
Effiziente Datenzuordnung und
Visualisierung für kabellose

Sensor Netzwerke

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Daniel Harringer
Matrikelnummer 11775835

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Daniel Ramsauer

Wien, 1. Juli 2021
Daniel Harringer Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Visualization and efficient data
mapping of wireless sensor

networks

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Daniel Harringer
Registration Number 11775835

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Daniel Ramsauer

Vienna, 1st July, 2021
Daniel Harringer Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Harringer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Juli 2021
Daniel Harringer

v

Danksagung

Allen voran möchte ich meinen Eltern danken, die mich in meiner bisherigen Studienzeit
sowohl tatkräftige als auch finanziell immer unterstützt haben. Darüber hinaus möchte
ich ihnen danken mich immer wieder motiviert haben diese Arbeit fertig zustellen.

Ein besonderer Dank gilt auch meinem Betreuer Daniel Ramsauer für seine umfassende
Unterstützung im Zuge dieser Arbeit.

vii

Acknowledgements

First of all, I would like to thank my parents, who have always supported me both
actively and financially during my studies. In addition, I would like to thank them for
always motivating me to finish this thesis.

Special thanks go to my supervisor Daniel Ramsauer for his comprehensive support
during the course of this work.

ix

Kurzfassung

Das Internet of Things (IoT) ist ein Netzwerk bestehend aus diversen elektronischen
Geräten, deren Aufgabe es ist, verschiedenste Daten zu sammeln und über das Internet
oder einen anderen - auf dem Internet Stack basierenden - Protokoll auszutauschen. Den
größten Anteil an Geräten im IoT machen kabellose Sensoren aus, welche ein sogenanntes
Wireless Sensor Network (WSN) formen und weitflächig eingesetzt werden, um Daten
zu sammeln und diese an eine zentrale Stelle oder einen zentralen Server zu senden.
Aufgrund der großen Anzahl an verwendeten Sensoren ist es schwierig, einen Überblick
über die Verteilung und die Konfiguration der einzelnen Sensoren zu bekommen und
zu behalten. Die Sensoren im WSN werden größtenteils durch eine Batterie betrieben.
Um die Batterielaufzeit zu erhöhen, werden energie-intensive Aufgaben, beispielsweise
Kommunikationsaufgaben, auf ein Minimum reduziert. Trotzdem müssen die generierten
Daten vom Sensor an die zentrale Stelle geschickt werden. Um dies möglichst energieeffizi-
ent zu ermöglichen, werden beispielsweise nur Messdaten und keine Meta-Informationen
versendet, wobei dadurch eine weitere Verarbeitung durch andere Komponenten erschwert
wird. Die Ziele dieser Arbeit sind es, die vernachlässigten Meta-Daten auf dem Weg von
dem kabellosen Sensor zu einem Sammelpunkt zu aggregieren, um die Verarbeitung durch
weitere Komponenten zu erleichtern und das WSN in einem Modell abzubilden, welches
einen Überblick über die Sensoren und deren Konfiguration geben soll. Um dieses Ziel zu
erreichen, wurde ein simples WSN aufgebaut und im Bezug auf den zuvor definierten
Anforderungen evaluiert.

xi

Abstract

The IoT is a network of electronic devices, which are collecting and sharing information
using the Internet or lightweight protocols, mostly building upon the Internet communi-
cation stack. Most devices in the IoT are wireless sensors, which form so called WSNs
and they are widely used in the context of IoT for collecting data and transmitting them
to a sink. Since these networks consist of hundreds of sensors, it is hard to keep track.
The wireless sensors are often battery powered and therefore restrict their communication
activities to expand their lifespan. Wireless sensors produce a high amount of data, which
is transmitted to a common sink but due to the limited lifespan the transmitted data
often does not provide any meta-data, which complicates further processing steps. The
goal of this thesis is to aggregate neglected meta-data on the way from the sensor node
to the sink, in order to simplify the computational logic on the sink and to construct a
model of the sensor network that could help to keep track of the sensor nodes and their
parametrization. In order to achieve this goal, a simple example WSN was set up and
evaluated regarding the defined requirements. The results and findings are presented
within this thesis.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Background 3
2.1 Related Work . 3
2.2 Internet of Things . 6
2.3 Internet Protocol version 6 . 6
2.4 MQTT . 11
2.5 OpenThread . 15
2.6 Ontologies . 21

3 Methodology 25

4 Implementation 27
4.1 Sensor nodes . 28
4.2 Border Router . 29
4.3 Toolchain Setup . 30
4.4 Brick Model . 34
4.5 Proof of Concept . 37

5 Results 43
5.1 Possible points for data aggregation 43
5.2 Visualization sensor data using a graph environment 44

6 Discussion 51
6.1 Analysing points for data aggregation 51
6.2 Evaluation of the presented WSN models 52
6.3 Brick extension for Wireless Sensor Networks 54
6.4 Discussing result regarding research questions 54

xv

7 Conclusion 57

List of Figures 59

List of Tables 61

Listings 63

Bibliography 65

CHAPTER 1
Introduction

The IoT is a network of electronic devices, which is collecting and sharing information using
the Internet or lightweight protocols, mostly building upon the Internet communication
stack. Most devices in the IoT are wireless sensors, which form so called WSNs. They are
widely used in the context of IoT for data collection and transmission to the sink. WSN
consists of hundreds of sensors and produce a huge amount of data for service applications
on higher layers, for example cloud services [1]. In most cases, the data gets sent without
information about the type, the source or the usage of this data, meaning higher service
levels have to figure out this information before they start processing it. For most service
applications, the data has a specific format so the sink is able to process it in the right
way, which does not only limit the usage of the WSN and the extendability of services,
but additionally makes it hard for humans to figure out where the data is from. This may
lead to redundant placement of sensor nodes, resulting in a higher maintenance effort.
In order to minimize or even eliminate the redundant sensor placement and make the
WSN useable for more and also extendable services, the generated data gains additional
information while getting transported from the sensor to the application server [2]. This
information might be necessary when it comes to environmental parameters, the unit
(i.e. temperature in ◦C), the physical location of the data’s source (i.e. Meeting Room
2) or adding a unique identifier used within the whole system if such data is required.
Another considerable aspect of data aggregation is the location within the environment
where additional data is added. For example, which component is suited best for adding
the spatial information of the temperature measurement. This thesis focuses on how to
add such meta-data, which data is important to add and additionally, where is the best
location to add this kind of data.

A WSN is very difficult to survey due to the high number of components and its possible
physical expansion. In order to keep track of all the data, where it comes from, where its
target is or what kind of data a specific node sends to the sink, a suitable visualization is
needed. Furthermore, the visualization might not only show the data types, sources and

1

1. Introduction

sinks, but also the entire network, which includes the components (i.e. sensor nodes or
cloud services) and the relations between each component. In addition, the model should
also contain parameter settings of different components (i.e. communication parameters).
Therefore, another focus of this thesis lies on possible visualizations of the WSN and
sensor meta-data.

In order to address the mentioned challenges, the following research questions have been
formed:

RQ 1: Which location in the environment is most suitable for data aggregation in an
ongoing process?

RQ 2: What are possible solutions for visualizing aggregated sensor data into a graph
environment?

2

CHAPTER 2
Background

2.1 Related Work

A WSN is a set of hundreds or thousands of identical low-cost sensors with limited
computation and communication capabilities and in most cases these sensors are battery
powered [1]. Since WSNs are large scaled and commonly used to generate data but not
to process them, the data is transmitted to a common sink. In order to achieve this
mostly one or more Gateways are needed, which have more processing power and higher
communication capabilities. These Gateways are connected to a group of WSN nodes in
order to manage and monitor them, and further, to transmit the generated sensor data
to a central server or the cloud. The WSN, the Gateways and the central server or cloud
can be seen as a three-tier architecture, see Figure 2.1 [3].

In order to achieve a long lifetime of sensor nodes in the network, the communication
tasks should be kept as short as possible, so that they transfer only a minimal set of
data. An energy efficient technique to minimise the communication tasks and aggregate
data in order to reduce the message payload is presented in [4].

The authors assume that the sensor nodes within their WSN have a limited lifetime.
Nevertheless energy optimizing algorithms can also be applied within WSNs which have
unlimited lifetime, e.g. to extend the battery replacement intervals. A comparison of
different data aggregation techniques depending on network topology and clustering
methods for aggregating data packets is done in [5].

In a WSN, massive data are generated, which need to be stored and processed somewhere.
However, most of the generated data is redundant, because of the physical placement or
the slowly changing environmental parameters. This data can be merged or eliminated,
as it does not provide any additional information to the central server or the cloud, which
consequently can reduce the payload, time and energy used for communication.

3

2. Background

3. Tier
Cloud or

Application Server

2. Tier
Gateways

1. Tier
Sensor Nodes

Figure 2.1: A 3-tier WSN architecture, based on and adapted from [3]

One way to combine data is described by the authors of [2]. The data is merged when
overlapping paths on the route to the destination exist. If a sensor node gets a package for
forwarding, and this package has the same destination as its own package, it merges them
into one and sends it to the sink. This technique reduces package loss and the energy
consumption (compared to direct forwarding of packages), but the latency increases due
to the merging and certain message forwarding timeouts. These timeouts are used to
prevent the sensor node from waiting for more data until it can send its own package.

Data that is generated in a WSN can be processed with paradigms of Big Data compu-
tation [6], but this approach still needs to eliminate redundant data or add additional
information for further processing or categorising. The authors of [7] use the model
of a three-tier architecture. The sensors, which compose the first layer, are generating
application specific data and form a network based on the application type. Since these
sensors are aware of application changes by checking the data packages coming from the
second or third layer, they add additional information to their data in order to help any
of those two layer to process this data.

As mentioned before, sensors deliver application specific data. Assuming that there is a
second application that also needs the data of this sensor, but uses another communication
protocol or network topology, it would be necessary to deploy an additional sensor node
at the same position, in order to get the same data for the second application. This
would not only be a physical redundancy and may also interfere with the communication
process of the first network. The authors of [8] address this problem and use a rather
common technique in computer science. They overlay a virtualized WSN on top the
physical one, so the redundant deployment of the sensors will be eliminated and the
sensor can be used for further applications.

4

2.1. Related Work

Some further issues and challenges of data collecting and transferring them through the
network, focusing on energy consumption and inhomogeneity of a WSN especially, are
discussed in [9].

System on Chip

The IoT consists of billions of devices equipped with processing, memory and commu-
nication capabilities. These devices need to be inexpensive and should be able to work
with performance, power and area constraints. This is possible with the System-on-Chip
(SoC) architecture, which merges one or more application processors, memory blocks
and a range of peripherals for communication and I/O operation on a single integrated
chip. The architecture defines the system-level building block for all components and the
interconnection between them. These blocks are often reusable logic units also called
Intellectual Property Cores (IP-Cores), which have a defined functionality, for example
processing signals. They are developed, maintained and licensed by a party and should
simplify the design of a SoC.

Figure 2.2 illustrates some basic elements of an SoC system. It includes a number of
processors which are connected to one or more memory blocks. SoCs also have analogue
and custom circuitry for computing sensor data, analog-to-digital conversion or to support
wireless transmission. A SoC implemented in smart phones, for example features circuitry
audio input and output capabilities, Internet access functionality, multimedia facilities
for video communication, document processing and entertainment for games [35].

Figure 2.2: A basic SoC system model, from [35]

If it is impossible to fit all components onto one chip, some of the peripherals and the
chip are placed on a PCB and are termed system on board.

5

2. Background

The difference between a SoC and a conventional general-purpose computer with memory
on board is the specific design. A general-purpose computer can run nearly any program
because it interprets the instructions at runtime, which makes it more flexible and
adaptable for many applications, even for running them at the same time. A SoC is
designed for a known application, this means the element can be selected and sized to fit
the applications as required.

2.2 Internet of Things

The IoT is a network of electronic devices, including both digital and mechanical ones,
which are collecting and sharing information. These ’smart’ devices, also called ’things’,
can be everything, e.g. an industrial machine, a sensor that tracks information about
the human body or even a TV. For most parts, IoT-devices are not supposed to be
interconnected or connected to the Internet, as opposed to appliances, wearable or
healthcare devices. The IoT has the ability to collect and analyse data automatically,
share it with connected devices and perform the right action in real-time without any
human interaction.

The IoT consists of three main parts: sensors, microcontrollers and one or more service
platforms. The sensors are installed into the physical world to acquire data and events
about the environment, whereas microcontrollers are responsible for sharing information
provided by the sensor with other microcontrollers and services. The service platforms
are used to analyse the collected data, process it and set actions according to defined
rules. These platforms are also responsible for improving the user experience by enabling
user based system rules [10].

The IoT uses the Internet Protocol (IP) as fundamental protocol to connect all devices
together and thereby allowing them to communicate with each other. Based on this,
many other protocols like OpenThread or MQTT, were developed to improve the IoT
in order to make it more powerful, more secure and more flexible for end users and
application developers [11].

2.3 Internet Protocol version 6

Due to an increasing number of devices on the Internet and the need of a unique address
for each device, the limited address range of the Internet Protocol version 4 (IPv4) is
running out of space. Therefore, the Internet Engineering Task Force (IETF) started to
design the Internet Protocol version 6 (IPv6) as a direct successor of IPv4. IPv6, just
like IPv4, is a communication protocol for computer networks with the task to find a
path from one communications partner to another, even through different networks. The
new version of the IP does not only extend the existing address space of IPv4, also it
implements new features such as more IPv6 addresses per host, automatic configuration
of addresses and faster routing [12].

6

2.3. Internet Protocol version 6

IPv6 Address structure

In IPv6 the address consists of 128 bits (16 bytes) which enables more than 3.4 ∗ 1038

possible combinations. An address is encoded in HEX - format and is split up into blocks
of two bytes, separated by an ’:’. In Table 2.1, an example IPv6 - address is given. The
first 64 bits are called the Network Identifier, the last 64 bits are called Host Identifier
or Interface Identifier. The Host Identifier needs to be unique in a network to address
a host but can be used for multiple interfaces. It might be the factory assigned EUI-
64 Identifier or generated by the MAC - Address, called the modified EUI-64 Identifier [13].

Network Identifier Host Identifier
2001:0db8:0000:0000 : 0209:0000:0000:ec1f

Table 2.1: Example IPv6 Address, from [14]

In order to make the addresses readable two modifications are allowed, the leading ’0’s
can be neglected and exactly one block of ’0’ or sequence of ’0’-blocks can be replaced
by ’::’. If more than one ’0’-block is replaced, the address can’t be rebuild exactly. The
result of applying this rules to the given example IPv6 address can be seen in Table 2.2.
The IPv6 supports, as its predecessor, prefix notation.

Network Identifier Host Identifier
2001:db8: : 209:0000:0000:ec1f

2001:db8:0000:0000 : 209::ec1f

Table 2.2: Shortened IPv6 Addresses

Types of IPv6 Addresses

In IPv6 three categories of IPv6 addresses exist. The Unicast address is a single interface,
this means that packages which are addressed to a Unicast address are delivered to a
single interface. Anycast addresses identify one or more interfaces. Servers which offer the
same services use the same Unicast address and packages sent to this address are routed
to the nearest server. This category of addresses is used for load-balancing, known as
’one-to-nearest’ address. Multicast addresses in IPv6 are used for the same purpose as
in IPv4, namely delivering packages to many interfaces. This address is also known as
’one-to-many’ addresses. A major difference between IPv6 and IPv4 is the replacement
of the Broadcast address by Anycast- and Multicast addresses. [13]

The IPv6 standard introduced some new terminology such as link, interface and scope. A
link is a set of network interfaces that is bounded by routers and use the same Network
identifier. It can be compared to an IPv4 subnet or network segment. An interface is the
attachment of a node to a link.

7

2. Background

Unicast addresses split up into three subtypes; the Global Unicast-, the Unique Local- and
Link Local addresses. Global Unicast addresses are public addresses which are used to
access the Internet. Currently only 2000::/3 addresses are able to be routed on the
Internet. Unique Local addresses have the same functionality as local addresses in the
IPv4 and have a fc00::/8 or fd00::/8 prefix. These addresses can only be assigned
and addressed by devices in a private network. The Link Local address is generated
automatically or manually configured by the host and it always starts with fe80::/10.
After assigning an address to an interface, it immediately starts to communicate on the
ISO/OSI model layer 3. Link Local addresses are only available in that network segment
the host is connected to. Routers will not forward any packages addressed to a Link Local
address.

A Multicast address is used to communicate with a dynamic group of hosts and starts
with ff00::/8. The bits 9 to 12 are flags to specify the type of the Multicast address.
The 12th bit indicates if it’s a permanently-assigned Multicast address, assigned by the
Internet numbering authority, or a non-permanently-assigned address. The next four bits
limit the scope of the Multicast address. The most common scope values are:

Value Scope
1 Node-Local scope
2 Link-Local scope
4 Admin-Local scope
8 Organization-Local scope
E Global scope

Table 2.3: Common scope values for IPv6 Multicast addresses, from [15]

The remaining address bits form the Multicast group identifier. A graphical overview
of the IPv6 scopes can be found in Figure 2.3. Further informations on IPv6 Multicast
addresses and scopes can be found in [15].

Anycast addresses do not differ from Unicast addresses since they are located in the same
address space. Assigning a Unicast address to more than one interface turns it an Anycast
address. A package addressed to an Anycast address will always be forwarded to the
nearest host of the assigned group. It is not allowed to use an Anycast address as source
address of an IPv6 package.

IPv6 Header

Every IPv6 package is made out of a header and the payload, the data which has to be
transported from source to sink.

In IPv6 the header format is fixed (see Figure 2.4), it always has a length of 40 bytes
and only contains the information which is needed to route the packages through the

8

2.3. Internet Protocol version 6

Host
Host Scope ’::1’

Link Local Scope ’fe80...’
Multicast Scope ’ff...’

Unique Local Scope ’fc00...’
and ’fd80...’

Global Scope ’2...’

Network
segement

Local
Network

Internet

Figure 2.3: IPv6 Address scopes, based on and adapted from [16]

network. The fixed format of the header allows an optimized computation of the packages.
This speeds up the forwarding process of messages and makes it easy to build network
hardware. The definitions of the header fields can be seen in the Table 2.4

0 4 8 12 16 20 24 28 32

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 2.4: IPv6 Header format, based on and adapted from [14]

In order to make the protocol more flexible, so called extensions headers are introduced to
the new standard. This allows to implement new features even after the release, without
changing the specification and implementation. Each header points to the next header
whereby a so-called header chain is formed. A special function represents the no next
header frame, it indicates the end of the chain. The transport protocol header, mostly the

9

2. Background

Field Bits Description
Version 4 Internet Protocol version number.
Traffic Class 8 Package priority.
Flow Label 20 Labels the package for special services e.g. ’real-time’

service or non-default quality of service.
Payload length 16 Length message excluding the header.
Next Header 8 Identifies the type of the header following immediately

after this header.
Hop Limit 8 Equivalent to the IPv4 time-to-live field.
Source Address 128 Address of the originator of the packet.
Destination Address 128 Address of the intended recipient of the packet.

Table 2.4: Meaning of IPv6 header fields

Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP) header, is
placed before the payload, see Figure 2.5. Every extension header needs to be computed
in the same order it was added by the source.

With concatenating headers, it is necessary to keep in mind, that the Maximum Trans-
mission Unit (MTU) of the network link always stays the same. This means, if there
are multiple headers in a message, the overall payload size of the package is reduced. In
order to send bigger messages, a jumbo frame is necessary, which is only possible in a
private network; or split up the message into several messages. The MTU describes the
maximum package size of a protocol of the network layer, in the ISO/OSI model, which
can be transferred in a single transaction without fragmenting the message.

The most frequently used extension headers are listed in the Table 2.5.

IP Header
NH: 6 IP Data

IP Header
NH: 0

Hop by Hop
Options Header

NH: 44

Fragment
Header
NH: 6

IP Data

Figure 2.5: Example IPv6 Header and IPv6 Header chain, based on and adapted from
[14]

10

2.4. MQTT

Name Integer Description
Hop-by-Hop Options 0 Optional Informations for all routers which route the

package.
Routing 43 List of intermediate nodes on the route that has to

be visited.
Fragment 44 Information about the package if its fragmented.
No next Header 59 Last header in the chain.
Destination Options 60 Options for the destination host.

Table 2.5: Most frequently used extension headers of IPv6

Network automation

Due to the automatic generation of the Host Identifier, the Link-Local and Multicast-Link-
Local addresses, a network device can find routers automatically. If the device joins
a network, it sends a Router Solicitation packet searching for routers in the network.
The Router sends a Router Advertisement packet periodically to notify other network
devices or to answer a Router Solicitation packet. Both packets are Internet Control
Message Protocol version 6 (ICMPv6) packets, which are sent over layer 3. The Router
Advertisement, advertises the router in the network, the Network Identifier and the Default
Gateway. Therefore, the joined network device can configure its IPv6 address and is able
to communicate through out the network.

2.4 MQTT

The Message Queuing Telemetry Transport (MQTT) Protocol is a simple and lightweight
communication protocol which is mainly used for machine-to-machine (M2M) commu-
nication and designed to fit the requirements of IoT. It was developed by Dr. Andy
Stanford-Clark of IBM, and Arlen Nipper of Arcom in 1999 and was used as a proprietary
protocol until 2010 when MQTT version 3.1 was officially released under free license.
Shortly after the release, the Organisation for the Advancement of Structured Information
Standard (OASIS), standardized MQTT and it became part of the ISO standard in 2016
(ISO/IEC 20922:2016) [17].

MQTT is based on a publisher/subscriber model and assures the transmission of messages
from clients to a server over the TCP. There are two types of devices in a typically MQTT
Network, multiple MQTT Clients and an MQTT Broker also known as MQTT Server.
Any device or program, which is connected to the network and exchanges application
messages, is called an MQTT Client. This client can be either publisher, subscriber or
both. A publisher announces application messages and a subscriber applies for application
messages. The MQTT Server is a device or program which interconnects all clients
and accepts or transmits the application messages to all connected clients [18]. A client
publishes its application messages to the server on a predefined or generated topic. The

11

2. Background

broker collects and organizes the data and is responsible for forwarding messages to
clients, which are subscriber of this topic.

Topics

Every data that is transferred in MQTT networks is specified by a Topic. Topics refer to
a UTF-8 string and contain one or more Topic levels, each separated by the Topic level
separator. A valid Topic name is case-sensitive and must contain at least one character,
which also includes the Topic level separator alone.

Examples for valid topics:

• house/firstfloor/kitchen/temperature

• house/firstfloor/livingroom/temperature

• house/firstfloor/livingroom/lightswitch

• house/groundfloor/entrancehall/temperature

• house/gorundfloor/entrancehall/doorlock

MQTT allows the usage of wildcards in Topic names for subscription only. This allows
clients to subscribe to one or more Topics at once. The standard differs between single-
level and multi-level wildcards. The ’+’ character represents the single-level wildcard,
which can be used to replace one level in the Topic.

For example, a subscription to house/firstfloor/+/temperature would be exactly the same
as, subscription to these Topics:

• house/firstfloor/kitchen/temperature

• house/firstfloor/livingroom/temperature

The multi-level wildcard character is represented by the ’#’ and is used to subscribe to
every Topic level lower than the replaced one including this level. The ’#’ character has
to be the last symbol in the Topic name, otherwise it would be an invalid Topic.

If the client subscribes to house/firstfloor/#, it would receive messages which are published
under the following Topics:

• house/firstfloor/kitchen/temperature

• house/firstfloor/livingroom/temperature

• house/firstfloor/livingroom/lightswitch

12

2.4. MQTT

Quality of Service

The MQTT standard offers three different Quality of Service (QoS) levels [19]. QoS
level 0 delivers messages at most once, which means the sender never waits for any
acknowledgement by the receiver. Every message with the QoS level 1 is acknowledged by
the receiver, if this is not the case it will, be sent again. So the protocol assures message
delivery at least once. Since QoS level 1 occasionally produces duplicated undesired
messages, therefore the QoS level 2 was designed. This level satisfies the delivery of a
message exactly once [18].

Transmission Sequence

Before clients and server can exchange application messages, they need to connect with
each other and come to an agreement concerning the connection parameters.

Figure 2.6: MQTT connection, based on diagram 1 and 2 and adapted from [18]

The client, that wants to connect to the server, sends a CONNECT-packet containing
flags, protocol level and other fields. The server then returns the status of the connection
with a CONNACK-packet.

If the connection establishment was successful, the client starts publishing application
messages, as shown in Figure 2.6 with the QoS level 1, or subscribes to one or more
Topics. Publishing data with the QoS level 1 are acknowledged by the server with a

13

2. Background

PUBACK-packet. In order to subscribe to a Topic, the client sends a SUBSCRIBE-packet
with the Topic name in the UTF-8 encoding. The server acknowledges the subscription
and starts forwarding the application messages, which are published under this topic
name.

After a certain timeout the connection is automatically terminated. In order to restore
and reinform the server that a client is still alive, it sends a PINGREQ-packet to the
server and waits for an acknowledgement packet.

If a client device wants to terminate the connection, it sends a DISCONNECT-packet to
the server. The server repudiates the orders and drops all incoming messages concerning
this client [18].

2.4.1 MQTT-SN

The most commonly used devices in the IoT are (wireless) sensor nodes because of
their low costs, easy subsequent installation and low power consumption. Typical
characteristics of theses nodes are a lack of processing power and a very limited storage.
The drawbacks above are the reason Message Queuing Telemetry Transport for Sensor
Networks (MQTT-SN) [20] is especially tailored for this type of sensor nodes.

MQTT-SN is designed to work in a similar way as MQTT, but with some major differences
concerning message payload and connections between devices in the network. In order to
reduce the message payload in MQTT-SN, the Topic name is replaced by simple Topic
identifier or just kept shorter as in MQTT. Since a typical wireless sensor is battery
powered, the MQTT-SN protocol uses UDP to transfer application messages instead
of the TCP. This is because TCP assures a permanent connection which is very power
consuming and hardly ever needed by wireless sensors. Also MQTT-SN implements
support for so-called sleeping clients in order to save battery power when they are not
processing data. The Gateway (see Section Gateway) keeps track of the sleeping state of
clients and buffers the messages for later delivery when they wake up.

In MQTT-SN, also QoS level 3, commonly known as -1, is defined. It works similar to
the QoS level 0, which does not need any acknowledgement from the receiver, but with
one main difference to level 0 regarding the omission of connection establishment. This
means MQTT-SN devices which publish data with QoS -1 send their message without
bothering about connecting to a broker or Gateway.

Gateway

In order to use MQTT-SN clients with MQTT servers the MQTT-SN standard defines
one additional device, a so-called Gateway. These Gateways are used to translate the
application messages from one protocol into another. MQTT-SN distinguishes between
three types of Gateway architectures: the Transparent (a), Hybrid(b) or Aggregated (c)
architecture, as shown in Figure 2.7. In the Transparent architecture every Gateway is
connected to one node, so that every MQTT-SN connection has a corresponding MQTT

14

2.5. OpenThread

connection. The Aggregated Gateway handles more nodes at the same time and they
share the same MQTT connection. A Hybrid Gateway architecture allows MQTT-SN
nodes to connect to multiple Gateways at once. In general the number of Gateways is
lower than the number of nodes [21].

Most of the time, every MQTT server software has a built-in functionality to provide
different types of Gateways for MQTT-SN connections. Some nodes might be placed
too far away from the server so that they are not able to connect, due to the fact that
Gateway devices are used as Forwarder to the server or to another Gateways.

Figure 2.7: Various MQTT-SN Architectures for PUBLISH to server, based on and
adapted from [21]

2.5 OpenThread
Thread is a recently standardized low-power network protocol for the the IoT, driven
by an industry consortium, lead by Google/Nest, which is called the Thread Group [22].
Thread allows device-to-device and device-to-cloud communication and aims towards
improving the concept of the IoT. The Thread open network standard, is based on IPv6
(see Section 2.3) and IPv6 over low-power wireless personal area network (6LoWPAN)
standard [23]. OpenThread (OT) is an open-source implementation of Thread, which
is released by Google in order to speed up the development of products for building
automations [24].

15

2. Background

OT communicates on the ISM, 2.4 GHz band and supports mesh topology of connections
(see Mesh Network). In contrast to a star topology, the mesh topology allows individual
interconnectivity between network nodes and eliminates the central point of communica-
tion, which is responsible for message passing and routing. A mesh network can recover
itself after an unexpected disconnection of a network node.

Thread offers high level of security features, as since communication over the network is
encrypted and every device is authenticated before joining the network. The ISO/OSI
model, IEEE 802.15.4 describes the physical and MAC layer of the Thread stack. In
order to transport data through the network, UDP is used. The combination of all three;
the UDP, the IPv6 and the 6LoWPAN, defines the Thread standard, as shown in Figure
2.8 [25].

Figure 2.8: Thread protocol stack, from [23]

Mesh Network

A mesh network is a local network topology, where every device is dynamical connected
to as many other network nodes as possible, without the need of central devices, such as
routers or switches. There are two kinds of mesh topologies, namely full mesh topology
(a) and partial mesh topology (b) (see Figure 2.9). In a full mesh network, each node is
connected to every other node in the network, otherwise would be called partial mesh
network. Mesh networks can organise and configure themselves, this means each node has
routing ability and decides which way the packages take from source to sink, depending
on the available connection between nodes. Based upon this characteristics, a dynamically
distribution of network traffic among all nodes takes place, in case nodes in the network
fails. This process is called self-healing [26].

OpenThread Device types

OT mainly distinguish between two types of devices in a Thread network, the Full Thread
Device (FTD), which implements the whole functionality of the Thread protocol; and

16

2.5. OpenThread

Figure 2.9: Full- and Partially connected Mesh Networks

the Minimal Thread Device (MTD), which implements just the necessary parts. FTD
and MTD can be split up in further subcategories as shown in Figure 2.10.

A FTD can operate as router, Router Eligible End Device (REED) or Full End Device
(FED). FTDs, except FED, are subscribers of all-router Multicast addresses, are always
listening and forwarding traffic from other devices. Also they keep track of the IPv6
address mappings and maintain them if they do not correspond to the actual network. A
special type of FTDs are REEDs. These device types can upgrade themselves to routers,
if an end device wants to join the network, but does not have a routing device to connect
nearby. Instead, the end device will connect to the REED node, which will downgrade
itself if no end device is connected to it.

MTDs, which only operate as end devices, do not forward any packages for other network
components and are not subscribers of any multicast traffic. An MTD exchanges all
messages with the router directly connected to it, and is the only communication partner
for that particular node. The router only forwards a package to an MTD, if it is addressed
to the node. The subcategories for MTDs are the Minimal End Device (MED) and the
Sleepy End Device (SED). Transceivers of devices of type MED are always activated and
do not need to poll messages from their parents, because it will always forward messages
to the child. In contrast to this, the SEDs are normally in sleep mode, there by saving
battery power, and wake up periodically to exchange messages with their parents and
perform their tasks.

Network structure

Thread networks have a unique two byte personal area network (PAN) ID, eight byte
Extended-PAN ID and a human-readable network name. Every Thread network consist
of one leader, up to 32 routers and up to 511 end devices per router, a small Thread
network is shown in Figure 2.11.

17

2. Background

Figure 2.10: OpenThread Devices types, from [24]

A Thread leader is the decision maker in a Thread network. The first router which
connects to a Thread network becomes the leader of the network and as soon as it
disconnects from the network, all remaining routers dynamically elect a new leader.
The leader is responsible for managing and advertising the network infrastructure such
as router IDs, 6LoWPAN contexts and collects Border Router (see Border Router)
information [27].

Router devices and REEDs can form a Thread network and can allow other devices to
join. In order to form a network, the router selects the least busy channel and chooses an
unused PAN ID. After forming the Thread network, the device starts advertising to notify
other devices to join. If a device wants to join a Thread network, it configures its network
parameters according to the network via Thread Commissioning. After commissioning
by the leader, the new device is connected to the next reachable router or REED.

A Thread network can be split into multiple partitions, but will still be one Thread
network. This can happen if a group of network nodes looses connection to the rest of
the network. Each partition works as a normal Thread network, with the same network
credentials for all devices. There is no wireless connection between any partition in a
Thread network yet and if a partition reconnects to an other, they automatically merge
into one.

Border Router

A Border Router establishes connectivity between a Thread network and a non-Thread
network, such as Wi-Fi or Ethernet. This ensures the transfer of data between these
networks or in the cloud and makes Thread devices directly addressable. The Border

18

2.5. OpenThread

Figure 2.11: OpenThread network structure, from [27]

Router also allows for external commissioning and controlling of the network status.
Thread allows multiple Border Router in an network.

IPv6 Addressing

OT uses the IPv6 Standard for addressing and network communication. In Thread
there are three scopes for Unicast addresses: the Link-Local, Mesh-Local and Global. The
Link-Local addresses reach every Interface within a single radio signal transmission and
has the prefix of fe80::/16. The Mesh-Local addresses prefixes are fdxx::/8 and can be
reached by every Interface in a Thread network. Global scope addresses can be reached
from outside a Thread network.

In order to identify devices in a Thread network, they get a 16 bit unique address, the
Routing Locator (RLOC), it consists of a Child ID and a Router ID. The RLOC and a
fixed 48 bit address (for instance 0000:00ff:fe00:RLOC16) form the Interface Identifier
of the Thread node and are based on the location in network topology. A Thread node,
which connects to a router as a child, will get a Child ID from the router and inherit
its Router ID. A router cannot be the child of any other Thread network devices and
therefore gets the Child ID 0.

For example a router has the Router ID 1, a child connects and gets the Child ID 1 so the
RLOC will be 0x401 (see Table 2.6)

19

2. Background

RLOC16
Router ID R Child ID
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Table 2.6: Example RLOC Address, from [24]

Combining Host identifier, including the RLOC, and the configured Mesh-Local prefix
generates the IPv6 address for the network device, see Table 2.7. This can be applied to
all nodes of a Thread network, see Figure 2.12 for a greater number of devices in a network.

Mesh-Local prefix Host Identifier RLOC16
fde5:8dba:82e1:1 ::ff:fe00: 401

Table 2.7: Example Device IPv6 Address including RLOC16, from [24]

Figure 2.12: OpenThread RLOC16 and Mesh-Local address examples, from [24]

In order to inform multiple devices at the same time, Thread uses Multicast addresses.
If they also include SEDs, they are pending on the unicast Mesh-Local prefix, it can
therefore vary between different Thread Networks. Reserved Multicast addresses, their
scopes and group of reached devices can be seen in Table 2.8

Thread supports Anycast. This type of address is used to route traffic through the

20

2.6. Ontologies

IPv6 Address Scope Addressed group
ff02::1 Link-Local All FTDs and MEDs
ff02::2 Link-Local All FTDs
ff03::1 Mesh-Local All FTDs and MEDs
ff03::2 Mesh-Local All FTDs

Table 2.8: Reserved Mulitcast addresses in a Thread Network, from [24]

network to a specific interface if the RLOC of the destination is not known by the sender.
This can happen if the network topology changes. This is called the Anycast Locator
(ALOC), which identifies the location of multiple interfaces within a Thread network
[24]. As by RLOC the last 16 bit of the ALOC represent a specific type or group which
should be located. Some of them are listed in Table 2.9.

ALOC subfix Type
0xfc00 Leader

0xfc01 - 0xfc0f DHCPv6 Agent
0xfc10 - 0xfc2f Service
0xfc30 - 0xfc37 Commissioner
0xfc40 - 0xfc4e Neighbor Discover Agent
0xfc38 - 0xfc3f Reserved
0xfc4f - 0xfcff Reserved

Table 2.9: Predefined Anycast locator address, from [24]

2.6 Ontologies
In order to provide information about a building’s equipment and components, a suitable
approach is to use ontologies. Ontologies describe the knowledge of a specific area of
expertise with the assistance of formal ordered conceptualities and their relations to each
other. They are mainly used to share the knowledge between different applications and
services, automatic inferences, their representations and visualization of knowledge. Most
components of ontologies are individuals, classes and relations [28] [29] [30].

The individuals, sometimes also called objects, are the basic components of ontologies
and include real objects such as a developer (person), a climate system or an office room.
Classes or concepts are collections of objects with similar characteristics, comparable to
classes in any object orientated programming language. A class might be a facility system,
which contains all components such as heating, climate systems and entrance systems for
buildings. Another example for a class is a building; individuals of this class are for
instance an office room, a conference room and a dressing room. The last component to
describe an ontology is the relation.

21

2. Background

Relations are used to link objects and define the correlation between themselves and
outline properties. In association to building equipment and components has, is part of
and controls are examples for relations that can be used to link the objects.

An Ontology is defined by triples, one triple is a set of three entities that describe a
statement about semantic data in the form of subject-predicate-object. A triple offers the
possibility to represent knowledge in a way comprehensive to machines. Some examples
of triples are presented in Figure 2.13, for instance, conference room is the subject, has a is
the predicate of the triple and entrance system is the object of the described relationship.

conference room

entrance system climate system

temperature air quality

has a has a

controls controls

Figure 2.13: Foundational Ontology

A simple ontology, as illustrated in Figure 2.13, is called a basic or foundational ontology.
This type allows to formalize general terms of physical objects, properties or disciplines.
In order to formalize complex structures, like a company building, a far more domain
specific, so called domain ontology, is used to get a detailed description of the facilities
and their aspects of the whole building.

Web Ontology Language (OWL)

Ontologies have recently attracted interest due to the semantic web (*initiative*). The
semantic web is an idea to make the World Wide Web readable to machines. Therefore,
it is necessary to tag the web documents with meta data, which specifies the content
of these documents. This metadata is primarily used by search engines and similar
applications, with the advantage of higher efficiency and the ability to combine the
requested information and generate implicit knowledge. There are several modelling

22

2.6. Ontologies

languages, like the Extensible Markup Language (XML), the Resource Description
Framework (RDF) and RDF-S (-Schema), but they are not suitable to express the
complex relationships between objects, because of their limited capability of expression.
In order to achieve this functionality, a common language to describe the web content is
needed. The World Wide Web Consortium (W3C) standardises a knowledge presentation
language, the so called Web Ontology Language (OWL). OWL is based on formal logic,
which allows inference and generating implicit knowledge. A web document represented
by an OWL-ontology is called an OWL-document. Towards making OWL more flexible
for different use cases, the W3C introduced three sub-languages OWL Full, OWL DL and
OWL Lite with various expression possibilities and scalability. Each sub type of OWL
has its advantages and disadvantages. OWL Full allows the usage of all defined OWL-
elements and RDF-S elements without limitation; this leads to complex OWL-documents.
Due to these difficulties the sub versions OWL DL and OWL Lite were defined.
These two types are limited by elements of speech, rules and other restrictions; OWL
Lite only implements the basic elements. Nowadays OWL DL is the most used type of
the three variants, because it can describe documents in a more complex way than the
Lite version, but it is still computable in finite time compared to the full variant of OWL
[31] [32].

Brick

Brick is an open-source effort to provide a standardized description schema for buildings
[33]. It introduces standard entities and relationships that are used by applications within
that domains. The defined entities and relationships in Brick are described using the
semantic web technology, as in the RDF Framework, to create a flexible data model and
to integrate this model into existing tools and databases [33]. A model in Brick refers to
a RDF data model, which expresses knowledge as a graph with subject-predicate-object
tuples, known as triples. Due to the graph representation of the model, it is simple and
fast to search entities within the graph, even if they become very large [34].

23

CHAPTER 3
Methodology

During the creation of this thesis the research method applied follows the design and
creation research strategy and uses academic literature research for gathering deep
knowledge in relevant topics [36]. The design and creation strategy, in terms of computing
research, focuses on developing new IT products, so called artefacts [37]. The artefacts
might be constructions, models, methods and instantiations [38] but in most cases are a
combination of these artefacts to creates new knowledge. Artefacts are often represented
by computer-based products, the design and creation strategy distinguish itself from
product development by concentrating on analysis, explanation, argument, justification
and critical evaluation of the results.

The design and creation method does not focus on the artefact itself, but on using the
artefact as a technique to create new knowledge or on the method to develop an artefact
to create knowledge [39]. The applied method is a problem-solving technique and builds
upon the principles of system development [40]. This process typically covers five steps:
awareness, suggestion, development, evaluation and conclusion. It should be mentioned
that these steps are performed in a cyclic way. In most cases, a lot of work goes into
investing time in the development step and verifying the system.

This research project focuses on modelling a WSN and using this model to dynamically
configure the sensor nodes and add information to the produced data according to this
configuration.

This work has been created as a part of the HumBAS research project [41].

25

CHAPTER 4
Implementation

The WSN is split up in Sensor nodes and the Border Router. The Sensor nodes are able to
communicate with each other and are connected to the Border Router. Furthermore, some
Environmental Sensors are connected to the nodes and are generating data by observing
their environment. The Sensor nodes toolchain setup and additional functionality of OT
is implemented as described in Toolchain Setup.

The Border Router act as Gateway between the Sensor nodes and the Internet. It allows
nodes to join the network, if they have the same Network ID and communication channel
and manage them after joining. Moreover, the Border Router provides an MQTT-SN
Gateway which forwards the generated data to the application MQTT Broker. Figure
4.1 presents an abstract overview of the involved components and their interconnection.

MQTT BrokerMicorcontroller MQTT-SN Gateway

Sensor node Border Router

MQTT Broker

Python Script

Environment
Senors

Application Broker

Figure 4.1: Abstract overview of the components and their interconnection

27

4. Implementation

4.1 Sensor nodes

The Sensor node consists of several parts, a Micro Development Kit (MDK) 1 for IoT
Applications, a Base Dock 2 and various environmental sensors. The Development Kit
uses the Nordic nrf52840 SoC 3 as core processor. It features advanced Bluetooth 5 and
the IEEE 802.15.4 standard, which is the basis for other low power wireless connectivity
solutions including Zigbee, 6LoWPAN, OT and many more.

The Base Dock comes with four connectors to attach sensors and other peripherals and
is powered by an AA battery which also supplies the MDK.

4.1.1 Environmental Sensors

The most important environmental parameters to monitor are ambient temperature,
humidity, barometric pressure, air quality and ambient light. All these parameters can
be measured by using two sensors, the BME680 and VEML6030.

The BME680 4 is an environmental sensor from Bosch Sensortec, that can measure
ambient temperature, relative humidity, barometric pressure and a broad range of gases
such as volatile organic compounds (VOC). The sensor is designed for mobile applications
and therefore has small footprint and consumes little battery. The latter makes it suitable
for battery powered WSN applications.

The Bosch Sensor Application Programming Interface (API) 5 is used to communicate
with the sensor over the Two Wire Interface (TWI) and to interpret the raw data coming
from this interface.

The VEML3060 is a ambient light sensor from Vishy Semiconductors. It features a 16-Bit
Analog to Digital-Converter (ADC), can be connected to the TWI and an Interrupt Pin
for application specific interaction. Furthermore, it can also measure white portion in
the ambient light.

During the course of this work, an API for configuration and simple communication
has been developed. The API offers generic read and write functions, which provide all
necessary data to communicate with the sensor the microcontroller specific TWI access
needs to be implemented. It allows to configure the sensor according to personal needs
or use the pre-defined settings, furthermore, the raw data, generated by measurements,
is internally converted into meaningful values.

1https://wiki.makerdiary.com/nrf52840-mdk/
2https://wiki.makerdiary.com/base-dock/
3https://www.nordicsemi.com/Products/Low-power-short-range-wireless/

nRF52840
4https://www.bosch-sensortec.com/products/environmental-sensors/

gas-sensors-bme680/
5https://github.com/BoschSensortec/BME680_driver (Version 3.5.10)

28

https://wiki.makerdiary.com/nrf52840-mdk/
https://wiki.makerdiary.com/base-dock/
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors-bme680/
https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors-bme680/
https://github.com/BoschSensortec/BME680_driver

4.2. Border Router

4.2 Border Router

The Border Router is a part of the OT network and it allows the network to communicate
with traditional networks or the Internet. A Raspberry Pi 3+ Model B is used as platform
for the Border Router. OT offers an officially supported repository with the necessary
code to compile and install it on the Pi. For this work, the pre-build Border Router
image (RaspPIoT Border Router Demo, Version 4.1.0-1.alpha) for the Raspberry Pi
offered by Nordic Semiconductors is used. After power-up the Border Router activates a
graphical web interface to setup a OT network. The Thread Channel and PAN ID must
match those of the sensors for successful communication.

4.2.1 Network Co-Processor

The Network Co-Processor (NCP) acts as connectivity chip for any device which does
not support IEEE 802.15.4 or is not able to execute compiled binaries of OT. It allows
its host device to communicate with other network members just like a native Thread
device. In this work, a nRF52840 Dongle from Nordic Semiconductors is programmed
with the Thread NCP/RCP Example of the Software Development Kit (SDK) (nRF5 SDK
for Thread and Zigbee Version 4.0) and plugged into one USB port of the Border Router.

4.2.2 MQTT-SN Gateway

In this work, application data is exchanged using the lightweight protocol MQTT-SN. In
order to evaluate this data, it has to be sent to an MQTT Broker, therefore an MQTT-SN
Gateway is used. When using the provided image from Nordic Semiconductors, the
paho.mqtt-sn.embedded-c Gateway has already been installed.

Since OT transmits data over UDP version 6, the following parameters are relevant
for communication. The GatewayUDP6Broadcast is used for Gateway search and has
the default address FF03::1 and the GatewayUDP6Port by default is 47193. In order to
connect to the correct MQTT Broker, the BrokerName should be set to localhost, because
of security issues see section MQTT Broker.

4.2.3 MQTT Broker

An everyday topic in computer science and application development is security. Therefore,
the communication between gateway and the application MQTT Broker is secured using
Transport Layer Security (Version 1.2) (TLS (V1.2)). Unfortunately, the paho.mqtt-
sn.embedded-c does not support TLS (V1.2). Because of this, a second MQTT Broker is
setup on the Raspberry and bridged to the application MQTT Broker.

Python Script for Data transformation

The MQTT-SN API provided by the SDK allows to send data byte wise only. This
means data has to be split up in single bytes and sent over the network to the Gateway.

29

4. Implementation

In order to make the data from Sensor nodes adaptable for other data on the Broker and
prepare them for further processing, a Python script is used for transformation. This
script subscribes to all Topics coming for the sensor network, converts it to floating point
representation and publishes it using the same Topic or another predefined one.

4.3 Toolchain Setup

For programming the Sensor nodes, some additional programs and the recompiled OT
libraries are required.

4.3.1 Toolchain

The toolchain requires the GNU Arm Embedded Toolchain, GNU make, pyOCD, a SDK for
the MDK, the SDK for the Nordic SoC and the Nordic Command Line Tools.

The GNU Arm Embedded Toolchain and GNU make are used for compiling and linking
the source code.

pyOCD is an open source Python implementation of the On-Chip Debugger (OCD), which
is used for programming and debugging Arm Cortex-M microcontollers and supports
multiple types of USB debug probes. To install pyOCD, the Python package-management
system can be used or it can be installed using the repository on GitHub 6, this has been
used within this work.

Due to the custom Design of the MDK, the manufacturer offers some examples, pin
mappings and linker files in an additional repository 7.

For the main functionality of the microcontroller, the official SDK (nRF5 SDK for Thread
and Zigbee Version 4.0, including support for SoftDevice 140) from Nordic needs to be
downloaded and copied in the subfolder nrf_sdks of the repository. Afterwards, the GNU
toolchain root and version within the file <SDK>/components/toolchain/gcc need to
be adopted according to the installation above. There are different file extensions for
different operating systems.

The last step is to download Nordics Command Line Tools 8 in order to combine the hex
file of the SoC and the SoftDevice, which is responsible for Bluetooth applications.

4.3.2 Compiling OpenThread Libraries

The libraries are compiled under Linux. The Nordic DevZone provides guides and further
information on compiling using Windows or general questions.

6https://github.com/pyocd/pyOCD (Version 0.24)
7https://github.com/makerdiary/nrf52840-mdk (Commit 23d86f9)
8https://www.nordicsemi.com/Software-and-tools/Development-Tools/

nRF-Command-Line-Tools/Download (Linux 64-Bit Version 10.10.0)

30

https://github.com/pyocd/pyOCD
https://github.com/makerdiary/nrf52840-mdk
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download

4.3. Toolchain Setup

Although the cloned repository offers compiled OT libraries, it is good practise to compile
OT again to get the newest version. The repository which contains the source code
can be downloaded from the OT GitHub page 9. After cloning the repository, the
OT environment needs to be set up. This can be done by executing the bootstrap
script in the root folder. OT offers a Command Line Interface (CLI) which runs
over the Universal Synchronous/Asynchronous Receiver/Transmitter, allowing direct
interaction with the Thread network and its settings. Furthermore, the CLI offers
possibilities to send debug messages from the microcontroller to the host using the
Universal Synchronous/Asynchronous Receiver/Transmitter. In order to enable the CLI
on the Sensor node, the following lines of code (see Listing 4.1), the pins for communication
need to be changed in the file openthread/examples/ platforms/nrf52840/platform-config.h.
For further information, visit the Makerdiary website linked above.

1 /**
2 * UART Hardware Flow Control.
3 * NRF_UART_HWFC_ENABLED - HW Flow control enabled.
4 * NRF_UART_HWFC_DISABLED - HW Flow control disabled.
5 */
6 #ifndef UART_HWFC
7 #define UART_HWFC NRF_UART_HWFC_DISABLED
8 #endif
9

10 /**
11 * UART TX Pin.
12 */
13 #ifndef UART_PIN_TX
14 #define UART_PIN_TX 20
15 #endif
16
17 /**
18 * UART RX Pin.
19 */
20 #ifndef UART_PIN_RX
21 #define UART_PIN_RX 19
22 #endif

Listing 4.1: Change pins of USART

Most of the peripherals can be controlled using OT as API. In order to control them, the
OT source code needs to be adapted in the following way. First, function declarations
need to be added somewhere in the file examples/platforms/openthread-system.h (see
Listing 4.2).

1 /* Declare functions for LED module. */
2 void otSysLedInit(void);
3 void otSysLedSet(uint8_t aLed, bool aOn);
4 void otSysLedToggle(uint8_t aLed);

Listing 4.2: Declarations for LED functionality

9https://github.com/openthread/openthread (commit 8a1992e)

31

https://github.com/openthread/openthread

4. Implementation

Furthermore, a file named gpio.c should be created and moved to the examples/platform-
s/nrf528xx/src directory. The content of the created file can be seen in Listing 4.3. Listing
4.3 contains the pin definitions of the user programmable LEDs of the MDK and headers
for low-level functions of the nRF52840. In addition, there are functions to initialize,
set/reset and toggle the LEDs.

1 /**
2 * @file This file implements the system abstraction for GPIO and GPIOTE.
3 *
4 */
5 #define GPIO_LOGIC_HI 0
6 #define GPIO_LOGIC_LOW 1
7
8 #define LED_GPIO_PORT 0x50000300UL
9 #define LED_1_PIN 22 // pin of green Led

10 #define LED_2_PIN 23 // pin of red Led
11 #define LED_3_PIN 24 // pin of blue Led
12
13 /* Header for the functions defined here */
14 #include "openthread-system.h"
15
16 #include <string.h>
17
18 /* Header to access an OpenThread instance */
19 #include <openthread/instance.h>
20
21 /* Headers for lower-level nRF52840 functions */
22 #include "platform-nrf5.h"
23 #include "hal/nrf_gpio.h"
24 #include "hal/nrf_gpiote.h"
25 #include "nrfx/drivers/include/nrfx_gpiote.h"
26
27 /**
28 * @brief Function for configuring: PIN_OUT pin for output
29 */
30 void otSysLedInit(void){
31
32 /* Configure GPIO mode: output */
33 nrf_gpio_cfg_output(LED_1_PIN);
34 nrf_gpio_cfg_output(LED_2_PIN);
35 nrf_gpio_cfg_output(LED_3_PIN);
36
37 /* Clear all output first */
38 nrf_gpio_pin_write(LED_1_PIN, GPIO_LOGIC_LOW);
39 nrf_gpio_pin_write(LED_2_PIN, GPIO_LOGIC_LOW);
40 nrf_gpio_pin_write(LED_3_PIN, GPIO_LOGIC_LOW);
41 }
42
43 /**
44 * @brief Function to set the mode of an LED.
45 */
46 void otSysLedSet(uint8_t aLed, bool aOn){
47

32

4.3. Toolchain Setup

48 switch (aLed){
49 case 1:
50 nrf_gpio_pin_write(LED_1_PIN, (aOn == GPIO_LOGIC_HI));
51 break;
52 case 2:
53 nrf_gpio_pin_write(LED_2_PIN, (aOn == GPIO_LOGIC_HI));
54 break;
55 case 3:
56 nrf_gpio_pin_write(LED_3_PIN, (aOn == GPIO_LOGIC_HI));
57 break;
58 }
59 }
60
61 /**
62 * @brief Function to toggle the mode of an LED.
63 */
64 void otSysLedToggle(uint8_t aLed){
65
66 switch (aLed){
67 case 1:
68 nrf_gpio_pin_toggle(LED_1_PIN);
69 break;
70 case 2:
71 nrf_gpio_pin_toggle(LED_2_PIN);
72 break;
73 case 3:
74 nrf_gpio_pin_toggle(LED_3_PIN);
75 break;
76 }
77 }

Listing 4.3: Contant of file gpio.c

After creating an API for the LEDs and changing the Universal Synchronous/Asyn-
chronous Receiver/Transmitter pins, the compile command of Listing 4.4 in the root
folder of the repository needs to be run in order to apply the changes and create new
libraries.

1 make -f examples/Makefile-nrf52840 BORDER_AGENT=1 BORDER_ROUTER=1 COAP=1
COMMISSIONER=1 DISABLE_BUILTIN_MBEDTLS=1 DNS_CLIENT=1 DIAGNOSTIC=1
EXTERNAL_HEAP=1 JOINER=1 LINK_RAW=1 MAC_FILTER=1 MTD_NETDIAG=1
SERVICE=1 UDP_FORWARD=1 ECDSA=1 SNTP_CLIENT=1 COAPS=1 DHCP6_SERVER=1
DHCP6_CLIENT=1

Listing 4.4: Command to compile OpenThread Library

Afterwards, the created binaries and header files need to be copied in the folders of the
SDK, which is done by:

• Copying the libraries from: openthread/output/nrf52840/lib to the SDK folder:
/external/openthread/lib/nrf52840/gcc.

33

4. Implementation

• Copying the openthread/include folder to /external/openthread.

• Copying the platform specific platform-fem.h and platform-softdevice.h files from:
/external/project/openthread/examples/platforms/nrf528xx/src to /external/openthread-
/include/platform.

• Copying openthread-system.h file from: /external/project/openthread/examples/-
platforms to the /external/openthread/include/platform folder.

4.4 Brick Model
Brick is used to model the WSN. Based on this model, configuration files for Sensor nodes
and MQTT-SN Gateways are generated.

4.4.1 Creation process of a Model

A Brick model is represented as graph, this means physical components, virtual objects
and parameter settings are represented as vertices and relations between them are
illustrated as edges.

Brick models are written using the RDF framework, writing a model is very prone to
errors as typos can occur. In order to avoid these errors, a Python script is used to
create the model, which allows to define reusable functions for creation nodes, Gateways
or other objects. In Listing 4.5, a simple example of a Sensor node creation function can
be seen. For creating a Sensor node two functions are necessary, first to create the node
itself and then modelling the configuration and linking it to the node. These functions
are written to keep the creation process as simple as possible, the function body creates
the well known ontology triples. For example, the nodes Microcontroller and Universally
Unique Identifier (UUID) and their relation has_UUID.

After the creation of a Sensor node, the function create_wsn_node is called. The first
parameter is the variable name addressing the node, which is needed for the configuration.
Afterwards, the UUID for node and Gateway are handed over to the function. The
Gateway UUID is only used for presentation purpose only for showing, which subnet
the node can be found. The remaining boolean parameters determine which sensors are
connected to the node and on which MQTT-SN Topics the node will be published.

After creating a Sensor node configuration starts, therefore the function
create_wsn_node_configuration is used. First, the functions needs to know to which node
the configuration belongs to. Afterwards, the function takes parameter to configure the
nodes behaviour and the networks security credentials.

Theses parameters are:

• Sensor readout duration (in minutes)

• OpenThread Network security credentials

34

4.4. Brick Model

– Thread Network PAN ID
– Thread Communication Channel

• MQTT-SN Communication Port

1 # ----------- create node, configuration and sensors -----------
2 # Node 1
3 create_wsn_node("Office1_Node", "Node_101", mqtt_sn_gateway1, True, True,

True, True, True)
4 create_wsn_node_configuration("Office1_Node", 1, thread_pan_id,

thread_channel, mqtt_sn_port)

Listing 4.5: Code to create node and configuration

The code of Listing 4.5 creates the model which is shown in Figure 4.2, some of its nodes
and edges are hidden to simplify the representation. Exemplarily, nodes within the red
and blue rectangles are all modelled as sensors, and the MQTT-SN Topic and unit of
the measured value can be seen in the red rectangle. Nodes surrounded in green are
configuration items, and the UUID is modelled in the orange box, that connects to the
center node, which is the root node in this example representing the Sensor node itself.

Figure 4.2: Brick model of a Sensor node

4.4.2 Creating a configuration file

The model is mainly used to keep track of all configuration parameters, therefore also
configuration files for all components are generated based on the model. To query for
settings the query language for RDF, SPARQL is used.

35

4. Implementation

An example query can be seen in Listing 4.6, which shows how to find the UUID of a
node. In this example, the UUID of Office1_node is found and stored in the variable
node_uuid_q.

1 node_uuid_q = graph.query(
2 """SELECT ?uuid ?value WHERE {
3 office:""" + node_name + """ humbas:hasUUID ?uuid.
4 ?uuid humbas:hasValue ?value
5 }""")

Listing 4.6: Query UUID of Office1 Node

For Sensor nodes a single C header file is generated. This file contains all symbolic
constants to access the LEDs, communication parameters and the MQTT-SN topic
configurations. Listing 4.7 shows the generated configuration of the model defined in
Listing 4.5. A similar file is generated for the MQTT-SN Gateway.

1 /* Configuration file for Office1_Node */
2
3 /* Device Name */
4 static char DeviceName[] = "Node_101";
5
6 /* Symbolic LED Constants */
7 #define GREEN 1
8 #define RED 2
9 #define BLUE 3

10
11 /* Sensor Parameters */
12 /* Thread Communication Channel */
13 #define THREAD_CHANNEL 15
14 /* Readout Duration of the Sensors */
15 #define READ_SENSOR_DURATION APP_TIMER_TICKS(60000)
16 /* Maximal Topics */
17 #define MAX_TOPICS 6
18 /* Thread Network ID */
19 #define THREAD_PANID 43981
20 /* MQTT-SN Communication Port */
21 #define MQTTSN_PORT 47193
22
23 /* Sensors connected to the Node */
24 /* Sensor BME680 */
25 #define BME680
26 /* Sensor VEML6030 */
27 #define VEML6030
28
29 /* Symbolic Topic Constants */
30 #define BATTERY 0
31 #define TEMPERATURE 1
32 #define HUMIDITY 2
33 #define PRESSURE 3
34 #define CO2 4
35 #define AMBIENTLIGHT 5
36

36

4.5. Proof of Concept

37 /* Struct with Topic Names */
38 static char topic_names[][25] = {
39 {"wsn/Node_101/batteylevel"},
40 {"wsn/Node_101/temperature"},
41 {"wsn/Node_101/humidity"},
42 {"wsn/Node_101/pressure"},
43 {"wsn/Node_101/co2"},
44 {"wsn/Node_101/ambientLight"},
45 };
46
47 /* Struct to register Topics at the Gateway */
48 static mqttsn_topic_t topics[6] = {
49 {
50 .p_topic_name = (unsigned char *) topic_names[BATTERY],
51 .topic_id = 0,
52 },
53 {
54 .p_topic_name = (unsigned char *) topic_names[TEMPERATURE],
55 .topic_id = 1,
56 },
57 {
58 .p_topic_name = (unsigned char *) topic_names[HUMIDITY],
59 .topic_id = 2,
60 },
61 {
62 .p_topic_name = (unsigned char *) topic_names[PRESSURE],
63 .topic_id = 3,
64 },
65 {
66 .p_topic_name = (unsigned char *) topic_names[CO2],
67 .topic_id = 4,
68 },
69 {
70 .p_topic_name = (unsigned char *) topic_names[AMBIENTLIGHT],
71 .topic_id = 5,
72 }
73 };

Listing 4.7: Configuration of Office1 Node

4.5 Proof of Concept

In order to proof the systems concept, a single Sensor node and one Gateway are used from
the WSN. The proof of concept foresees that a Sensor node publishes temperature data
over the WSN by processing it on an Application Server, which hosts an MQTT Broker.
In the following part, a short description of the Sensor node software with additional
screenshots of the output during operation is given. Furthermore, screenshots of the
clients verifying published message arrival on the MQTT Broker are included. The Figure
4.3 illustrates the sample WSN and the information flow from the temperature sensor to
the Application MQTT Broker, which is not part of the WSN.

37

4. Implementation

Figure 4.3: Flow of information from sensor to Application MQTT Broker

During the initialization a Sensor node scans the environment for an already existing OT
network. If there exists a network, the node will request to join this network, and after a
successful join process, all connected sensors will be configured. Then, the node searches
for an MQTT-SN Gateway within the network and tries to connect to the nearest one.
This process is determined by the minimum number of hops it takes to reach the Gateway.
After signing up, the node registers all configured MQTT-SN Topics. If the previous
two steps are executed successfully, the Sensor node will continuously read data from
the sensors and publish it under predefined topics. The output of a Sensor node of the
described procedure can be seen in Figure 4.4.

The Figure 4.5 illustrates the communication process between the components. Messages
using MQTT are printed in blue and MQTT-SN messages are coloured in orange. First
the Python Script connects the MQTT Broker on the Gateway (messages 1 and 2) and
subscribes, for instance, the topic SensorNode1/temperature (messages 7 and 8). Further,
the Sensor node sends an MQTT-SN Connect message to the Gateway, which translates it
into an MQTT message and forwards it to the Broker (messages 3 to 6). If the Sensor
node has read the register data of the temperature sensor, it publishes the data on the
Topic SensorNode1/temperature (messages 9 to 11 and 13). The MQTT Broker processes
this message and publishes it to all clients that are subscribed to this Topic (message
12). In this case, the Python script receives the temperature data, converts it from
HEX-representation to decimal-representation, changes the Topic and publishes it back
to the Broker (messages 14 and 15). The bridge communication between Broker on the
Gateway and the Application Broker is not shown, since every Topic that matches the
bridge configuration is mirrored to the respective other Broker.

The Sensor nodes publish the data to the Gateway, where the Topic is mapped from an
MQTT-SN to a full MQTT Topic and then forwarded to the MQTT Broker, locally

38

4.5. Proof of Concept

Figure 4.4: Output of Sensor node during initialization and operation

running on the Gateway. The received MQTT Message can be seen in Figure 4.6.

Since the data is decoded in HEX-format a Python script is used to convert it into
floating point representation. Furthermore it changes the top level name from wsn/ to
humbas/ and publishes the message back to the MQTT Broker on the Gateway. The
converted topic arrived on the Broker can be seen in Figure 4.7.

Lastly, all topics starting with humbas/ are available on the Application Broker, because
of the bridging between this and the MQTT Broker running on the Gateway. Figure 4.8
shows the topic humbas/Node_101/temperature published to the Application Broker.

39

4. Implementation

Figure 4.5: Sequence diagram of communication in the WSN

Figure 4.6: MQTT Broker on the Gateway; published temperature from the Sensor node

40

4.5. Proof of Concept

Figure 4.7: MQTT Broker on the Gateway; published temperature from the Python
script

Figure 4.8: Application MQTT Broker; bridge temperature topic from MQTT Broker on
the Gateway

41

CHAPTER 5
Results

This chapter presents the results to answer the formulated research questions in Chapter
1. Based on the first research question and the results of the literature survey presented
in Section 2.1, a table has been created that lists possible points for data aggregation.
Regarding the second research question, Section 5.2 proposes different modelling concepts
for a WSN with Gateway and MQTT Broker.

5.1 Possible points for data aggregation

Most sensor nodes in a WSN have a limited lifespan because they run out of power.
In some cases, the power provider, e.g. the battery, can be exchanged and the node’s
lifespan is increased. However, to keep the lifetime as long as possible the sensor nodes
use lightweight protocols to transmit their data and include necessary data only in the
messages sent, for instance, a temperature sensor would transmit the current temperature
value. For some applications, this might be enough information for further processing, but
others might need more information in the upper hierarchical layers, therefore data needs
to be aggregated. This aggregation should not impact the lifespan of the component, also
it should not generate much computational overhead for the component adding the data.

Table 5.1 shows possible components of an example application infrastructure, including
a WSN, an Application Broker, Application Software and a Client Software, using the
produced data coming in from the Sensor nodes. The header of the table describes the
data that should be added, whereas the symbol X marks components of the infrastructure
at which this data is available. The symbol O marks components that might be able
to determine or request this data. For example, the Application Broker can request the
location of measurement from the Gateway. It then adds it to the measurement-data. A
– symbol in the entry means the component cannot determine or request the needed data
for aggregation.

43

5. Results

Unit predefined/not predefined Location
Sensor node X/X X
Gateway X/O X
Application Broker X/O O
Application Software X/O O
Client Software X/– –

Table 5.1: Possible points in a WSN for data aggregation of Unit and Location

The transformation of the message’s content and its Topic while travelling from the source
to the sink can be seen in Table 5.2. As first step, the data comes in binary format
and without any Topic from the sensor. The Sensor node converts it into HEX-format
and transmits it to the Gateway, using MQTT-SN and the Topic identifier 1, which
corresponds to wsn/Node101/temperature. The Gateway converts the HEX-formatted
temperature value into decimal numbers and changes the Topic from wsn/ to humbas/
also, it exchanges the node’s identifier with the corresponding location in the building.
For example, if Sensor node 101 is placed in Office 1, then the identifier would be
Node101 and is exchanged with the location Office1. Afterwards, the Gateway publishes
the temperature on the Application Broker, which provides the data for the Application
Software or the Client Software.

Points in the WSN Message content Message Topic
Sensor ...10011... –
Sensor node 0000 0A8E 1
Gateway 27.02 wsn/Node101/temperature
Application Broker 27.02 ◦C humbas/Office1/temperature
Application Software 27.02 ◦C humbas/Office1/temperature
Client Software 27.02 ◦C humbas/Office1/temperature

Table 5.2: Transformation of message content and Topic from source to sink

5.2 Visualization sensor data using a graph environment
The whole system should be modelled so that it represents all necessary meta-data,
relations and configurations in a structured way. It should provide an overview of all the
components and their interaction. The model should also keep track of all application
relevant parameters, for example, the Topic IDs for the MQTT-SN Topics and the
configuration parameters, for example, the Broker IP Address. If one of these parameters
changes, it is easy to figure out which component needs to be changed.

The following models illustrate feasible representations of the system, but are limited to a
single microcontroller instance measuring temperature, pressure, humidity and publishing
it to an MQTT Broker.

44

5.2. Visualization sensor data using a graph environment

The node uses MQTT-SN to send the sensor data to the MQTT-Broker. Therefore,
Topics are needed, since all Topics are managed by a Sensor nodes are combined under
the top class Topics. This separates the representation of application data, for example,
the temperature from node meta-data. A Topic in MQTT-SN can be published by using
a unique integer value, because of this every Topic has an ID. In order to avoid errors by
computing the sensor data, the unit of the data is appended to the Topic. The node’s
meta-data includes all system parameters, for example, the Gateway Port and the UUID.
Node names of the following models which are ending with a *-symbol, are required to
match for a correct working WSN.

Model 1

In Figure 5.1, the first approach for modelling the WSN can be seen. The model shows
an MQTT Broker, its Broker IP Address and its communication partner, an MQTT-SN
Gateway. The MQTT-SN Gateway’s successors are the Gateway Port and the Broker
IP Address, which are both system parameters the Gateway needs to know for correct
operation, and a Microcontroller. The Sensor nodes, which are the main part of the WSN,
consist of a Microcontroller and Sensors which are connected to it. This is also represented
in the model. Furthermore, all system- and application-related parameters are also direct
successors of the Microcontroller.

Model 2

In this model, all changeable configuration parameters and the Topics, for example of
the microcontroller, are combined by an extra node called Configuration. All Sensors are
directly connected to the Microcontroller node. Due to this extra node, software-related
parts are summarized and connected to the node Microcontroller as one edge in the
graph and hardware parts are still directly connected, because of their physical link to
the Microcontroller. In case of hardware parts, the connection means this component is
exchanging data, which is later stored or processed by a higher layer or an external not
modelled component. For a graphical representation, see Figure 5.2.

Model 3

In the third model, the MQTT-SN Gateway and the MQTT Broker setup stay the same
as in the models presented earlier. In this model, the UUID of the Microcontroller within
the network is directly linked to Microcontroller node in the graph. The Configuration
sub-graph is structured in the system- and application parameters and the MQTT-SN
Topics are bundled by a top level named Topics. Exemplary, a Configuration sub-graph
means a graph that contains the nodes Configuration, Gateway Port, Location and UUID.
Topics combines all MQTT-SN Topics the Microcontroller publishes data to.

45

5. Results

has Part has Part has Part

Microcontroller

Temperatur
Sensor Pressure Sensor Humidity Sensor

has UUID binds tohas Location

publishes onpublishes onpublishes on

UUID Gateway Port*

has Topic IDhas Unit

Temperature

Topic IDUnit

has Topic ID has Unit

Pressure

Unit

has Topic IDhas Unit

Humidity

Topic IDUnit

Location

Topic ID

communicates with

MQTT-SN
Gateway

listens on

connects to

Gateway Port* Broker IP
Address*

communicates with

MQTT Broker

has IP Address

Broker IP
Address*

Figure 5.1: Wireless Sensor Network Model 1

Model 4

The fourth model can be seen in Figure 5.4 and shows a Configuration sub-graph, which
concentrates all system relevant parameters at a single point in the model. The Topics
are now children of the corresponding Sensors. This means the Temperature Sensor has an
edge to the Topic Temperature where it published collected data. The setup of MQTT-SN
Gateway and MQTT Broker remains the same as in the models presented previously.

46

5.2. Visualization sensor data using a graph environment

has Part
has Part has Part

has Configuration

Microcontroller

Temperatur
Sensor Pressure Sensor Humidity Sensor

has UUID binds to has Location

Configuration

publishes on publishes on publishes on

UUID Gateway Port*

has Topic IDhas Unit

Temperature

Topic IDUnit

has Topic IDhas Unit

Pressure

Unit

has Topic IDhas Unit

Humidity

Topic IDUnit

Location

Topic ID

communicates with

has Configuration

MQTT-SN
Gateway

listens on

connects to

Configuration

Gateway Port* Broker IP
Address*

communicates with

has Configuration

MQTT Broker

has IP Address

Configuration

Broker IP
Address*

Figure 5.2: Wireless Sensor Network Model 2

Final Model

This model has been created after an analysis of the drawbacks and advantages of the
presented models previous. Model 3 and Model 4 are combined, in order to create this
modelling approach, which best meets the presented requirements. Chapter 6 presents a
detailed description of the benefits and disadvantages of each model and states why this
fifth model is needed.

The fifth model, also known as the final model, is shown in Figure 5.5. As a top
instance an MQTT Broker is modelled, it has two children nodes, one of them being the
related Configuration sub-graph and the other being an MQTT-SN Gateway, which is a

47

5. Results

has Part
has Part has Part

has Configuration

manages

Microcontroller

Temperatur
Sensor Pressure Sensor Humidity Sensor

has UUID

binds to has Location

Configuration

publishes on
publishes on

publishes on

Topics

UUID

Gateway Port*

has Topic ID has Unit

Temperature

Topic ID Unit

has Topic ID has Unit

Pressure

Unit

has Topic ID has Unit

Humidity

Topic ID Unit

Location

Topic ID

communicates with

has Configuration

MQTT-SN
Gateway

listens on

connects to

Configuration

Gateway Port* Broker IP
Address*

communicates with

has Configuration

MQTT Broker

has IP Address

Configuration

Broker IP
Address*

Figure 5.3: Wireless Sensor Network Model 3

communication partner of the broker. The number of children the MQTT-SN Gateway has
highly depends on the total number Sensor nodes. Inside the model, the UUID is a direct
successor of the node Microcontroller, and further, the Configuration sub-graph contains
all remaining system parameters. The Sensors, which are components of the Sensor node,
are directly connected to the node Microcontroller and the Topics are successors of the
sensors.

48

5.2. Visualization sensor data using a graph environment

has Part
has Part has Part

has Configuration

Microcontroller

Temperatur
Sensor Pressure Sensor Humidity Sensor

has UUID binds to has Location

Configuration

publishes on publishes on publishes on

UUID Gateway Port*

has Topic ID has Unit

Temperature

Topic ID Unit

has Topic ID has Unit

Pressure

Unit

has Topic ID has Unit

Humidity

Topic ID Unit

Location

Topic ID

communicates with

has Configuration

MQTT-SN
Gateway

listens on

connects to

Configuration

Gateway Port* Broker IP
Address*

communicates with

has Configuration

MQTT Broker

has IP Address

Configuration

Broker IP
Address*

Figure 5.4: Wireless Sensor Network Model 4

49

5. Results

has Part
has Part has Part

has Configuration

Microcontroller

Temperatur
Sensor Pressure Sensor Humidity Sensor

has UUID

binds to has Location

Configuration

publishes on publishes on publishes on

UUID

Gateway Port*

has Topic ID has Unit

Temperature

Topic ID Unit

has Topic ID has Unit

Pressure

Unit

has Topic ID has Unit

Humidity

Topic ID Unit

Location

Topic ID

communicates with

has Configuration

MQTT-SN
Gateway

listens on

connects to

Configuration

Gateway Port* Broker IP
Address*

communicates with

has Configuration

MQTT Broker

has IP Address

Configuration

Broker IP
Address*

Figure 5.5: Wireless Sensor Network Model 5

50

CHAPTER 6
Discussion

This chapter discusses the results presented in Chapter 5. An analysis to determine the
most suitable point for data aggregation in a big application infrastructure, including a
WSN, in Section 6.1 will be given first. In Section 6.2, the presented modelling approaches
are evaluated regarding the overview, readability and reuseablility of defined sub-graphs.
Finally, the discussion in Section 6.4 answers the research question formulated in chapter
1.

6.1 Analysing points for data aggregation
Table 5.1 shows possible locations for data aggregation in an example application infras-
tructure. In order to keep the computation overhead as low as possible the aggregation
should be done as early as possible. In addition, the aggregation should be performed at
a point in the infrastructure where there is enough computing power and battery power
to keep the lifespan as long as possible. Furthermore, the communication for requested
data should not flood the network, otherwise actual measurement-data can no longer be
sent.

The aggregation of the physical unit of measurement data is important information to
avoid calculation errors by falsely interpreted data. If the unit is predefined for the
application, it can be added at every point or, since every component implicitly knows
the unit of the measurement data, not be added. However, it is assumed that the
unit is not predefined, since it cannot be guaranteed that every sensor node uses the
same type of sensor. For example, the temperature sensor on Node 1 measures it in
◦C and the sensor on Node 2 measures temperature in ◦F. Therefore, other members of
the network can not be sure about the unit every sensor sends. The only component
that knows the unit without requesting it from a lower level, is the Sensor node. Every
other component in the application infrastructure, except the Client Software, is able to
determine the unit of the temperature by sending a request to the lower levels. This

51

6. Discussion

raises the number of communication message exchanges needed, which further increases
the power consumption of components that are involved. The Client Software is not able
to request it because the data might have been evaluated already or has been merged
by the Application Software. Due to the merging, aggregating of the physical unit at the
Sensor node is mostly suitable option, if the unit is not predefined within the application,
otherwise it would not be added at all.

When measuring environmental parameters, it is also important to know at which physical
location the data is measured, for example, the temperature in a conference room is
different from the temperature in a server room. The Sensor node knows its location either
by explicit configuring it in the configuration file or it implicitly is given by the UUID of
the node within the WSN. In both cases, the node can aggregate the data itself and then
send the message, but this can increase the package size dramatically for long Location
names. The Location of measurement can be added on the Gateway, if it has knowledge of
the locations and the corresponding sensor names. This can either be achieved by using a
predefined lookup table on the Gateway or the Sensor node transmits this information at
the connection establishment process and the Gateway stores it. The Application Broker
and Software can request the locations, but due to the high amount of incoming data
the overhead for aggregating data becomes quite huge and might slow down the main
application. Again, the Client Software is not able to request the exact Location, since
the data has been processed or merged by the Application Software. Therefore, the most
suitable point in the environment to add information about the Location, is the Gateway.
Since the amount of incoming data is manageable, it has enough computation power and
it does not need to request the data before aggregation.

6.2 Evaluation of the presented WSN models

In order to model the WSN into a graph environment with previous defines properties
in chapter 5, four different models and a fifth one which is a combination of all four, is
presented. This section outlines the benefits and drawbacks of each model and argues
why the fifth model best fits the demand.

Model 1

The first model, presented in Figure 5.1, is a simple representation of the WSN and
shows the direct impact of the communication partner, configurable system parameters
as well as application relevant information.

However, the model does not group any nodes in sub-graphs, which means it is hard to
determine, if the observed graph node is a system parameter, e.g. the Gateway Port, an
application relevant setting, e.g. the Topic ID or a hardware component which generates
or exchanges information, for example, a temperature Sensor.

52

6.2. Evaluation of the presented WSN models

Model 2

Figure 5.2 shows the second possible modelling approach for the WSN. A big advantage
of this representation is the separation of hardware parts and software objects, which
leads to a better overview and makes the model easier to read. Since every configuration
parameter is a child node of Configuration, there is only one point of view to check if this
controller in the WSN has the correct configuration.

However, the model does not distinguish between system parameters, for example,
Gateway Port, and application information, for instance, the Topic ID, because they are
all directly connected to the node named Configuration. Furthermore, the UUID is a child
of Configuration, this strictly limits the reusability of the whole sub-graph, because it
could not be used for more than one Microcontroller node since the UUID makes it unique.
As has been mentioned above, this modelling approach allows to model a Sensor without
a Topic.

Model 3

In the third model, which can be seen in Figure 5.3, the drawback of the second one is
compensated, due to a relation between UUID the node Microcontroller. For this reason,
the sub-graph with Configuration node as root can be used for several Microcontrollers
with an identical configuration, which also reduces the number of nodes in the graph.
Another advantage of this model is the separation of application data and system settings,
which is achieved using a top level node Topics.

However, the link between UUID and the root Microcontroller node eliminates the strict
separation between software parameters and hardware components, which makes the
model a little bit harder to survey. The model allows to define a Sensor without a Topic
it publishes to or vice versa.

Model 4

The last proposed model approach can be seen in Figure 5.4. This model bundles all
system parameters under a top level node Configuration. Due to this property, the model
has only one point where all configurable system parameters can be found. A big benefit
of the fourth model is the link between Sensor and Topic, which ensures that there is no
sensor without a topic that can it publish to and there is no unused topic where no data
is published on.

Since the Topic is a child node of the Sensor nodes, the nodes Topic ID and Unit are
generated for every temperature sensor, which makes them redundant. Furthermore, the
UUID is a child node of Configuration. The Configuration sub-graph is a unique structure
for every modelled Microcontroller, which also generates many redundant nodes and
makes the model obscure.

53

6. Discussion

Final Model

The model of the WSN should provide a good overview of the whole system with all
its components and their interaction properties. Further, it should keep track of all
application and system relevant parameters while trying to keep it as simple as possible.

After an analysis of the four possible models and their benefits as well as their drawbacks,
a fifth one which fits the needs best is presented. The fifth model is a combination of Model
3 and Model 4, which can be seen in Figure 5.5. They seem to be a good compromise,
because all the system settings are bundled under a node named Configuration, so there
is one point to look up all setting of a WSN node. Another big advantage is the directly
connected UUID to a microcontroller, a Configuration sub-graph. Therefore, it can be
used for several microcontrollers with the same configuration, this reduces the number of
nodes in the whole graph. Furthermore, the Sensor knows the topic it publishes to as
a direct successor, so it is easy to identify under which certain topic a node and sensor
publish its data.

6.3 Brick extension for Wireless Sensor Networks
The open-source semantic description effort Brick uses OWL as well as the RDF framework
to describe the models. In Brick, it is possible to extend the existing ontology by
user-defined classes and relationships. These extensions can enhance existing Brick
classes/relationships or basic classes/relationships. In order to use the provided tools
for visualization as well as to perform queries on Brick models, the syntax of Brick
Ontologies should be respected. Although the Brick Ontology supports a huge number
of classes and relationships, it does not fully support the modelling of a WSNs basic
parts of electrical equipment, but a variety of sensors are already included. Also, entities
and relations to model communication of between different components are missing in
Brick. In order to create models as presented in the Section 5.2, an extension to Brick
has been developed. This extension includes an abstract model of a Controller Unit and
also concrete models of a Sensor node, a Server as well as entities and relations that are
need to model communication processes, for example, a Network Port and an IP-Address.
Furthermore, the opportunity to model the configuration of components within the WSN
is added with this extension, for instance, it is possible to express how a Sensor node
communicates on a specific channel or a Server listens on a predefined Network Port and
has a static IP-Address.

6.4 Discussing result regarding research questions
The first research question aims towards finding a suitable point in the WSN to perform
data aggregation.

RQ 1: Which location in the environment is most suitable for data aggregation in an
ongoing process?

54

6.4. Discussing result regarding research questions

The aggregated data should be available at the point of aggregation without further
communication overhead and the location should be near the source of the data, since
the amount of incoming data gets higher the further the aggregation point is away from
the source. In order to answer RQ1, a table in Chapter 5 shows the relation between
available points for data aggregation in an application and the information added to
the measurement-data. At the beginning of the chapter, the aggregation points are
evaluated depending on the defined properties. This theoretical assumption Sensor node
and Gateway being the most suitable points for data aggregation, has also been validated
with the proof of concept. In the proof of concept, the data aggregation of the physical
unit and the Location are performed on the Gateway, because the physical unit is a
predefined parameter for the whole WSN, this information it necessary to be added at
the Sensor node. Furthermore, the Gateway has enough computation power and unlimited
lifespan.

The second research question aims towards answering how to use a graph environment
to visualize the aggregated data to get a quick and compact overview of the whole WSN.

RQ 2: What are possible solutions for visualizing aggregated sensor data into a graph
environment?

For answering RQ2, chapter 5 presents four different possibilities to visualize the WSN
with gateways and an application server. The chapter displays each approach using a
simple generic WSN application and highlights the advantages and drawbacks of each
model. After considering the previously defined features and properties of the proposed
models, another adaption to combine the advantages and fit the needs has been designed.
The resulting modelling approach gives a compact overview of the whole WSN with its
components and their interactions. Furthermore, the model also present necessary data
for communication and parametrization of the components. Due to efficient grouping
of different parameters into a subtree that can be connected to several nodes and the
number of redundant parameters occurrences is kept minimal. This leads to a structured
overview and reduces the number of edits if an parameter has to be changed. In Section
4.4, an implementation of the fifth version using the software Brick [33] is described.

55

CHAPTER 7
Conclusion

The aim of this thesis was to build up a three tier WSN architecture, similar to the one
presented in [3]. Furthermore, the WSN, especially the sensor nodes and their direct
communication partner - sensors and Gateways - should be modelled and presented in
a graph environment. The WSN is used as big data source [1] for the the upper layers,
but due to limited lifespan and lightweight protocols, only a minimum amount of data is
transmitted from the sensor node to sink. Due to this restriction, the most important
data is sent only while other information, for example, meta-data is lost. Therefore,
the three tier architecture is further split up into independent components, which were
analyzed to find the most suitable point for aggregating meta-data, e.g. the location of
measurement. The result of the analysis marks two major points for being most suitable
to perform data aggregation, without interfering with the main purpose of the WSN,
measuring and providing environment data to the application.

A model of the whole WSN was designed to give a compact overview of all involved
components and to keep track of configuration parameters of every single component. In
addition to that, it should also be possible to query the model to find settings of different
components and to generate entire configuration files. These files are either header files
for the firmware of the Sensor nodes which are written in the C programming language
or configuration files which are passed to programs at the start-up. The model should
fulfill certain requirements: provide a compact overview, avoid redundant modelling as
good as possible of parameters and it should differentiate between physical components
and meta-data. In order to achieve this, different model approaches are proposed and
evaluated to satisfy required properties. The model approach that meets the proposed
requirements best, has been realized and implemented as a proof of concept.

Future work could extend the data aggregation concept to add timestamps when the
data is generated or combine data that comes form sensor nodes in similar locations.
This enables the possibility of logging and also certain events can be reconstructed
for debugging purposes. Combinations of data could increase the lifetime of a node

57

7. Conclusion

since not every measurement is sent, especially if it sends redundant information. Also,
the generation process of the models can be accelerated, in order to speeding up the
generation of the configuration if only one or two node configurations are changed. The
toolchains of configuration writing and the compiler of the firmware could be combined
in order to generate needed configuration at compile time only.

58

List of Figures

2.1 A 3-tier WSN architecture, based on and adapted from [3] 4
2.2 A basic SoC system model, from [35] . 5
2.3 IPv6 Address scopes, based on and adapted from [16] 9
2.4 IPv6 Header format, based on and adapted from [14] 9
2.5 Example IPv6 Header and IPv6 Header chain, based on and adapted from

[14] . 10
2.6 MQTT connection, based on diagram 1 and 2 and adapted from [18] . . 13
2.7 Various MQTT-SN Architectures for PUBLISH to server, based on and

adapted from [21] . 15
2.8 Thread protocol stack, from [23] . 16
2.9 Full- and Partially connected Mesh Networks 17
2.10 OpenThread Devices types, from [24] . 18
2.11 OpenThread network structure, from [27] 19
2.12 OpenThread RLOC16 and Mesh-Local address examples, from [24] 20
2.13 Foundational Ontology . 22

4.1 Abstract overview of the components and their interconnection 27
4.2 Brick model of a Sensor node . 35
4.3 Flow of information from sensor to Application MQTT Broker 38
4.4 Output of Sensor node during initialization and operation 39
4.5 Sequence diagram of communication in the WSN 40
4.6 MQTT Broker on the Gateway; published temperature from the Sensor node 40
4.7 MQTT Broker on the Gateway; published temperature from the Python script 41
4.8 Application MQTT Broker; bridge temperature topic from MQTT Broker on

the Gateway . 41

5.1 Wireless Sensor Network Model 1 . 46
5.2 Wireless Sensor Network Model 2 . 47
5.3 Wireless Sensor Network Model 3 . 48
5.4 Wireless Sensor Network Model 4 . 49
5.5 Wireless Sensor Network Model 5 . 50

59

List of Tables

2.1 Example IPv6 Address, from [14] . 7
2.2 Shortened IPv6 Addresses . 7
2.3 Common scope values for IPv6 Multicast addresses, from [15] 8
2.4 Meaning of IPv6 header fields . 10
2.5 Most frequently used extension headers of IPv6 11
2.6 Example RLOC Address, from [24] . 20
2.7 Example Device IPv6 Address including RLOC16, from [24] 20
2.8 Reserved Mulitcast addresses in a Thread Network, from [24] 21
2.9 Predefined Anycast locator address, from [24] 21

5.1 Possible points in a WSN for data aggregation of Unit and Location . . . 44
5.2 Transformation of message content and Topic from source to sink 44

61

Listings

4.1 Change pins of USART . 31
4.2 Declarations for LED functionality . 31
4.3 Contant of file gpio.c . 32
4.4 Command to compile OpenThread Library 33
4.5 Code to create node and configuration 35
4.6 Query UUID of Office1 Node . 36
4.7 Configuration of Office1 Node . 36

63

Bibliography

[1] H. Harb, A. Makhoul, A. Idrees, O. Zahwe, and M. Taam, “Wireless sensor networks:
A big data source in internet of things,” International Journal of Sensors, Wireless
Communications and Control, vol. 07, 09 2017.

[2] D. Tsitsipis, S.-M. Dima, A. Kritikakou, C. Panagiotou, and P. S. Koubias, “Data
merge: A data aggregation technique for wireless sensor networks,” pp. 1–4, 09 2011.

[3] A. A. A. Ari, A. C. Djedouboum, A. M. Gueroui, O. Thiare, A. Mohamadou, and
Z. Aliouat, “A three-tier architecture of large-scale wireless sensor networks for big
data collection,” Applied Sciences (Switzerland), vol. 10, no. 15, 2020.

[4] A. K. Idrees and A. K. M. Al-Qurabat, “Energy-efficient data transmission and
aggregation protocol in periodic sensor networks based fog computing,” Journal of
Network and Systems Management, vol. 29, no. 1, 2021.

[5] H. Harb, A. Makhoul, S. Tawbi, and R. Couturier, “Comparison of different data
aggregation techniques in distributed sensor networks,” IEEE Access, vol. 5, pp. 4250–
4263, 2017.

[6] B.-S. Kim, K.-I. Kim, B. Shah, F. Chow, and K. H. Kim, “Wireless sensor networks
for big data systems,” Sensors (Basel, Switzerland), vol. 19, p. 1565, Apr 2019.
30939722[pmid].

[7] S. Boubiche, D. E. Boubiche, A. Bilami, and H. Toral-Cruz, “Big data challenges
and data aggregation strategies in wireless sensor networks,” IEEE Access, vol. 6,
pp. 20558–20571, 2018.

[8] M. Nkomo, G. P. Hancke, A. M. Abu-Mahfouz, S. Sinha, and A. J. Onumanyi,
“Overlay virtualized wireless sensor networks for application in industrial internet
of things: A review,” Sensors (Basel, Switzerland), vol. 18, p. 3215, Sep 2018.
30249061[pmid].

[9] S. Sharma, “Issues and challenges in wireless sensor networks,” 12 2013.

[10] Internet of Things. Pearson Education India, 2019.

65

[11] IEEE Internet of Things, “IEEE Internet of Things Homepage.” https://iot.
ieee.org/. [Online; accessed 15-August-2020].

[12] I. E. T. Force, “Internet Protocol, Version 6 (IPv6) Specification–.” https://
tools.ietf.org/html/rfc2460. [Online; accessed 17-May-2020].

[13] I. E. T. Force, “Internet Protocol, Version 6 Addressing Architecture.” https:
//tools.ietf.org/html/rfc2373. [Online; accessed 17-May-2020].

[14] H. P. Institut, “IPv6 in modernen Netzwerken.” https://open.hpi.de/
courses/ipv6-2018. [Online; accessed 17-May-2020].

[15] IANA, “IPv6 Multicast Address Space Registry.” https://
www.iana.org/assignments/ipv6-multicast-addresses/
ipv6-multicast-addresses.xhtml. [Online; accessed 22-May-2020].

[16] E. Kompendium, “IPv6-Address-Scopes (Gültigkeitsbereiche).” http://www.
elektronik-kompendium.de/sites/net/2107111.htm. [Online; accessed
20-May-2020].

[17] OASIS, “MQTT - Official Homepage.” http://mqtt.org. [Online; accessed 15-
March-2020].

[18] R. K. Kodali and S. Soratkal, “MQTT based home automation system using
ESP8266,” in 2016 IEEE Region 10 Humanitarian Technology Conference (R10-
HTC), pp. 1–5, Dec 2016.

[19] OASIS, “MQTT - Official Documentation.” https://docs.oasis-open.org/
mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html. [Online; accessed 6-April-2020].

[20] OASIS, “MQTT-SN - Official Documentation.” http://mqtt.org/new/
wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf. [Online; ac-
cessed 6-April-2020].

[21] K. Govindan and A. P. Azad, “End-to-end service assurance in iot mqtt-sn,” in 2015
12th Annual IEEE Consumer Communications and Networking Conference (CCNC),
pp. 290–296, 2015.

[22] H. Kim, S. Kumar, and D. E. Culler, “Thread/openthread: A compromise in low-
power wireless multihop network architecture for the internet of things,” IEEE
Communications Magazine, vol. 57, no. 7, pp. 55–61, 2019.

[23] T. Group, “Thread - official homepage.” https://www.threadgroup.org/. [On-
line; accessed 28-April-2020].

[24] Google, “Openthread - official homepage.” https://openthread.io/guides/
thread-primer. [Online; accessed 28-April-2020].

66

https://iot.ieee.org/
https://iot.ieee.org/
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2373
https://tools.ietf.org/html/rfc2373
https://open.hpi.de/courses/ipv6-2018
https://open.hpi.de/courses/ipv6-2018
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
http://www.elektronik-kompendium.de/sites/net/2107111.htm
http://www.elektronik-kompendium.de/sites/net/2107111.htm
http://mqtt.org
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
 https://www.threadgroup.org/
https://openthread.io/guides/thread-primer
https://openthread.io/guides/thread-primer

[25] W. Rzepecki and P. Ryba, “Iotsp: Thread mesh vs other widely used wireless
protocols – comparison and use cases study,” in 2019 7th International Conference
on Future Internet of Things and Cloud (FiCloud), pp. 291–295, 2019.

[26] A. Sammes, S. C. Misra, S. Misra, and I. Woungang, Guide to Wireless Mesh
Networks. Computer Communications and Networks, London: Springer London,
2009.

[27] T. Group, “Thread technical overview.” https://www.threadgroup.org/
Portals/0/documents/resources/Thread_Technical_Overview.pdf.
[Online; accessed 9-May-2020].

[28] J. Busse, B. Humm, C. Lubbert, F. Moelter, A. Reibold, M. Rewald, V. Schlüter,
B. Seiler, E. Tegtmeier, and T. Zeh, “Was bedeutet eigentlich Ontologie?,” Informatik-
Spektrum, vol. 37, 08 2014.

[29] H. Stuckenschmidt, Ontologien; Konzepte, Technologien und Anwendungen. Infor-
matik im Fokus, Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[30] P. Cimiano, A. Maedche, S. Staab, and J. Völker, Ontology Learning, pp. 245–267.
05 2009.

[31] OWL Working Group, “Web Ontology Language (OWL).” https://www.w3.org/
OWL/. Accessed: 2020-03-18.

[32] W3C Recommendation 10 February 2004, “OWL Web Ontology Language Overview.”
https://www.w3.org/TR/owl-features/. Accessed: 2020-03-18.

[33] B. Team, “Brickschema website.” https://brickschema.org/. Accessed: 2020-
09-08.

[34] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen,
J. Koh, J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta, M. Kjærgaard,
M. Srivastava, and K. Whitehouse, “Brick: Towards a unified metadata schema for
buildings,” in Proceedings of the 3rd ACM International Conference on systems for
energy-efficient built environments, BuildSys ’16, pp. 41–50, ACM, 2016.

[35] M. J. Flynn and W. Luk, Computer system design : system-on-chip. Hoboken, NJ:
Wiley, 2011.

[36] B. Oates, “Researching information systems and computing,” 2005.

[37] S. T. March and G. F. Smith, “Design and natural science research on information
technology,” Decision Support Systems, vol. 15, no. 4, pp. 251 – 266, 1995.

[38] P. Checkland, “Soft systems methodology: A thirty year retrospective,” Systems
Research and Behavioral Science, vol. 17, p. S11–S58, 11 2000.

67

https://www.threadgroup.org/Portals/0/documents/resources/Thread_Technical_Overview.pdf
https://www.threadgroup.org/Portals/0/documents/resources/Thread_Technical_Overview.pdf
https://www.w3.org/OWL/
https://www.w3.org/OWL/
https://www.w3.org/TR/owl-features/
https://brickschema.org/

[39] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Q., vol. 28, p. 75–105, Mar. 2004.

[40] J. Hughes and T. Wood-Harper, “Systems development as a research act,” Journal
of Information Technology, vol. 14, pp. 83–94, Mar 1999.

[41] W. Kastner, S. Gaida, H. Tellioglu, “Human erception and building automation
systems.” http://humbas.org/. ICT of the Future, Project Number 867681.

68

http://humbas.org/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Related Work
	Internet of Things
	Internet Protocol version 6
	MQTT
	OpenThread
	Ontologies

	Methodology
	Implementation
	Sensor nodes
	Border Router
	Toolchain Setup
	Brick Model
	Proof of Concept

	Results
	Possible points for data aggregation
	Visualization sensor data using a graph environment

	Discussion
	Analysing points for data aggregation
	Evaluation of the presented WSN models
	Brick extension for Wireless Sensor Networks
	Discussing result regarding research questions

	Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography

