time limit
after which the sender assumes no answer will be sent (or will no longer be accepted or
processed). In this use case which is tested in a non-real time environment this temporal
constraint has little use.

The resulting code (accessible here: https://github.com/Shajinn/bakk)for the
protocols and agents within JADE is separated into two major categories: agents and
ontologies. For the given use case, the semantic domains were separated into an ’order’
domain, which concerns the negotiations of orders and their costs, and a tool’ domain,
which includes the technicalities of all aspects of tool usage and management that are
required in the modelled tool-cycle. The Order Agent and Machine Agent both make use
of the order ontology, being the negotiators of orders’ execution. All agents except for the
Order Agent use the tool ontology for their communication about the tool cycle. Note
that the Machine Agent therefore uses two different ontologies and is a bridge between
the domains. Both ontologies have been organised in the same way by splitting them

27

https://github.com/Shajinn/bakk

4. IMPLEMENTATION AND EVALUATION

Magazine Setup Protocol

Machine Agent Visual Agent Supply Agent DB Agent

ToolingHandler
or SetupHandler

-
P

I
I
started by |
I
!

REQUEST: TakeOutTools

-
P

REQUEST: StoreTools

REQUEST:StoreTools

]
|
|
|
|
|
|
|
|
o
'
|
|
I
}
|
|

CONFIRM

[l 1

ToolingHandler B

_, INFORM: SetupComplete
b

REQUEST: DeleteTools

Y

REQUEST: DeleteTools

may start Tool
Requisition Protocol
and/or Magazine Setup
Protocol

A

Figure 4.4: Flow of the Magazine Setup Protocol

into three types of classes: vocabularies, terms and the main ontology class.

When JADE deserialises its messages into Java objects, it uses a large number of developer-
defined keywords for the task. In order to keep them together for easy reference and
better maintainability, they have been defined as publicly available constants, bundled in
a vocabulary class. For simplicity’s sake, they are made as interfaces implemented by the
main ontology class. Since the main ontology classes reference these constants a lot, this
is incredibly helpful in increasing conciseness and thus readability.

Terms implement the appropriate JADE interfaces (Concept, Predicate, AgentAction)
to express various semantic concepts. In their simplest form, they require only some
private variables along with their getters and setters along with an empty constructor.
Nearly all terms used in this implementation follow this pattern, with the vast majority
of logic limited to agents. When writing these classes, it is important to precisely follow
naming conventions demanded by JADE or it will not be able to use the class properly.

The main ontology class is where the terms are registered in the form of Schemas.
With Schemas, the internal structure of terms is established. It has to exactly match
the types and names used in the actual classes. When an ontology is assigned to a
message, this main ontology object along with a particular content language is used by

28

4.1. Implementation

30| [[] private ToolDomainOntology () {

31 super (ONTOLOGY {£, BasicOntology.getInstance()):

32

33 try{

2 CORCE BT S~y

35 Tool

36 add (new ConceptSchema (TOOL), Tool.class)

31 ConceptSchema cs = (ConceptSchema) getSchema (TOOL) ;

38 cs.add (TOOL (PrimitiveSchema) getSchema (BasicOntology.STRING)):

39 cs.add (TC IME, (PrimitiveSchema) getSchema (BasicOntology.FLOAT)) ;!

40 cs.add {TC ME, (PrimitiveSchema) getSchema (BasicOntology.FLOAT))

41 cs.add (To0L Sy (PrimitiveSchema) getSchema (BasicOntology.STRING))

42

43 Component

44 add (new ConceptSchema (COMPO T) ,Component .class) ;

45 cs = (ConceptSchema) getSchema (COMP: Th:

48 cs . add (COMPOI T ID, (PrimitiveSchema) getSchema (BasicOntology.S Y

47 cs.add((PrimitiveSchema) getSchema (BasicOntology G)ys

48 cs.add ((PrimitiveSchema) getSchema (BasicOntology.ST] G})

49 cs.add (COME DESCRIPTICON, (PrimitiveSchema) getSchema (BasicOntology.STRING)) !

50

L

a2 add (new ConceptSchema (TOO s ToolInstance.class);

53 cs NS }:

54 cs. NGy) ;

< cs.add | {ConceptSchema) getSchema (TOOL)) !

56 cs.add ({T0 {(PrimitiveSchema) getSchema (BasicOntology.FLOAT))

o1 Lo 8 (PrimitiveSchema) getSchema (BasicOntology.FLOAT))
58 cs. (PrimitiveSchema) getSchema (BasicUmtology.F: Ty)r

Figure 4.5: Tool Ontology Class Snippet

the agent’s ContentManager to serialise the message for sending. An agent receiving a
message checks whether that message’s ontology matches one of those registered with its
ContentManager and then uses it to deserialise it.

While many Terms are specific to their part within the Agents’ protocols there are some
essential Concepts used across most communication. The most important among them
are Tool and ToolInstance. Tool models a type of tool, including its manufacturer-
provided lifetime and critical time as well as its database ID and human readable name.
It is used for reference purposes across the design. ToolInstance is the data for a
particular tangible tool. Contained within are a Tool to reference the type of tool it is
an instance of as well as an ID to uniquely identify that particular tool. Additionally
the amount of prior use is tracked to calculate the remaining life time. Deviations are
included as well for completeness’ sake. Figure 4.5 shows how this was modelled in the
tool domain’s ontology class (line 52 and following).

Agents all follow the same general structure. Their life cycle is handled by the setup ()
and takeDown () methods inherited from jade.core.Agent and are called right after
the agent is started and ready, or right before it shuts down, respectively. In Figure 4.6
you can see an example of the setup () method in the VisualAgent class. Here, you
can see the organisational preparations that have to be done before the agent can be
fully operational. The content manager is fed the ontologies and languages it will need to
understand when receiving messages (lines 56-57). Then the agent registers its services

29

4.

IMPLEMENTATION AND EVALUATION

30

in the MAS’ yellow pages (lines 59-71). Finally all Behaviours that are supposed to be
running from the beginning are started here (line 73). The takeDown method is even
simpler, since the middleware can be set up to automatically deregister dead agents. All
business logic is put into Behaviours so that an agent’s actions are in flexible modules.

53 @0verride

@ = protected void setup() {

55 logger.info ("Vizual Agent "+ getAID() .getName () +" =started"):
56 getContentManager () . registerLanguage (codec) ;

59 getContentManager (} . registerOntology (ontology) ;

58

50 DFagentDescription dfd = new DFAgentDescription();
&0 dfd.setName (getAID()):

61 ServiceDescription sd = new ServiceDescription();
&2 2d. setType (ToolDomainVocabulary.

&3 3d. setName (getLocalName ()} +"-Visual™) ;

64 dfd.addServices (=d) ;

65 try {

66 DFService. register(this, dfd):

&7 }

68 catch (FIPAException fe) {

&9 logger.severe ("Visual Agent "+getAID() .getName (}+" failed to register its service"):
70 doDelete () ;

71 }

72

73 addBehaviour (new CommandListener()):;

g -

Figure 4.6: Visual Agent setup method

Agents in the use case model don’t act in a very deliberately autonomous fashion, usually
waiting for some internal or external mechanism to finish. The agents’ Behaviours
reflect that, with all but one of them (the OrderAgent’ s call for proposals) imple-
mented as listeners that wait for specific types of messages. Since their functions are
so similar an attempt was made to keep their structure roughly uniform. DBAgent’ s
QueryListener, shown abridged in Figure 4.7| can serve as a simple example.

The action () method is, as the name suggests, where the Behaviour acts when
called by the scheduler. In the case of CyclicBehaviours, which are continuously
called anew whenever they finish, the very start of every cycle is to wait for a message to
arrive using the receive () method. While listening, control of the thread is ceded to
other Behaviours. When multiple Behaviours listen simultaneously it is necessary
to be more specific about which messages any particular Behaviour plucks from the
queue. Message patterns can be given to the receive (MessageTemplate) method
to make sure a message reaches the right destination within an agent (compare Figure
4.7 lines 524-525). Conversation IDs are particularly useful for this purpose, addressing
one of possibly multiple instances of the same Behaviour class. After checking for
null messages, we create a reply which is filled with most relevant information from
the message it was created out of (lines 526-529). This reply will be used to send an
error message of some kind if something goes wrong or to reply positively otherwise.
If a message requires a different recipient, that can be changed further down the line
but things like language and conversation ID are usually the same. Now the message is

4.1. Implementation

521 E private class Querylistener extends CyclicBehaviour {

522 @Cverride
@ public void action() {
524 ACLMessage msg = myRgent.receive(
525 MessageTemplate.not (MessageTemplate.MatchPFrotocol (ToolDomainVocabulary. TEST FROTOCOL))) :
526 if (msg '= null) {
527 ACLMessage reply = msg.createReply
528 reply.=secPerformative (ACLMessage. N RSTCOD) »
529 reply.setContent (msg.getContent ()) :
530 try{
231 AgentAction action =
532 (AgentAction) { (Action) myRAgent.getContentManager().extractContent (m=g)) .getAction();
533 switch (m=g.gectPerformative()){
534 case ACLMesszage.NOT | inH
535 logger.warning (" "+ getAID().getName () +
536 " got a NOT_UNDERSTOOD message from " + msg.getSender().getName());
537 return;
538 case ACLMessage.(JUERY REF:
539
540 if(action instanceof QueryvComponentsForDyvnamicSettingSheet) {
541 ToolRequirementList toolRequirements =
542 { {(QueryComponentsForDynamicSettingSheet) action).getToolRequirementsList():
543 reply.setPerformative (ACLMessage. INFORM REF) ;
544
545 myRgent.getContentManager ()
546 .fillContent (reply,
547 new GeneratedPickingList (getPickingList (toolRequirements) , ++maxInvid));
548
549 }else if{action instanceof QuerySettingSheet) {
586 tcatch (OntologyException | Codec.ClodecException | ClassCastException e} {
587 reply.setPerformative (ACLMessage.NOT
588 r.warning ("0 "+ getAID().getName () +
589 " could not conatruct a proper reply to \n"imsg.gectContent()):
590 lecatech (SQLException e) {
591 reply.setPerformative (ACLMessage . NOT U
592 logger.severe ("Crder Agent "+ getAID().getName ()+
593 " had an error occur trying to guery the database for another agent™)
594 }
595 myRAgent.send (reply)
596 telsed{
597 blocki}:
598 }
599
600 -

Figure 4.7: Start and end of QueryListener

filtered for its content, first by performative and then by action type. The filtering by
performative is useful to keep the code organised. In case the received message is null,
which occurs if no message is actually in the queue, the Behaviour blocks, no longer
actively polling the message queue until a new message awakens it (line 597).

Other than the basic listener-type Behaviours just described which serve any recognised
message as it arrives there are also Behaviours which map the actions of a protocol.
They expect a stricter sequence of messages to arrive and start the protocol by sending a
message. SupplyAgent’ s MachineListener is a good example. It handles the Setup
Information Protocol on its agent’s behalf and is very illustrative since that protocol has
the agent go through many steps rather than firing a request and getting a final result
back. The onStart () method, seen in Figure 4.8 is called before the Behaviour starts
for the first time. This happens when it is added to the agent rather than when it is
instantiated.

It is useful to put the message initiating the protocol in there, making sure the message pa-
rameters that will be used to identify incoming messages are generated by the Behaviour

31

4.

IMPLEMENTATION AND EVALUATION

32

Ch=! public void onStart() {

253 lookupAgents() ;

254 ToolRequirementList copiedList = mew ToolRequirementList (new ArrayList (), ToolRequirementList.TYPE

255 List toolEntries = toolRegquirements.getToolRequirements():

256 Iterator iterator = toolEntries.iterator():

257 while (iterator.hasNext()) {

258 ToolRequirementEntry te = (ToolRequirementEntry) iterator.next():

259 int newToolsCount = Math.max (0, (int) (Math.ceil(te.getUsetime ()

260 / (te.getTool().getlLifetime() - te.getTool().getCriticaltime()))));

262 copiedList.getToolRequirements () .add (new ToolRequirementEntry (te.getTool(), 0, newToolsCount, 0));
263 H

264

265 ACLMessage message = new RCLMessage (ACLMesszage.CUERY REF);

266 message . setOntology (ontology.getName ()) ;

287 message.setLanguage (FIPANames.ContentLanguage. FIFA

268 message.setConversationld (conversationId) ;

269 message.setProtocol (ToolDomainVocabulary. S

270 message.setReplyWith (ToolDomainVocabulary.

271 .

272 message . addReceiver (dbfigent) ;

273

274 QueryComponentsForDynamicSettingSheet gueryPickinglist = new QueryComponentsForDynamicSettingSheet (copiedList);
275 try {

276

277 myAg .getContentManager () .fillContent {(message, new Action (myAgent.getAID(), gueryPickingList)):;
278 send (message) ;

279 } catch (OntologyException | Codec.lodecException e) {

280 1 r.warning ("Supply " + getAID() .getName() + " could not construct an initiating message™);
281 my nt.removeBehaviour (this) ;

282

283|

Figure 4.8: An example of the onStart method, taken from SupplyAgent’s MachineListener
behaviour

itself. MachineListener is also a CyclicBehaviour, just like QueryListener.
JADE does offer aggregates called CompositeBehaviours where one could model
any flow of subbehaviours into one another (FSMBehaviour for example works as a
finite state machine) but they were disregarded in favour of the simpler and less verbose
CyclicBehaviour due to the protocols’ largely linear nature. Figure 4.9 shows the be-
ginning of MachineListener’s action () method. Note, that the Behaviour will
ignore all incoming messages that do not satisfy the condition given to the receive ()
method (lines 298-299). A message has to have the correct protocol and conversation
ID to even be considered. Several lines further down (in 305 and 322-324), we can see
how the protocol’s sequentiality is handled. By making use of the replyWith and
inReplyTo message parameters we can set something akin to a code word to ensure a
message that arrives out of the protocol’s order doesn’t get processed. [Fou02al

A message is sent with a phrase in its replyWith parameter. The answer then puts that
same phrase into its inReplyTo field. When using ACLMessage.createReply ()
this is done automatically along with the other identifying message parameters. An
advantage this has over e.g. a simple counter that tracks how far along a Behaviour
has progressed is that it handles non linear protocols better and improves readability and
comprehensibility when looking at messages in a vacuum. Examples would be supervision
of a running system’s messages or reconstruction of events from logs. Another difference
to simple listener Behaviours is the fact that Behaviours mapping protocols don’t
continuously run while the Agent is live. Rather they are started when a necessity for

4.1. Implementation

@ f—] public void action() {

298 ACIMessage msg = myRgent.receive (MessageTemplate.and(MessageTemplate.MatchConversationId(conversationId),
299 MessageTemplate.MatchProtoceol (ToolDomainVocabulary.

300 if (mag '= null) {

301 ACIMessage reply = msg.createReply():

302 reply.setPerformative (ACLMessage . NOT UV

303 reply.setContent (msg.getContent ()) -

304 try {

305 if {(currentFilter.equals (msg.getInReplyTo(})) {

306 switch (msg.getPerformative()) {

307 case ACLMessage.NOT

308 logger.warning (" " + getAID() .getName ()

309 + " got a 0D message from " + msg.getSender() .getName()):

310 return;

311 case ACLMessage.INFORM REF:

312 Predicate predicate = ((Predicate) 1t . getContentManager () .extractContent (msg))
313 =========MESSAGE 12 RECEIVE=———

314 if (predicate instanceof GeneratedPickingList) {

315 PickingList pickingList = ((GeneratedPickingList) dicate) .getPickingList();
316 ACLMessage message = new ACLMessage (ACLMessage.RE 5

317 message.setOntology (ontology.getName ()) -

318 message.setLanguage (FIPANames.Contentlanguage. FIFA

319 message.addReceiver (visualfigent) ;

320 message.secConversationld (co

321 message.setProtocol (ToolDomainVocabulary. S

322 message.setReplyWith (ToolDomainVocabulary . DISE

323

324

325 SSAGE 1

326 myhgent .getContentManager () . fillContent (

327 message, new Action (myRgent.getAID(), new DisplayPickingList (pickingList,
328 { (GeneratedPickinglList) predicate).getNextViableInvId()))}}:

329 .send (message) ;

330

Figure 4.9: MachineListener’s action method

the protocol arises and shut down when their protocol concludes.

With the basic skeleton each agent adheres to out of the way it is time to look at some
parts of the specific agents’ implementation.

4.1.3 Order Agent

The OrderAgent is started with a set of 5 arguments corresponding to the order informa-
tion already shown in Table 3.1l All interactions are handled by the Proposallistener
Behaviour which sends a call for proposals to the MachineAgent on start. Following
this, it listens for proposals or outright rejections.

4.1.4 Machine Agent

The MachineAgent is at the centre of a lot of the calculations and communication
within this system. Accordingly, it has several Behaviours that can be active at
the same time. It also has complex inner information, most of which is contained in
the MachineAdministrationEngine class. Both the tool magazine and the order
queue are handled here. The magazine is modelled as a map of ToolInstances
referenced by numbered slot IDs. Exchange of tools on the magazine happens through
the mountTools method which is called prior to the Magazine Setup Protocol starting.

33

4.

IMPLEMENTATION AND EVALUATION

34

It takes the delivered tools as input and returns outgoing tools at the end, prioritising
tools that will expectedly be used the soonest to remain on the magazine. The other
time the magazine is manipulated is during the actual manufacturing activity, modelled
by the executeOrder method. It sequentially reduces the lifetimes of tools on the
magazine until the order is finished. ToolInstances with lower remaining lifetime get
used up first.

The order queue is filled with machining orders which contain both technical information
such as the setting sheet, tool usage times and projected costs as well as information
on the order’s origin. The conversation ID, requesting agent and original Order object
all get saved for future reference. This information is later used to reply to the correct
agent with all the necessary credentials. To prevent inaccurate information during the
Machine Setup Info Request Protocol, only one incoming order may be evaluated for
costs at one time. That order is called the ‘locking order’ as it locks further orders from
being processed. Additional orders coming in while an order is being considered are put
into a separate processing queue. A new order is processed once the old one has been
either denied or accepted into the order queue.

Estimating the costs of various potential positions of a new order in the queue requires
the ability to predict the future state of the magazine, tools in storage and the order
queue. The getToolCleanup method calculates the tools that are going to be removed
after an order in a given position is finished. Its function has been briefly outlined above.
GetNetToolLists is what the MachineAgent uses to predict future tool requirements.
A hypothetical queue is created where the incoming order has been inserted. It then
successively works through the orders from the start, simulating the tooling, execution
and retooling, until the inserted order is reached. Deterministic algorithms for the choice
and use of tools is crucial for this to work. In a real world environment where interferences
are to be expected, exact prediction may be less important than solid self-correction
mechanisms.

The MachineAgent is involved in almost all protocols. The Behaviours are set up to
match them. For example, the SetupHandler starts and processes the Tool Requisition
Protocol. The Order Negotiation Protocol which is initiated by the OrderAgent is
handled across several Behaviours. The ProposalHandler continually listens for
incoming orders and either starts their processing or puts them in a queue for later. The
ProposalAnswerHandler sends out proposals and handles their replies. The other
Behaviours are involved by sending rejections in case the order can’t be fulfilled or a
success message when it has been executed.

4.1.5 Supply Agent

The tools that are in use for production are largely handled by the SupplyAgent. In
effect this translates to a lot of information being transformed and sent. There are three
main services offered by the SupplyAgent. It can be queried regarding potential setup
times, which is used during the Machine Setup Info Request Protocol. It is also the starting

4.1. Implementation

point for initiating the Tool Requisition Protocol by the MachineAgent. Finally it serves

as a gateway to some tool persistence services which are relayed to the DatabaseAgent.

The messages requesting those services all go through the SupplyBasicListener. It
then starts the Behaviours which handle further communication. It also calculates
setup time as a function of the amount of new tools and stored tools as well as the
number of new tools required for the actual setup.

MachinelListener is the second Behaviour of note, handling the entirety of the
Setup Information Protocol. Its main function is to gather and combine information
from the other Agents involved in the protocol, matching the machine’s order with tools
from storage (DatabaseAgent) and, if necessary, new ones (VisualAgent). For this
purpose the MachineListener stores temporary data on what it has already received
and gradually adds to and modifies it before handing it off to the VisualAgent for
human inspection and, ultimately, mounting on the tool magazine.

4.1.6 Visual Agent

Beyond the creation of orders all human input is done via GUISs created by the VisualAgent.

They are created whenever the CommandListener Behaviour receives an appropriate
message. At that point the corresponding GUI is created and a reply is only sent once
the user has confirmed the data contained within it. VisualAgent is the only agent to
implement the JADE-native GuiAgent class, which already contains the infrastructure
for user interaction. In this case we make use of the onGuiEvent (GuiEvent) method
to send messages with the results of the interaction. The GuiEvent is generated by
the GUI class and can contain any amount of arbitrary information. The GUI classes
themselves make use of Swing [Oral to show simple forms.

Computationally speaking, the VisualAgent and its GUI classes do very little. During
the tool assembly step, it generates new ToolInstances based on the provided picking
list, giving the user the chance to rename them. On the other occasions on which this
agent is called, when requested tools have been measured and when tools get unmounted
from the magazine, there is no additional calculation at all.

The real value of the VisualAgent is that it controls the flow and timings of the running
environment. It stops the protocols at critical points: when the setup is completed and
after a machining order is completed. The information on tools that is displayed during
these two points in particular are crucial points of comparison with expected results
during testing. The timing also allows some additional nuance to the timeline of arriving
orders. Since this model does not run in real-time — everything is done as fast as it can
be processed by the computer — it would be practically impossible to e.g. reliably add an
order during the setup process of another if it weren’t for these breakpoints.

4.1.7 DB Agent

The DBAgent is the central interface for persistent information. Data concerning setting
sheets and tools are requested here. For the test cases, a Microsoft SQL Server filled with

35

4.

IMPLEMENTATION AND EVALUATION

36

Test Nr. Protocol Description
1 Setup Information | Correct gross tool list calculation
2 Setup Information | First order immutable
3 Setup Information | First and second order immutable
4 Setup Information | Correct net tool list calculation
5 Setup Information | Cancellation when setup too long
6 Tool Requisition | Correct tool requirements calculation
7 Tool Requisition | Cancellation on unexpected tool shortage
8 Magazine Setup | Correct tool usage calculation
9 Magazine Setup | Error on unexpected tool shortage
10 Magazine Setup | Error on unexpected magazine size problem

Table 4.1: Protocol tests overview

slightly modified work floor data from a tool management software was used. In order
to keep the base data consistent and have the tool data easily accessible during testing,
the relevant data is kept in a simple temporary storage within the agent. It is loaded
from the database on agent setup and kept up to date during execution. Additionally,
the database had no way to differentiate between tools that are currently in storage and
tools that are currently mounted on machines, which factors heavily into the calculations
of future tool magazine states, so the DBAgent also keeps that information.

The only Behaviour it has is the QueryListener which waits for either requests for
information or updates concerning the state of tools. The agent updates its information
on tools when tools get stored, destroyed or built. Changes to tools that remain in the
machine’s magazine do not register here until they are removed.

4.2 FEvaluation

The system is tested primarily on the protocol level. Testing the Order Negotiation
Protocol is equivalent to a full system test, encompassing the whole process. All protocols
except the Order Negotiation Protocol rely on non-start states within one or more agents.
To assess a protocol’s correctness in isolation requires a way to get to a desired state
outside of the standard flow. Therefore, to prepare the various Agents for protocol
testing, their internal state is manipulated with a debugging agent simply called the
TestingAgent. TestingAgent can be used to communicate with MachineAgent’s
and DBAgent’ s respective testing Behaviours (both called TestListener). It sets
those Agents’ internal states according to the test scenario and triggers a protocol
execution. A simple Ul is used to setup the agent states.

Below is Table 4.1, providing a quick summary of the protocol tests. More detailed
information can be found in the appendix.

The protocol tests conclude with a result printed to the testing UI, as seen above. The

4.2. Evaluation

||

1D test1

esult of Setup Info Reguest Test]

~~pagition: 2

1D test0

Time required: 78.4
Stored Tools: 0
Mew Tools: 4

Time required: 128.8
Stored Tools: 0
Mew Tools: 0

ID: TestSetup1609862520354
Time required: 179.2

Stored Tools: 0

Mew Tools: 0

1D test2

Time required: 2296
Stored Tools: 0

Mew Tools: 0

ID: test3

Time required: 341.7
Stored Tools: 1

Mew Tools: 5

[4]

‘J

L]

Figure 4.10: The result of Setup Info Protocol Test 4

Test Nr.

Description

1

Order Agent cancellation on exceeded time constraint

Time factor utilisation

Order Agent cancellation on exceeded cost constraint

2
3
4

Optimal order arrangement

Table 4.2: System tests overview

result was compared with the expected result. The full system tests were done via
JADE’s Remote Agent Management Ul, creating OrderAgents to simulate incoming
shop orders and progressing through VisualAgent’ s interfaces. Table 4.2|is a short
description of the four tests. More details are in the Appendix. Results were checked by
consulting the logs produced during the test and comparing them to their expected state.

37

CHAPTER

Conclusion and Outlook

In this work, a small MAS design was planned, implemented and tested in order to
evaluate MAS in the manufacturing domain in general and the usefulness of the JADE
framework for that task in particular. As noted before, the timeframe for development was
relatively short. Despite that and the complexity of implementing an intercommunicative
system as the one presented it was possible to produce at least a model of an MAS.
Admittedly the model is very simplistic compared to MAS of academic or industrial use.
However, this limited scope has been sufficient to evaluate how at least some elementary
building blocks may be realised using JADE.

We should note that the design was worked out for the most part without intimate
knowledge of the tools provided by JADE. It’s not optimised specifically for JADE
although it was made with FIPA in mind, which similarly is the basis for much of JADE’s
design. Possibly due to this match development progressed rapidly, even while in the
process of familiarising with JADE’s toolset. Its patterns were tremendously useful and
appeared to be a decent fit for the sort of simple MAS described in this work. The
Behaviour classes in particular deserve mention here. Even though only the most
simple of JADE’s Behaviours were utilised here, they proved both easy and versatile
to use and were sufficient through various iterative reworks.

Communication between Agents is quick to implement. ACLMessage contains all the
necessary info for a sender to enrich its communicative acts with plenty of data and
metadata. Receivers can use filters to easily route messages to the intended Behaviours.
FIPA-compliance is left for the developer to achieve but the necessary tools are there. The
agent platform’s Sniffer and IntrospectorAgent have been invaluable debugging
tools for the small-scale communication happening in the model. The implementation of
FIPA’s ontology concept for serialisation-deserialisation and semantic enrichment is a
both necessary and powerful tool. However, in its current state, particularly in regards
to IDE integration, it was time-consuming and finicky to make use of.

39

d.

CONCLUSION AND OUTLOOK

40

Due to the very limited autonomy these agents have, it was not possible to evaluate its
implementation of BDI or other sophisticated internal choice mechanisms.

As the literature research has shown, previous investigations into MAS in the discrete
manufacturing domain suggest a large potential for gains in efficiency. While time and
machine management are perhaps obvious areas of investigation in that regard, tool
economy, which is the basis for the model explored here, may also yield worthwhile
results. Discrete manufacturing, working with concrete workpieces often going through
multistep processes, seems particularly well-suited to coupling with a digital twin.

This work has produced only a very limited MAS. Limited in terms not only of the
agents’ capabilities and autonomy but also the resources invested in its realisation. Only
a single developer was involved over the course of a few months. Concerns of scalability,
fallback procedures, monitoring and similar, while important in real industrial settings,
couldn’t be considered here. Producing desired results becomes increasingly complex
with the number and autonomy of agents. While that may call the applicability of the
experiences gathered in this model to larger systems into question, the ease of use of
existing MAS tools even when the field is not yet fully established is a good sign for the
feasibility of larger projects.

With sufficient manpower and more time, this model’s use case could probably be
implemented at real-life conditions right now, although some serious improvements beyond
the scale alone are necessary for a functioning system. The prediction mechanisms need
to work with concrete tools rather than times alone, which will necessitate more extensive
tool tracking in the MAS. It may be necessary for tools to be tracked, possibly even
to have self-interested agents, from the moment their future use has been determined,
even if they aren’t assembled at that point. Self-correction and fallbacks are other
time-intensive but crucial parts that have been neglected here but would require many
additional communication protocols and algorithms to add.

With increasing volume of information and efforts toward optimisation throughout
industry a system organising itself autonomously as much as possible is appealing.
Developing standards and best practices alongside experimental implementations and
theoretical scholarship is still necessary to lessen what might be considered MAS’ biggest
obstacle, a perceived high financial barrier to entry for development of an as of yet
unproven technology. Once overcome, however, MAS’ promise of dealing with rapid
changes and unforeseen complications through self-organisation, faster and with better
results than a human planner, has the potential to become vital in a world of just-in-time
production and shrinking inventories. Particularly the potential of extending autonomous
communication along the supply chain is promising in regards to both optimisation and
resilience, or at least damage mitigation, when faced with disruptions.

CHAPTER

Appendix: Test Details

6.1 General Information

The tables below show the testing data used during validation. Table |6.1| shows the used
tools’ data, excluding their components, which have no influence on any calculations.
Tables 6.2, 6.3 and 6.4 show the used NC-programmes’ metadata.

Tool ID | Life Time [min] | Critical Time [min] | Name
8350 80 4 StirnfréaserD60
8741 70 4 ThreadMillM5X8
8750 100 2 DrillD13
8759 85 3.5 FaceMillD60
8762 83 3 FaceMillD160
8768 79.5 2.95 CylindricShaftMillD10
8777 93 2.75 ShellMillD66
8780 98.5 3 MillingCutterD10
8783 96 2.5 MillingCutterD16
8786 98 2.8 CountersinkD9
8789 70 2.5 MillingCutterD9,25
8795 59 2.9 MillingCutterD31,71
8805 58.5 1.85 RoundShankDrillD8,5
8814 57.5 1.8 DrillD12,7

Table 6.1: The tool types used in testing

41

6.

APPENDIX: TEST DETAILS

42

NCProgram NC12072018

NC-Program Metadata

Time data Time[min]
Main Time 3.95
Nonproductive Time 0.79
Setup Time 3.00
Throughput Time 4.74
Tools
Tool Tool Use [min] Effective Lifetime [min]
CylindicalShaftMillD10 0.74 79.5
DrillD13 0.40 74
MillingCutterD9,25 0.85 68
ShellMillD66 1.96 81

Table 6.2: Setting Sheet information for test order 'NC12072018’

NCProgram NC12072018

NC-Program Metadata

Time data Time[min]
Main Time 9.01
Nonproductive Time 1.80
Setup Time 4.00
Throughput Time 10.81
Tools
Tool Tool Use [min] Effective Lifetime [min]
DrillD13 0.85 92
FaceMillD60 1.64 80
MillingCutterD10 1.62 91
MillingCutterD16 1.34 89
MillingCutterD31,71 1.45 59
ShellMillD66 1.25 89
ThreadMillM5X8 0.86 63

Table 6.3: Setting Sheet information for test order 'NC12072019’

6.2. Protocol Tests

NCProgram NC12072020
NC-Program Metadata
Time data Time[min]
Main Time 5.23
Nonproductive Time 1.00
Setup Time 2.00
Throughput Time 6.23
Tools
Tool Tool Use [min] Effective Lifetime [min]
CountersinkD9 0.16 98
DrillD12,7 0.48 57.5
FaceMillD60 1.24 74
FaceMillD160 0.78 73
MillingCutterD10 0.58 91
MillingCutterD16 0.89 90
RoundShankDrillD8,5 0.64 58.8
Thread MillM5X8 0.46 61

Table 6.4: Setting Sheet information for test order 'NC12072020°

6.2 Protocol Tests

6.2.1 Setup Information Protocol

Setup Information Protocol Test 1

The first test checks whether the basic calculations of time match our expectation (Table

6.5).

Machine Orders

Position ID Max Cost Max Time TF Quantity NC Program Tooled
—empty—
Incoming Order
Max Cost Max Time TF Quantity NC Program
2000 200 1.45 10 NC12072018
Expected Result
Proposed Position Position 1D Time Stored Tools New Tools
0 0 TestSetup... 78.4 0 4

Table 6.5: Setup Info Protocol Scenario 1

43

6. APPENDIX: TEST DETAILS

Setup Information Protocol Test 2

In test 2, we expect the Supply Agent not to suggest replacing the first, locked in order
(Table 6.6).

Machine Orders

Position 1D Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 10 NC12072018 no

Incoming Order

Max Cost Max Time TF Quantity NC Program

2000 200 1.45 10 NC12072018
Expected Result
Proposed Position Position ID Time Stored Tools New Tools
1 0 test0 78.4 0 4
1 TestSetup... 128.8 0 0

Table 6.6: Setup Info Protocol Scenario 2

Setup Information Protocol Test 3

The same as test 2, but includes a second order that should be seen as locked (Table
6.7).

Machine Orders

Position ID Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 10 NC12072018 no
1 testl 2000 200 1.45 10 NC12072018 no

Incoming Order

Max Cost Max Time TF Quantity NC Program

2000 200 1.45 10 NC12072018
Expected Result
Proposed Position Position ID Time Stored Tools New Tools
0 test0 78.4 0 4
2 1 testl 128.8 0 0
2 TestSetup... 179.2 0 0

Table 6.7: Setup Info Protocol Scenario 3

Setup Information Protocol Test 4

Test 4 checks if more complex calculations, including predictions and net tool lists produce
correct results (Table |6.8)).

44

6.2. Protocol Tests

Machine Orders
Position ID Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 10 NC12072018 no
1 testl 2000 200 1.45 10 NC12072018 no
2 test2 2000 200 1.45 10 NC12072018 no
3 test3 2000 200 1.45 10 NC12072019 no
Incoming Order
Max Cost Max Time TF Quantity NC Program
2000 200 1.45 10 NC12072018
Expected Result
Proposed Position Position 1D Time Stored Tools New Tools
0 testO 78.4 0 4
1 test1 128.8 0 0
2 2 TestSetup... 179.2 0 0
3 test2 229.6 0 0
4 test3 341.7 5 1
0 testO 78.4 0 4
1 testl 128.8 0 0
3 2 testl 179.2 0 0
3 TestSetup... 229.6 0 0
4 test3 341.7 5 1
0 testO 78.4 0 4
1 testl 128.8 0 0
4 2 test2 179.2 0 0
3 test3 291.3 4 1
4 TestSetup... 341.7 1 0

Table 6.8: Setup Info Protocol Scenario 4

Setup Information Protocol Test 5

The final Setup Information test predicts an empty response when a new order takes too
long to set up. For this a tiny order is established in the queue, followed by a larger one
(Table 6.9).

6.2.2 Tool Requisition Protocol

Tool Requisition Protocol Test 1

The first Tool Requisition test is about correct calculations (Table 6.10).

45

6.

APPENDIX: TEST DETAILS

46

Machine Orders
Position 1D Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 1 NC12072018 yes
Incoming Order
Max Cost Max Time TF Quantity NC Program
2000 200 1.45 10 NC12072018
Expected Result
Proposed Position Position 1D Time Stored Tools New Tools
—empty—
Table 6.9: Setup Info Protocol Scenario 5
Machine Order
Position ID Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 1 NC12072018 no
Available Tools
Tool Type ID Previous Usetime
DrillD13 353 6
ShellMilID66 354 12
Tool Requirements
Tool Type Lifetime of New Tools Required Used Tools To Be Delivered
DrillD13 0 1
ShellMilID66 0 1
CylindricShaftMillD10 7.4 0
MillingCutterD925 8.755 0
Expected Result
Tool Type ID Previous Usetime
DrillD13 353 6
ShellMilID66 354 12
CylindricShaftMillD10 NEW 0
MillingCutterD925 NEW 0

Table 6.10: Tool Requisition Protocol Scenario 1

6.2. Protocol Tests

Tool Requisition Protocol Test 2

Here, there are fewer tools in storage than forecast so an error is thrown (Table 6.11)).

Machine Order

Position ID Max Cost Max Time TF Quantity NC Program Tooled

0 test0 2000 200 1.45 1 NC12072018 no
Available Tools
Tool Type 1D) Previous Usetime
ShellMillID66 354 12
Tool Requirements
Tool Type Lifetime of New Tools Required Used Tools To Be Delivered
DrillD13 0 1
ShellMillD66 0 1
CylindricShaftMillD10 7.4 0
MillingCutterD925 8.755 0
Expected Result
Tool Type 1D Previous Usetime
-ERROR-

Table 6.11: Tool Requisition Protocol Scenario 2

47

6. APPENDIX: TEST DETAILS

6.2.3 Magazine Setup Protocol
Magazine Setup Protocol Test 1
This test checks if post machining tool lifetimes are updated correctly (Table |6.12).

Machine Order
Position ID Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 1 NC12072018 no
Magazine

Tool Type 1D Previous Usetime
DrillD127 1000 0
DrillD13 1001 95
ShellMillD66 1002 33
CylindricShaftMillD10 1003 0
DrillD127 1004 0
DrillD127 1005 0
DrillD127 1006 0
DrillD127 1007 0
DrillD127 1008 0
DrillD127 1009 0

Brought Tools

Tool Type 1D Previous Usetime
DrillD13 1011 0
MillingCutterD925 1012 63
MillingCutterD925 1013 63

Expected Result
Tool Type 1D Usetime
DrillD13 1011 2.4
ShellMillD66 1002 55.54
MillingCutterD925 - 67.255

CylindricShaftMillD10 1011 7.4
DrillD127 - 0
DrillD127 - 0
DrillD127 - 0
DrillD127 - 0

Table 6.12: Magazine Setup Protocol Scenario 1

48

6.2. Protocol Tests

Magazine Setup Protocol Test 2

An error should be thrown since the delivered tools’ lifetimes are shorter than promised

and needed (Table 6.13).

Machine Order
Position ID Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 1 NC12072018 no
Magazine

Tool Type 1D Previous Usetime
DrillD127 1000 0
DrillD13 1001 95
ShellMilID66 1002 33
CylindricShaftMillD10 1003 0
DrillD127 1004 0
DrillD127 1005 0
DrillD127 1006 0
DrillD127 1007 0
DrillD127 1008 0
DrillD127 1009 0

Brought Tools

Tool Type 1D Previous Usetime
DrillD13 1011 0
MillingCutterD925 1012 63

Expected Result
Tool Type 1D Usetime
~-LIFETIME ERROR-

Table 6.13: Magazine Setup Protocol Scenario 2

49

6.

APPENDIX: TEST DETAILS

50

Magazine Setup Protocol Test 3

Here, an edge case is tested, where the tools’ combined lifetimes are enough for the order
but the magazine is too small to hold them all (Table 6.14).

Machine Order
Position ID Max Cost Max Time TF Quantity NC Program Tooled
0 test0 2000 200 1.45 1 NC12072018 no
Magazine

Tool Type 1D Previous Usetime
DrillD127 1000 0
DrillD13 1001 95
ShellMillD66 1002 33
CylindricShaftMillD10 1003 0
DrillD127 1004 0
DrillD127 1005 0
DrillD127 1006 0
DrillD127 1007 0
DrillD127 1008 0
DrillD127 1009 0

Brought Tools

Tool Type 1D Previous Usetime
DrillD13 1011 0
MillingCutterD925 1012 67
MillingCutterD925 1013 67
MillingCutterD925 1014 67
MillingCutterD925 1015 67
MillingCutterD925 1016 67
MillingCutterD925 1017 67
MillingCutterD925 1018 67
MillingCutterD925 1019 67

Expected Result
Tool Type 1D Usetime
-MAGAZINE SIZE ERROR-

Table 6.14: Magazine Setup Protocol Scenario 3

6.3. System Tests

6.3 System Tests

System Test 1

The first system test checks whether the system correctly cancels an incoming order if its
waiting time can’t be satisified. The Tolerance Factor would be used since the order is
getting its initial spot, but it is also not high enough to make up for the excess (Table
6.15).

Machine Orders
Position ID Max Cost Max Time TF Quantity NC Program Status

0 OA 2000 200 1.45 10 NC12072018 machining
1 OB 3000 180 1.30 4 NC12072019 preparing
? oC 2000 100 1.20 12 NC12072020 incoming

Expected Result
—ORDER CANCELLED-

Table 6.15: System Test Scenario 1

System Test 2

The same test once again, but the Tolerance Factor of the incoming order is increased. It
should now be accepted (Table 6.16),

Machine Orders
Position ID Max Cost Max Time TF Quantity NC Program Status

0 OA 2000 200 1.45 10 NC12072018 machining
1 OB 3000 180 1.30 4 NC12072019 preparing
? oC 2000 100 1.80 12 NC12072020 incoming

Expected Result
Position ID Max Cost Max Time TF Quantity NC Program Status

0 OA 2000 200 1.45 10 NC12072018 machining
1 OB 3000 180 1.30 4 NC12072019 preparing
2 ocC 2000 100 1.80 12 NC12072020 open

Table 6.16: System Test Scenario 2

System Test 3

Test 3 checks whether exceeded max cost correctly causes the order to be cancelled by
the Order Agents (Table 6.17).

51

6.

APPENDIX: TEST DETAILS

52

Machine Orders

Position
0

1
?

ID Max Cost Max Time TF Quantity
OA 59 200 1.45 10
OB 28 180 1.30 4
OB1 28 180 1.30 4

NC Program
NC12072018
NC12072019
NC12072019

Status
machining
preparing
incoming

Expected Result

~ORDER CANCELLED-

System Test 4

Table 6.17: System Test Scenario 3

The final system test ensures that the order queue gets reordered when profitable. Order
OC comes in first and is placed on position 2, having no other option. Order OA comes
in afterwards and has more tools in common with the OB orders, which saves time and
money on retooling. It is therefore placed on the spot which OC occupied before it (Table

6.18).
Machine Orders
Position ID Max Cost Max Time TF Quantity NC Program Status
0 OB 59 100 1.45 8 NC12072019 machining
1 OB1 30 150 1.30 4 NC12072019 preparing
? ocC 80 200 1.30 4 NC12072020 incoming
? OA 80 200 1.30 4 NC12072018 incoming
Expected Result
Position ID Max Cost Max Time TF Quantity NC Program Status
0 OB 59 100 1.45 8 NC12072019 machining
1 OB1 30 150 1.30 4 NC12072019 preparing
2 OA 80 200 1.30 4 NC12072018 open
3 oC 80 200 1.30 4 NC12072020 open

Table 6.18: System Test Scenario 4

List of Figures

2.1 P2P’s setup of conveyors, switches and machines. Source: [BSO1] 11
3.1 The Tool Cycle. Source: [METPOS||. 14
3.2 The Process in individual steps. Source: [METPOS| 16
3.3 Outline of the agents’ communication 20
4.1 Flow of the Order Negotiation Protocol 23
4.2 Flow of the Setup Information Protocol 24
4.3 Flow of the Tool Requisition Protocol 27
4.4 Flow of the Magazine Setup Protocoll. 28
4.5 Tool Ontology Class Snippet! 29
4.6 Visual Agent setup method| oo o oL 30
4.7 Start and end of QueryListener | Lo 31
4.8 An example of the onStart method, taken from SupplyAgent’s MachineListener
behaviour! e 32
4.9 Machinelistener’s action method 33
4.10 The result of Setup Info Protocol Test 4 37

23

List of Tables

3.1 A shop order as will be used to trigger production in the MAS| 17
4.1 Protocol tests overview 36
4.2 System tests overview| e 37
6.1 The tool types used in testing 41
6.2 Setting Sheet information for test order 'NC12072018°| 42
6.3 Setting Sheet information for test order 'NC12072019°| 42
6.4 Setting Sheet information for test order 'NC12072020° 43
6.5 Setup Info Protocol Scenario 1, 43
6.6 Setup Info Protocol Scenario 20 44
6.7 Setup Info Protocol Scenario 3 44
6.8 Setup Info Protocol Scenario 4 45
6.9 Setup Info Protocol Scenario 5 46
6.10 Tool Requisition Protocol Scenario 1/ 46
6.11 Tool Requisition Protocol Scenario 2/ 47
6.12 Magazine Setup Protocol Scenario 1) 48
6.13 Magazine Setup Protocol Scenario 2 49
6.14 Magazine Setup Protocol Scenario 3/ 50
6.15 System Test Scenario 1) 51
6.16 System Test Scenario 20o 51
6.17 System Test Scenario 3| 52
6.18 System Test Scenario 4, Lo 52

95

Bibliography

[ABD*15] Peter Adolphs, Heinz Bedenbender, Dagmar Dirzus, Martin Ehrlich, and Ul-

[BIWO04]

[BSO1]

[BSA00]

[CCO04]

[dAT13]

[FouO1]

[Fou02a]

[Fou02b]

[Fou02c]

[Grol2]

rich Epple. Statusreport: Referenzarchitekturmodell Industrie 4.0 (RAMI4.0).
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik, 0(April):1-32,
2015.

Stefan Bussmann, Nicolas R. Jennings, and M.J. Wooldridge. Multiagent
systems for manufacturing control: a design methodology. 2004.

Stefan Bussmann and Klaus Schild. An Agent-based Approach to the Con-
trol of Flexible Production Systems. ETFA 2001. 8th International Confer-
ence on Emerging Technologies and Factory Automation. Proceedings (Cat.
No.01TH8597), 2001.

Stefan Bussmann, Klaus Schild, and Daimlerchrysler Ag. Self-Organizing
Manufacturing Control : An Industrial Application of Agent Technology. 2000.

Maria Caridi and Sergio Cavalieri. Multi-agent systems in production planning
and control: an overview. Production Planning & Control, 15(2):106-118, 2004.

Abschlussbericht des Arbeitskreises Industrie 4.0. Umsetzungsempfehlungen
fiir das ZukunftsprojektIndustrie 4.0, 2013.

Foundation for Intelligent Physical Agents. FIPA Ontology Service Specification.
2001.

Foundation for Intelligent Physical Agents. FIPA ACL Message Structure
Specification. 2002.

Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification. 2002.

Foundation for Intelligent Physical Agents. FIPA SL Content Language Speci-
fication. 2002.

CEN-CENELEC-ETSI Smart Grid Coordination Group. Smart Grid Reference
Architecture, 2012.

o7

[JAD]

[LF13]

[MD20]

JADE. JADE - Java Agent DEvelopment Framework. https://jade.tilab.com/.
Accessed on 2019-09-22.

Arndt Lueder and Matthias Foehr. Identifikation und Umsetzung von
Agenten zur Fabrikautomation unter Nutzung von mechatronischen Struk-

turierungskonzepten. Agentensysteme in der Automatisierungstechnik, (3),
2013.

Solmaz Mansour-Duschet. A Multiagent Design Methodology for the Manufac-
turing Execution System Domain, 2020.

[MFTP98] Solmaz Mansour Fallah, Thomas Trautner, and Florian Pauker. Integrated

[MP11]

tool lifecycle. Procedia CIRP, 79:257-262, 1998.

Mieczyslaw Metzger and Grzegorz Polakéw. A survey on applications of agent
technology in industrial process control. IEEFE Transactions on Industrial
Informatics, 7(4):570-581, 2011.

[MVKO06] L. Monostori, J. Vancza, and S. R.T. Kumara. Agent-based systems for

[Ora]

[Pos07]

[SAM17]

[SBO1]

o8

manufacturing. CIRP Annals - Manufacturing Technology, 55(2):697-720,
2006.

Oracle. Swing. https://docs.oracle.com/javase/8/docs/technotes/guides/swing/.
Accessed on 2021-02-23.

Stefan Poslad. Specifying Protocols for Multi-Agent Systems Interaction Article.
ACM Transactions on Autonomous and Adaptive Systems ACM, (November
2007), 2007.

Eva Schaupp, Eberhard Abele, and Joachim Metternich. Potentials of digital-
ization in tool management. Procedia CIRP, 63:144-149, 2017.

Kurt Sundermeyer and Stefan Bussmann. Einfiihrung der Agententechnologie
in einem produzierenden Unternehmen - Ein Erfahrungsbericht. Business and
Information Systems Engineering, 43(2):135-142, 2001.

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Approach

	State of the Art
	Definition of Terms
	MAS in Manufacturing

	Design
	Use Case
	MAS Design

	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion and Outlook
	Appendix: Test Details
	General Information
	Protocol Tests
	System Tests

	List of Figures
	List of Tables
	Bibliography

