
Device and Link Discovery in
Industrial Ethernet Networks

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Thomas Marangoni
Registration Number 1634007

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Projektass. Dipl.-Ing.(FH) Dieter Etz, MBA

Projektass. Dipl.-Ing. Dr.techn. Thomas Frühwirth, BSc

Vienna, 11th February, 2022
Thomas Marangoni Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Thomas Marangoni

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. Februar 2022
Thomas Marangoni

iii

Acknowledgements

First and foremost, I’d like to thank my thesis advisors Wolfgang Kastner, Dieter Etz
and Thomas Frühwirth for making it possible for me to write about this fascinating
subject. When problems arose, it was also always possible to seek assistance. Theodor
Mittermair was another helpful person; he provided additional hardware to test and was
always willing to listen. Last but not least, I’d like to thank Julia Kren for her assistance
and proofreading.

v

Abstract

Today production facilities are optimized for single products with high quantities. Switch-
ing the focus of production requires a lot of preparation, planning, and workforce. With
Industry 4.0, interoperability and flexibility of sensors, actuators, and computing units
are getting more important. The increased amount of devices makes the reconfiguration
of the Industrial Ethernet structures more complex, which can result in long downtimes.
Therefore, an automatic discovery mechanism is desired, which allows reconfiguring the
network with a single button press.

This thesis implements a prototype of such discovery, it detects devices and their ports
with Link Layer Discovery Protocol (LLDP) and prepares a network graph with the
collected data for the Time-Sensitive Networking (TSN) Standard. The prototype was
tested in a laboratory environment. It turned out that the functionality was limited by
the manufacturers of the network devices used.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Motivation . 2
1.2 Structure of the work . 3

2 State of the Art 5
2.1 MIB - Management Information Base 6
2.2 SNMP - Simple Network Management Protocol 11
2.3 LLDP - Link Layer Discovery Protocol 22
2.4 NETCONF - Network Configuration Protocol 29

3 Concept 31

4 Implementation 33

5 Evaluation 37
5.1 How to setup a device . 39
5.2 Requirements . 41

6 Conclusion and Future Work 43
6.1 Issues . 43
6.2 Conclusion . 44
6.3 Improvements . 45

Acronyms and Abbreviations 47

List of Figures 47

List of Tables 49

Bibliography 51

ix

CHAPTER 1
Introduction

Industrial systems have been changing for years to become more efficient and dynamic.
With the occurrence of computers and Programmable Logic Controllers (PLCs), the era
of the third industrial revolution was started. The production lines got more automated
and more computers got integrated. The sensors and actuators are connected over
different bus systems with a computing unit. This unit is then connected over Ethernet
to other units. The network then can be connected to a management system.

With the fourth industrial revolution, which is happening in the last years, even more,
automated processes got added. The bus systems got reduced and the sensors got
integrated into the network of the computing units. Now the network reaches from the
sensors and actuators to the ERP systems. There has also been a shift from proprietary
network systems to systems that resemble Ethernet. These networks often also have
support for the Internet Protocol version 4 and version 6 (IPv4 and IPv6). Because of
the widespread availability of Ethernet and IP networks, the industrial implementations
of them are easy to understand for the technician and also easy to implement for the
manufacturers.

In order to attain its goals, Industry 4.0 systems should be interoperable, easily vir-
tualized, decentralized, be capable of real-time processing, be service-oriented and be
appropriately modular for increased reconfigurability and reusability. An open and
vendor-independent network standard for real-time communication is Time-Sensitive
Networking (TSN). It works similar to standard Ethernet but needs special switches
and routers to function. In a TSN network, routes get calculated to guarantee timings
and bandwidths. There are centralized and decentralized approaches to calculate these
routes. The centralized approach is simpler and easier to implement, but if the central
component fails routes can’t be calculated anymore. An important element of complex
network infrastructures is the automatic discovery of its parts, such as devices and the
links in between, because it is the basis for rapid reconfiguration. [HC19]

1

1. Introduction

1.1 Motivation
Modern industrial assembly lines need to be able, to change their manufacturing focus
as fast as possible. The time that is needed to change the production lines defines
how fast the production can react to sudden events or new requirements. Open and
vendor-independent protocols can help improve the independence of single hardware
manufacturers.

TSN needs to be aware of the network topology to calculate network routes. In current
implementations, this information must be manually added. This can be very time
intensive depending on the size of the network and the changes. An automatic way to
collect all needed information can reduce the time needed for changes drastically. It
also allows to detect changes while the production is running and react to them. This
makes it possible to calculate and apply new network routes on the fly. To increase the
performance of searching better network routes, additional parameters are needed. This
thesis assumes the following parameters to be helpful for such a task: the length of a
connection, the medium of a connection, and the link speed. These few parameters can
already improve the pathfinding on the network by a lot, because the limits of every
connection are known exactly.

By discovering the direct neighbors from each device, the topology of the network can be
generated. For discovering the direct neighbors, the vendor-independent and open Link
Layer Discovery Protocol (LLDP) is utilized. To collect the connection and additional
information, the also vendor-independent and open Simple Network Manager Protocol
(SNMP) is used. To allow changing the production line while in operation, the system
must be aware of changes on the network and they should be detected in under one
second. Short detection times allow faster reconfigurations of the network, which reduces
the downtime of the production. SNMP can detect changes on network interfaces of
devices and send a notification to a specific host.

2

1.2. Structure of the work

1.2 Structure of the work
The remaining chapters are structured in the following.

• Chapter 2 - State of the Art: This chapter gives an introduction about the
technologies and standards used. It covers MIB, SNMP, LLDP and NETCONF.

• Chapter 3 - Concept: It describes the theoretical approach of the application
to get the data from the network.

• Chapter 4 - Implementation: This chapter describes the practical approach of
the implementation and its structure.

• Chapter 5 - Evaluation: This chapters describes how the application was tested,
how to setup a test environment and what requirements must be met by the
network devices.

• Chapter 6 - Conclusion and Future Work: It describes what issues have been
found, the conclusion from them and possible improvements that can be done in
future implementations.

3

CHAPTER 2
State of the Art

Various technologies are needed for detecting devices on the network. In this chapter,
four technologies are explained: MIB, SNMP, LLDP, and NETCONF.

Management Information Base (MIB) describes a data structure and is used in different
technologies like SNMP. The data is structured hierarchically in a tree. A saved object
can be addressed via a sequence of numbers or an ASCII string sequence. It is using
Formal Abstract Syntax Notation One (ASN.1) to describe the database and its entries.

Simple Network Management Protocol (SNMP) is a network monitoring and manage-
ment protocol, developed in 1988 by the Internet Engineering Task Force (IETF). Over
the years, multiple versions of SNMP have been released, but only three of them are
mainly used: v1, v2c, and v3. The communication between network devices is handled
by agents. There is one master agent, called AgentX, which communicates with other
master agents. SNMP supports multiple instructions for getting and setting data from
the devices.

Link Layer Discovery Protocol (LLDP) is an open and vendor-independent Layer 2
Protocol. Its purpose is to advertise the identity and capabilities to the connected
network neighbors. Each device runs an agent, which collects the data sent by other
devices. Because LLDP is a Layer 2 Protocol, it does not need an IP address to transmit
its information.

Network Configuration Protocol (NETCONF) is a network monitoring and management
protocol, published in 2006 as a successor of SNMP. It exchanges data encoded with XML
with remote procedure calls. The advantages over SNMP are a modern, secure , and
session-based communication, detection of capabilities, and the modern data description
language YANG.

5

2. State of the Art

2.1 MIB - Management Information Base
The Management Information Base (MIB) is used to describe network entities. It
was created to monitor, manage, and control network entities over a remote manage-
ment protocol. It was first defined in RFC 1155[RM90b], RFC 1156[RM90a] and RFC
1157[FSDC90] by IEFT. Its main purpose was to provide a standardized Data Modeling
Language for SNMP (Section 2.2), but it can also be used for other remote management
protocols. The current valid standards for MIB are RFC 1155[RM90b] and RFC 1235
[RM91].

The MIB represents a hierarchical database, that is a tree. The root node of the tree
is a MIB called MIB-I [RM90b], which can be extended by submodules defined in other
MIBs. Elements in the tree are called managed objects and have a unique id on their
level, which is called Object Identifier (OID). With the OID, it is possible to address
one specific object in the tree, by describing the path from the root object to the ob-
ject itself. The OID can be expressed as a sequence of numbers (.1.3.6.1.4.1) or as an
ASCII string sequence (.iso.org.dod.internet.private.enterprise), however, they can also
be mixed (.iso.org.dod.1.4.1). A simplified graphical representation of such a MIB tree
structure can be found in Figure 2.1.

MIBs are using Formal Abstract Syntax Notation One (ASN.1)[ISO15] as a formal de-
scription language and are normally saved in text files with the file extension .mib. Other
MIBs can be imported into one MIB and their definitions and types can be reused.
MIBs are normally defined and maintained by IEFT and IEEE, but also by hardware
and software vendors. There are multiple sources to acquire the MIBs, they can be
found in RFC documents, on websites from vendors, as well as on general websites like
http://mibdepot.com.

2.1.1 Names

A name is used to uniquely identify an object, regardless of the semantic association
(standard document, network device, etc.), this concept is called Object Identifier (OID).
An OID is a sequence of integers traversing a global tree. The root of the tree is connected
to a number of labeled nodes via edges. Each node may have labeled children, also called
a subtree. This concept may be repeated arbitrarily. A label is defined as a pairing of a
brief textual description and an integer number. The root node itself is unlabeled and
has at least three children (see Figure 2.1). These children are defined in [RM90b] and
may be extended by other standards. The three main nodes are:

• ccitt(0) by the International Telegraph and Telephone Consultative Committee

• iso(1) by the International Organization of Standardization

• joint-iso-ccitt(2) by ISO and CCITT

The iso(1) node has a designated child node with the name org(3), that can be used by
other international organizations. These organizations have their own subtrees below

6

http://mibdepot.com

2.1. MIB - Management Information Base

ISO
1

CITT
0

ISO - CCIT
2

...
3

member body
2

..
1

org
3

...
4

DoD
6

...
5

...
7

Internet
1

...
0

...
2

private
4

experimental
3

management
2

...
1

...
5

enterprises
1

...
0

...
2

MIB-2
1

...
0

..
2

Figure 2.1: Shows a simplified MIB-Tree, where red marks the path for .1.3.6.1.4.1 or
.iso.org.dod.internet.private.enterprise (Adaption based on [Mü06])

their child task. Two subtrees got assigned to the U.S. National Institutes of Stan-
dard and Technology and one of them has been transferred to the U.S. Department of
Defense, dod(6). The Department of Defense has allocated a node to the internet com-
munity, to be managed by the Internet Activities Board (IAB). The definition of the
internet can be seen in Listing 2.1. The internet object can be identified as 1.3.6.1 or
as .iso.org.dod.internet. The IAB also defined four subnodes of internet(1), this can be
seen in Listing 2.2.

internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }

Listing 2.1: Definition of a node, internet node used as an example (from [RM90b])

7

2. State of the Art

directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }

Listing 2.2: Definition of subnodes, internet subnodes used as an example (from
[RM90b])

The directory(1) subtree has not been defined in [RM90b], but it discusses how OSI
Directory may be used on the Internet. OSI Directory is also known as X.500 and is a
system to lookup named objects.

The mgmt(2) subtree is used for IAB-approved documents. The subnode mgmt(1) is
used for newer approved versions of the Internet standard Management Information
Base, defined by RFC.

The experimental(3) subtree is used for Internet experiments and is managed by the
Internet Assigned Numbers Authority of the Internet. They may define requirements on
how this tree has to be used.

The private(4) subtree is used to define unilateral objects. It is managed by the Internet
Assigned Numbers Authority(IANA) of the Internet. It has an enterprise(1) subtree,
which can be used by companies to define their subtrees. To add a subtree in this
subtree, an enterprise identification number needs to be registered.

2.1.2 Syntax

The structure of objects is described using the ASN.1 syntax, but the full generality of
ASN.1 is not permitted. For primitives, only the following ASN.1 primitives are allowed:
integer, octet string, the object identifier, and null. If an enumerated integer is used,
there shall be no element with value 0.

Multiple non-primitive types can be used. The ASN.1 constructor sequence can be used
to generate lists and tables. New types can be defined, but remain ASN.1 primitive
types, lists, tables and, other application types. Other application types are:

8

2.1. MIB - Management Information Base

• NetworkAddress: This choice type represents an address from one of several
Internet protocol families.

• IpAddress: This type represents an internet address, represented as an octet
string in network-byte order.

• Counter: This represents a non-negative integer value that can be increased. It
wraps around if the maximum value is reached and starts incrementing from zero
again.

• Gauge: This represents a non-negative integer value that can be increased and
decreased, but latches at the minimum and maximum value.

• TimeTicks: This represents a non-negative integer value, that is getting incre-
mented every hundredth of a second since an epoch. The epoch needs to be defined
and explained in the description of this type.

• Opaque: This represents data with special encoding. Details can be found in
RFC 1155 ([RM90b]).

2.1.3 Objects

Objects must be defined in a MIB. A MIB can contain a collection of object definitions.
An object may refer to another object defined in the same or another MIB. The MIB
defines the following items for each object:

• Name: Consists of a textual name and Sub-OID, and is also known as an object
descriptor. It’s not allowed to use 0 as a Sub-OID.

• Syntax: Defines the type of the object (see Section 2.1.2).

• Definition: Describes the usage of the object.

• Access: Defines the access rights of the object. Access permissions can be one of:
"read-only", "read-write", "write-only", "not-accessible".

• Status: The object can be classified as "mandatory", "optional" or "obsolete".

A management protocol that is using MIBs must provide a way to access a simple non-
aggregate object. The management protocol needs to define if an aggregate object can
be accessed. If an object refers to multiple instances, it also needs to specify which
instance of an object has been returned. An example of an object definition can be seen
in Listing 2.3.

9

2. State of the Art

OBJECT:

atIndex { atEntry 1 }

Syntax:
INTEGER

Definition:
The interface number for the physical address.

Access:
read-write.

Status:
mandatory.

Listing 2.3: Example of an object definition (taken from [RM90b])

10

2.2. SNMP - Simple Network Management Protocol

2.1.4 Versions

Every MIB document makes the previous version of the same document obsolete. It is
forbidden to change the OID of an object between versions of a MIB document. The
standard RFC1155 (see [RM90b]) defines rules to remain constant regarding semantics
and simplify implementing support for multiple versions of a MIB [RM90b]:

”New versions may:
• declare old object types obsolete (if necessary), but not delete their names;

• augment the definition of an object type corresponding to a list by appending
non-aggregate object types to the object types in the list; or,

• define entirely new object types.
New versions may not:

• change the semantics of any previously defined object without changing the name
of that object.”[RM90b]

2.1.5 MIB Files

Depending on the needed MIB file, the location where they are available varies. The
core MIBs are defined in RFC1213 [RM91]. If MIBs from network hardware vendors are
needed, they can be found on the websites of these vendors. But there are also more
general sources: a search engine for MIBs can be found at http://mibdepot.com
and some network monitoring tools also provide a collection of MIB files.

2.2 SNMP - Simple Network Management Protocol
The Simple Network Management Protocol (SNMP) was introduced in 1988 by the
Internet Engineering Task Force (IETF). The reason for this was that at this time,
computers got more popular and the need to connect them increased. The result has been
that more devices have been included in IP networks. One goal of SNMP was to simplify
the management of bigger networks and allow remote management of devices for system
administrators, but the main goal was to monitor network components. The protocol
was designed to provide a simple set of instructions. The most used implementation for
SNMP is called "Net-SNMP"1 and is available on all major operating systems. Over the
years, multiple versions of SNMP have been released, but only three of them are mainly
used: v1, v2c, v3. The versions are not backward compatible and the SNMP devices
need to implement the detection of the used protocol.

1http://www.net-snmp.org

11

http://mibdepot.com
http://www.net-snmp.org

2. State of the Art

The communication between network devices is handled by agents. There is one master
agent which communicates with other master agents. The master agent is getting the
needed information from other agents on the same device. The agents are exposing data
from MIBs (see Section 2.1) as variables. They also handle a set of instructions, if data
in their MIB tables are affected.

The most important features of SNMP are get, set instructions and traps. With the
get instruction, it is possible to request data from devices by specifying the OID of the
data set. The set instruction can modify the data saved on a specified OID. There is
also a walk instruction, that allows querying multiple OID at once. To accomplish this,
the SNMP agent sends multiple get requests. There is also an advanced version of walk,
called bulkwalk, that can improve the performance when querying multiple OIDs.

The simplest and first version of SNMP was v1. It has no security mechanisms besides
community strings and only supports up to 32-bit counters while the communication is in
plain text. In 1993, SNMP v2c was designed, which is a subversion of v2. It introduced
an inform command, which is similar to a trap, but with acknowledgments. The focus
of v2c has been performance improvements and better error handling. With v3 security
mechanisms, encryption and authentication have been introduced.

SNMP is now also used to configure network devices, which is a new purpose for the
protocol. Because of this change in use-case, the IEFT introduced a successor standard
called NETCONF (see Section 2.4) in 2006. Until today, SNMP is still the most used
open protocol to configure and monitor network devices. For simplicity, the next sections
will only contain the most recent SNMP definitions.

2.2.1 Architecture

The architecture of SNMP is defined in RFC 3411 [HWP02]. Its goal is to make SNMP
modular to allow evolution over time.

The SNMP management system is a network with multiple devices that can be managed
by SNMP. These devices are called SNMP entities and contain a command responder
application and a notification originator application. These applications need to have
access to management instrumentation, also called agents. The network must contain
at least one manager, which is a device that manages other devices. It is an SNMP
entity containing a command generator application or a notification receiver application,
or both applications can be contained. A compatible management protocol between
communicating SNMP entities is needed.

Managers are devices that monitor and control other SNMP entities. They are often
implemented on servers or end-user devices for temporary usage. Managed devices
are hosts, routers, switches, servers, etc, that are controlled and monitored via their
management information base.

12

2.2. SNMP - Simple Network Management Protocol

If a security model is used for SNMP, it should protect against modification of infor-
mation and masquerade. There should also be protection to prevent message stream
modifications and disclosure. A security model does not need to protect against denial
of service and traffic analysis. Denial of service floods the network with messages, which
results in a failure of the network. In that case, SNMP can not operate anymore. The
attack method traffic analysis uses package analysis to predict operations. These predic-
tions are easy due to the design of SNMP. For that reason, it was decided that protection
against this attack vector is not needed.

SNMP messages are encapsulated in Protocol Data Units (PDUs). Because SNMP
messages can have different use cases, they are classified into seven categories. Every
PDU type can be classified into multiple categories. The following classes exist according
to RFC 3411 ([HWP02]):

• Read Class - For operations that retrieve management information, for example:
GetRequest-PDU, GetNextRequest-PDU, and GetBulkRequest-PDU.

• Write Class - For operations that modify management information, for example:
SetRequest-PDU.

• Response Class - For operations which are a response of a previous request, for
example: Response-PDU, Report-PDU.

• Notification Class - For operations that are sending notifications to a notification
receiver, for example: Trapv2-PDU, InformRequest-PDU.

• Internal Class - For operations that exchange information between SNMP engines,
for example: Report-PDU.

• Confirmed Class - For operations that are causing the receiving SNMP engine, to
send back an acknowledgment, for example: GetRequest-PDU, GetNextRequest-
PDU, GetBulkRequest-PDU, SetRequest-PDU, and InformRequest-PDU.

• Unconfirmed Class - For operations that are not causing the sending of an acknowl-
edgment, for example: Report-PDU, Trapv2-PDU, and GetResponse-PDU.

SNMP Entity

The purpose of the SNMP engine is to provide services to send, receive, authenticate and
encrypt messages, while also handling the access control to managed objects. For these
tasks, it contains a Dispatcher, a Message Processing Subsystem, a Security Subsystem,
and an Access Control Subsystem. Only one SNMP engine exists per SNMP entity. An
overview of the subsystems, their naming, and hierarchy can be found in Figure 2.2.

Every SNMP engine is identified by a snmpEngineID. This identifier must be unique
within an administrative domain. Because only one SNMP engine exists per SNMP
entity, this identifier can also be used to identify the SNMP entity.

13

2. State of the Art

SNMP entity

SNMP engine (identified by snmpEngineID)

Dispatcher
Message

Processing
Subsystem

Security
Subsystem

Access
Control

Subsystem

Application(s)

Command
Generator

Notification
Receiver

Proxy
Forwarder

Command
Responder

Notification
Orginator Other

Figure 2.2: Naming and hierarchy of single elements from a SNMP entity (Adapted from
[HWP02])

The Dispatcher is used to send and receive SNMP messages. Therefore, it must be able
to determine the SNMP version of a message. It provides an abstract interface for the
SNMP application to send and receive messages over the network. Only one Dispatcher
can exist per SNMP engine.

An SNMP engine also contains one Message Processing Subsystem, which is responsible
for preparing messages for sending and extracting data from received messages. One
Message Processing Subsystem can contain multiple Message Processing Models (e.g.
SNMPv3, SNMPv2c, SNMPv1), whereby model processes its matching SNMP message.

The Security Subsystems is part of the SNMP engine and provides services like authenti-
cation and privacy. The subsystem may contain one or more models. Only one Security
Subsystem can exist per SNMP engine.

14

2.2. SNMP - Simple Network Management Protocol

Lastly, another subsystem included in an SNMP engine is the Access Control Subsystem,
which provides one or more Access Control Models. The default Access Control Model
is View-Based, only a predefined set of MIB Objects can be viewed or edited. Only one
of these subsystems can exist per SNMP engine.

Figure 2.3 shows a typical setup of an SNMP Manager. It has one or more command gen-
erators and notification receivers. An instruction is generated in a command generator
application and the instruction is sent to the Dispatcher. In the Dispatcher the instruc-
tion is encapsulated in a PDU. After that, the Message Dispatcher transfers the data to
the Message Processing Subsystem, where the correct SNMP version and its properties
are appended. The Message Processing System transfers the message to the Security
Subsystem, where security-related information is added. In the next step, the message
is passed to the Transport Mapping. This step adds transport-related and transport-
protocol-related information to the message. After that, the message is embedded into
the Transport Protocol and is delivered over the network. Receiving a message and
parsing it works in reverse order. The only difference is that a notification receiver appli-
cation is receiving the message instead of a command generator application. For further
information, see Section 4.6.1 in RFC 3411 on page 38 [HWP02].

Figure 2.4 shows a typical setup of an SNMP Agent, which has one or more command
receiver applications and notification originator applications. The process of receiving
and decoding a message is the same as for an SNMP manager. After the message is
decoded, it can be sent to a proxy forwarder application, which is forwarding the message
to another SNMP entity, or to the notification originator application and command
responder application. These applications may check if the sender is authorized to
receive or write the content of the requested MIB entry. They can check if the access
is granted by communicating with the access control unit. If access is granted, the
content of the MIB entry may be sent back to the origin of the request in reverse order
of receiving the message. For further information, see Section 4.6.2 in RFC 3411 on page
39 [HWP02].

The snmpEngineID only describes the SNMP engine and the SNMP entities. Because of
that, every context (instance of MIB Objects) also needs to be uniquely identified. Every
context has a readable name (e.g. bridge0, bridge1), and additionally, the contextID is
provided. If the contextID is the same as the snmpEngineID, the context is only valid on
this SNMP entity. If the context is valid over multiple SNMP entities, another contextID
may be used, but the combination of contextName and contextID must be unique in the
administrative domain. It is also possible that multiple combinations of contextID and
contextName exist to identify the same object.

With SNMPv3 three levels of security have been introduced:
• noAuthNoPriv - without authentication and without privacy

• authNoPriv - with authentication and without privacy

• authPriv - with authentication and with privacy

15

2. State of the Art

The security levels are sorted like this: noAuthNoPriv < AuthNoPriv < AuthPriv. Every
message has an associated security level and all subsystems and applications are required
to provide a value of security level or to hold the same security level while processing
data.

SNMP entity
notification
orginator

applications

notification
receiver

applications

command
generator

applications

Dispatcher

PDU
Dispatcher

Message
Dispatcher

Transport
Mapping

Message Processing
Subsystem

v1

v2c

v3

Security
Subsystem

Other
Security
Model

User-based
Security
Model

Transport Protocol

Network

Figure 2.3: Typical structure of an SNMP manager (Adapted from [HWP02])

16

2.2. SNMP - Simple Network Management Protocol

SNMP entity
MIB instrumentation

proxy
forwarder

applications

notification
orginator

applications
access
control

command
responder

applications

Dispatcher

PDU
Dispatcher

Message
Dispatcher

Transport
Mapping

Message Processing
Subsystem

v1

v2c

v3

Security
Subsystem

Other
Security
Model

User-based
Security
Model

Transport Protocol

Network

Figure 2.4: Typical structure of a SNMP agent (Adapted from [HWP02])

17

2. State of the Art

2.2.2 Protocol

The basic functions of the protocol are defined in RFC3416 [Pre02b]. It is defined that
it should be possible to retransmit a request. Under normal circumstances, the receiver
is required to send a response to the originator of the message. If no response is received,
the originator can decide if the message should be retransmitted, but the application
needs to act responsibly with the retransmission frequency and duration.

The message size is limited to the capabilities of all SNMP entities that are part of the
communication. The maximum size of a message is defined by the smallest value of the
maximum size that both the receiving SNMP entity can accept and the sending SNMP
entity can generate. The maximum size an entity can receive may be known. Otherwise
the size is defined by the transport domain when sending the message. The maximum
size an entity can generate is defined by local constraints. Each transport mapping
defines a minimum size, which every entity needs to be able to consume and produce.

The goal of the GetBulkRequest-PDU is to reduce the number of messages. Therefore,
messages should be as large as possible. To achieve this, the PDU is embedding the
limits of supported message sizes from the command responder and command generator
into the request. It can happen that the maximum message size is bigger than the MTU
of the network, leading to fragmentation of the message. Message fragmentation can
decrease the reliability of the transfer.

SNMP only requires an unreliable datagram. The protocol encourages the use of UDP
to send messages, but other transport mappings can also be used.

PDUs contain a request-id field. The request-id is generated by the sending SNMP entity
and added to the Request-PDU. If a response for that request is sent by the receiving
entity, the request-id from the received request is used. This makes it easy to match sent
requests with the incoming response. To calculate round-trip time, the request-id needs
to be changed if the PDU is retransmitted. A non-zero value of the error-status field
in the Response-PDU indicates that an error occurred. The error-index field represents
which variable-binding caused the error. Thereby, the error-index is the same as the
index of the variable-binding in a variable-binding list.

The different PDUs can contain fields that are not relevant for the specific PDU type.
These fields are ignored while processing the PDU by the receiving entity. Every field,
even the ignored ones, must have a valid ASN.1(2.1.2) syntax and encoding. There
can be as many variable bindings as fit into the message size limit, but no more than
21474483647.

18

2.2. SNMP - Simple Network Management Protocol

The GetRequest-PDU is generated and is transmitted by the request of an application.
Each variable binding in the variable-binding list is getting processed by the receiving
SNMP entity. Every field of the Response-PDU has the same value as the corresponding
sent PDU. They are processed as follows: If the variable name exactly matches the name
of the accessible variable, then the variable field is set to the value of the accessible
variable. If the name does not match exactly and does not have an OID prefix that
matches the requested OID prefix, the value is set to "noSuchObject". Otherwise, the
variable field is set to "noSuchInstance".

If any other error occurs, the Response-PDU is set to the same value as the received
fields and the error-status field is set to "genError". Otherwise, the error-status field
is set to "noError" and the error-index field is set to zero. If the message is shorter
than or equals the maximum message size, the Response-PDU is transmitted to the
originator. Otherwise, an alternative Response-PDU is generated, with the same values
as the received PDU, the error-status field set to "tooBig" and the error-index field set to
0. If this alternate Response-PDU is bigger than the maximal message size, the message
is dropped and the snmpSilentDrops counter is increased.

The GetNextRequest-PDU is generated and is transmitted by the request of an applica-
tion. The variables are processed as follows: The successor variable of the lexicograph-
ically order variable names is located. The found name and the value are set in the
Response-PDU to the same index as the variable of the GetNextRequest-PDU. If the
requested variable has no successor, then the value is set to "endOfMibView" and the
name is set to the name of the variable from the GetNextRequest-PDU. The errors are
handled in the same way as for the GetRequest-PDU.

The GetBulkRequest-PDU is generated and transmitted by the request of an application.
The purpose of this PDU is to request a large amount of data, but it also can be used
to retrieve large tables rapidly and efficiently. Every variable is processed on receive
and a Responds-PDU is produced with the request-id, but the variables are not mapped
one-to-one like in the GetRequest-PDU, GetNextRequest-PDU, and SetRequest-PDU.
This PDU has a non-repeaters and max-repetitions field, which is not included in other
PDUs. The non-repeaters field contains the number of variables in the variable list where
a single-lexicographic successor can be returned, while the max-repetitions field contains
the number of lexicographic successors for the remaining variables.

In the following description, we define these variables: N is the value of the non-repeaters
field, M is the value of the max-repetitions field, and R is the maximum of variables
minus the value of non-repeater fields N . The variables get requested as follows: One
variable of the Respond is assigned to the first N variables, M variables are requested
for the R variables. This results in a total number of N + (M ∗ R) requests. A more
detailed explanation is given in RFC 3416 Section 4.2.3 on page 15 [Pre02b]. The errors
are handled the same as for the GetRequest-PDU.

19

2. State of the Art

The SetRequest-PDU is generated and is transmitted by the request of an application.
The receiving entity parses the PDU and produces a response PDU. In the first step, the
variables are validated, and if all validations succeed, the variables get altered. These
validations are performed:

• Access for the variable name is validated. If no access is granted, the error-status
is "noAccess".

• If the OID prefix does not match any variable that can be created or modified, the
error-status is set to "notWriteable".

• If the ASN.1 type is inconsistent with the required type, the error-status is set to
"wrongType"

• If the required length is inconsistent, the error-status is set to "wrongLength"

• If the encoding does not match ASN.1, the error-status is set to "wrongEncoding"

• If a value is specified that can not be set, the error-status is set to "wrongValue".

• If a specified variable does not exist or can not be created, the error-status is set
to "noCreation".

• If a specified variable does not exist and can not be created under circumstances,
the error-status is set to "inconsistentName".

• If a variable is specified that can not be created or modified, no matter of the new
value, the error-status is set to "notWriteable".

• If a value can not be set or modified, but is getting modified, the error-status is
set to "inconsistentValue".

• If the variable needs allocation of a resource that is not available, the error-status
is set to "resourceUnavailable".

• If the processing fails for another reason, the error-status is set to "genErr".

If a requested variable does not exist, it is created and the value is assigned to it. When
the same variable should be set multiple times with different values in one request,
the behavior is implementation-specific. If an assignment fails, all other assignments
from the same request get reverted and the error-status is set to "commitFailed". If it
is not possible to revert all assignments, the error-status is set to "undoFailed". It is
recommended for implementations to avoid both cases.

20

2.2. SNMP - Simple Network Management Protocol

The SNMPv2-Trap-PDU is generated and is transmitted on behalf of a notification
originator application. These PDUs are often used to inform remote entities about
events that occurred. The PDUs are not getting confirmed and the destinations for these
PDUs are implementation-dependent. The first variables in an SNMPv2-Trap-PDU are
sysUpTime.0 and snmpTrapOID.

The InformRequest-PDU is generated and is transmitted on behalf of a notification orig-
inator application. Like SNMPv2-Trap, it informs about an event without guarantee
of delivery, but adds confirmation. The destination to which it is sent is defined by
the notification originator. The first two variables in the PDU are sysUpTime.0 and
snmpTrapOID. If an InformRequest-PDU is received, the entity validates the received
PDU. If the validation succeeds, the entity presents its content to the appropriate appli-
cation, generates a Respond-PDU to confirm the PDU, and transmits it.

2.2.3 Transport Subsystem

The goal of the Transport Subsystem ([SH09]) is to provide access to lower-layer security
mechanisms. This can include authentication of the sender, encryption, data integrity,
and timeliness checking. Examples for these techniques are TLS, Simple Authentication
and Security Layer (SASL) as well as SSH. Transport Mappings need to use security
protocols the way they were designed. Modified usage often implies that the protocol
can not deliver the expected security characteristics. They also should not modify the
underlying security protocol, which might change it is security characteristics.

Transport Subsystems must meet the following requirements:

• They must follow the architectural modularity requirements.

• If establishing the connection between two entities for every message is too expen-
sive, sessions can be used.

• The security model must use the same or a higher security level than provided by
the transport model.

• A message processing model might unpack security-specific parameters from in-
coming messages, before calling a specific security model.

• Authentication and authorization are separated. Authentication is handled by the
security model and authorization by the access control model.

A security name is a human-readable value, that describes the used security protocol
and is used by SNMP applications and the Access Control Subsystem. The transport
mapping security name is a human-readable value and is used by the transport and
security models to identify the used transport security protocol.

21

2. State of the Art

The security value consists of two values: the requested security level, and the trans-
port security level. The first value represents the minimum security level required for
transport models. It can be used to prevent sending messages via sessions that are not
secure enough. The second value represents the security level offered by the session. The
security model can use this to ensure the minimum security level for incoming messages
for a session.

2.2.4 Transport Mapping

Transport Mappings are used to describe the way how data is transferred between mul-
tiple SNMP entities. An SNMP entity can use multiple transport mappings, but every
entity should provide access via UDP over IPv4. If an entity supports IPv4 as Trans-
port Mapping, it must also implement UDP over IPv4. The definition for Transport
Mappings can be found in RFC 3417 [Chr01].

It should be mentioned that popular Transport Mappings are "SNMP over UDP over
IPv4" [Chr01], "SNMP over UDP over IPv6" [Chr01] and "SNMP over IEEE 802 Net-
works (Ethernet)" [SJ06]. To be able to communicate with SNMPv1 entities, a proxy is
needed [FWLR00].

2.3 LLDP - Link Layer Discovery Protocol

LLDP (Link Layer Discovery Protocol) is an open and vendor-independent Layer 2
(Data Link Layer) Protocol, which is defined in IEEE Std 802.1AB [IEE16]. Its purpose
is to advertise the identity and capabilities to the connected network neighbors. Each
device needs to run an LLDP Agent, which collects the information of the neighbors and
publishes its information periodically.

LLDP data are transferred via Ethernet frames, with a specific multicast destination
addresses and a specific EtherType. These frames with the specific multicast destination
addresses are not forwarded by switches and routers, but other addresses are permitted.

LLDP is a one-way protocol, the agent can receive and transmit information, but does
not directly communicate with other agents. Because of that, LLDP allows to separately
enable the receive or transmit functionality. The LLDP agent itself does not provide any
functionality to process information. Received information is stored in multiple MIB
tables and can be read per SNMP (see Section 2.2) or other provided interfaces [IEE16].

2.3.1 Communication

For communication, Ethernet frames are used. They contain the destination address, the
source address, the EtherType, and the LLDP Data Unit (see Table 2.1). The destination
address is a multicast MAC address. It can be a specified and reserved MAC address by
IEEE Std 802.1AB [IEE16], but other MAC addresses are also permitted. The Ethernet
frame must contain the EtherType "0x88CC". If the Agent supports EtherType encoding,

22

2.3. LLDP - Link Layer Discovery Protocol

it shall be encoded in the LLDP Data Unit header. The source address must be the
MAC Address of the sender or the sender port.

Destination Address Source Address EtherType LLDPDU
Multicast Address MAC Address of LLDP Device 0x88CC See 2.3.2

Table 2.1: Simplified structure of a Ethernet Frame for LLDP

Supported destination Addresses

IEEE Std 802.1AB ([IEE16]) contains predefined MAC address groups, that allow filter-
ing the proposal of the Ethernet frames by different network components. These network
components are Two-Port MAC Relay (also known as cross-connect Ethernet devices),
Service Virtual Local Area Network (S-VLAN), Customer Virtual Local Area Network
(C-VLAN), and MAC Bridges (Network Switch).

Nearest bridge group (01:80:C2:00:00:0E): Packages with this destination ad-
dress are not propagated by Two-Port MAC Relay (TPMR) components, S-VLAN com-
ponents, C-VLAN components, and MAC Bridges. This means, packages only contain
information about devices attached to the same LAN segment as the recipient.

Nearest non-TPMR bridge (01:80:C2:00:00:03): Frames using this group as des-
tination are not propagated by S-VLAN components, C-VLAN components, and MAC
Bridges. But they are propagated by Two-Port MAC Relay (TPMR) components.

Nearest custom bridge (01:80:C2:00:00:00): LLDPDU sent with this destination
address group are not propagated by C-VLAN components and MAC Bridges. But they
are propagated by S-VLAN components and Two-Port MAC Relay (TPMR) compo-
nents.

Custom groups and custom addresses: Custom groups or individual addresses
could be used, but it can happen that the custom address or group is not implemented
on the recipient.

Table 2.2 shows the needed implementation for each destination address group and
network device category [IEE16].

2.3.2 LLDP Data Unit (LLDPDU)

The LLDP Data Unit contains a sequence of TLVs (see Section 2.3.3). These contain the
information sent by the Agents. The Data Unit frame contains three mandatory TLVs
and can contain multiple optional ones.

Every LLDPU needs to contain a number of octets. The octets are starting with 1 and
the bits in the octets are numbered from 1 to 8, where 1 is the low-order bit. When bits

23

2. State of the Art

Address C-VLAN
Bridge

S-VLAN
Bridge

TPMR
Bridge

End Station

Nearest bridge Mandatory Mandatory Mandatory Mandatory
Nearest non-TPMR
bridge

Mandatory Mandatory Not Permit-
ted

Recommended

Nearest customer
bridge

Mandatory Not Permit-
ted

Not Permit-
ted

Recommended

Any other group
MAC address

Permitted Permitted Permitted Permitted

Any individual
MAC address

Permitted Permitted Permitted Permitted

Table 2.2: Support for MAC addresses (Adaption based on [IEE16])

Name Description Requirement
Chassis ID TLV An unique identifier from the device send-

ing this package
Mandatory

Port ID TLV An identifier for the port the receiving de-
vice is connected to.

Mandatory

Time to Live TLV The time in seconds how long the data can
be identified as valid

Mandatory

Optional TLV See 2.3.3 Optional
...
Optional TLV See 2.3.3 Optional
End of LLDPDU TLV Marks the end of a TLV sequence. Optional

Table 2.3: Structure of a LLDPDU Frame (Adaption based on [IEE16])

in an octet are represented as a binary number, the highest bit is the most significant
bit. If octets are used to represent a binary number, the lowest octet contains the most
significant number. When the LLDPU or parts of it are represented using a diagram,
the lowest octet is shown most left of the page and within an octet the highest numbered
bit is shown most left [IEE16].

2.3.3 Type, Length, Value (TLV)

The TLV format represents information and contains its type and length. The first TLV
section (see Table 2.4) contains the type of the information and is 7 bits long. The next
section includes the length of the information string, it is 9 bits long and represents the
total length of the information string in octets. The last section of the TLV contains
the information string, which can be 0 to 511 Octets long. The information string can
contain binary or alphanumeric data. For encoding alpha-numeric data ,UTF-8 [Yer03]
shall be used.

24

2.3. LLDP - Link Layer Discovery Protocol

TLV type TLV information string length TLV information string
7 bits 9 bits 0 ≤ n ≤ 511 Octets

Table 2.4: Structure of a TLV (Adaption based on [IEE16])

TLV types can be grouped into two categories. The first category contains basic infor-
mation for network management and is required by every LLDP implementation. Each
TLV of this category has its type specified. The second category is organizationally spec-
ified. Each TLV of this category has the same type, but includes an organizationally
unique identifier (OUI) and an organizationally-specific TLV subtype. This category is
specified by standard groups like IEEE 802.1 and IEEE 802.3. The different LLDP TLV
Types as defined in [IEE16] are briefly summarized in the following.

type name usage reference
0 End Of LDDPDU Optional 2.3.3
1 Chassis ID Mandatory 2.3.3
2 Port ID Mandatory 2.3.3
3 Time to Live Mandatory 2.3.3
4 Port Description Optional 2.3.3
5 System Name Optional 2.3.3
6 System Description Optional 2.3.3
7 System Capabilities Optional 2.3.3
8 Management Address Optional 2.3.3
9-126 Reserved — —
127 Organizationally Specific Optional 2.3.3

Table 2.5: The value of all TLV types (Adaption based on [IEE16])

End Of LLDPDU TLV

This TLV type is optional and uses type value 0. It is 2-octets long and contains only
zeros, and it is used to mark the end of a TLV sequence in an LLDPDU frame.

Chassis ID TLV

This TLV type is mandatory and uses type value 1. It is up to 258 octets long and
contains an identifier that can be associated with the transmitting agent. It contains an
8-bit subtype at the beginning of the information string because there are several ways
to identify an agent. The subtype can classify a chassis component, interface alias, port
component, MAC address, network address, interface name, or a locally assigned string.
Each LLDPDU shall only contain one Chassis ID TLV and it shall be the first TLV in
an LLDPDU frame.

25

2. State of the Art

Port ID TLV

This TLV type is mandatory and uses type value 2. It is up to 258 octets long and
contains an identifier, which can be associated with the port of the transmitting agent.
It contains an 8-bit subtype at the beginning of the information string because there
are several ways to identify the port of an agent, like the Chassis ID. The subtype can
classify an interface alias, port component, MAC address, network address, interface
name, agent circuit ID, or a locally assigned string. Each LLDPDU shall only contain
one Port ID TLV and it shall be the second TLV in an LLDPDU frame. The port ID
shall be constant while the port remains operational.

Time To Live TLV

This TLV type is mandatory and uses type value 3. It is 4 octets long and represents
the number of seconds that the receiving agent can assume the attached information as
valid. If the time to live contains a non-zero value, the receiving agent is notified to
replace old saved information with the attached information. If the time to live is set to
zero, the receiving agent is notified to delete all information associated with this agent.
This may be used to indicate a shutdown of the sending port. Each LLDPDU shall only
contain one Time to Live TLV and it shall be the third TLV in an LLDPDU frame.

Port Description TLV

This TLV type is optional and uses type value 4. It is up to 257 octets long and contains
an alpha-numeric string that describes the sending port. If ifDesc object [MK00] is
implemented, it should be used for this field. Each LLDPDU shall only contain one Port
Description TLV.

System Name TLV

This TLV type is optional and uses type value 5. It is up to 257 octets long and contains
an alpha-numeric string of the system name from the sender. If sysName object [Pre02a]
is implemented, it should be used for this field. Each LLDPDU shall only contain one
System Name TLV.

System Description TLV

This TLV type is optional and uses type value 6. It is up to 257 octets long and contains
an alpha-numeric string of a textual description from the sender. If sysDescr object
[Pre02a] is implemented, it should be used for this field. Each LLDPDU shall only
contain one System Description TLV.

System Capabilities TLV

This TLV type is optional and uses type value 7. It is 6 octets long and contains bit mask
of functions the system is capable and functions the system has enabled. A system can

26

2.3. LLDP - Link Layer Discovery Protocol

have multiple capabilities and multiple can also be enabled. The bitmask fields are two
octets long and can represent following capabilities:

• repeater

• MAC Bridge component

• 802.11 Access Point

• router

• telephone

• DOCSIS cable device

• station only

• C-VLAN component

• S-VLAN component

• Two-port MAC Relay

• other
Each LLDPDU shall only contain one System Description TLV.

Management Address TLV

This TLV type is optional and uses type value 8. It is up to 169 octets long and contains
the management address of a device to reach higher layer protocols. This TLV type also
provides space to include the system interface number and an object identifier (OID),
if they are known [IEE16]. In Table 2.6 the structure of the information string can be
seen.

management
address
string
length

management
address sub-
type

management
address

interface
number
subtype

interface
number

OID
string
length

OID

1 octet 1 octet 1-31 octets 1 octet 4 octets 1 octet 0-128
octets

Table 2.6: Structure of the information string from a Management Address TLV (Adap-
tion based on [IEE16])

The management address subtype contains the type of an address represented in the man-
agement address field. It can be one of the types defined in ianaAddressFamilyNumber
module [Edi02].

27

2. State of the Art

The management address should contain a Layer 3 address. If no management address
is available, the field should contain the MAC address of the sender or the MAC address
of it is port.

The interface number subtype describes the value of the interface number field. The
following values are defined: Unknown, ifIndex, system port number. If the type is
Unknown, the interface number field must only contain zeroes.

The object identifier (OID) field contains an identifier of the type of the hardware com-
ponent or the protocol entity associated with the indicated management address. The
OID shall be ASN.1 [ISO15] encoded. If no OID is provided, this field shall be skipped.

At least one Management Address TLV should be included in every LLDPDU, the ad-
dress provided should be the address with the best management capabilities. If more
than one Management Address TLV is provided, each address shall be different.

Organizationally Specific TLVs

This TLV type is optional and uses type value 127. This TLV type was created to extend
the information that can be advertised by an agent. This type can be specified by a
standardizing organization, but also by individual software and equipment vendors. The
information string contains a three octets long organizational unique identifier (Clause
8 of IEEEStd 802-2014), one-octet long unique organizationally defined subtype, and an
up to 507 octets long organizationally defined information string.

28

2.4. NETCONF - Network Configuration Protocol

2.4 NETCONF - Network Configuration Protocol
The Network Configuration Protocol (NETCONF) was first published in December 2006
as RFC 4741[Enn06]. It was created as the successor to SNMP (see Section 2.2) to
modernize, simplify, and unify network management. The protocol was updated in June
2011 with RFC 6241[EBBS11]. The updated version defines the protocol as follows.

NETCONF uses remote procedure calls (RPC) to send and receive data. The data are
encoded in XML. For communication between client and server, secure and connection-
oriented sessions are used. Administrative devices are called clients, while network de-
vices are called servers. A server can support one or more sessions. Configuration
changes can only be done by authorized sessions and the effects of these changes must
be visible to all active sessions.

It is possible for the client to discover the capabilities of a server. This helps the client to
adapt its behavior to the capabilities of the server. Capabilities can have dependencies
on other capabilities and a server must support all depending capabilities to support a
capability.

The protocol is separated into four layers:
• Secure Transport (Layer 1) - The task of this layer is to provide a path between

client and server across the network. The path can be provided via any protocol
that fulfills the basic requirements.

• Messages (Layer 2) - This layer provides a mechanism for encoding RPCs and
notifications.

• Operations (Layer 3) - Contains a set of base protocol operations.

• Content (Layer 4) - Contains data of the device.

To specify data models, the YANG data model language ([Bjö10]) was created. It covers
the operations and content layer.

Transport protocols need to provide reliable and sequenced data delivery connections and
automatically release requested resources on connection close. Moreover, authentication,
data integrity, confidentiality, and replay protection must be provided. The protocol is
responsible for establishing the connection between server and client. A NETCONF
peer assumes that the authentication is handled by the protocol. Every NETCONF
implementation must provide and support the SSH mapping ([Cul11]).

29

CHAPTER 3
Concept

An important prerequisite for quick reconfiguration of network devices is an always up-
to-date model of the physical network topology. This information is needed to generate
a new configuration for the real-time network TSN on demand. To find the best route
through the network, it has been decided to include the following properties: cable
length, speeds, and the material of the connection on the physical layer. An open
and common protocol to detect connected devices on a device is LLDP. LLDP offers the
ability, for devices to announce their information over the complete network until a router
is separating it. However, this is not supported by most LLDP daemons. A daemon
is sending information about the local and the remote port, but additional information
needs to be gathered from the device itself. If all daemons would send their information
to the whole network, every device would have a huge list of information, that needs to
be processed by the device. If every device only gets information from neighbors, it is
less work to update the information when the network topology is changing. To query
the information, the most common LLDP daemon lldpd supports publishing its data to
an SNMP daemon (for details, see Section 2.3).

The first step of generating a model of the network topology is to make a deep scan of
the network to find all SNMP devices. With the result of the deep scan, it is possible to
scan the found devices separately to get more detailed information. If these initialization
steps are completed, the application will wait for notifications of SNMP devices on the
network.

The deep scan is implemented in a way that it can scan a large network in a short
time. When the scan is started, it sends SNMPv1 GET requests to all IPv4 addresses
in the given range. Because the scan is using normal requests, a community needs
to be specified. To keep the traffic small, the scan requests the MIB field SNMPv2-
MIB::sysDescr. This field should be implemented by every device and contains only
basic information. The request is sent to all given IPv4 addresses, with a delay of 10ms
between requests.

31

3. Concept

The scan waits for responses and logs them. This is possible because SNMP is a stateless
protocol. A normal SNMP scan would send a request to one device and wait for the
responses. If an answer is received or a timeout reached, the next request to the next
device is being sent. The normal approach can take up to 13 minutes depending on the
size of the network. Due to the implementation of the deep scan, it is only possible to
scan 65535 IPv4 addresses with one scan. The bandwidth needed for this scan is less
than 100MB/s. An alternative to the deep scan implementation would be to perform a
depth-first or breadth-first search with the following steps:

• Get the neighbors found by LLDP on the scanning device, contact them per SNMP,
and get their LLDP neighbors.

• Continue with the newly discovered neighbors until the whole network is known.
The speed of this scan would depend on the structure and size of the network. It would
require contacting each device at the initialization phase one by one and parsing the
information from each device after each scan. This could result in bad performance on
large networks.

Every device found by the deep scan is scanned again by a SNMP v2c WALK request.
These tables are requested to get more detailed information:

• LLDPMIB::lldpLoc - Contains LLDP information about the local device.

• LLDPMIB::lldpRem - Contains LLDP information about all connected devices.

• IFMIB::if - Contains information about all network interface of the local device.
After each SNMP walk, the data is processed and inserted into a database. To pair a
connection of a local and a remote port, the MAC-Addresses of these ports are used. It
is required that the data of both ports have been queried. The remote MAC address can
be found at LLDPMIB::lldpRemChassisId if LLDPMIB::lldpRemChassisIdSubtype is set
to a physical address. The local MAC address can be found at IFMIB::ifPhysAddress.

The last step is to wait for incoming SNMPv1 traps, which get triggered by devices if
the status of an interfaces changes. If such a trap is detected, the sender of the trap
is scanned by an SNMPv2c WALK request again. The queried data is parsed and the
found structure is saved again.

32

CHAPTER 4
Implementation

The implementation follows the concept in the previous chapter, a detailed flow diagram
of the application can be seen in Figure 4.2. To be able to receive a trap while the
application is running, a separate thread is needed. This can be seen in the figure,
where the flow splits into two separate paths. If a terminating signal is received, both
threads will get terminated.

The application is using snmpwalk to query data from devices. There is an open-source
implementation of it by the net-snmp project. It is compiled by the build system and
executed by exec from the application. Its output is parsed by the application. A
more clean way would be using a library and not executing a precompiled executable. A
common library for that is net-snmp, but due to the broad platform and version support,
it is very complex. For a first prototype, the precompiled executable has been used. This
implementation will deliver the queried data as a string over stdout.

For the deep scan, the application is using onesixtyone 1. It is the most common open-
source implementation for such a task. With it, it is possible to scan the network for
SNMP devices in a very short time span. This program is precompiled, executed with
exec and the output parsed by the application.

Due to the usage of a precompiled version of snmpwalk, the application needs to parse
a lot of strings. Because string operations are limited in C, it was decided to use a
dedicated library. The library sds has been selected for the application. Sds manages
the memory allocation for the strings and is compatible with default C strings. The
library also offers multiple methods, that are faster than the corresponding C string
functions. It also offers functions that provide more comfort, e.g. tokenize a string with
a specific delimiter. When using sds methods, the developer needs to be aware that the
methods need to be used in other ways than default c string.h methods.

1https://github.com/trailofbits/onesixtyone

33

4. Implementation

Devices

id INTEGER PRIMARY KEY, AI
ManagementAddress INTEGER
CapabilitiesSupported INTEGER
CapabilitiesEnabled INTEGER
SystemName TEXT

Ports

id INTEGER PRIMARY KEY, AI
DeviceId INTEGER FOREIGN KEY (Device.Id)
InterfaceId INTEGER
MACAddress TEXT
MaxSpeed INTEGER
OperatingStatus INTEGER
Name TEXT

Links

id INTEGER PRIMARY KEY, AI
PortAId INTEGER FOREIGN KEY (Port.Id)
PortBId INTEGER FOREIGN KEY (Port.Id)
LinkType INTEGER
Speed INTEGER
Length INTEGER

Figure 4.1: Database schema visualization of the application.

To save the queried data in the structure needed, the application uses sqlite3 2. Sqlite
was selected because it is easy to use with C. The sqlite3 library has a simple API to
create a database and execute SQL statements. With SQL it is possible to easily query
data, with specific and complex conditions. Linking entries with others is possible, which
makes it easy to represent connections. Sqlite has good portability, which means other
applications can interact with the database easily. Data of a Sqlite database can easily
be visualized using existing tools. This makes it easy to use in the development process
and can be helpful with debugging. In Figure 4.1 the database schema that has been
used can be seen.

2https://www.sqlite.org/index.html

34

Initialization

deep
network scan

create
database

scan found
devices

snmpd
setup

waiting for
traps

waiting for
data from

traps

parsing data
from trap

scanning
sender of trap

reading traps

waiting until
threads
finished

cleaning up

exit

start

exit signal
received

data transfer

Figure 4.2: Program flow of the application.

35

CHAPTER 5
Evaluation

To visualize the scenario when a network device is added or removed, Figure 5.1 shows
an example network. A similar network has been used in the evaluation process of
the application. This network contains only one switch with IPv4 address 10.0.0.2, as
well as four additional devices. While the device with IPv4 address 10.0.0.1 holds the
application, the other devices do not have a task related to the network discovery. Every
device on this network has an SNMP daemon running and only the switch and the
application device have configured traps. These traps will notify the application if a
connection changes.

The scenario of removing a device from the network can be seen in Figure 5.2. Here, the
connection between the switch and the device with IPv4 10.0.0.4 got removed. Because
of that, the switch will send a trap to the application. The application parses the received
trap and initializes an SNMP scan of the switch. The received scan indicates that the
device with IPv4 10.0.0.4 got removed and it will be removed from the internal database.

In Figure 5.3 the event of adding a device can be seen. For this case, a new device with
IPv4 10.0.0.6 got added to the figure and a connection between it and the switch got
added. The switch detects the connection and sends a trap to the application. The
application initializes an SNMP scan of the switch. After parsing the result of the scan,
the application detects that a new device got added to the network. It will now make
an SNMP scan of the device with the IPv4 10.0.0.6 and add it and the new information
of the switch to the database.

37

5. Evaluation

10.0.0.1
(application)

10.0.0.2
(switch)

10.0.0.3
(device)

10.0.0.4
(device)

10.0.0.5
(device)

Figure 5.1: The application device has the IP-Address 10.0.0.1

10.0.0.1
(application)

10.0.0.2
(switch)

10.0.0.3
(device)

10.0.0.4
(device)

10.0.0.5
(device)

Figure 5.2: Communication is marked as an arrow, scanned devices are highlighted.

38

5.1. How to setup a device

10.0.0.1
(application)

10.0.0.2
(switch)

10.0.0.3
(device)

10.0.0.6
(device)

10.0.0.5
(device)

Figure 5.3: Communication is marked as an arrow, scanned devices are highlighted.

5.1 How to setup a device
To make a Linux device work with this application, it is necessary to install an LLDP
and SNMP daemon and configure them. More detailed information can be found in the
man pages of snmpd, lldpd and lldpdcli: [MAN21] [RB21] [Ber21]. The setup was tested
on Debian 10 and may vary depending on the Linux distribution. The first step is to
install lldpd and snmpd. After the installation has been finished, snmpd needs to be
configured. All configuration needs to be done with superuser permissions. For that, a
file needs to be created at /etc/snmp/snmpd.conf with the content shown in Listing 5.1.

SNMP v3 read-only community "public"
rouser public noauth

SNMP v1/v2c read-only community "public"
rocommunity public

proc 0

SNMP device info
syslocation "closet"
syscontact "Alice"
sysservices 12

Activate agentx
master agentx

Listing 5.1: snmpd.conf - Configuration file of the SNMP daemon

39

5. Evaluation

With this configuration, the SNMP daemon will listen to SNMP v1/v2c/V3 requests,
when community "public" is used. Entries can only be read and not modified. For
SNMPv3 no authentication is needed. The location of the system is "closet", the system
administrator is called "Alice" and it should provide information about the system like
interface names. It also commands the daemon to activate agentx, which allows other
daemons like lldpd to provide its data over SNMP.

The next step is to configure lldpd via the command line interface lldpcli. If lldpcli is
called, a special shell will open. After configuration is finished, the shell can be closed
with the command exit. The commands needed to configure the LLDP daemon are
provided in Listing 5.2.

configure lldp portidsubtype macaddress
configure system bond-slave-src-mac-type real
configure lldp capabilities-advertisements
configure lldp management-addresses-advertisements
configure lldp agent-type nearest-bridge

Listing 5.2: Commands to configure lldpd with lldpcli

These commands will configure the daemon to publish the MAC address of the port as
portid, use the real MAC address of the portadvertise the system capabilities, advertise
the management address of the device, and only broadcast the information until the
next bridge.

Now both daemons need to be started, for snmpd it only needs one command (See Listing
5.3).

$ snmpd

Listing 5.3: Starting snmpd.

The LLDP daemon, on the other hand, needs to be launched with the -x as an argument,
this will notify the daemon to search for an agentx and communicate with it. There are
two ways to start the daemon, the first way is to start lldp directly with the argument
(see Listing 5.4).

$ lldpd -x

Listing 5.4: starting lldpd with agentx support.

Using the lldp daemon as a service requires a configuration file. This line needs to be
added to /etc/default/lldpd:

DAEMON_ARGS="-x"

Listing 5.5: /etc/default/lldpd - Starting the daemon with agent x support.

40

5.2. Requirements

After adding the line, the daemon can be started with:

$ lldpd

Listing 5.6: Starting lldpd

5.2 Requirements
The application has some requirements to deliver the correct network topology. Every
device on the network must fulfill these requirements:

• Run an SNMP daemon.

• Support SNMPv1 and SNMPv2c.

• Run an LLDP daemon.

• LLDP data must be collectible with SNMP.

• Each interface port needs to have a unique MAC address.

• LLDPd must send the port MAC address as ChassisID.

• The remote port data must be connected to a local port in the MIB data.

• Every network node, that isn’t an end node, must send an SNMPv1 trap to the
application if the status of an interface changes.

41

CHAPTER 6
Conclusion and Future Work

Due to the many different used technologies, with their manufacturer-specific imple-
mentations, a lot of issues have occurred. The issues and their solution, if there have
been any, are presented in this section. There are also possible improvements for future
implementations depending on new technologies or modified versions of the used ones.

6.1 Issues

If two devices from the same model and vendor have different firmware versions, it can
happen that the devices return different types of data at the same MIB entry. To avoid
this problem, the devices should have the same firmware and package versions.

Multiple OIDs can point to the same MIB entry. It is common that every manufacturer
has its MIB table beside the standardized ones from IEEE. This makes it hard to find
the needed MIB entries. A common way to find the needed entry is to perform an SNMP
walk of the complete MIB table of the device. If the values of the entries are known,
the entries can be found that way. The project Net-SNMP provides an application
snmptranslate to convert between numbered and labeled OIDs. This translation process
can also help to find the correct entry.

By default, MIB entries can have different access permissions, depending on the config-
uration of the device. A recommended way to fix such issues is to create an SNMP view
on each device. The view defines which community can view what MIB entries.

Because manufacturers implement MIB tables differently, on some devices it was possible
to get the MAC address of the remote port. But it was not possible to identify which
local port received this information. All received information was assigned to local port
zero, which is representing the bridge and not a specific port.

43

6. Conclusion and Future Work

Some MIB entries of some manufacturers included non-printable characters, which repre-
sent different control characters in ASCII. Especially the entry SNMPv2-MIB::sysDescr
included them, which caused errors when parsing the output of snmpwalk.

The application needs SNMPv1 for the deep scan and traps and needs SNMPv2c for
scanning devices. Both protocols need to be activated. On some devices, it is required
to activate the protocol version separately. Others activate all versions if SNMP is
enabled.

To match the connection between ports, each port needs to have an individual MAC
address. But some devices only provide one MAC address for all ports.

One device returned a MAC address for a remote port, that could not be found on the
device, neither in the command line interface nor via SNMP. With this behavior, it was
not possible to match the local and remote ports.

There is no default way to get the length of a connection between two devices. The
reason for this is that there is no application in normal Ethernet networks that would
require the length of the line. It is possible to get the length of a cable by using the
Precision Time Protocol (PTP). It is used to precisely synchronize time between multiple
network devices. If a precision time measurement is available between devices, it can be
used to measure how long a message took from one device to another. Because the speed
of electrical signals in different materials is known, the distance the signal traveled can
be calculated. But while researching implementations of it, no daemon has been found
that hand this data to the SNMP daemon.

To calculate better routes, the material of the transmission medium is also needed. The
reason for that is the difference in latency from the material that is used for a connection.
The most common materials are fiber optical and twisted-pair copper for wired connec-
tions. There is no standardized way to get this information from the devices. This is
due to that the devices often do not have this information. There are MIB tables to
get this information from some devices, but they are proprietary and only for specific
devices.

To update information on changes on the network, the application is relying on SNMPv1
traps. All nodes of the network that are able to have more than one connection need to
send them to the application. In the current state of the application, these traps need
to be configured manually. Every device manufacturer has other methods and schemas
to configure them and they are often also not well documented.

6.2 Conclusion
In theory, it is possible to implement network discovery on the basis of LLDP and SNMP
but in practice, there have been a lot of pitfalls, which ultimately prohibited a full test
of the application with existing equipment. A detailed explanation of the issues can be
found in Section 6.1.

44

6.3. Improvements

Most problems occurred, with the provided data by the manufacturer. This includes
missing data, wrong data format, and more. Another problem has been the usage of
SNMP because it was very complicated to map the data between the data type register
and the data register. Under the devices that have been used for testing the application,
no network device could be found that fulfills all requirements defined in Section 5.2.

The current state of the implementation is that the data is queried from the devices and
it can also receive traps. But because of the occurred issues, the data from the single
network devices can’t be connected. This means that the data of the devices has been
written to the database, but the connection table stays empty.

There also has no way been found, to get the length of the connection and the connection
type. There are technical ways to implement such features, but this must be supported by
the device manufacturers. If device manufacturers would support a discovery mechanism
like described in this thesis, it could be an advantage to create a MIB table for this usage.
In this MIB table, all the needed data could be described, which would also speed up
the data gathering process.

Most needed data could be gathered with SNMP, but some essential data to connect
the found information couldn’t be gathered. SNMP provided a lot of pitfalls while
implementing the application. From that experience, a future implementation should
use NETCONF instead of SNMP. A detailed explanation of possible improvements can
be found in Section 6.3.

6.3 Improvements

It is possible to improve the speed of the initial deep scan, by reducing the interval
packages are sent. This would require a network with bigger bandwidth capabilities and
also a device that can handle this amount of traffic. Another way would be increasing
the interval, which would reduce the bandwidth needed and allow to increase the number
of devices that can be scanned. It would take longer to scan the whole network, but it
enables to cover larger networks.

The current implementation uses snmpwalk as a method to query the needed data. Each
needed MIB table is requested by a snmpwalk, to reduce the time needed for the opera-
tion. There is an advanced implementation called snmpbulkwalk, which uses the SNMP
BULKWALK request to gather the data. It is faster by bundling the requested data
in one request. With snmpbulkwalk, it may be faster to request a higher OID where all
needed MIB tables are included. The speed improvement depends on the OID of these
MIB tables and their sizes.

Instead of using the precompiled snmpwalk executable, it would be better to use the
SNMP library provided by the net-snmp project. It makes the requests more flexible
and could make it possible to parallelize the snmpbulkwalk. This may increase the speed
of the initialization phase of the application significantly.

45

6. Conclusion and Future Work

The communication to SNMP devices is not secure as SNMPv2c is used for the appli-
cation. In some networks, it could be a requirement to secure the connections. This is
possible with SNMPv3. SNMPv3 also allows to set different permissions per user. In
combination with authentication, this could restrict the publicly available information.
The last possible security measurement is transport security, which allows to create a
secure connection or session between two points. However, this security measurement
may introduce a new complexity that makes it harder to maintain the network.

IPv6, the successor of IPv4, is getting more popular, the current state of the application
does not support IPv6. With IPv6 it would be possible to assign one IPv6 address per
port. Then it is possible to use the IPv6 Neighbor Discovery Protocol [SNNS07]. This
protocol is similar to LLDP (see Section 2.3) and may be able to replace it.

Because SNMP was designed in 1988 and uses MIB for data representation, it does not
follow modern implementation models. Fields that can have data represented in multiple
ways need a separate field that saves the representation form. This makes it harder to
parse data queried by SNMP. NETCONF, the successor of SNMP, uses YANG as a data
modeling language. In YANG, data is represented as objects, whereby each property of
an object has a fixed data type assigned. Another advantage is, interrelations between
different data points can be represented. Using NETCONF and YANG would reduce the
work needed to implement data parsing and interoperability between programs, because
not every MIB entry has to be linked manually. YANG models can be shared between
applications with JSON or XML. Both file formats are widely used for transferring
information.

46

Acronyms and Abbreviations

ASCII - American Standard Code for Information Interchange
ASN.1 - Abstract Syntax Notation One
DOCSIS - Data Over Cable Service Interface Specification
IEEE - Institute of Electrical and Electronics Engineers
IP - Internet Protocol
IPv4 - Internet Protocol Version 4
IPv6 - Internet Protocol Version 6
LLDP - Link Layer Discovery Protocol
LLDPDU - LLDP Data Unit
MAC - Media Access Control
MB/s - Megabytes per second
MIB - Management Information Base
NETCONF - Network Configuration Protocol
PDU - Protocol Data Units
PTP - Precision Time Protocol
RFC - Request for Comments
SNMP - Simple Network Management Protocol
SSH - Secure Shell
SQL - Structured Query Language
TLV - Type-length-value
TSN - Time-Sensitive Networking
OID - Object Identifier
OSI - Open Systems Interconnection
UDP - User Datagram Protocol
VLAN - Virtual Local Area Network
XML - Extensible Markup Language
YANG - Yet Another Next Generation

47

List of Figures

2.1 Shows a simplified MIB-Tree, where red marks the path for .1.3.6.1.4.1 or
.iso.org.dod.internet.private.enterprise (Adaption based on [Mü06]) 7

2.2 Naming and hierarchy of single elements from a SNMP entity (Adapted from
[HWP02]) . 14

2.3 Typical structure of an SNMP manager (Adapted from [HWP02]) 16
2.4 Typical structure of a SNMP agent (Adapted from [HWP02]) 17

4.1 Database schema visualization of the application. 34
4.2 Program flow of the application. 35

5.1 The application device has the IP-Address 10.0.0.1 38
5.2 Communication is marked as an arrow, scanned devices are highlighted. . 38
5.3 Communication is marked as an arrow, scanned devices are highlighted. . 39

48

List of Tables

2.1 Simplified structure of a Ethernet Frame for LLDP 23
2.2 Support for MAC addresses (Adaption based on [IEE16]) 24
2.3 Structure of a LLDPDU Frame (Adaption based on [IEE16]) 24
2.4 Structure of a TLV (Adaption based on [IEE16]) 25
2.5 The value of all TLV types (Adaption based on [IEE16]) 25
2.6 Structure of the information string from a Management Address TLV (Adap-

tion based on [IEE16]) . 27

49

Bibliography

[Ber21] Vincent Berna. LLDPCLI(8): lldpcli, lldpctl - control LLDP daemon,
November 2021.

[Bjö10] Martin Björklund. YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). RFC 6020, October 2010.

[Chr01] Philip Christian. Generic Routing Encapsulation over CLNS Networks. RFC
3147, July 2001.

[Cul11] Margaret Cullen. Using the NETCONF Protocol over Secure Shell (SSH).
RFC 6242, June 2011.

[EBBS11] Rob Enns, Martin Björklund, Andy Bierman, and Jürgen Schönwälder. Net-
work Configuration Protocol (NETCONF). RFC 6241, June 2011.

[Edi02] RFC Editor. Assigned Numbers: RFC 1700 is Replaced by an On-line
Database. RFC 3232, January 2002.

[Enn06] Rob Enns. NETCONF Configuration Protocol. RFC 4741, December 2006.

[FSDC90] Mark Fedor, Martin Lee Schoffstall, James R. Davin, and Dr. Jeff D. Case.
Simple Network Management Protocol (SNMP). RFC 1157, May 1990.

[FWLR00] Rob Frye, Bert Wijnen, David B. Levi, and Shawn A. Routhier. Coexistence
between Version 1, Version 2, and Version 3 of the Internet-standard Network
Management Framework. RFC 2576, March 2000.

[HC19] Maki K. Habib and Chukwuemeka Chimsom. Industry 4.0: Sustainability
and Design Principles. In 2019 20th International Conference on Research
and Education in Mechatronics (REM). IEEE, may 2019.

[HWP02] David Harrington, Bert Wijnen, and Randy Presuhn. An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management Frame-
works. RFC 3411, December 2002.

[IEE16] IEEE Standard for Local and metropolitan area networks - Station and Me-
dia Access Control Connectivity Discovery, 2016.

51

[ISO15] ISO/IEC 8824-1:2015, Information technology Abstract Syntax Notation
One (ASN.1): Specification of basic notation, November 2015.

[MAN21] SNMPD.CONF(5): snmpd.conf - configuration file for the Net-SNMP SNMP
agent, November 2021.

[MK00] Keith McCloghrie and Frank Kastenholz. The Interfaces Group MIB. RFC
2863, June 2000.

[Mü06] Stefan Müller. SNMP MIB-Tree. Website, June 2006.

[Pre02a] Randy Presuhn. Management Information Base (MIB) for the Simple Net-
work Management Protocol (SNMP). RFC 3418, December 2002.

[Pre02b] Randy Presuhn. Version 2 of the Protocol Operations for the Simple Network
Management Protocol (SNMP). RFC 3416, December 2002.

[RB21] Pierre-Yves Ritschard and Vincent Bernat. LLDPD(8): lldpd - LLDP dae-
mon, November 2021.

[RM90a] Dr. Marshall T. Rose and Keith McCloghrie. Management Information Base
for network management of TCP/IP-based internets. RFC 1156, May 1990.

[RM90b] Dr. Marshall T. Rose and Keith McCloghrie. Structure and identification
of management information for TCP/IP-based internets. RFC 1155, May
1990.

[RM91] Dr. Marshall T. Rose and Keith McCloghrie. Management Information Base
for Network Management of TCP/IP-based internets: MIB-II. RFC 1213,
March 1991.

[SH09] Jürgen Schönwälder and David Harrington. Transport Subsystem for the
Simple Network Management Protocol (SNMP). RFC 5590, June 2009.

[SJ06] Jürgen Schönwälder and Tony Jeffree. Simple Network Management Protocol
(SNMP) over IEEE 802 Networks. RFC 4789, November 2006.

[SNNS07] William A. Simpson, Dr. Thomas Narten, Erik Nordmark, and Hesham Soli-
man. Neighbor Discovery for IP version 6 (IPv6). RFC 4861, September
2007.

[Yer03] François Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629,
November 2003.

52

	Abstract
	Contents
	Introduction
	Motivation
	Structure of the work

	State of the Art
	MIB - Management Information Base
	SNMP - Simple Network Management Protocol
	LLDP - Link Layer Discovery Protocol
	NETCONF - Network Configuration Protocol

	Concept
	Implementation
	Evaluation
	How to setup a device
	Requirements

	Conclusion and Future Work
	Issues
	Conclusion
	Improvements

	Acronyms and Abbreviations
	List of Figures
	List of Tables
	Bibliography

