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Kurzfassung

Das Fog Computing Paradigma ermöglicht die Softwareverteilung von Dienstleistungen in
unmittelbarer Nähe zu den Endbenutzer:innen, bzw. in den vorherrschenden heterogenen
Umgebungen am Rand des Netzwerkes. Kubernetes verwaltet die Zuteilung und orche-
striert die Kommunikation von container-basierten Applikationen, da sie lediglich einen
isolierten Ausführungskontext bereitstellen. Es stellt eine benutzerfreundliche Plattform
vor allem für zustandslose Services bereit, da sie keine zusätzliche Konfiguration bezüglich
fehlertoleranter Methoden brauchen. Zustandsbehaftete Anwendungen erfordern allerdings
eine Umsetzung solcher Methoden, da ansonsten ihr interner Zustand verloren gehen
könnte, falls sie aufgrund eines Versagens abstürzen.

Diese Bachelorarbeit befasst sich daher mit zwei fehlertoleranten Methoden, die mit
ihren unterschiedlichen zugrunde liegenden Architekturen auf einem Kubernetes Cluster
bereitgestellt werden. Die zentralisierte Methode verfolgt den traditionellen Ansatz, der
sich um die Speicherung von Backups an einem einzigen Ort dreht. Die dezentralisierte,
fehlertolerante Methode setzt state-machine replication (SMR) um, indem ein Server
repliziert wird und alle eingehenden Anfragen von Benutzer:innen auf all diesen Instanzen
in der gleichen Reihenfolge ausgeführt werden. Dabei durchläuft jeder Server die gleichen
Zustandsänderungen und erzielt anschließend identische Resultate. Die Bibliothek Hazel-
cast wird dafür verwendet, da sie den Konsensus-Algorithmus Raft implementiert, der es
ermöglicht, konsistente Daten auf mehreren Servern zu verteilen. Beide fehlertoleranten
Methoden werden als Container auf einem Kubernetes Cluster bereitgestellt. Darüber
hinaus wird jede Methode in eine zustandsbehaftete Anwendung integriert, die mit ihrem
flüchtigen Zustand reale Interaktionen von Benutzer:innen simulieren soll, die auf einen
Server zugreifen und die darauf gespeicherten Daten verändern.

Die Evaluierung der zustandsbehafteten Applikation und der beiden fehlertoleranten
Methoden zeigt, obwohl der dezentralisierte Ansatz mehr Zeit braucht, um den Betrieb
nach einem Absturz wieder aufzunehmen, übertrifft er letztendlich den zentralisierten
Ansatz in Bezug auf der Speicherung und des Abrufens von Zuständen. Die zentralisierte
fehlertolerante Methode schneidet allerdings gleich nach dem Start besser ab und benötigt
weniger Speicher während des ganzen Evaluierungszeitraums. Obwohl beide Ansätze
mit einer unterschiedlicher Anzahl an Kopien eingesetzt werden, erreichen sie scheinbar
konstante Resultate.
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Abstract

The fog computing paradigm enables the deployment of services near end-users, i.e., in
predominant heterogeneous environments at the edge of the network. Kubernetes manages
the deployment and orchestrates the communication of containerised applications since
they merely provide isolated execution contexts. In particular, it provides an easy-to-use
platform to deploy stateless services since they do not need additional configuration
concerning fault-tolerant methods. However, stateful applications do require implementing
such methods, as their internal state can be lost in case they encounter a failure and
crash.

Therefore, this bachelor thesis presents two fault-tolerant methods with different under-
lying architectures deployed on a Kubernetes cluster. The centralised method follows
the traditional approach of storing backups at a single location. The decentralised fault-
tolerant method implements state-machine replication (SMR) by replicating servers and
executing incoming client requests in the same order on all those instances. In doing
so, each server follows equal state changes and produces identical results. The library
Hazelcast is used to consistently distribute data onto multiple servers as it implements
the consensus algorithm Raft. Both of the fault-tolerant methods are containerised
and deployed on a Kubernetes cluster. Moreover, each is integrated within a stateful
application with an ephemeral state that simulates real-world interactions of clients
accessing stateful servers and modifying stored data.

The evaluation of the stateful application and each fault-tolerant method shows that
although the decentralised approach takes more time to resume its operation after it
crashed, it eventually outperforms the centralised approach in terms of the persisting
and retrieving states. However, the centralised fault-tolerant method performs better
right after startup and generally requires less memory during the whole evaluation period.
Despite both approaches being deployed with a varying number of replica, they seemingly
provide constant results.
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CHAPTER 1
Introduction

1.1 Motivation
The advent of fog computing allows the deployment of services at the edge of the
network, thus positioning them in closer proximity to end devices, as opposed to the
more traditional cloud computing paradigm [1]. Virtualization techniques enable the
allocation of components with isolated execution contexts in heterogeneous environments
[2] and, as a result, are the preferred method for deploying services on the fog platform.
Containerization1 provides a lightweight approach for bundling the code and all needed
dependencies of virtualised applications into a single image. Nonetheless, the isolated
nature of container-based services establishes the need for a coordination framework that
manages the interplay of the above mentioned applications.

Kubernetes2 automates the deployment and maintenance of containerised applications. It
provides an array of different components to facilitate service discovery and coordinate
the replication process of deployments. Kubernetes monitors the health of containers and
redeploys the ones that stop functioning, hence improving the availability of the deployed
service. Therefore, a set of replicated instances of the same container is operating by its
specification. Stateless replica act as interchangeable instances when deployed, whereas
the replication of stateful services results in distinctly identifiable instances that require
additional configuration3. In detail, external mechanisms must be considered to restore
the unique state of a stateful replication after it is redeployed. Fault-tolerant methods
with varying underlying approaches can be integrated with stateful applications deployed
within Kubernetes.

State-machine replication (SMR) is a fundamental approach for providing fault-tolerant
services in distributed environments [3]. The general concept is based on the idea of

1https://www.docker.com/resources/what-container
2https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
3https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
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1. Introduction

executing client requests on replicated server instances and, in doing so, ensuring that
each machine undergoes identical state changes. It is essential to the consistency of the
stored states that all servers execute incoming requests in the same order. Therefore, the
overall fault-tolerance is increased, and the distributed service can remain operational even
if some replica fail. Consensus algorithms constitute the foundation of SMR, since they
facilitate the distribution of consistent data within the system [3]. The implementation of
leader-based replication approaches defines a common hierarchy for servers of a distributed
system, for instance, by the Raft algorithm[4].

Apart from the decentralised approaches mentioned above, centralised solutions can also
be implemented to increase the fault-tolerance of stateful services, e.g., with backups
stored on a separate machine. Kubernetes does not provide an out-of-the-box integration
of any of the methods above; however, it allocates the needed tools to deploy those
fault-tolerant methods and monitor their interplay with stateful applications.

1.2 Aim of the Work

This bachelor thesis aims to implement two fault-tolerant methods with different under-
lying architectures and compare their interaction with a stateful application, as depicted
in Figure 1.1. The decentralized solution provides an implementation of SMR, whereas
the centralized method presents the more traditional approach of storing backups at a
single location. The stateful application is implemented in JavaScript and replicated to
provide a set of instances that can act independently from each other.

(a) Decentralized (b) Centralized

Figure 1.1: Fault-tolerant methods following different approaches
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1.3. Methodology

Regardless of the integrated method, each stateful replica generates a unique state that is
updated within a fixed time interval. This behaviour emulates state changes performed
by clients in real-world scenarios. The decentralised approach distributes the state of
each application instance to the other replicas, whereas the centralised approach persists
all states in an external database.

The stateful application and both fault-tolerant methods are deployed on a Kubernetes
cluster, whereas their interaction is evaluated in terms of performance and scalability by
examining the metrics collected by the Prometheus4 service. These metrics include the
startup delay, the memory usage and the latency of persisting and retrieving states. It is
worthwhile mentioning that the Kubernetes cluster and the evaluation framework only
needed minor initial configuration and were already set up.

1.3 Methodology
The literature review conducted at the start of this thesis covers essential concepts and
terminologies that are relevant in the context of replicating stateful applications, thus
provided the related work and background for this work.

Based on those findings, two different fault-tolerant methods have been chosen and
implemented. They both are integrated within a stateful application that maintains
an ephemeral state. Each of the implementations has been tested by applying different
deployments with a varying number of replica to the Kubernetes cluster. Furthermore,
they were exposed to intentionally generated failures. Finally, both approaches have been
evaluated and compared by the performed tests.

1.4 Structure of the Thesis
The remainder of this thesis is structured as follows: Chapter 2 explains several rele-
vant concepts regarding replicating stateful applications, including different consensus
algorithms and characteristics of SMR. Chapter 3 presents an overview of related works
induced by the literature review and based on the discussed technologies. The process
of integrating both fault-tolerant methods with the stateful application is provided in
Chapter 4. The evaluation of the implementations is described in Chapter 5. Chapter
6 concludes this thesis with a summary of the obtained results and remarks on future
research.

4https://prometheus.io/docs/introduction/overview/
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CHAPTER 2
Background

In this chapter, relevant terminologies and concepts in the context of replicating stateful
applications are explained. Section 2.1 describes the fundamental procedure of two
consensus algorithms and outlines their distinct characteristics. Subsequent to Section
2.2, an overview of leader-based replication, Section 2.3 describes the characteristics of
a system implementing SMR. The chapter concludes with Section 2.4, a description of
practical byzantine fault-tolerance (PBFT).

2.1 Consensus Algorithms

The predominant protocol Paxos [5] affected the development of the Raft algorithm [4],
which provides an enhanced structure and superior understandability in contrast to the
consensus algorithm proposed by Lamport. Nonetheless, variations of Paxos are still used
to solve the consensus problem, as shown in [6, 7, 8]. In general, achieving consensus in
distributed environments is at the core of providing fault-tolerant services.

2.1.1 Paxos

The consensus algorithm Paxos was originally proposed by Lamport over two decades
ago [9]; however, due to its inherent complexity, a more understandable explanation was
released three years after its initial publication [5]. The algorithm reaches consensus
in a set of processes by classifying each participant into one of three groups of agents:
proposer, acceptor or learner. The goal of Paxos is to select one value out of multiple
choices that are put forth by the processes. Although a single process can allocate all
three roles simultaneously [5], the following description uses processes allocating only one
type of agent at a time. Paxos solves the consensus problem by splitting the procedure
into two phases:

5



2. Background

First phase

A proposer sends a proposal, the so-called prepare request, with a unique proposal number
n to a set of acceptors. It has to be taken into account that the selected quantity of
recipients has to comprise a majority of acceptors since each can at most accept a single
value, and two majorities out of the same set share at least one common member.

Upon receipt of the prepare request, each acceptor responds to the highest-numbered
proposal it has already accepted and asserts only to accept prepare requests if they contain
a proposal number greater than n. In case n is smaller than the highest-numbered prepare
request, the proposal is ignored.

Second phase

After the proposer receives responses from the majority of acceptors, it sends a subsequent
proposal, the so-called accept request, to the same set of acceptors that responded to
the initial prepare request. The accept request contains the highest-numbered response
received in the first phase, denoted as v and the same proposal number n. If the acceptors
have not responded to the prepare request, the value of v is undefined.

An acceptor only approves the second proposal if it has not already responded to a prepare
request with a proposal number greater than n. After the approval of the majority of
acceptors, the accepted value is sent to a designated learner, and the respective operation
is considered as committed. In the final step, the learner distributes the chosen value to
the remaining learners.

2.1.2 The Raft Algorithm

The Raft algorithm was introduced by Ongaro et al. [4] and designed to address short-
comings induced by Paxos, including poor applicability and intricate understandability.
Raft facilitates the consensus problem by reducing the state space and by decomposing of
the algorithm, i.e., the separation into mostly independent subproblems: leader election,
log replication and safety. Furthermore, it automates the process of membership changes,
thus, enabling the participants to rejoin the cluster while ensuring the safety of the
algorithm [4].

As mentioned above, consensus algorithms form the foundation of providing fault-tolerant
services in distributed environments, for instance, in implementations of SMR [3]. In
general, there is a need to consistently maintain a state within a cluster of multiple
machines. Section 2.3 describes the leader-based process of distributing identical instances
of the same data in more detail. The following, however, focuses on explaining the
procedure of the Raft algorithm itself.

6



2.1. Consensus Algorithms

Basics

Similar to Paxos, each member - or server - in the cluster adopts one of three roles at
any given time, namely leader, follower or candidate. As a result, the behaviour of each
server is determined by the specific tasks involved with each role:

• Leader: The single server that takes on this role receives all client requests,
replicates log entries, and authorises other servers to commit approved entries.

• Follower: This role represents the initial behaviour of each server. A follower
responds to inquiries of other servers. However, it generally remains passive in the
cluster, for instance, by forwarding client requests to the leader.

• Candidate: A follower can become a candidate if a new leader election is initiated.
It either changes to its initial role or becomes the new leader once the election is
completed.

For the algorithm to function correctly, at least a majority of fully operational servers
is required. Raft reaches consensus by working in terms of arbitrary length. A leader
election initiates a new term with a unique term number. If a new leader is chosen, i.e.,
the election is successful, the current term is continued. Otherwise, the term number is
monotonically increased, and a new election round starts.

Leader election

The election process is initialised by a follower seeking to become the new leader. After
the election timeout elapsed, it transitions to the role of a candidate and broadcasts
a vote request with the current term number n to the network. A follower rejects the
pending vote if it has received prior requests with term numbers greater than n. If a
majority of followers accepts the vote, the candidate wins the election and becomes the
leader of the current term.

Since followers are unaware of others seeking to become the leader, a vote request can
result in a split vote if two or more servers simultaneously initiate the election process.
In this case, the current term is discontinued, as no candidate can get a majority of
responses from the followers. The leader election fails, and a new round starts after the
election timeout elapses.

Log replication

The newly elected leader can now receive requests from clients, whereas the committed
operations are represented through a replication log distributed among all servers in the
cluster. Upon receipt of a client request, a tuple consisting of the current term number
and the sent data is appended to the replication log of the leader. Subsequently, the new
entry is replicated from the leader to the followers, which updates their replication logs
if the latest entries are consistent with the remaining log of the leader. Otherwise, the

7



2. Background

respective follower notifies the leader of outdated log entries to resolve the inconsistency.
Therefore, the follower removes all conflicting entries until the first entry shared by both
servers is found. In doing so, the replication log remains consistent, and each follower
executes the incoming requests in the order specified by the leader. The operations are
committed if most followers adopt the new log entry from the leader.

Safety

The Raft cluster implements additional mechanisms to ensure the safety of the algorithm
for various scenarios. For instance, only candidates with replication logs containing all
committed operations are permitted to initiate a new election round. If the leader crashes
during replicating log entries to the followers, a future leader attempts to resume the
replication. However, the most prominent safety feature of Raft is the unidirectional flow of
distributing data in the cluster, resulting in improved safety and better understandability
of the algorithm.

2.2 Characteristics of Leader-based Replication
Leader-based replication approaches designate a single server to manage the replication
and distribution of client requests in the cluster, as shown by the Raft algorithm. The
leader obtains all requests that manipulate data in the cluster, whereas inquiries to solely
retrieve information can be received by any type of server. Since no consensus has to be
reached when handling read-requests, the throughput of the system is increased [10].

Figure 2.1: Clients accessing servers that follow a leader-based replication approach

Figure 2.1 depicts a cluster with three servers, a leader, and two followers. A client can
send a write-request that is obtained by the leader, which replicates the changes to the

8



2.2. Characteristics of Leader-based Replication

other servers, thus, storing the data on multiple machines. The cluster continues to
operate properly as long as a majority of servers are functioning correctly. The distributed
nature of leader-based replication approaches keeps server replica nearby clients, thus,
reducing the latency [10].

The single-leader approach that is depicted above concentrates incoming write requests to
one server. Hence, the write-throughput of the cluster is immensely limited. Multi-leader
approaches enable multiple machines to manipulate stored data; however, the increased
complexity usually prevails over the added benefits [10].

2.2.1 Asynchronous and Synchronous Replication

The leader can either wait for the confirmation of a follower that the operation is
completed (synchronous) or it continues its execution without listening to any responses
(asynchronous) once it replicates a log entry. The former approach guarantees that the
data on the follower’s side is consistent; however, the leader cannot process any other
client requests during this period since the followers must not lag. As a result, it is
impractical to implement synchronous replication [10] solely.

Therefore, asynchronous replication enables the leader to neglect the immediate response
of a follower. However, client requests that are in the process of replicating can get lost
if the leader encounters a failure and crashes. The semi-synchronous model compensates
for the drawbacks of both replication approaches by designating all but one follower to
operate asynchronously. In case of the synchronous follower crashes, another one steps in
to ensure that the data is consistently replicated [10].

2.2.2 Eventual Consistency

As described above, the leader does not wait for the asynchronous follower to respond if
the data is successfully replicated. Subsequent read-requests can therefore return outdated
information since it is not assured that all asynchronous followers store the most recent
version of the leader’s replication log. However, the followers will get consistent once the
pending operations are committed. The inconsistent period cannot be specified precisely.
Thus, it can be different for each asynchronous follower. This temporal effect is also
known as eventual consistency [10].

Strong consistency, as induced by synchronous followers, can be implemented by inte-
grating the concept of linearizability, i.e., the outward appearance of one homogenous
system with atomic operations, whereas - in the background - it might maintain multiple
instances of the same data on different machines [10].

2.2.3 CAP Theorem

The consistency above can further be classified by the CAP theorem [10]. In general, only
two of the three involved concerns - consistency, availability, partition tolerance - can be
satisfied - while neglecting the residual one. The fault-tolerant methods presented in this

9



2. Background

thesis follow different approaches concerning the CAP theorem, as explained in more
detail in Chapter 4. A thorough explanation can also be found in the documentations of
the used technologies.1,2

2.2.4 Crash-Recovery Faults and Byzantine Failures

Leader-based replication approaches need to identify and resolve server failures, besides
dealing with the above-described timing assumptions and consistency concerns. For
instance, a server stops responding abruptly, whereas the most likely explanation is that
it crashed. After an unspecified length of time, the server can recover from this fail-stop
behaviour and resume its intended operation [10]. Although all the data in-memory is
assumed to be lost, prior state information can be retrieved from a stable storage. Raft
generally supports this procedure, provided that the cluster at least consists of 2f + 1
participants, whereas f , denotes the number of faulty servers. However, a server may not
recover from a crash and thus stop responding [10].

Apart from the fail-stop behaviour explained above, a server can also show an arbitrary,
byzantine, behaviour. As a result, it responds with wrong messages or may even attempt
to deceive other servers in the cluster maliciously. A wide range of consensus algorithms,
including Raft, operates in non-byzantine environments; however, several algorithms are
solving the Byzantine consensus problem [11].

2.3 State-Machine Replication

SMR is a fundamental approach for providing fault-tolerant services in distributed
environments [3]. A system implementing SMR remains operational even if some of the
servers fail, since data is replicated and distributed onto multiple machines. Furthermore,
it designates a strong leader to accept client requests, thus, adheres to the leader-based
replication approach discussed earlier. A state-machine maintains its state in form of
state variables that can be manipulated by applying a set of commands [3]. In general,
state-machines implement two commands in order to provide basic functionality, i.e.,
allowing clients to perform read and write operations on the state variables. Modern
systems realize those commands in form of functions that deterministically produce an
output to a provided input.

Therefore, the output of each function only relies on the input and the current state
of the corresponding replica. Since all servers in the cluster execute client requests in
the order proposed by the leader, each one progresses through the same state changes
and subsequently generates identical results [3]. SMR implements the concept above
of linearizability, thus appearing to clients as a homogenous system while hiding the
underlying complexity of managing multiple machines.

1https://docs.hazelcast.com/hazelcast/5.0/consistency-and-replication/consistency
2https://docs.couchdb.org/en/stable/intro/consistency.html
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2.4. Practical Byzantine Fault Tolerance

2.3.1 Optimizing for Scalability

SMR allows servers to recover from the fail-stop behaviour described above. Hence, the
availability is only determined by the number of replica and can, therefore, effortlessly be
improved by adding further ones. However, the scalability and throughput remain limited,
since each replica has to execute all incoming client requests [3]. Partial replication
attempts to solve these restrictions by partitioning the state onto multiple replica, as
shown in [6, 7, 12, 13].

2.4 Practical Byzantine Fault Tolerance
PBFT was initially introduced by Castro et al. [14] and is considered as the first so-
lution to the byzantine consensus problem in the partially-synchronous model. The
algorithm is implemented on the basis of state-machine replication, thus resulting in
similar procedures. For instance, the backups execute client requests in the order proposed
by the primary. However, PBFT requests that at least 3f + 1 servers are participat-
ing in the cluster, whereas f denotes the maximum number of faulty replica. Besides
the primary-backup hierarchy, PBFT integrates quorum replication in order to compen-
sate arbitrary behaviour of servers [14]. The following summarizes the procedure of PBFT:

Primary-Backup Approach

As briefly mentioned, the primary-backup approach shares specific characteristics with
the leader-based replication model. The procedure is recapped to adhere to the proper
terminology. It operates in terms referred to as views. A server is designated as the
primary, which has the authority to accept client requests and propose an execution
order for the other servers, the backups. A view transitions to its next iteration in case
the primary encounters a failure, and as a result, a new primary has to be chosen.

Quorum Replication

A quorum represents the minimum number of replicas required to carry out operations
in distributed environments and has to adhere to two conditions to function correctly:
Firstly, the intersection of two quorums shares at least one common replica that is healthy.
Secondly, a quorum exists without any faulty replicas at any given time. Furthermore, a
quorum must contain at least 2f +1 replicas for a request to be reliably stored. However, if
f+1 servers have replicated the respective request, it exists at least on two healthy replicas.

Standard Procedure

The algorithm operates in three phases: the pre-prepare, prepare and commit phase. Upon
receipt of a client request, the primary of the active view distributes it to all backups.
They generally send their results back to the client once they receive and execute the
request.
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2. Background

In the pre-prepare phase, the primary proposes a sequence to execute the requests and
broadcasts it in the cluster. Each recipient appends the requests to its replication log
once it verifies the proposal’s validity. Each backup informs all other backups about the
initial proposal by broadcasting a prepare message and subsequently transitions into the
prepare phase. After a quorum of 2f prepare messages is received, the backup enters the
commit phase by broadcasting a commit message. The operation is considered executed
once it obtains a quorum of 2f + 1 commit messages. Based on f + 1 replies, at least
one replica has responded with the correct result, and the client can be sure about its
correctness.

Checkpoints and View Changes

Once the three-phase protocol is executed, a replica captures the current state and creates
a checkpoint. It notifies other cluster members about the gathered information and awaits
their approval to store the checkpoint in its replication log. A replica can discard the
current state and roll back to a captured state in case 2f + 1 checkpoint messages are
received.

As mentioned above, a primary is chosen if the prior one encountered a failure. A quorum
of 2f + 1 approvals of backups is required to initiate the so-called view-change. In doing
so, the system can compensate for crashed or arbitrary behaviour of primaries.

2.4.1 Improved Performance with HotStuff

Similar to PBFT, HotStuff follows a leader-based replication approach and operates in
partially-synchronous, byzantine environments. It also utilises a three-phase protocol.
However, it immensely reduces communication complexity. The process of correctly
selecting a new primary has O(n2) complexity in PBFT; however, it only requires a single
round trip in HotStuff, thus O(n). Furthermore, a view-change in PBFT has an upper
bound of O(n3), while HotStuff achieves it with linear complexity [15].
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CHAPTER 3
Related Work

The following chapter provides an overview of related works introduced by the literature
review. Section 3.1 gives a brief introduction to the built-in components of Kubernetes.
In Section 3.2, an implementation of an additional controller is proposed to resolve the
limitations of those components. Section 3.3 concludes this chapter with a state-machine
replication approach that utilizes shared-memory to distribute requests.

3.1 Built-in Components of Kubernetes

To better understand the findings presented in subsequent sections, the following gives a
brief description of the built-in components of Kubernetes. There are several Kubernetes
components that maintain the deployment and replication of applications, including the
Deployment and StatefulSet controllers1. Based on a single application image, they both
deploy a predefined number of Pods2, the smallest deployable unit in Kubernetes, which
allocates one or more containers. Kubernetes monitors a Pod’s health and redeploys
it if it encounters a failure and crash. Thus, the availability of the deployed service
is increased. The StatefulSet controller is intended to manage stateful services, while
the Deployment component is designed to maintain stateless replicas. The Service3

component groups a set of Pods based on a common label and provides homogenous
network resources for all related components. Kubernetes allocates a Persistent Volume
(PV)4 to separate the data from the Pod by storing it externally. If the application fails,
the state can be restored from the PV. A Persistent Volume Claim (PVC) is defined by
the controller’s specification and requests a PV with certain characteristics.

1https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
2https://kubernetes.io/docs/concepts/workloads/pods/
3https://kubernetes.io/docs/concepts/services-networking/service/
4https://kubernetes.io/docs/concepts/storage/persistent-volumes/
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(a) StatefulSet Controller (b) Deployment Controller

Figure 3.1: Persistent Volumes attached to different Kubernetes deployments

In Figure 3.1, a common structure of the above-described components is depicted. In
both scenarios, the deployed Pods are grouped by a Service component. A PVC requests
a PV for each Pod that is deployed with the StatefulSet controller. For instance, pod-0
solely accesses and interacts with pv-0. Since a Pod remains its identity when it is
redeployed, the PVC subsequently claims the same PV for it. As depicted in Figure 3.1b,
Pods deployed with the Deployment controller act as interchangeable instances when
replicated. Hence, a PVC must be defined independently, resulting in a single PV shared
by all Pods.

3.2 Issues regarding Availability

The authors Abdollahi et al. [16] identify shortcomings of built-in components of Ku-
bernetes. The built-in controllers of Kubernetes involve two main issues concerning the
availability of deployed services. Firstly, a Pod that encountered a failure is not responsive
until it remedied the error, thus suspending clients from interacting with the deployed
service. Therefore, the time to redeploy a Pod, including the time to access the PV, may
exceed the time assumptions of highly available services.

Secondly, a StatefulSet controller cannot differentiate between a node failure and a
network partition [16]. Thus, a Pod deployed on an affected node is not responding until
the failure is resolved or the network is repartitioned. A StatefulSet controller does not
immediately recreate an unavailable Pod but waits until the node is reachable again. It
is possible to initiate the redeployment process manually; however, the data stored in the
PV will be lost.
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The Deployment controller does not consider any data loss; hence, unavailable Pods can
be redeployed [16]. However, the location of the stored data that belongs to the crashed
Pod cannot be determined since all Pods share the access to a single PV. Furthermore,
Pods are generally not aware of failures regarding other Pods. Thus, the data will also
be lost.

3.2.1 Integration of Additional Controller

Abdollahi et al. [16] propose the integration of an additional controller, the State controller
(SC), in order to fix the previously described issues of the built-in components. The
utilization of the SC allows the deployment of highly available stateful applications.
It is directly integrated within the Kubernetes environment and deploys two service
components, as depicted in Figure 3.2a and 3.2b respectively.

(a) StatefulSet Controller (b) Deployment Controller

Figure 3.2: Deploying stateful applications with additional State Controller

In both scenarios, a secondary label, either active or standby, is assigned to each Pod that
is deployed. In doing so, the relevant Pods are grouped into one of the two aforementioned
service controllers. If a Pod has the active label, it is exposed to the network by the
application service and, therefore, capable of accepting client requests. If a Pod has the
standby label, it is grouped by the replication service to receive the replicated data from
active Pods. The label of a Pod is provided through the use of an environment variable.

The SC updates the label of an active Pod to standby, if it encountered a failure and,
for instance, crashed. Subsequently, one of the Pods remained passive until this point
became active. If a StatefulSet controller is used to deploy the Pod in question, the
promoted Pod can access the PV of the previous Pod. If the Deployment controller is
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used, it simply retrieves the state from the same database it accessed with its former
identity. Moreover, the SC repeatedly checks if the entrypoint service, i.e., the component
that maintains the deployment, is still reachable to detect and prevent network partitions.
If it is not responding, the SC performs a self-cleanup procedure, terminating all running
components in the process.

The authors Abdollahi et al. evaluate the integration of their proposed controller by
deploying a Video-on-Demand (VoD) service [16]. They perform measurements to
compare the SC with the default behaviour of Kubernetes, i.e., implementations using
only the built-in components. In detail, the two deployments depicted in Figure 3.2
are applied. Each time a client requests a video, the Pod that received the inquiry
persists in its state, i.e., the current playback position, to the attached PV. During their
experiments, different components fail intentionally to evaluate the availability’s effect.
The authors show that their proposed solution enables Kubernetes to compensate for
service outages caused by node failures. Furthermore, the integration of the SC with
the StatefulSet and Deployment controller drastically improves service recovery after a
component encounters a failure.

3.3 Utilization of Shared-Memory

The authors Netto et al. [17] integrate state-machine replication directly into Kubernetes.
They believe that distributing client requests by utilising shared-memory instead of
broadcasting them with conventional messages reduces the inherent complexity and
provides a more streamlined design. Therefore, the deployed components interact with
the key-value store etcd5 to distribute incoming client requests, whereas a custom
algorithm coordinates their distribution. The storage runs on a single node. However,
it can also be replicated with the Raft algorithm to increase the fault tolerance of the
system further.

Figure 3.3: Replicating client requests with shared-memory

5https://etcd.io
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The so-called DORADO (Dering OveR shAreD memOry) protocol coordinates the
distribution and replication of client requests by means of the etcd store [17]. Although
each replica can receive requests from clients and fetch and persist them in the shared
memory, only the recipient is allowed to respond to the initial sender. The communication
between Pods and etcd storage is asynchronous, whereas the interaction between clients
and Pods is partially synchronous.

In Figure 3.3, the procedure of replicating and distributing a request sent by a client
is shown. The recipient, the Raft leader, defines an order to the request and stores
the corresponding proposal in the shared memory. After it is successfully stored, the
other replicas are notified, which will adhere to the order proposed by the leader. They
subsequently inform other replicas about their approval by interacting with the etcd
store. If the leader collects a majority of successful responses, it executes the request
and considers the operation as committed. Hence, all replicas executed the request and
store an instance of the changed data. The leader then sends the result to the client. If a
follower receives the initial request from the client, it is stored in the shared memory,
and only the leader is notified. The protocol then continues with the same procedure
that is described above.

The authors Netto et al. performed several experiments to verify the effectiveness of
their proposed solution on the availability and throughput of the deployed service [17].
Furthermore, they encapsulated the DORADO coordination algorithm into a separate
component to reduce the application containers’ size. They deployed the etcd store only
on one node, thus, requiring more communication rounds than a distributed version of
the etcd store, since Raft makes it possible to collect multiple messages and send them
as one batch. During the experiments, the number of clients and replicas varied while
the size of the payload of a request remained the same. They conclude that the latency
increases while the throughput decreases if more replicas are added to the system.
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CHAPTER 4
Implementation

The following chapter provides implementation details on the stateful application and
both fault-tolerant methods. Furthermore, different Kubernetes components that are used
in the context of this thesis are discussed. Section 4.1 outlines the process of deploying
virtualised services within a Kubernetes cluster. In Section 4.2, the intended procedure
and structure of the stateful application are described. The chapter concludes with the
integration of each fault-tolerant method within the application, which is explained in
Section 4.3 and 4.4 respectively.

4.1 Deployment of Container-based Applications

Kubernetes facilitates the maintenance of container-based applications by automating
the process of deploying and replicating services1. In the context of this thesis, it enables
effortless integration of different fault-tolerant methods within a stateful application.
Deployments are applied through the use of containerization, which is the preferred
option over virtual machines since the former constitutes the more lightweight approach2.

4.1.1 Cluster Architecture

Figure 4.1 depicts the structure of the Kubernetes cluster that functions as a host of the
deployments. It consists of several physical machines referred to as nodes. In general, the
cluster is organised by two categories of nodes. The single master node solely operates
control processes, whereas the worker nodes carry out application deployments of users.
Kubernetes groups its control structures into a separate component - the control plane -
which is explained in detail in the official documentation3.

1https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
2https://www.docker.com/resources/what-container
3https://kubernetes.io/docs/concepts/overview/components/
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Figure 4.1: Components of Kubernetes Cluster

As already mentioned in Section 3.1, Kubernetes provides homogenous network resources
for one or more containers by deploying Pods4. The controller node maintains the
replication of a Pod by instantiating controller components, which monitor the health of
related instances. If any of them encounters a failure, the respective Pod is redeployed
to meet the number of replicas provided by the specification. The cluster is running
version v1.21.4 of Kubernetes. Deployments are verified, maintained and applied through
kubectl5. Docker6 is used to containerize the application and the VPN service Tailscale7

provides access to the cluster from outside the network.

4.1.2 Controller and Service Components

Kubernetes provides an array of different options for maintaining the replication of Pods,
including the Deployment and StatefulSet component. The availability of the deployed
service is subsequently increased since both controllers generally attempt to redeploy
crashed Pods. However, the Deployment controller is not considered further since its
intended purpose is to maintain stateless applications. The StatefulSet controller, on the
other hand, manages the maintenance of a set of replicated, stateful, Pods8.

4https://kubernetes.io/docs/concepts/workloads/pods/
5https://kubernetes.io/docs/reference/kubectl/overview/
6https://docs.docker.com
7https://tailscale.com/kb/1151/what-is-tailscale/
8https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
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Figure 4.2: Replicated application deployed with Service and StatefulSet components

The StatefulSet controller deploys multiple instances of the specified application image,
thus resulting in a set of replicated Pods, as seen in Figure 4.2. Each Pod has a unique
identifier and functions as an autonomous application instance. The identity of each Pod
remains the same even if it is redeployed; however, the IP address of each replicated
instance is dynamic and changes with each rollout.

Therefore, Kubernetes uses an additional abstraction to facilitate access to a set of
related Pods. Based on a common label, the Service9 component groups affiliated
Pods to one logical unit to uphold a static outward view that is independent of the
contained resources. Hence, the Service component keeps the same IP address and
hostname even if any individual Pods are redeployed. Moreover, it exposes each Pod
to the network to be accessed individually while preserving the same URI. Following
http://pod_identifier.service_name, each replicated Pod can receive requests from clients
and other components within Kubernetes.

9https://kubernetes.io/docs/concepts/services-networking/service/
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4.2 Stateful Application

The stateful application is implemented in JavaScript and publicly available on this
repository10. The main purpose of this application is to equate clients accessing and
modifying data of stateful applications in real-world scenarios. However, the application
is not required to provide any other function than to maintain an internal state and
its corresponding updates, as the primary focus of this thesis is the development and
integration of fault-tolerant methods. The application uses version 16.14-alpine of
Node.js11 and utilizes npm as the package manager. It is designed to be as lightweight
and modular as possible.

4.2.1 Generating the Internal State

As described above, the StatefulSet controller deploys a set of replicas, each with a
unique identity. Kubernetes maintains these identities by assigning the name specified
by the StatefulSet in combination with ordinal numbers. Figure 4.3 depicts Pods with
identifiers ranging from pod-0 up to pod-[n-1], whereas n denotes the number of replicas.
The identifier is provided to each Pod by an environment variable. Henceforth, stateful
replica references a deployed application instance.

Figure 4.3: Set of application instances with unique identifiers and states

Each stateful replica uses its identity as the starting point to generate its internal state,
which is the result of a hash function. A string with a fixed length represents the state.
In detail, a stateful replica uses the SHA256 algorithm to hash the input of the function,
and base64 to encode the result. The state of each replicated instance is valid for a fixed
time interval t. Every t seconds the state is replaced by reapplying the hash function to
it. Table 4.1 depicts exemplary state changes performed by a stateful replica with the
identifier pod-0.

10https://git.auto.tuwien.ac.at/theses/stateful-edge-app
11https://nodejs.org/en/docs/
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i State

0 ehIjf2P/Jdj5nd8Oo9CPSw/xvNtpTxwe0t5Y7SWHy2k=
1 h93QgNJEmNejlZXsWKM59TOyLJfWdpedpVLirFow9IU=
2 KQz64JLF67dB/DREluXpB0F4rq3Gpal6kvZD+7cQ1eY=

Table 4.1: State changes performed by pod-0

The variable i denotes the i-th state-update and, if multiplied with t, represents the time
(in seconds) it takes until the corresponding state is considered valid. Thus, the validity
of each state can be expressed with the interval:

[i ∗ t, (i + 1) ∗ t)

At the beginning of each interval, i.e., after the state is updated, it is persisted with one
of the fault-tolerant methods. If a Pod encounters a failure, it restores the last state
considered valid. For instance, if the Pod pod-0 crashes while generating the state for
i = 2, it restores the state of i = 1 since it was persisted with a fault-tolerant method after
it was updated. Upon completion of the Pod’s redeployment, it retrieves the restored
state and continues with its intended operation. The stateful application is kept simple
since this thesis focuses on designing and implementing different fault-tolerant methods.

4.2.2 Integration with Storage Adapters

The stateful application integrates different fault-tolerant methods by utilising the key-
value store Keyv12 since it supports the implementation of storage adapters with custom
persisting mechanisms. Thus, the fault-tolerant methods presented in this thesis are
implemented as standalone storage adapters, whereas each follows a consistent outward
appearance. In general, custom storage adapters are required to implement get and set
methods in order to cover basic functionality, i.e., allowing clients to read and write data.
Furthermore, it supports TTL based expiry, which can be defined when calling the set
method. However, the implementations of both fault-tolerant methods do not utilise
it since the state already undergoes periodic updates. Additional functionality can be
defined by implementing the appropriate functions, e.g., to delete certain entries or to
clear the whole storage.

At the startup of each stateful replica, a fault-tolerant method in the form of a storage
adapter is provided to the Keyv instance. The environment variable MODE instructs
it to load either the central or decentral method. The underlying mechanics of each
fault-tolerant method are hidden behind the functions that Keyv provides.

12https://github.com/jaredwray/keyv
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4.2.3 Procedure of the Application

The application maintains a state by operating in three steps. In principle, it initially loads
the last valid state, updates and persists it in the database provided by the fault-tolerant
method. The steps are executed repeatedly in a fixed time interval. Thus, each stateful
replica generates new states periodically.

Although the underlying approaches of both fault-tolerant methods are fundamentally
different, a uniform application procedure can be defined regardless of the integrated
method, as depicted in Figure 4.4. In Sections 4.3 and 4.4, detailed descriptions of both
fault-tolerant methods are presented. The application procedure described below applies
to the initial startup of a replica and a restart performed due to a failure.

Figure 4.4: Application procedure, independent of the integrated fault-tolerant method

1. Loading the State

At the startup of each stateful replica, it attempts to load the state by calling the get
function, which returns a promise that resolves to the retrieved value. As described above,
the identifier of each instance is used to determine the stored state. If no data is stored
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concerning the provided key, the method returns null. The actual representation of the
persisted states generally differs depending on the integrated fault-tolerant approach.

2. Updating the State

As soon as the stateful replica retrieves the state, it updates it by calling the hash
method. The built-in crypto13 module is used to create and update states and digest the
resulting hash. The method takes the current state as its input and, to generate new
states, reapplies the hashing procedure to it. In case the get method in the previous step
returns null, the identifier of each replica is used as the initial input to create the first state.

3. Persisting the State

The result of the hash function is persisted by the integrated fault-tolerant method. The
identifier of the stateful replica and the state are provided to the set method, which
returns a boolean, indicating if the value was stored successfully. Each storage adapter
communicates with the fault-tolerant method over HTTP requests. Therefore, the Axios14

client is used.

4.2.4 Application Endpoints

The application uses the express15 package to provide fundamental web functionalities.
The procedure described above is embedded into a web server, which allocates two
endpoints on port 32000. In the context of this thesis, they are primarily used for
debugging purposes. The following endpoints are reachable for each stateful replica
within the network of the Kubernetes cluster:

• GET / - This endpoint returns a website displaying the identifier and state of the
stateful replica.

• GET /metrics - This endpoint collects the logged metrics in order for them to be
processed by the Prometheus service running on the cluster, and subsequently be
evaluated.

13https://nodejs.org/api/crypto.html
14https://axios-http.com
15https://expressjs.com/en/4x/api.html
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4.3 Centralized Approach

The centralised fault-tolerant method follows the traditional approach of storing data at a
central location that is independent of the application. Thus the storage is deployed and
then runs separately from the stateful application. The deployment of this fault-tolerant
method includes a StatefulSet and Service controller that are bundled into and deployed
with a helm chart16. In general, it consists of multiple specifications of Kubernetes
components applied at once, thus streamlining the process of using complex deployments.

Figure 4.5: Interaction of stateful application and centralized method

In detail, the helm chart comprises a CouchDB17 cluster. Since a StatefulSet controller
16https://artifacthub.io/packages/helm/couchdb/couchdb
17https://docs.couchdb.org/en/stable/
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maintains its deployment, the central storage is replicated, and multiple instances of the
same database are created - resulting in a similar set of replicas induced by the stateful
application. Although this has no direct impact on the investigations of this thesis, the
bottleneck of using a single database is immensely reduced. Data is stored in memory
per default. As seen in Figure 4.5, each central replica has a unique identifier and holds
an instance of the CouchDB database. The IDs are constructed in the same way as the
stateful replicas’ identifiers, resulting in names of the form: central-i, 0 < i < n − 1,
whereas n depicts the number of replicas. The helm chart deploys three replicas per
default.

The set of stateful replicas can access the database using the Service controller, which
allocates the static IP address http://central:5984. In general, incoming requests are
automatically load-balanced overall healthy central replicas. As depicted in Figure 4.5,
the Service component forwards the request of pod-0 to central-0, which processes it and
subsequently responds the result back to the initial sender of the inquiry. The states of all
stateful replicas are stored in a single database and replicated on multiple instances. In
Section 4.3.2, the synchronization of data within the set of central replicas is explained.

4.3.1 Structure of Database

As a non-relational database, CouchDB stores data in form of JSON documents18. Each
document can contain any number of fields and is uniquely identified by a name. CouchDB
ensures consistency of distributed data within the set of central replicas by using the
metadata of each document to keep track of its current state. Since the data of all stateful
replicas are shared by the same database, a single document is used to represent the
state of an individual application instance. Table 4.2 highlights the properties required
to persist the state of a stateful replica.

Property Type Description

_id string Unique identifier of the document
_rev string Revision number, used to keep track of applied changes
value string State of the stateful replica
expires number TTL, shows the validity of state (in seconds)

Table 4.2: Properties of a CouchDB document

The _id property generally resembles the identifier of a stateful replica, thus not changing
after it is initialised once. The value property is updated in a fixed time interval since
the state is persisted respectively. CouchDB updates the revision number each time the
document is changed. Therefore, a request must contain the currently valid revision
number for the correct state to be properly updated. After the state is persisted, the
response of CouchDB includes the updated _rev property. Since the TTL feature of keyv
is not used, the expires property is not set and therefore remains null.

18https://docs.couchdb.org/en/3.2.0/intro/index.html
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4.3.2 Synchronization of Stored Data

Since the Service controller load balances incoming requests overall healthy replicas,
there is a need to synchronise the data stored on multiple replicas. Therefore, CouchDB
features multi-master synchronisation to ensure that each replicated instance of the
database remains consistent19. It guarantees that the data will become consistent after
an unspecified amount of time, thus following the eventual consistency approach. Based
on the CAP theorem, CouchDB chooses availability and partition tolerance in favour of
strong consistency. The replication protocol of CouchDB implements the Multiversion
Concurrency Control (MVCC) model to synchronise data between two peers. It therefore
sends HTTP requests to the API endpoints of CouchDB. The following summarises the
procedure that is explained in detail in the official documentation:

The replication protocol is described in the context of a Replicator service. Like the
database maintaining individual documents by their _id property, the Replicator keeps
track of the replication history by instantiating replication identifiers. Document changes
are synchronized from a source to a target. Moreover, the flow of information is uni-
directional. The Replicator retrieves the replication logs from the source and target
after creating the replication identifier. The Replicator then continuously listens to any
document changes as of the last checkpoint at which both are synchronised. After a
batch of changes is read, the Replicator calculates the difference in revision numbers,
i.e., identify all document changes present on the source but not on the target. The
Replicator subsequently requested the aforementioned documents and transferred them
to the target. After the recipient successfully stores all documents, the Replicator updates
the source and target to include this checkpoint. The Replicator then starts waiting for
new document changes to arrive. Nothing will be synchronised if the revision difference
does not put forth any documents.

4.3.3 API Endpoints

CouchDB provides several endpoints for stateful replicas to manipulate stored data and
documents. The following API endpoints are used to retrieve and persist states:

• PUT /db - Creates a database with the given name db. The data included in the
body of the request is not relevant, thus can be null.

• GET /db/doc - Retrieves the document with the given name doc from the database
with the name db. The response includes the state of the corresponding stateful
replica and the revision number.

• PUT /db/doc - Creates or updates the document with the given name doc. The
body of the request must include the document identifier, the last valid revision
number and the updated state of the stateful replica.

19https://docs.couchdb.org/en/3.2.0/replication/protocol.html
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4.3.4 Interaction with Stateful Application

Figure 4.6 shows the interaction between a replicated instance of the application and the
centralised fault-tolerant method. The requests are forwarded by the Service controller
to one of the central replicas, in this case, central-0. The initial request that accesses the
database or an individual document creates the respective resources in case they are not
present.

Figure 4.6: Interaction between application and centralized fault-tolerant method
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Pod-0 initially attempts to retrieve the state and revision number from central-0 by
providing its identifier to the get method. If the response is null, the identifier acts
as the initial state. The revision number will be used later when the newly updated
state is persisted in the database. The retrieved - or initially defined - state is hashed,
replacing the old one in the process. The newly updated state is persisted in the database
by providing it and the previously retrieved revision number to the set method. The
identifier pod-0 is also enclosed to locate the correct document. The database returns the
newly generated revision number for the subsequent request to update the stored state.
As already mentioned, the steps, i.e., the retrieving, updating and storing procedures,
are repeated in a fixed time interval.

4.4 Decentralized Approach

The structure of the decentralised fault-tolerant method considerably differentiates from
the centralised approach described above. Bakhshi et al. [18] show that persistent
storage can be implemented at the network’s edge. As depicted in Figure 4.7, it is
deployed alongside, and at the same time heavily depends on, the stateful application.
Therefore, the StatefulSet controller that deploys the application is extended to include
the specification of this fault-tolerant method, resulting in the deployment of an additional
container. In contrast to the centralised approach, there is no need for a supplementary
Service controller to enable the communication between an application and fault-tolerant
method since they are contained within one Pod. Henceforth, a deployed instance of the
decentralised approach is referred to as consensus replica. Consequently, a stateful replica
communicates solely with its accompanying consensus replica, which distributes the data
within the set of all other replicas. Thus, the state of each application instance is stored
in multiple locations.

Figure 4.7: Structure of application with integrated decentralized fault-tolerant method
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The decentralized fault-tolerant method is implemented in Java and features a Spring
Boot20 application. The project is built with Maven21 and is available on the same
repository alongside the stateful application. The Hazelcast22 library is used on top of the
Spring Boot application, as it implements the needed tools to replicate data within the
cluster consistently. A Hazelcast instance runs on each consensus replica and is started
after the Spring Boot application. The decentralised approach deploys additional Service
controllers to enable the automatic discovery of other Hazelcast instances. Thus, each
consensus replica joins the Hazelcast cluster after it is started.

4.4.1 API Endpoints

The Spring Boot application is mainly used for building a RESTful web service that
accepts requests to allow the manipulation of stored data. It provides several endpoints
for the stateful replicas to access the functionality of the Hazelcast cluster. Since the
primary interaction between the stateful application and fault-tolerant method revolves
around retrieving and persisting information, the Spring Boot application provides two
corresponding endpoints. Two additional endpoints are used to guarantee the correct
behaviour of the CP Subsystem, as described below.

• GET /api/v1/state/pod - Retrieves the state for the stateful replica with the name
pod.

• PUT /api/v1/state - Updates stored state. The body of the request must include
the identifier and the updated state of the stateful replica.

• DELETE /api/v1/cp/pod - Deletes the member with the given name of pod from
the CP Subsystem component in the Hazelcast cluster, as described in Section
4.4.4.

• GET /api/v1/cp/verify - Retrieves information from the cluster to verify if the
discovery phase of the Hazelcast cluster is completed.

As already described, the StatefulSet controller of the decentralised fault-tolerant method
deploys two containers simultaneously, i.e., the stateful and consensus application. The
former awaits the completion of the formation of the Hazelcast cluster since state changes
can get lost as a pending Hazelcast member cannot receive any messages. Therefore, the
stateful replica constantly checks if the Hazelcast cluster is initialised, i.e., all members
joined successfully before it starts with its indented operation.

20https://spring.io/projects/spring-boot
21https://maven.apache.org
22https://docs.hazelcast.com/hazelcast/latest/
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4.4.2 CP and AP components

In contrast to the centralized approach, the decentralized fault-tolerant method prefers
consistency over availability - with respect to the CAP theorem. The Hazelcast library
provides strongly consistent data structures with its CP Subsystem23 component. However,
it needs to be enabled manually since Hazelcast solely supports AP components per
default. At startup, each consensus replica specifies the size of the CP Subsystem cluster,
which is provided by the environment variable REPLICAS. Hazelcast forms a cluster of
all those members and grants them access to the CP components of the library.

4.4.3 Members and Groups

The set of consensus replicas accesses the data structures of the CP Subsystem in the
form of smaller groups of three to seven members. Each group implements the Raft
algorithm and elects its leader to achieve consensus. Hazelcast automatically creates
the METADATA group, which coordinates allocating members in other groups. If not
specified otherwise, the members in the CP Subsystem only use data structures belonging
to the DEFAULT group. As depicted in the exemplary Hazelcast cluster shown in Figure
4.8, two custom groups with three members each are created. Although a member can
be part of multiple groups, it solely interacts with the data structures related to one
designated group.

Figure 4.8: Custom CP Subsystem groups sharing a common member

The particular group of a CP member is determined by the ordinal index of the corre-
sponding consensus replica’s identifier. With a set of consensus replicas of size n, a group
size g, a total number of groups m = ⌊n

g ⌋ + 1, j depicts the ordinal index of the group.
Thus, for each consensus replica i, it holds true:

∀iϵ{0, ..., n − 1} : j = ⌊ i

g
⌋, 0 ≤ j ≤ m − 1 (4.1)

As shown in Figure 4.8, a cluster of size n = 5 and a group size of g = 3, results in a
total number of m = 2 groups, namely group-0 and group-1.

23https://docs.hazelcast.com/imdg/4.2/cp-subsystem/cp-subsystem
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Pod-2 participates in both groups. However, it retrieves and persists states only from
group-0. Hazelcast provides several data structures for group members to use, including
the IAtomicReference24 class, which can be used to reference a string object. A request
to persist a state is received by the group’s leader. If the group member receiving the
request is only a follower, it is forwarded to the leader. If most group members accepted
and replicated the request, it is considered committed.

4.4.4 Failures of CP Members

Hazelcast removes crashed CP members from the cluster. However, it retains them
in their CP Subsystem groups since it is unclear if a member encountered a failure or
is not responding due to a network partition. Thus, they are still considered in the
majority calculations of groups, which constitutes a threat to the availability of the
cluster. Therefore, they need to be removed manually. In general, the Hazelcast cluster
can tolerate failures of a minority of members, thus less than n/2 + 1 failures. In case a
majority of cluster members crashes, the system needs to be restarted, losing all stored
data in the process. Furthermore, a group cannot make any progress if a majority of its
members is not responding, thus needs to be deleted. It can also be recreated; however,
the progress is lost until this point.

Figure 4.9: Group member is replaced after it crashed

24https://docs.hazelcast.org/docs/4.2/javadoc/com/hazelcast/cp/IAtomicReference.html
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As depicted in Figure 4.9, pod-1 crashed and is automatically removed from the cluster,
and after the request is sent to remove it from the groups it participated in, it has
completely vanished from the cluster. After Kubernetes redeploys the Pod, the respective
Hazelcast instance reactivates the CP Subsystem and is added to the METADATA group.
Meanwhile, pod-3 takes its place and now participates in group-0 and group-1. In case
no other CP member is available, the majorities of each group are recalculated. Since
pod-1 was the leader of group-0, a new election round is started, which involves a small
window of unavailability. A crashed member being the leader of multiple groups could
constitute a bottleneck to the availability of the cluster. In case pod-1 was a follower, the
process of removing it from the group is not disruptive. Since pod-1 is now part of the
METADATA group, it can function as the replacement for future crashed members. A
consensus replica is not required to be a member of a group to access the data structures
within it. Thus, it is still possible for pod-1 to process incoming requests and persist the
state from its application replica.

4.4.5 Interaction with Stateful Application

At startup, the stateful replica pod-0 attempts to retrieve the state from the consensus
replica, as shown in Figure 4.10. Upon receipt, the latter determines the group based
on the ordinal number of the identifier sent along. In case the group does not exist, it
is created in the process, and null is returned. Otherwise, the state is retrieved from
group-0 and returned.

If the application replica pod-0 receives null, i.e., no state was persisted with the fault-
tolerant method, it assigns its identifier as the initial state. The state is subsequently
updated by applying the hash function and sent back to the consensus replica. The latter
determines the group based on the identifier of the application replica. Then, the state
is persisted with the IAtomicReference object. If consensus-0 is a follower in its group,
the request is forwarded to the leader, which replicates the updated state to the other
followers of the group once consensus is reached.
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Figure 4.10: Interaction between application and decentralized fault-tolerant method
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CHAPTER 5
Evaluation

The following chapter describes the evaluation process of the stateful application and the
fault-tolerant methods. Section 5.1 outlines the relevant metrics concerning the proposed
approaches’ performance and scalability. Section 5.2 explains the process of evaluating
both fault-tolerant methods. Finally, Section 5.3 discusses the results found during the
evaluation.

5.1 Application Metrics

The stateful application collects various metrics during deployment, regardless of the
integrated fault-tolerant method. The main goal of this evaluation process comprises two
aspects: 1) a comparison of the centralised and decentralised approach in terms of their
performance and scalability, and 2) examine the behaviour of the deployment in case a
subset of Pods encounters a failure and crash. Therefore, the following parameters are
collected and evaluated:

• Persist Latency (ms): Period it takes to persist the state of an application
replica with the integrated fault-tolerant method.

• Retrieve Latency (ms): Period it takes to retrieve the state of an application
replica from the fault-tolerant method.

• Startup Delay (ms): Period until the fault-tolerant method is deployed, set up
and ready to accept requests from the stateful application replicas.

• Memory Usage (MB) Memory usage of each Pod. In case of the centralized
approach, it excludes the requirements of the CouchDB database.
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The first two metrics are collected in a fixed time interval since each application replica
periodically updates its state after retrieving it from the fault-tolerant method. Memory
usage is collected throughout the deployment is running. In contrast, the startup delay is
collected once a Pod is started, i.e., after it is initially deployed or restarted due to a
failure. All the above-described parameters are provided to the metrics endpoint of the
stateful application to be retrieved by the Prometheus service running on the Kubernetes
cluster.

5.2 Evaluation Process

The evaluation process in this thesis comprises several different deployments to compare
the performance of both fault-tolerant methods. Therefore, the stateful application and
one of the two fault-tolerant methods are deployed with various replicas. In doing so, the
scalability and performance of each method are being tested.

To streamline the deployment process, an additional script was implemented and made
available on the public repository of this bachelor thesis. Kustomize1 is used to generate
deployment quickly manifests with different properties, e.g., the fault-tolerant method
or the number of replicas, whereas the latter varies within the tests between 5 and 21.
Furthermore, it allows us to define if Pods should crash during deployment to examine the
fault-tolerant behaviour. This subset of Pods is selected randomly, whereas a maximum
number of f = ⌊g/2⌋ Pods are allowed to crash - with g being the group size of the
CP Subsystem. Suppose more than f Pods crash, the data consistency within a single
group cannot be guaranteed. The centralised fault-tolerant method does not restrict the
number of Pods that can crash; however, two Pods are selected to obtain comparable
results. The failures are generated after one minute by deleting the respective Pods from
Kubernetes. The evaluation period of all experiments amounts to five minutes. The
script uses the Node.js client2 to interact with the Prometheus service on the Kubernetes
cluster, thus retrieving the aforementioned metrics once the evaluation period elapsed.

5.3 Results

The results concerning the deployments with 5 and 21 replicas are highlighted in the
following plots. The latency observed while persisting application states varies hugely
between both fault-tolerant methods, as depicted in Figure 5.1. The evaluation period
follows the horizontal axis, whereas the persist latency is plotted along the y-axis. The
centralised fault-tolerant method (5.1a) provides a consistent latency of 40 to 50 ms
throughout the complete deployment, while single outliers can reach values up to 60 ms.
This contrasts with the decentralised approach (5.1b), which shows an identical pattern
for all observed values. In particular, they start at approximately 180 ms and eventually
decrease over time to values below 30 ms. Figure 5.2 shows the results concerning

1https://kustomize.io
2https://github.com/siimon/prom-client
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the retrieve latency, depicting a similar pattern as the aforementioned persist latency.
Retrieving a state from the centralised approach (5.2a) generally takes between 18 to 23
ms; for some cases, it can take up to 28 ms. The maximum retrieve latency in case of the
decentralized fault-tolerant method (5.2b) amounts to about 80 ms. However, it eventually
decreases to values equivalent to those observed with the centralised fault-tolerant method
over time.
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Figure 5.1: Comparison of average persist latency with scaling number of replicas
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Figure 5.2: Comparison of average retrieve latency with scaling number of replicas

Figure 5.3 depicts the average memory usage of both fault-tolerant methods, whereas the
evaluation period is plotted along the x-axis. The observed values marginally increase
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Figure 5.3: Comparison of average memory usage with scaling number of replicas

over time in both scenarios. However, they are fairly constant for this particular time
frame. In general, the centralized method (5.3a) requires between 20 and 25 MB of
memory, whereas the decentralized approach (5.3b) needs up to six times the memory
requirements of the other method.

5.3.1 Observed Fault-Tolerance

As described above, a subset of Pods intentionally generates failures to examine the fail-
stop behaviour in regards to performance and scalability of both fault-tolerant methods.
Figure 5.4 shows the average startup delay for both methods, whereas one plot depicts
the result of a regular operation, i.e., in which no failures occur, and another illustrates
the observed values of deployments with the presence of Pod failures. The number of
replicas n is plotted along the horizontal axis. The subset contains two Pods in both
scenarios (f = 2), which are solely considered for the progressions marked in the colour
purple. In doing so, the measurements are comparable with each other and show that
both fault-tolerant methods remain operational even if two Pods crash simultaneously.

An application replica waits 0.22 seconds on average until the centralized fault-tolerant
method (5.4a) is ready in normal operation. On average, the same instance must wait
for 115.7 seconds until the decentralised method (5.4b) is ready to use, thus more than
700% longer. Both fault-tolerant methods can obtain improved results concerning the
subset of Pods that intentionally crashed and are restarted. The restart period of the
centralised method is about 37% shorter than the initial time it takes to deploy it. For
the decentralised approach, this difference amounts to 42%. Those measurements do not
include the time it takes for Kubernetes to deploy the respective Pods.
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Figure 5.4: Comparison of average startup delay with scaling number of replicas

0 50 100 150 200 250 300

10

20

30

40

Uptime (s)

M
em

or
y

U
sa

ge
(M

B
)

n = 5
n = 21

(a) Centralized fault-tolerant method

0 50 100 150 200 250 300

25

50

75

100

125

150

175

200

Uptime (s)

M
em

or
y

U
sa

ge
(M

B
)

n = 5
n = 21

(b) Decentralized fault-tolerant method

Figure 5.5: Comparison of average memory usage of crashed Pods

The average memory usage of the subset of crashed Pods is shown in Figure 5.5. The
observed values decline right after the failures are generated, depicted by the horizontal
line, the 60 seconds mark. In other words, the average memory usage of the crashed
Pods decreases since their deployment is deleted. Upon resuming their normal operation,
the requirements of both fault-tolerant methods even out at equivalent values to those
observed before the Pod failures.
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Figure 5.6: Comparison of average persist latency of crashed Pods
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Figure 5.7: Comparison of average retrieve latency of crashed Pods

Figure 5.6 depicts the average persist latency of the crashed Pods. In the case of
the centralised method (5.6a), the latency remains relatively the same for most of the
deployments, regardless of the failures. However, values up to 80 ms can be observed
for individual deployments. The results from the decentralised approach (5.6b) show a
steep increase in the persist latency at the 60 seconds mark, reaching values up to 400
ms. The observations regarding the retrieve latency of the crashed Pods follow a similar
pattern. Thus it does not strongly deviate from the expected behaviour in the case of
the centralised method (5.7a). Furthermore, the decentralised approach results (5.7b)
are observed to reach values up to approximately 100 ms after the failures are generated.
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5.4 Discussion
Although the decentralised fault-tolerant method performs poorly at the beginning of
the evaluation period, as apparent in the persist and retrieve latency, it eventually
outperforms the centralised approach. The reason for this behaviour lies in the additional
layers of the decentralised fault-tolerant method. The Spring Boot application and
the Hazelcast library require more time to instantiate the underlying data structures
than the CouchDB database. However, after the decentralised approach completed the
initialisation of the needed resources, it performs better than the centralised method since
it can rely on more optimised processes provided by the CP Subsystem. This component
is specifically built for persisting and distributing stateful information - as opposed to
the all-purpose CouchDB database.

Moreover, the decentralised method has higher memory requirements than the centralised
approach. As previously mentioned, the demands of the CouchDB deployments are
disregarded in the respective graphs. Further evaluation and exploration of this aspect
can provide a more comprehensive picture of the memory requirements. The decentralised
method also underperforms in terms of the observed startup delay. After a subset of
Pods crash, it takes more time for the decentralised method to resume the operation of
the crashed Pods. This observed latency hugely deviate from the values usually observed
and is in line with measurements regarding the persist and retrieve latency, thus perform
poorer due to the greater overhead of instantiating underlying data structures.

The number of replicas does not necessarily influence the performance of either of the
two fault-tolerant methods. This behaviour is equivalent to the observations by Netto
et al. [17]. Besides the varying number of replicas, their experiments also involve a
scaling number of clients. Although they conclude that there is an increase in the latency
observed by a client if additional replicas are added to the system, the case with only one
client shows a reasonably constant progression. Thus, behaving similarly to the above
described persist and retrieve latency.
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CHAPTER 6
Conclusion and Future Work

The introduction of fog computing enables the deployment of virtualised services near
end devices. The preferred method for bundling such applications is containerisation -
a lightweight approach to isolating related services into a single package. Kubernetes
allows the coordination of containerised applications’ deployment and automates the
maintenance of the applied components. However, external mechanisms are still required
to restore application states if failures occur.

Therefore, this thesis compares the implementation and integration of two different fault-
tolerant methods within a stateful application. A decentralised solution that involves
SMR and the more traditional approach of incorporating centralised backups are discussed
in the context of this work.

The literature review conducted in this bachelor thesis covers essential concepts regarding
replicating stateful applications and summarises the findings of related works. Chapter 2
summarises important terminologies and provides important information about consensus
algorithms, leader-based replication approaches and fault tolerance in general. In Chapter
3, relevant approaches of integrating SMR within Kubernetes are presented. The imple-
mentation of both fault-tolerant methods is provided in Chapter 4. The decentralised
fault-tolerant method relies on SMR to achieve consensus and distribute stored data
among healthy members within the network. This is opposed to the centralised method,
which stores data in a single location and is accessed by all application instances.

Finally, the stateful application and integrated fault-tolerant methods were evaluated.
This process involved the deployment of both methods with a varying number of replicas,
whereas critical metrics were collected during this period. The first part of the eval-
uation compares the performance and scalability of the two approaches. The second
part examines the behaviour of both approaches during the presence of intentionally
generated failures concerning the metrics of the first part. The evaluation shows that
the decentralised method involves more overhead which is apparent in more significant
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memory usage and a higher startup delay. The latency observed during persisting and
retrieving states eventually outperforms the centralised method as it can take advantage
of the optimised functions provided by the Hazelcast library.

This thesis focuses on implementing and integrating two distinctly different fault-tolerant
methods. When classified on a spectrum that reflects the degree of decentralisation, both
approaches are to be found on either end. Thus, other solutions in-between the two
proposed approaches can be implemented and integrated with the stateful application.

Although the number of replicas varies with the deployment of the decentralised fault-
tolerant method, the number of related application instances remains unchanged. A
multi-leader approach [10] would require further implementation and evaluation to allow
multiple instances to modify the state data of an individual application replica.

The metrics collected for the evaluation part of this thesis provide details on the perfor-
mance and scalability of the implemented fault-tolerant methods and stateful application.
However, the influence of the allocation of other deployments on the cluster and the
performance of Kubernetes are currently ignored. Further considerations can be made to
provide more significant statements in this regard.

The Hazelcast library restricts the usage of groups of the CP Subsystem, as the current
configuration dictates a single application replica to a specific group. Furthermore, it
only allows ⌊g/2⌋ group members to crash so that the underlying data structures remain
intact (g being the group size). Any further considerations exceed the scope of this
bachelor thesis; thus, optimising this aspect would enable the enhanced solution to be
used for more use cases than the one described in this work.
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