
BACnet Multiprotocol-Gateway for
Fire Alarm Systems

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Jannic Hofmann
Registration Number 11807859

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Seifried Stefan

Leitner Michael

Vienna, 1st September, 2022
Jannic Hofmann Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jannic Hofmann

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. September 2022
Jannic Hofmann

iii

Danksagung

Bedanken möchte ich mich an erster Stelle bei Stefan Seifried für die Möglichkeit diese
Arbeit schreiben zu können. Bei etwaigen Fragen stand er mir stehts mit Ratschlägen
zur Seite und übernahm auch das Korrekturlesen der Arbeit. Dank gilt ebenfalls Michael
Leitner, der bei Problemen mit der Brandmeldezentralle zur Hilfe stand und Herrn
Prof. Wolfgang Kastner, der sogar an Wochenenden auf Fragen umgehend antwortete.
Weiterer Dank gilt auch Larissa für das Korrekturlesen der Arbeit auf Grammatik und
Rechtschreibfehler. Bedanken möchte ich mich außerdem bei Familie und Freunden für
die Unterstützung während des Studiums.

v

Kurzfassung

Zahlreiche Gebäude verfügen oft über zentrale Brandmeldeanlagen mit einer Vielzahl
an Feuermeldern, die Parameter wie Temperatur, Kohlenmonoxid oder Rauch messen
können. Nutzen dieser Werte ist nicht oder nur begrenzt möglich, da viele Brandmel-
deanlagen proprietäre Protokolle verwenden und somit andere Systeme nicht auf die
Sensorwerte zugreifen können. Zunächst werden in dieser Arbeit die bestehenden Techno-
logien zur Konvertierung von Werten zwischen verschiedenen Protokollen mithilfe von
Gateways vorgestellt. Im Anschluss wird mithilfe eines Ultra-Kompakt-Industrie-PCs,
der als speicherprogrammierbare Steuerung fungiert, ein BACnet Gateway entwickelt, der
Sensorwerte BACnet-fähigen Geräten zugänglich macht. So sollen auf Basis der Sensorwer-
te der Brandmeldeanlage weitere Anwendungsmöglichkeiten für die Gebäudeautomation
und Industrie 4.0 geschaffen werden.

vii

Abstract

Buildings are often equipped with fire alarm systems, containing hundreds or even
thousands of fire detectors. Detectors carry multiple sensors, measuring temperature,
carbon monoxide or smoke levels.These data points are useful for purposes other than
fire detection, but proprietary protocols impede their widespread use. At first, this thesis
will show existing technologies to translate information between protocols with help of
gateways. Thereafter, an ultra-compact Industrial PC running a software programmable
logic controller is used to create a BACnet gateway, to transform the data entities of
the fire alarm system to a BACnet representation that can be read by BACnet capable
devices. This way, BACnet accessible sensor values should enable enhanced building
automation and Industry 4.0 applications.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodology . 2
1.4 Structure of the work . 2

2 State of the Art 3
2.1 BACnet . 3
2.2 Fire Alarm System with BACnet . 6
2.3 BACnet Protocol Gateways . 8

3 Design and Implementation 13
3.1 PLC - Fire Alarm System Communication 14
3.2 Beckhoff BACnet API . 16
3.3 Beckhoff PLC BACnet Information Model 22
3.4 Beckhoff BACnet Stack Results . 27
3.5 Life Safety Point and Life Safety Zone Information Model 28
3.6 Data Transfer TwinCAT to C# . 34
3.7 Life Safety Objects with C# BACnet Library 37
3.8 C# BACnet Server Results . 40

4 Conclusion and Further Work 43
4.1 Beckhoff vs C# BACnet Stack . 43
4.2 Conclusion . 44
4.3 Further work . 44

List of Figures 45

xi

List of Tables 47

List of Algorithms 49

Bibliography 51

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

Regulatory requirements call for fire alarm systems in buildings. Therefore, various
forms of fire detectors are a common sight. Up until now, fire alarm systems, as an
integral safety system of modern buildings, served the sole purpose of alerting users
and preventing damage. However, the different sensors in fire detectors can be put to
a second use in building automation and Industry 4.0 scenarios. Sensors like Carbon
monoxide (CO) or temperature can be used for building automation and smart climate
control. Given a fire alarm, a building automation system may also perform secondary
tasks like switching on all lights and open blinds. In case of a real fire, information
from fire alarm systems (location of the sensor that triggered the alarm) and building
automation systems (e.g., information from motion detectors) may be combined to check
if individuals are still in the affected area. Furthermore, a large fire alarm system consists
of thousands of sensors, which could allow Industry 4.0 use cases for sophisticated tasks
like remote monitoring and predictive maintenance.

To enable these use cases, access to the information of fire alarm systems sensors is
needed. Direct access is hampered due to the use of proprietary protocols for fire alarm
systems. Hence, a protocol-gateway is needed to improve interconnectivity between the
trades in building automation. The big advantage of a gateway solution is that the
automation pyramid is flattened, and the management level doesn’t need to transfer and
translate data between different systems. Therefore, the role of protocol gateways in the
implementation of importance in Industry 4.0 is necessary. [1]

Another advantage of using already installed fire alarm systems is the conservation of
resources. No additional wires need to be installed, and e-waste can be reduced by
avoiding installation of new sensors. Besides that, smart climate control can save a vast
amount of energy in large buildings when being equipped with a variety of sensors. [2]

1

1. Introduction

Moreover, the technical requirements of fire alarm system sensors are high, therefore fire
alarm system sensors have a high demand on reliability and availability. [3], [4]

1.2 Aim of the Work
The main goal of this thesis is to test whether a PLC is suited to translate proprietary
protocol of fire alarm systems to a popular building automation protocol like BACnet/IP.
At first, existing literature is evaluated to study already existing solutions. After that,
a BACnet information model is created to manage the mapping to BACnet. Based
on the domain model and the instance model of a fire alarm system, the BACnet
information model should be automatically created. These goals ought to be prototypically
implemented with help of a Beckhoff-PLC to prove the viability of the fire alarm system
to BACnet protocol gateway.

1.3 Methodology
First, fundamental requirements of the BACnet protocol gateway and information on
state of the art are gathered based on the review of existing literature. After that, a proof-
of-concept (PoC) implementation is used to gather quantitative as well as qualitative
data. The evaluation will be done in cooperation with a manufacturer of the fire alarm
systems, Schrack-Seconet AG [5]. A major part of the PoC evaluation is the comparison
of the Beckhoff-BACnet stack with third party solutions (e.g., C#-stack). Requirements
of the BACnet protocol gateway and gathered data from the prototypical implementation
will be assessed to find weaknesses. For instance, the maximum number of supported fire
alarm system elements and usability of a proprietary BACnet mapping and BACnet Life
Safety objects will be analyzed.

1.4 Structure of the work
First, the chapter State-of-the-Art will show the relevant points and objects of BACnet.
This is followed by the description of two fire alarm systems which support BACnet
natively and a short summary of three different BACnet gateway solutions. Chapter
Design and Implementation will start with the Beckhoff-PLC and how to access the
fire alarm system and create a BACnet server with the Beckhoff stack. Afterwards, the
BACnet information model for the Beckhoff BACnet stack will be shown, tested and
evaluated. Last but not least, this chapter covers the implementation and testing of the
BACnet Life Safety Point and Life Safety Zone information model with an open source
C# BACnet stack. The final chapter Conclusion and Further Work compares the
two information models, summarizes the findings of this thesis, and shows further options
to optimize found weaknesses.

2

CHAPTER 2
State of the Art

2.1 BACnet

BACnet stands for "Building Automation and Control Networks" and is a networking
protocol for building automation and control that is standardized in DIN EN ISO 16484-5
[6]. The goal of BACnet is a cross-vendor protocol that connects different parts of
building automation like lighting, heating, access control, fire alarm systems and more to
allow communication between systems along with central control. BACnet can be used
with different underlying networks like LonTalk or KNX. Incompatible devices can be
made compatible with the help of protocol gateways. BACnet devices are represented by
objects consisting of multiple properties that must be accessible via standardized BACnet
services, allowing the actual implementation of the BACnet device to be proprietary.
BACnet services are used to access objects, that include direct access, subscriptions as
well as alarm and event management. BACnet provides standard object types for fire
alarm systems, the Life Safety Zone (LSZ) and Life Safety Point (LSP). The big advantage
of LSZ and LSP, interoperability, is opposed by the limited number of standardized
properties and therefore of limited use for alternative and advanced use cases. Proprietary
object types can be created, or standard object types can be extended at the expense of
compatibility with other systems. [6], [7]

2.1.1 Standardized Object Properties

Standardized object types consist of required and optional properties which can be
readable, writable or both. The number and type of properties differs from object type to
object type. Alongside property data types like boolean and int, BACnet uses Application
Protocol Data Units (APDUs) for many properties. APDUs encode the meaning of
properties by mapping numbers to meaningful states e.g., BACnetAccessEvent maps
none=0,granted=1,muster=2,... . Some APDUs can be expanded with proprietary values

3

2. State of the Art

at the cost of compatibility. The DIN EN ISO 16484-5 [6] defines 60 standard object
types, covering a wide range of applications. [6]

2.1.2 Life Safety Point

The Life Safety Point is used to represent devices like manual call points, fire detectors,
sirens and more. It contains 14 required properties and 27 optional properties. However,
the list of defined properties provides only one property ("Direct_Reading") suitable
for encoding an analog sensor value. The optional properties can also support the
use of intrinsic reporting, meaning that an LSP or LSZ can generate life-safety-alarm-,
alarm- and fault-events based on changes of life safety state. The life-safety-events are
transmitted with higher priority to ensure prioritization compared to normal notifications.
LSP and LSZ also contain a notification class property, which sets the class that will be
notified when an event occurs. Polling LSPs for changes is computational and network
resource intensive, therefore the LSP property “Present_Value” and “Status_Flags”
supports change of value (CoV) notifications to notify subscribers in case of state changes.
The following table shows relevant properties of the LSP defined in the DIN EN ISO
16484-5 and a brief description [6].

Property Datatype Function
Object_Identifier BACnetObjectIdentifier Identifies object within BACnet

Object_Name CharacterString Unique Object Name within
the BACnet device

Object_Type BACnetObjectType LIFE_SAFETY_POINT

Present_Value BACnetLifeSafetyState The state of the LSP e.g., Alarm,
Active, Deactivation, . . .

Tracking_Value BACnetLifeSafetyState Non latched present-value
Description CharacterString Textual description of the object

Device_Type CharacterString Textual description of the device
type, e.g., siren, printer, zone, . . .

Status_Flags BACnetStatusFlags
four status flags (IN_ALARM,
FAULT, OVERRIDDEN,
OUT_OF_SERVICE)

Event_State BACnetEventState State of object, always normal
without intrinsic reporting

Reliability BACnetReliability Describes the reliability of the
present value

Out_of_Service BOOLEAN Indicates if the LSP is out of
service

Mode BACnetLifeSafetyMode Operating mode of the LSP

Accepted_Modes BACnetLIST of
BACnetLifeSafetyMode

List of accepted modes that can
be written to property mode

4

2.1. BACnet

Table 2.1 continued from previous page

Silenced BACnetSilencedState Indicates the latest change that
caused an audible signal

Operation_Expected BACnetLifeSafety
-Operation

Operation expected by the LSP to
handle a life safety condition

Direct_Reading REAL Analog device value can be
represented e.g., temperature, smoke, . . .

Following Properties are only needed for Intrinsic reporting

Notification_Class Unsigned Class that gets event and alarm
notifications

Life_Safety_Alarm
-_Values

BACnetLIST of
BACnetLifeSafetyState

List of Present_Values that should
trigger Life Safety Alarms

Alarm_Values BACnetLIST of
BACnetLifeSafetyState

List of Present_Values that should
trigger Alarms

Fault_Values BACnetLIST of
BACnetLifeSafetyState

List of Present_Values that should
trigger Faults

Time_Delay Unsigned Time the present value has to hold
to trigger an alarm or event

Event_Enable BACnetEvent
-TransitionBits

Three flags (to_offnormal, to_normal,
to_fault) to enable and disable
the transmission of events

Acked_Transitions BACnetEvent
-TransitionBits

Three flags (to_offnormal, to_normal,
to_fault) that represent the
acknowledgement state

Notify_Type BACnetNotifyType Set the notification type
to Alarm or Events

Event_Time_Stamps BACnetARRAY[3] of
BACnetTimeStamp

Latest timestamp of events
(to_offnormal, to_normal,
to_fault)

Event_Detection
-_Enable BOOLEAN True when intrinsic reporting is

enabled otherwise false

Table 2.1: Life Safety Point properties explanation [6]

2.1.3 Life Safety Zone

The Life Safety Zone contains nearly the same list of properties as the LSP, with the
main difference that it contains the read property Zone_Members. This property can
be used to group multiple LSPs together into one zone to depict the physical fire alarm
system structure [6].

5

2. State of the Art

2.1.4 Combination From Multiple Standardized Objects

Not all BACnet devices fully support LSP, LSZ and proprietary objects, e.g., the Beckhoff
BACnet stack. [8] To ensure widespread compatibility, the fire alarm system information
model must be built based on a minimal set of fundamental BACnet object types. This
can be accomplished by grouping multiple BACnet objects into a structured view, where
the structured view is a fire alarm Element of the fire alarm system. A disadvantage
of this information model is that standardized BACnet objects contain unnecessary
properties that increase overhead and reduce usability. Moreover, interoperability is
reduced compared to LSP and LSZ.

2.1.5 Proprietary Object Types

Some BACnet stacks also support the creation of proprietary objects that combine an
arbitrary number of properties that can be tailor-made to a specify implementation. The
downside of proprietary objects is the limited interoperability with other BACnet devices.

2.1.6 Extension of Standardized Object Types

The best solution of both worlds is the use of standardized BACnet objects extended
with proprietary properties. All BACnet devices should be able to read the properties
defined by the DIN EN ISO 16484-5:2017-12 [6]. The added proprietary properties can
be read by BACnet devices that are aware of the added properties. Using extended
standardized BACnet objects enables IoT and Industry 4.0 applications.

2.2 Fire Alarm System with BACnet

There are fire alarm systems with BACnet support available on the market. This chapter
will show how they connect to the fire alarm control panel (FACP) and, if publicly
available, which BACnet object types are used to model the BACnet information model
and how the translation from an FACP to BACnet is done.

2.2.1 Zettlerfire UC-8112-LX BACnet Converter

Zettlerfire offers two solutions to make their fire alarm systems BACnet capable. On one
hand, a stand-alone solution using a MZX technology panel can be used. Details on the
stand-alone solution could not be found. On the other hand, the industrial computer
UC-8112-LX can take the role of the BACnet converter. The industrial computer is
powered by a RISC-Processor and connects to the fire alarm system via the fire alarm
systems network called TLI800EN. The converter runs a specialized firmware that needs
to be uploaded via a PC to work as a BACnet gateway. Information accessible via BACnet
information model include alarms of LSP and LSZ, system faults, warnings, pre-alarms,
LSP and LSZ isolation and analogue values of automatic detectors. Supported commands
are reset, sounders on/off, silence, evacuation and isolation of points and zones. The

6

2.2. Fire Alarm System with BACnet

Zettlerfire datasheet provides neither information on how the translation takes place,
nor shows information on the utilized BACnet objects. The figure 2.1 shows an example
workflow of the BACnet gateway. The MZX Panel Network (1) is connected to the
MZX BACnet interface (2) which is configured with the configuration download tool
(3). Via Ethernet, the MZX BACnet interface (2) is connected to the BACnet gateway
(4). The BACnet management workstation (6) is connected to the BACnet gateway (4)
via BACnet capable LAN (5). An upper limit of supported fire alarm elements by one
BACnet gateway is not stated in the datasheet [9], [10].

Figure 2.1: Zettlerfire UC-8112-LX BACnet converter workflow [10]

2.2.2 Notifier (Honeywell) BACnet Gateway

Another system is the BACnet gateway from Notifier, which is a division of Honeywell.
Honeywell was part of the project-committee SPC 135P that created BACnet. The
BACNET_GW-3 from Notifier can be connected to the Notifirenet via a network port
to monitor up to 14 Notifirenet systems with up to 15000 objects. For additional nodes,
multiple gateways can be used in parallel. When no Notifirenet is used, the BACnet
gateway can be connected to the FACP directly. Figure 2.2 shows the system architecture
used to connect the FACP to the BACnet gateway. The BACnet gateway is configurable
via a built-in browser accessible configuration tool. The gateway supports device-, binary
output-, LSP and LSZ, multi-state input-objects, and event/alarm notifications. The
objects are used to represent a wide range of devices like zones, detectors, batteries,
loops, AC power and more. Possible values of the BACnet properties for LSP and LSZ,
Multi-state Input and Binary Output are listed in the BACnet Gateway-3 Installation
and Operation Manual [11]. Interestingly, the DIRECT_READING property of LSP
and LSZ is used to describe the percentage of an alarm and not a temperature or CO
value of an analog sensor. Information on the exact hardware, and how the translations
takes place, is not publicly available [11], [12].

7

2. State of the Art

Figure 2.2: NOTIFIER BACnet gateway system architecture [12]

2.3 BACnet Protocol Gateways

This section will show three implementations for BACnet gateways, one of them with
fire alarm systems in mind. The other two will focus on the translation between BACnet-
Zigbee and BACnet-EnOcean.

2.3.1 Implementation of a BACnet-ZigBee Gateway [13]

At the time of writing, BACnet had no support for ZigBee, therefore the researcher of
the Implementation of a BACnet-ZigBee Gateway paper [13] decided to create a BACnet-
ZigBee gateway to allow BACnet to be used via wireless ZigBee channels. Besides
a BACnet to ZigBee gateway, BACnet over ZigBee (BoZ) is possible as well. BoZ
implies that BACnet network protocol data units (NPDUs) are tunneled over ZigBee.
Commercial building automation (CBA) profiles are specified by the ZigBee Alliance
to define tunnel clusters for BoZ and ZigBee clusters to be mapped to BACnet objects.
Besides the cluster to BACnet object mapping, a second mapping table for data mapping
is needed. The second mapping table consists of the ZigBee network address, end point
and BACnet object IDs. The two mapping tables are shown in Figure 2.3. [13]

The implementation of the BACnet gateway uses ZigBee and BACnet hardware modules,
the two hardware modules communicate via RS-232 with each other. As BACnet data
link protocol, the BACnet/MSTP protocol is used. The figure below shows the hardware

8

2.3. BACnet Protocol Gateways

(a) cluster to BACnet object mapping (b) data mapping table

Figure 2.3: ZigBee BACnet gateway mapping table [13]

structure as well as the architecture of the gateway. The MCU used is a ATmega128
with 128 KB of Flash memory. The gateway translates the ZigBee entities attribute,
command and cluster to the BACnet entities property, service and object and the other
way around. Address translations are done with a mapping table (see Figure 2.3b). The
experimental testing of the BACnet gateway showed the successful translation between
BACnet and ZigBee. Figure 2.4 shows the hardware structure and architecture used for
the BACnet gateway. [13]

(a) BACnet gateway hardware structure (b) BACnet gateway architecture

Figure 2.4: BACnet gateway hardware structure and architecture [13]

9

2. State of the Art

2.3.2 A BMS Client and Gateway Using BACnet Protocol [14]

The goal of the A BMS Client and Gateway Using BACnet Protocol paper [14] is to
use BACnet for a Building Management System (BMS) and to develop a BMS client
application and a gateway to interface fire alarm panels, in this case an FACP from
Bosch. The paper is mainly focused on the BMS and BACnet protocol in general, the
BACnet gateway is only mentioned briefly. Moreover, the BACnet gateway is running
on a computer in the form of software and uses two network ports of the computer to
communicate with the FACP and BACnet. Translation works in both directions, sending
commands from BACnet to the FACP and translating the state of the fire alarm system
to BACnet objects. Alarms and events are generated by the gateway based on the fire
alarm system state. The elements from the fire alarm system are converted to BACnet
objects, but the paper does neither mention how exactly the translation takes place,
nor which BACnet object types are used. Figure 2.5 illustrates system architecture of
the BACnet gateway interfacing with the FACP. The BMS is connected to the gateway
PC via LAN, which is connected to the fire alarm system network. No test results,
like the number of supported elements and functioning of translation commands and
alarms/events of the BACnet gateway, are shown. [14]

Figure 2.5: BMS client and gateway system architecture [14]

10

2.3. BACnet Protocol Gateways

2.3.3 Implementation of a BACnet-EnOcean Gateway in Buildings [15]

The aim of the Implementation of a BACnet-EnOcean Gateway in Buildings paper [15] is
to test if it is feasible to add EnOcean energy harvesting devices to BACnet with help of
a protocol gateway. The gateway needs to do address and property-attribute translation.
Therefore, the researchers categorized the EnOcean devices into three groups. First, the
energy-harvesting input device, energy-harvesting-output device and a Line powered device
need to be mapped to a BACnet object. BACnet analog inputs, analog outputs, binary
inputs, and binary outputs are selected as target objects. The read and write requests are
translated by the gateway from BACnet to EnOcean and vice versa. The main hardware
parts of the gateway are the BACnet module, EnOcean transmitter, connect selection
part (used to switch between the PC, transmitter and BACnet module) and PC interface
as shown in Figure 2.6. The BACnet module contains a 32-bit ARM cortex MCU with
40 KB of RAM. The PC interface is used for monitoring and to download the gateway
protocol source code to the BACnet module. [15]

Figure 2.6: EnOcean to BACnet gateway hardware architecture [15]

A PoC setup with EnOcean devices and BACnet gateway have been used to test the
function of the gateway. Input and output objects were accessed via BACnet and the
EnOcean telegrams were analyzed with the analyzer DolphinView. As Figure 2.7 shows,
the report-telegram from EnOcean was successfully transferred to BACnet read property.
The same results were shown when testing a write-request. The data as well as the source
and destination addresses were correctly translated. [15]

11

2. State of the Art

Figure 2.7: EnOcean report-telegram to BACnet [15]

12

CHAPTER 3
Design and Implementation

This chapter will describe problems and solutions of the design and implementation
process. First, the Beckhoff PLC will be described, followed by the Beckhoff PLC
Integral-Standardprotokoll over IP (ISP-IP) API to access the FACP. After that, the
Beckhoff BACnet stack and BACnet information model will be explained. Lastly, a C#
BACnet stack to create LSP and LSZ objects will be shown. Figure 3.1 shows the system
architecture, the green part is only needed for the C# BACnet stack solution. The C#
BACnet stack is running on a development PC instead of the ultra-compact Industrial
PC for testing purposes only. When using the Beckhoff BACnet stack, the BACnet server
is running on the PLC.

ISP-IP to BACnet
Gateway

ISP-IPBACnet

IP-switch

ultra-compact Industrial PC

TwinCAT-PLC

ADS

fire alarm system

ISP-IPBACnet

C#-BACnet stack
running on a PC

Figure 3.1: System Architecture

13

3. Design and Implementation

3.1 PLC - Fire Alarm System Communication
The Beckhoff C6030 is an ultra-compact Industrial PC (UcIPC) using Windows 10 IoT
Enterprise as operating system. 8 GB of memory and an Intel x86 CPU power the
UcIPC. [16] TwinCAT-PLC runs on the UcIPC to provide PLC functionality. Program-
ming the PLC is done via the integrated development environment (IDE) called TwinCAT
3 Engineering. [17] The UcIPC combines the performance of a PC with the functionality
of a PLC and is therefore targeted for IoT and Industrial 4.0 use cases. [16] Figure 3.2
shows the UcIPC. Especially, two of the four Ethernet ports are needed to connect to
multiple networks, which is a necessity, in order to use the UcIPC as a protocol gateway
between two networks.

Figure 3.2: UcIPC Beckhoff C6030 [16]

3.1.1 Beckhoff-PLC as Gateway

In order to allow a PLC to map a fire alarm system to a BACnet representation, the
PLC needs to be connected to the FACP. The connection is done via IP over Ethernet,
therefore the PLC can be directly connected to the FACP. The Windows 10 IoT Enterprise
runs a service called Integral-Standardprotokoll over IP (ISP-IP) that is supplied from
Schrack-Seconet AG [5] and can directly communicate with the FACP. An Application
Programming Interface (API) is available to access the ISP-IP service from the Beckhoff
PLC environment TwinCAT3. [18] The extracted data from the FACP is converted to
BACnet objects with the Beckhoff BACnet library or transferred to a C# program that
creates a BACnet/IP-Server with a third party BACnet library.

14

3.1. PLC - Fire Alarm System Communication

3.1.2 State Machine Procedure to Read From the FACP

The ISP-IP-Service has to be configured with the IP-address and an XML file that holds
the description of the fire alarm system configuration. The IP configuration and XML
file provided by Schrack-Seconet AG [5]. To access the FACP within TwinCAT3, the
Tc_ISP-IP Library must be added first, after that the elements of the fire alarm system
can be accessed via function blocks. The easiest way to access the FACP is to create
a state machine that updates the BACnet objects repeatedly. An example for a state
machine that reads from the FACP was provided by Schrack-Seconet [5]. Based on this
state machine, the BACnet/IP gateway is created.

3.1.3 ISP-IP API for Beckhoff TwinCAT

The used state machine is shown in Figure 3.3. At the startup, the state idle waits
for the timer to call for an update of the fire alarm system elements. When the call
occurs, it prepares the ISP-IP function blocks to read from the FACP and switches to
the init state, which resets all counters. Init is followed by a start state which checks if
a FACP is connected. Furthermore, the number of elements from the fire alarm system
is compared to the number set in the program, if it does not match, the PLC goes into
error-mode. This is done to prevent configuration errors from going unnoticed. Unless an
error occurred, the first 100 elements are read from the FACP. In case no further elements
need to be fetched, the state get_description is entered to get the textual description
of each fire alarm system element. If elements are missing, the state-machine goes to
the state getnext to fetch 100 elements at a time till all elements are fetched. Only 100
elements are read per step to limit the duration of a state-machine cycle. Otherwise, the
time per step can exceed the PLC cycle time. After all elements are read and received
their description, the state-machine enters the idle-state and the procedure repeats itself
anew. The elements’ descriptions won’t change while the fire alarm system is running.
Therefore, descriptions are only fetched in the first cycle of the state machine.

15

3. Design and Implementation

init

start

elements
missing

�mer calls for update

all counters reset

errorget_descrip�on

get next

error occurred

yes

no

elements
missing

no

error occurred

yes

all descrip�ons fetched

error occurred

startupidle

desc.
ini�alised

no

Yes

Figure 3.3: State machine

The ISP-IP API has a shortcoming, the description of the elements cannot handle special
characters. This is a known issue and will be fixed in a future release. The states start,
getnext and get_description need to be altered to map the elements to the BACnet
information model, these changes are explained in section 3.3.3.

3.2 Beckhoff BACnet API

The first milestone is to use the BACnet API from Beckhoff to map the fire alarm system
to the LSP and LSZ objects. But unfortunately, the BACnet implementation from
Beckhoff does not support LSP and LSZ objects. Proprietary objects are not supported
as well. Therefore, the fire alarm system needs to be modeled with the help of available
BACnet objects. The Beckhoff-API only supports 38 object types, which are listed
below (Figure 3.4). [8] To provide a BACnet information model with LSP and LSZ,
TwinCAT-PLC needs to be connected to a third-party program that provides a BACnet
implementation with LSZ and LSP objects. More detail on a C# implementation can be
found in section 3.7.

16

3.2. Beckhoff BACnet API

• Analog-Input

• Analog-Output

• Analog-Value

• Averaging

• Binary-Input

• Binary-Output

• Binary-Value

• Calendar

• Command

• Device

• Event-Enrollment

• File

• Group

• Loop

• Multi-state Input

• Multi-state Output

• Multi-state Value

• Notification Class

• Schedule

• Structured View

• Program

• Pulse-Converter

• Trend-Log

• Trend-Log-Multiple

• Event-Log

• Bitstring-Value

• Character-String-
Value

• Date-Pattern-Value

• Date-Value

• DateTime-Pattern-
Value

• DateTime-Value

• Integer-Value

• LargeAnalog-Value

• OctetString-Value

• Positive-Integer-Value

• Time-Pattern-Value

• Time-Value

Figure 3.4: Supported object types

17

3. Design and Implementation

3.2.1 ISP-IP Datatype to Beckhoff BACnet Object Mapping

There are five different data types (DateTime, Byte, U/Integer, String) per node available
from the ISP/IP API that need to be mapped to available BACnet object types. In
addition, a BACnet object is needed to group objects from an ISP-IP Element. Table 3.1
shows the five data types and the potential BACnet object types that are suitable for
mapping.

Description Datatype BACnet object types BACnet Datatype
Timestamp Date Time Datetime Value ST_BA_DateTime

Positive-Integer-Value DINT
Multi-state Value UDINTElementstate Byte
Analog Value REAL
Large-Analog-Value LREAL
Analog Value REALElement Number,

Subtype,...
Unsigned-Integer
16bit Positive-Integer-Value DINT

Large-Analog-Value LREAL
Analog-Value REALTemperature, CO,... Integer 32bit
Integer-Value DINT
BACnet Primitive String T_MAXString

Description String Structured View
->Property:Description T_MAXString

Group -Grouping one fire
alarm system Element

Group multiple
BACnet objects Structured View -

Table 3.1: ISP-IP Datatype to Beckhoff BACnet object mapping

3.2.2 Usage of Beckhoff BACnet API

The UcIPC must be configured so that it is compatible with the Beckhoff BACnet API.
First, the BACnet/IP-Adapter must be configured and a BACnet/IP-Server added. After
that, the PLC-program can be connected to the BACnet/IP-Server.

3.2.3 BACnet Network-Adapter and BACnet/IP-Server

A BACnet/IP-Adapter can be added in TwinCAT IDE at EA→Devices. When selecting
the BACnet/IP-Adapter in the TwinCAT IDE, a real time network-adapter of the
PLC can be assigned to the BACnet/IP-Adapter. The IDE must be connected to
the PLC and a Beckhoff network real-time adapter driver must be installed for the
network adapter to become available. To get the TwinCAT real time network driver
running on the UcIPC, the driver needs to be installed directly on the UcIPC. This
can be done via remote desktop, when connected, the driver can be installed via the
tool TcRteInstall which can be found in the installation path of TwinCAT (e.g., C:\
TwinCAT\3.1\System\TcRteInstall.exe). Figure 3.5a shows the RT-Ethernet Adapter’s
dialogue. After installation of the network driver, the network adapter can be selected in

18

3.2. Beckhoff BACnet API

the TwinCAT IDE and assigned to the BACnet interface. Now, the BACnet/IP-Server
can be added to the BACnet/IP-Adapter shown in Figure 3.5b.

(a) Beckhoff TcRteInstall
(b) BACnet/IP and BACnet/IP-
Server

Figure 3.5: Beckhoff BACnet/IP-Server

3.2.4 Automapping BACnet Library Revision 12 and Revision 14

The Beckhoff BACnet library is available in two versions and is required to communicate
with the BACnet/IP-Server already created. Revision 12 is available from the Beckhoff’s
Website, while revision 14 is not available online, yet. Both versions use completely
different approaches to auto-generate and map BACnet objects, the mapping based
on revision 12 did not work properly, therefore revision 14 was used. A more detailed
explanation can be found in the next sections.

Automapping with BACnet Library Revision 12

Automapping with the BACnet library revision 12 is done by using special annotations
after the variable declaration to automatically create a BACnet object. This enables the
programmer to create BACnet objects from the PLC program instead of creating them
by hand within the TwinCAT IDE. An example for such a special annotation can be
found in the Beckhoff documentation and is shown in Algorithm 3.1. [19]

Algorithm 3.1: Automapping with revision 12 [19]

Before applying the program to the PLC, the BACnet objects need to be mapped to the
BACnet/IP-Server module. That can be done via the mapping button in the BACnet/IP-

19

3. Design and Implementation

Server settings section, PLC Automapping. The problem with this approach is the lack of
bidirectional updating of variables, regardless of settings. The values would only update
from BACnet to the PLC program, but not vice versa. This problem could not be solved,
therefore revision 14 was chosen. Moreover, the map-button from the BACnet/IP-Server
needs to be pressed each time the program is changed and is not updated automatically
at runtime.

Automapping with BACnet Library Revision 14

The BACnet library revision 14 was provided by the Beckhoff support team and creates
BACnet objects via function blocks instead of special annotations. The function blocks
are defined in the revision 14 library and can be used after importing the library. At
the declaration, already known properties can be assigned to the BACnet object. If
multiple objects are needed, an array can be used. The following code shows an example
(Algorithm 3.2). [20]

Algorithm 3.2: Revision 14 function block declaration
state : FB_BACnet_MV := (iParent := element ,

bEnPgm := TRUE ,

eNotifyType := E_BACnet_NotifyType . eAlarm ,

aEventEnable := [1 , 1 , 1] ,

aAlarmValues := [2 , 3] ,

nValPgm := 1

) ;

The BACnet object is not online yet, to create the object the function block needs to
be called. Hereby, it is important to call the function block cyclically to guarantee the
update of properties. Furthermore, the function block should be called without property
values. The values should be written directly to the function block to avoid unnecessary
updates of the BACnet objects. [20] An example is shown in Algorithm 3.3.

Algorithm 3.3: Revision 14 function block updates
IF (NOT (description_in = description_intern)) THEN

description_intern := description_in ;

element . sDescription := description_intern ;

END_IF

This approach worked without a problem, and the values updated in the PLC program
were also updated in the BACnet objects.

Space Limitations for BACnet Objects

The router cache from TwinCAT is used to store BACnet objects and is therefore limited.
The TwinCAT router cache can be at most 1 GB in size, and only 60% of this memory

20

3.2. Beckhoff BACnet API

can be used to store BACnet objects. One BACnet object requires an average of 20 KB,
which results in a maximum of about 30 000 objects. [20] When the available memory is
fully utilized and the program tries to create an additional object, an error message is
shown, and no new object is created. This space limitation introduces a problem to the
BACnet information model for large fire alarm systems. Upper limit of fire alarm elements
depends on the used information model and can be found in Section 3.3. Moreover, the
maximum number of objects is by default set to 10000, this number can be adjusted
upwards at the BACnet/IP-Server-Adapter settings but is still limited by the available
memory.

21

3. Design and Implementation

3.3 Beckhoff PLC BACnet Information Model

3.3.1 Large BACnet Information Model

The first BACnet information model design is based on all data points which are available
from the ISP-IP API and are shown in Figure 3.6. Each Node within the fire alarm
system network is represented by a structured view object called Elements [NUMBER]
that groups all objects that are part of one fire alarm network node. A group consists
of three large-analog-value objects that represent CO, the smoke level and temperature.
The datetime-value object is used for the timestamp. Moreover, the group contains four
additional structured view objects to provide an organized view. One structured view
object is used to subgroup four positive-integer-value objects which hold information
(network-number, element-type, element-number and sub-element-number) that belong
to the key of the node. Each one of the other three structured view objects represents one
state of a fire alarm system’s element,where each node can have three states at the same
time. One state contains six positive-integer-value objects to represent Function-Type,
Sub-Type, State, Sub-State, Level and Information. This BACnet information model
design would present a detailed view of each fire alarm system node, unfortunately the
space requirements for this design are too large. Given a router cache of 1 GB and
20 KB per BACnet object, this design with 33 objects per Node would be limited to
approximately 900 fire alarm system elements. That number is too small for large fire
alarm systems, which can consist of multiple thousands of elements.

22

3.3. Beckhoff PLC BACnet Information Model

BMZ/ MAIN
Structured View

Objekt

Element[n]
Structured View

Objekt

stKey
Structured View

Objekt

aState[1]
Structured View

Objekt

N-Times

nSmoke
LargeAnalogValue

Objekt

nTemperature
LargeAnalogValue

Objekt

nCO
LargeAnalogValue

Objekt

DateTime
Date�me Value

Objekt

nNetworkNumber
Posi�veIntegerValu

e Objekt

sElementType
Posi�veIntegerValu

e Objekt

nElementNumber
Posi�veIntegerValu

e Objekt

nSubElementNumb
er

Posi�veIntegerValu
e Objekt

Func�onType
Posi�veIntegerValu

e Objekt

nSubType
Posi�veIntegerValu

e Objekt

eState
Posi�veIntegerValu

e Objekt

nSubState
Posi�veIntegerValu

e Objekt

nLevel
Posi�veIntegerValu

e Objekt

dTimeDate
Date�me Value

Objekt

nInfo
Posi�veIntegerValu

e Objekt

aState[2]
Structured View

Objekt

Func�onType
Posi�veIntegerValu

e Objekt

nSubType
Posi�veIntegerValu

e Objekt

eState
Posi�veIntegerValu

e Objekt

nSubState
Posi�veIntegerValu

e Objekt

nLevel
Posi�veIntegerValu

e Objekt

dTimeDate
Date�me Value

Objekt

nInfo
Posi�veIntegerValu

e Objekt

aState[3]
Structured View

Objekt

Func�onType
Posi�veIntegerValu

e Objekt

nSubType
Posi�veIntegerValu

e Objekt

eState
Posi�veIntegerValu

e Objekt

nSubState
Posi�veIntegerValu

e Objekt

nLevel
Posi�veIntegerValu

e Objekt

dTimeDate
Date�me Value

Objekt

nInfo
Posi�veIntegerValu

e Objekt

Figure 3.6: Large BACnet information model

23

3. Design and Implementation

3.3.2 Minimal BACnet Information Model

The space restrictions lead to a vastly reduced BACnet information model. The model
has been reduced to a minimum by removing all optional objects that are not needed
to report a fire alarm. Even the data points for CO, smoke and temperature had to
be removed to gain room for more fire alarm system nodes. The downside of the new
BACnet information model is, that information for Industry 4.0 use cases is not available
due to space limitations. In case of only a few fire alarm system elements being needed,
this model can be easily extended with temperature, CO and smoke values. Otherwise, a
third party BACnet stack with more storage can be used to create proprietary BACnet
objects or to use LSP and LSZ objects and extend them with analog sensor values.

The memory saving measures described above result in a model that requires only 4
objects per node of the fire alarm system, instead of 33. The structured view stkey
with all its sub elements is summarized to a string and stored in a BACnet Primitive
String. Figure 3.7a shows the translation. The timestamp stays unchanged from the
previous model, and of the element-states, only the Positive-Integer-Value State from the
structured view object State[1] is carried to the new model. The estate can be modeled
via a Positive-Integer-Value, Analog-Value or Multi-State-Value object and all of them
have their pros and cons. Figure 3.7b shows the new design.

stKey
Structured View

Objekt

nNetworkNumber
Posi�veIntegerValue

Objekt

sElementType
Posi�veIntegerValue

Objekt

nElementNumber
Posi�veIntegerValue

Objekt

nSubElementNumber
Posi�veIntegerValue

Objekt

stKey
BACnet Primi�ve

String

(a) Stkey summarization

BMZ/ MAIN
Structured View

Objekt

Element[n]
Structured View

Objekt

eState
Posi�veIntegerValue

AnalogeValue
Mul�-State Value

-Object

dTimeDate
Date�me Value

Objekt

stKey
BACnet Primi�ve

String

(b) BACnet information model

Figure 3.7: Minimal BACnet information model

The primitive object has the advantage that it carries a minimum of unneeded properties,
but the disadvantage is that it is not subscribable via BACnet and can’t send alarm
notifications. It can only be polled, which is not optimal for a big fire alarm system
with multiple thousands of elements. When using the analog-value-object, the state can
be subscribed and the value will be updated by the client automatically when changed.
The downside is, that the object carries some unnecessary properties and the alarm
notifications are based on a minimum and maximum threshold of the present value and
is therefore not usable. The multi-state-value object also caries unneeded properties, but
supports subscriptions and alarm notifications on a state basis. The only drawback is

24

3.3. Beckhoff PLC BACnet Information Model

that the states start at 1 and the ISP-IP states starts at 0, therefore the states are offset
by one which may cause confusion.

3.3.3 Mapping Implementation With TwinCAT

To translate the fire alarm system to BACnet/IP, the state machine from Section 3.1.3
needs to be extended with dynamic BACnet object creation based on the number of
elements and a mapping function that updates the objects in case a value changes. To
make the generation and update of the BACnet objects easier, a function block is created.
This function-block can be initialized with an array to match the number of fire alarm
system elements. The code section described by Algorithm 3.4 shows the function block
for the minimal information model with the multi-value-state object for the fire alarm
system state. When reading the elements from the FACP in the states start, getnext
and get_description, the elements are created or updated.

25

3. Design and Implementation

Algorithm 3.4: Function block of the multi-value-state information model
1 FUNCTION_BLOCK FB_BACnet_BMZ_Element

2 VAR_INPUT

3 {attribute 'TcEncoding':='UTF-8'}

4 description_in : STRING := 'not set' ;

5 st_Key_in : STRING := 'not set' ;

6 dateTime_in : DATE_AND_TIME ;

7 state_in : BYTE := Tc3_IspIp . E_IspIpState . Fault ;

8 NotUsed : BOOL := TRUE ;

9 END_VAR

10 VAR_OUTPUT

11 END_VAR

12 VAR

13 //Safe Values to check for changes

14 {attribute 'TcEncoding':='UTF-8'}

15 description_intern : STRING := 'not set' ;

16 dateTime_intern : DATE_AND_TIME ;

17 state_intern : BYTE := Tc3_IspIp . E_IspIpState . Fault ;

18 st_Key_intern : STRING := 'not set' ;

19 //BACnet-Objekte

20 element : FB_BACnet_View := (sDescription := 'Not Used!') ;

21 state : FB_BACnet_MV := (iParent := element ,

22 bEnPgm := TRUE ,

23 eNotifyType := E_BACnet_NotifyType . eAlarm ,

24 aEventEnable := [1 , 1 , 1] ,

25 aAlarmValues := [2 , 3] ,

26 nValPgm := 1

27) ;

28 dateTime : FB_BACnet_DateTime := (iParent := element) ;

29 stKey : FB_BACnet_String := (iParent := element) ;

30 END_VAR

31

1 // If not Used don't create all Objects

2 IF (NOT NotUsed) THEN

3 element () ;

4 stKey () ;

5 state () ;

6 dateTime () ;

7 // Only update if changed

8 IF (NOT (description_in = description_intern)) THEN

9 description_intern := description_in ;

10 element . sDescription := description_intern ;

11 END_IF

12

13 IF (NOT (st_Key_in = st_Key_intern)) THEN

14 st_Key_intern := st_Key_in ;

15 stKey . sValue := st_Key_intern ;

16 END_IF

17

18 IF (NOT (state_in = state_intern)) THEN

19 state_intern := state_in ;

20 state . nValPgm := state_intern + 1 ; // Array starts with 1 not with 0

21 END_IF

22 IF (NOT (dateTime_in = dateTime_intern)) THEN

23 dateTime_intern := dateTime_in ;

24 dateTime . stValue := F_BA_ToSTDateTime (dateTime_intern) ;

26

3.4. Beckhoff BACnet Stack Results

3.4 Beckhoff BACnet Stack Results

3.4.1 BACnet Viewer

All three Information Models (positive-integer-value-, Analogue-Value- and multi-state-
value-object) were tested to verify that the mapping is working and to evaluate the
maximum number of fire alarm system elements. All models worked with, Yet Another
BACnet Explorer (Yabe) [21], Cimetrics Free BACnet Explorer [22] and Inneasoft Free
BACnet Explorer [23]. The alarm notification of the multi-state-value-object is also
working, Figure 3.8 shows the active alarm summary in Yabe when a manual call point
is pressed. The positive-integer-value and analog-value model can have a maximum
of approximately, 6560 elements. The multi-state-value-object model can represent up
to 5470 elements which is a bit less than the other two models but still much larger
compared to the first information model.

Figure 3.8: Active alarms multi-state-value-object model

3.4.2 Open Points and Weaknesses

The use cases for Industry 4.0 are very limited with this BACnet information model. No
analog values are available for smart climate control or building automation. The analog
values can easily be added, but would require three additional BACnet objects with
approximately 20 KB each. This would increase the number of required objects per fire
alarm system element from 4 to 7, that nearly doubles the needed memory per element
and therefore reduces the number of supported fire alarm system elements drastically.
Another possibility would be to serialize the three analog values into a string and include
it in the BACnet information model. In this way, the additional memory required is less,
but usability would suffer.

27

3. Design and Implementation

Some properties are still writable via a BACnet viewer, that problem can be resolved
by adding constrains by the BACnet object generation. Writing to the BACnet server
will have no effect on the fire alarm system and only affects the BACnet objects and is
therefore irrelevant for the PoC.

The multi-value-state information model supports alarm and fault notifications based on
the present_value property. There are two arrays, one for alarms and one for faults, that
specify which present_values triggers a notification. The ISP-IP states that cause alarm
and faults still need to be selected and added to the respective arrays. For the PoC, the
BACnet Life Safety State alarm(2) has been added to the alarms array.

3.5 Life Safety Point and Life Safety Zone Information
Model

Before creating the LSP and LSZ with the C# Library, an information model that defines
the mapping from ISP-IP Elements to LSP and LSZ, is needed. This model also includes
optional properties that can be used for intrinsic reporting, though reporting will not be
implemented in PoC.

The mapping is done in two steps, first the ISP-IP Elements are mapped to Life Safety
data points by TwinCAT. Secondly, the Life Safety data points are mapped to LSP
and LSZ objects by C#. Tables 3.2 and 3.3 show the first step of the mapping. Most
mappings are straight forward values of ISP-IP Elements, but a few need special mapping.
Some properties are required by the BACnet standard but not needed for the mapping of
the fire alarm system elements, therefore these values will be mapped to a static value.

28

3.5. Life Safety Point and Life Safety Zone Information Model

LSP required properties
Source Mapping Output
- Static: None accepted Accepted_Modes
- Static: None supported Mode
- Static: Indicates event state when intrin-

sic reporting is used, otherwise “Normal”
Event_State

- Static: “Normal” Operation_Expected
eState,
nSubState FB_GET_Reliability see 3.5 Reliability

eState
eState==Disablement ⇒ TRUE
eState==Disablementpublic ⇒ TRUE
else ⇒ FALSE

Out_of_Service

eState eState==Deactivation ⇒„all_silenced“
else ⇒”unsilenced” Silenced

eElementType-
Class eElementTypeClass Device_Type

description_in description_in Description

- Event_State==’Normal’ ⇒ FALSE
else ⇒ TRUE

Status_Flag:
IN_ALARM

eState
estate=FAULT & Reliability!=’General’
⇒ TRUE
else ⇒ FALSE

Status_Flag:
FAULT

- Reliability==Simulation ⇒TRUE
else ⇒ FALSE

Status_Flag:
OVERRIDDEN

- Out_of_Service ⇒ TRUE
else ⇒ FALSE

Status_Flag:
OUT_OF_SERVICE

eState LSS_MAP(eState) see 3.4 Present_Value
- Same as Present_Value Tracking_Value
nSmoke nSmoke Direct_Reading
nElementNumber nElementNumber ElementNumber
nSubElement-
Number nSubElementNumber subElementNumber

Table 3.2: Life Safety Point required properties

29

3. Design and Implementation

LSP properties that are only needed for intrinsic reporting
Source Mapping Output
- Depends on BACnet network Notification_Class

- List of Present_Values that should trigger Life Safety
Alarms

Life_Safety_
Alarm_Values

- List of Present_Values that should trigger
Alarm_Values

Alarm_Values

- List of Present_Values that should trigger
Fault_Values

Fault_Values

- 0 Time_Delay
- (TRUE, TRUE, TRUE) Event_Enable
- Should be handled by the BACnet stack Acked_Transitions
- ALARM Notify_Type

- Should be handled by the BACnet stack Event_Time_
Stamps

- TRUE Event_Detection_
Enable

Table 3.3: Life Safety Point intrinsic reporting properties

Reliability mapping is based on the state and substate of an ISP-IP Element, which
follows no easy programmable logic. Therefore, the mapping is done with the help of a
two-dimensional array. The first dimension is the state and the second dimension is the
substate. The reliability mapping function block is shown in Algorithm 3.5,the array is
only partially visible due to its size. According to the fire alarm system description, the
state “Enabled” contains 255 substates, Level1 to Level255, in increasing order. Creating
the mapping per hand would be impractically and unnecessary, Level14 to Level255 can
be created by a loop at the startup of the PLC due to the simple naming scheme. Level1
to Level13 will be coded by hand like the other reliability values to simplify the loop.

30

3.5. Life Safety Point and Life Safety Zone Information Model

Algorithm 3.5: Reliability mapping function block
1 FUNCTION_BLOCK Get_IsP_Ip_BACnet_Reliability

2 VAR_INPUT

3 eState : INT ;

4 nSubState : INT ;

5 END_VAR

6 VAR_OUTPUT

7 Reliability : STRING ;

8 END_VAR

9 VAR

10 Reliability_values : ARRAY [0 .. 27] OF ARRAY [0 .. 255] OF STRING :=

11 [['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_

12 ['General' , 'Simulation' , 'Smoke' , 'Temp' , 'Sabotage' , 'Check' , 'Unconfirmed' , 'CO' , 'SmokeTemp' , 'SmokeC

13 ['General' , 'Not_defined' , 'Smoke' , 'Temp' , 'Sabotage' , 'Not_defined' , 'Not_defined' , 'CO' , 'SmokeTemp' , 'Sm

14 ['General' , 'ShortCircuit' , 'OpenCircuit' , 'Simulation' , 'External' , 'Overload' , 'NotPresent' , 'EarthFault'

15 ['General' , 'ShortCircuit' , 'OpenCircuit' , 'Not_defined' , 'Not_defined' , 'Overload' , 'NotPresent' , 'EarthFau

16 ['General' , 'KeySwitch' , 'Automatic' , 'FBP' , 'Emergency' , 'Limited' , 'Not_defined' , 'Not_defined' , 'Not_defi

17 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

18 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

19 ['General' , 'Automatic' , 'External' , 'FBP' , 'Unconfirmed' , 'Confirmed General' , 'Confirmed Automatic' , 'Conf

20 ['General' , 'FBP' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined'

21 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

22 ['General' , 'Level1' , 'Level2' , 'Level3' , 'Level4' , 'Level5' , 'Level6' , 'Level7' , 'Level8' , 'Level9' , 'Level

23 ['General' , 'Simulation' , 'Automatic' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defi

24 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

25 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

26 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

27 ['General' , 'External' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defi

28 ['General' , 'Automatic' , 'External' , 'FBP' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not

29 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

30 ['General' , 'Simulation' , 'Smoke' , 'Temp' , 'Sabotage' , 'Not_defined' , 'Not_defined' , 'CO' , 'SmokeTemp' , 'Smo

31 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

32 ['General' , 'External' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defi

33 ['General' , 'Simulation' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_de

34 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

35 ['General' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'Not_d

36 ['General' , 'Not_defined' , 'Smoke' , 'Temp' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'CO' , 'SmokeTemp' ,

37 ['General' , 'Not_defined' , 'Smoke' , 'Temp' , 'Not_defined' , 'Not_defined' , 'Not_defined' , 'CO' , 'SmokeTemp' ,

38 ['General' , 'Simulation' , 'Smoke' , 'Temp' , 'Sabotage' , 'Not_defined' , 'Not_defined' , 'CO' , 'SmokeTemp' , 'Smo

39] ; // Not_defined needs to be added to 255

40

41

42 count : INT ;

43 subcount : INT ;

44 init : BOOL := FALSE ;

45 END_VAR

46

1 IF (NOT init) THEN

2

3 FOR count := 0 TO 27 BY 1 DO

4 FOR subcount := 14 TO 255 BY 1 DO

5 IF (count = E_IspIpState . Enabled) THEN

6 Reliability_values [count] [subcount] := CONCAT ('Level' , TO_STRING (subcount)) ;

7 ELSE

8 Reliability_values [count] [subcount] := 'Not_defined' ;

9 END_IF

10 END_FOR

11 END_FOR

12 init := TRUE ;

13 END_IF

14

15 Reliability := Reliability_values [eState] [nSubState] ;

16

31

3. Design and Implementation

The Present Value is represented by the APDU BACnetLifeSafetyState. Values 0-23
are defined and 24-255 are reserved by the American Society of Heating, Refrigerating
and Air-Conditioning Engineers(ASHRAE) [6]. 256-65635 can be used to add proprietary
states. The states of the ISP IP Elements were mapped to the existing values where
possible, otherwise proprietary states were added. Table 3.4 shows the mapping of ISP-IP
Element states to the BACnetLifeSafetyState. Dark green entries have been mapped
to existing values; light green values have not been used. Light blue values are mapped
to proprietary BACnetLifeSafetyState values.

BACnet Life Safety State Nummer ISP-IP-State ISP-IP-Number
quiet 0 Idle 0
pre-alarm 1 PreAlarm 27
alarm 2 Alarm 1
fault 3 Fault 3
fault-pre-alarm 4
fault-alarm 5
not-ready 6
active 7 Active 1
tamper 8
test-alarm 9 RevisionAlarm 2
test-active 10
test-fault 11 RevisionFault 4
test-fault-alarm 12
holdup 13
duress 14
tamper-alarm 15
abnormal 16
emergency-power 17
delayed 18
blocked 19
local-alarm 20
general-alarm 21
supervisory 22
test-supervisory 23
Custom-Disablement 256 Disablement 5
Custom-Disablement public 257 Disablement public 6
Custom-Revision 258 Revision 7
Custom-Activation 259 Activation 8
Custom-Deactivation 260 Deactivation 9
Custom-HardAlarm 261 HardAlarm 10
Custom-Enabled 262 Enabled 11
Custom-RevisionActive 263 RevisionActive 13

32

3.5. Life Safety Point and Life Safety Zone Information Model

Table 3.4 continued from previous page
BACnet Life Safety State Nummer ISP-IP-State ISP-IP-Number
Custom-Warning 264 Warning 14
Custom-Explore 265 Explore 15
Custom-Terminated 266 Terminated 16
Custom-RevisionActivation 267 RevisionActivation 17
Custom-PaperFeed 268 PaperFeed 18
Custom-SilentAlarm 269 SilentAlarm 19
Custom-PreActivation 270 PreActivation 20
Custom-Release 271 Release 21
Custom-PreActive 272 PreActive 22
Custom-RevisionPreActive 273 RevisionPreActive 23
Custom-LowBat 274 LowBat 24
Custom-Presignal 275 Presignal 25
Custom-Revision Presignal 276 RevisionPresignal 26

Table 3.4: Bacnet Life Safety State mapping

The Life Safety data points are mapped to LSZ and LSP objects by C#. The LSZs
contain lists of the LSPs that are part of the LSZ. The data points are grouped based on
Device_Type, ElementNumber, and subElementNumber. Figure 3.9 shows the grouping
logic. First, the Device_Type is used to verify that the data point is of the type zone. If
not, the element must be an LSP. However, the Device_Type is not a sufficient condition
for LSZ, therefore the subElementNumber must also be equal to 255. Otherwise, the data
point is an LSP as well, if the LSP is Part of a Zone, it is added to the corresponding
LSZ Member_List. The ElementNumber is used to generate the object_name property.

device_Type==
„Zone“

Life Safety Point

Life Safety Zone

NO

subElement-
Number== 255

YES

YES

NO

Object Name: ID:<ObjID>-
LSZ:<ElementNumber>

Start

Object Name: ID:<ObjID>-
LSP:<ElementNumber>

Member of
Zone

Yes, added to property MEMBER_OF

Figure 3.9: LSP and LSZ grouping

33

3. Design and Implementation

3.6 Data Transfer TwinCAT to C#
The communication protocol Automation Device Specification (ADS) enables the data
exchange from the PLC to C# and vice versa. The advantage of ADS is that the C#
program can be executed on the PLC itself or on another computer that is connected
to the PLC via Ethernet. Furthermore, PLC variables are accessible via ADS without
modifications to the PLC-program. [24]

3.6.1 TwinCAT First Version

Figure 3.10 shows the first version of the PLC-state machine that groups the ISP-IP
Elements into arrays which can be accessed via ADS. The state machine is based on
the Beckhoff BACnet implementation and is altered to create LSP and LSZ data points
instead of Beckhoff BACnet objects. Three flags are used to ensure safe reads between the
PLC and C# program. Csc_ready is set to true by the PLC when the C# program can
safely read from the PLC. Value_change is set to true by the PLC when the list of LSP
and LSZ data points have changed, and is set to false by the C# program when the data
points have been read. Reading is set to true by the C# program when it starts reading
the LSP and LSZ data point arrays, and is set to false when finished. Initially, csc_ready
is set to false and value_change is set to true. When the state machine states start
or GetNext are reached, the function block update is called. The function block creates
and updates the LSP and LSZ data points following the first mapping step 3.2 without
intrinsic reporting. The LSP and LSZ data points are function blocks, one function block
is created per LSP and LSZ. In case of value changes, the flag value_change is set to
true. The initial interaction of state machine will also fetch the element descriptions and
add them to the LSP and LSZ data points. After that, LSP and LSZ data points are
converted to arrays by the PLC if the C# program is not currently reading the arrays.
Arrays are used to transfer the data points to C#, the reason for using arrays is that the
ADS-library from Beckhoff provides no easy way to transfer arrays of function blocks to
C#. During the update of the data point arrays, the flag csc_ready is set to false to
prevent inconsistent data from being read. The state machine repeats this procedure if
the timer calls for an update.

The drawback of this approach is the limited amount of LSP and LSZ data points due
to space limitations of the PLC. A maximum of 1842 LSP and LSZ data points can
be created. The problem is the largest continuous memory block of 982.250.463 bytes
(reported by the compiler). Therefore, the array of data points approach is limited by the
available continuous memory. For large fire alarm systems, this state machine does not
scale well, and a different approach is required. A solution to this problem is presented
in Section 3.6.2.

34

3.6. Data Transfer TwinCAT to C#

init

start

elements
missing

�mer calls for update

all counters reset

errorget_descrip�on

get next

error occurred

yes

no

elements
missing

no

error occurred

yes

all descrip�ons fetched

error occurred

startupidle

desc.
ini�alised

no

Yes

csc_ready:= false
value_change:=true

update C#-datapoints-
Descrip�on

csc_ready:= false

csc_ready:= true

FB_csharp_converter
(ISPIP.datapoints)

FB_update C#-datapoints
If(changes)�value_change:=true

C# currently
reading

NO

YES

Figure 3.10: ISP-IP to C# first version state machine

3.6.2 TwinCAT Second Version

To allow for larger number of LSP and LSZ data points, the function block for the data
points needs to be broken up into smaller pieces. Data point arrays need to be divided
into individual arrays per property to be transmitted to the C# program. Therefore, the
function block array, whose main purpose is structuring the data, is removed completely
and the LSP and LSZ data points are stored in separate arrays. The new state machine
is shown in Figure 3.11. The changes increase the maximum amount of LSP and LSZ
data points significantly from 1842 to over 2800000. One must keep in mind, that the
larger the number of ISP-IP Elements, the more PLC cycles are needed to update the
LSP and LSZ data points. Especially the first iteration which fetches the descriptions of
LSP and LSZ will take some time.

35

3. Design and Implementation

init

start

elements
missing

�mer calls for update

all counters reset

errorget_descrip�on

get next

error occurred

yes

no

elements
missing

no

error occurred

yes

all descrip�ons fetched

error occurred

startupidle

desc.
ini�alised

no

Yes

csc_ready:= false
value_change:=true

update C#-datapoints-
Descrip�on

csc_ready:= true

update C#-Datapoint-Arrays
If(changes)�value_change:=true

&& csc_ready:= false

C# currently
reading

NO

YES

Figure 3.11: ISP-IP to C# second version state machine

3.6.3 C# Access and Write Data

The C# program connects to TwinCAT via ADS at startup and can then access the
PLC variables.

A class for data exchange is created to structure the communication between TwinCAT
and C#. To establish the connection from C# to the PLC, only a port and netID are
needed. When using TwinCAT3, the port 851 is used and the netID is the AMSNetId
of the PLC.

When the connection is established, the variables can be accessed in multiple ways.
Variables can be accessed via an address or the variable name, for better readability
variable names are used. The reading of values can be done event driven or via a read
function. This PoC will poll the read function and use flags to mark value changes.
The reason for manual CoV tracking is to gain full control of the update process to
prevent changes on C# BACnet objects while the PLC is still processing ISP-IP Elements.
Reading all ISP-IP Elements from the fire alarm system can take multiple PLC cycles, the
C# program should only read the element list when all elements are updated, therefore
manual flags are used to indicate if the ISP-IP Elements are ready to be read.

36

3.7. Life Safety Objects with C# BACnet Library

The data exchange class contains functions to read single bool, int16 and String variables
as well as arrays of bool, int16, String, unit16 and int32 data types. One write-function
for bool variables is available as well to set the data exchange flags. To simplify the read
access and grouping of LSP and LSZ data points into template classes, a function is
available as well. The LSZ and LSP are stored into two lists, one containing LSZs with
their LSP-members and a second list containing LSPs without an LSZ. These LSZ and
LSP template classes are independent of the used BACnet stack and allow easy switching
of BACnet stacks in the future.

3.7 Life Safety Objects with C# BACnet Library
Due to the lack of LSP and LSZ support of Beckhoff PLC, another solution is needed.
One is to use an external C# BACnet stack to generate the LSP and LSZ objects and
access the data from the PLC via ADS protocol from Beckhoff.

3.7.1 C# Library

The ISP-IP Elements are mapped to LSP and LSZ template classes within C# and
must be turned into real BACnet objects with help of a BACnet stack. Most of the
available BACnet stacks for C# are only available for purchase by request, and are
therefore not suited for this PoC implementation. Hence, the freely available C# BACnet
stack maintained at GitHub [25] by ela-compil and downloadable at NuGet [26] is used.
This library supports the generation of BACnet objects at runtime, but needs a C#
template-class per BACnet object. The class must define all object properties, the
encoding of the properties and intrinsic reporting. Some examples for C# BACnet
classes are given [27], but most of them are over six years old and are thus not fully
compatible with the newest version of the BACnet stack. Moreover, LSP and LSZ
are not utilized in the examples at all. Therefore, LSP and LSZ C# template classes
must be implemented based on the DIN EN ISO 16484-5:2017-12 [6]. For the proof
of concept, the intrinsic reporting part of the LSP and LSZ will not be implemented
with C# BACnet stack, only the required properties and some optional properties along
with CoV notification will be realized. Before creating the LSP and LSZ template
classes, some missing APDUs need to be defined and proprietary values must be added.
After the APDUs BACnetReliability, BACnetLifeSafetyMode, BACnetLifeSafetyStates,
BACnetSilencedState and BACnetLifeSafetyOperation are defined the templates can be
created. The class templates use the BACSharpObject [28] class from GitHub as the
parent class, which defines fundamental functions and properties. When defining a
property, the encoding type and CoV management must be defined. An example for the
property PRESENT_VALUE of the LSP and property Zone_Members of the LSZ is
shown below.

37

3. Design and Implementation

Algorithm 3.6: C# BACnet property definition

1 public BacnetLifeSafetyStates m_PROP_PRESENT_VALUE;
2 [BaCSharpType(BacnetApplicationTags.BACNET_APPLICATION_TAG_ENUMERATED)]
3 public virtual BacnetLifeSafetyStates PROP_PRESENT_VALUE
4 {
5 get { return m_PROP_PRESENT_VALUE; }
6 set
7 {
8 m_PROP_PRESENT_VALUE = value;
9 ExternalCOVManagement(BacnetPropertyIds.PROP_PRESENT_VALUE);

10 }
11 }
12 protected List<BacnetValue> m_PROP_ZONE_MEMBERS = new List<BacnetValue>();
13 [BaCSharpType(BacnetApplicationTags.BACNET_APPLICATION_TAG_OBJECT_ID)]
14 public virtual List<BacnetValue> PROP_ZONE_MEMBERS
15 {
16 get { return m_PROP_ZONE_MEMBERS; }
17 }
18

The constructor of the LSP and LSZ templates takes an LSP and LSZ data point that
has been created by the TwinCAT-read function described in section 3.6.3 and turns it
into a BACnet object. Additionally, an update function is created to update the BACnet
object in case of changes.

Algorithm 3.7: C# LSP constructor

1 public LifeSafetyZone(uint objid, TW_LifeSafetyZone lsp)
2 : base(new BacnetObjectId(BacnetObjectTypes.

OBJECT_LIFE_SAFETY_ZONE, objid), ("ID:" + objid.ToString() + "-LSZ-" +
lsp.ElementNumber.ToString()), lsp.Description)

3 {
4 m_PROP_STATUS_FLAGS.SetBit((byte)0, lsp.Status_Flags_IN_ALARM);
5 m_PROP_STATUS_FLAGS.SetBit((byte)1, lsp.Status_Flags_FAULT);
6 m_PROP_STATUS_FLAGS.SetBit((byte)2, lsp.Status_Flags_OVERRIDDEN);
7 m_PROP_STATUS_FLAGS.SetBit((byte)3, lsp.

Status_Flags_OUT_OF_SERVICE);
8 PROP_PRESENT_VALUE = (BacnetLifeSafetyStates)lsp.Present_Value;
9 m_PROP_TRACKING_VALUE = m_PROP_PRESENT_VALUE;

10 m_PROP_DEVICE_TYPE = lsp.Device_Type;
11 m_PROP_EVENT_STATE = 0;
12 Enum.TryParse<BACnetReliability>(lsp.Reliability, out

m_PROP_RELIABILITY);
13 PROP_OUT_OF_SERVICE = lsp.Out_of_Service;
14 Enum.TryParse<BACnetSilencedState>(lsp.Silenced, out

m_PROP_SILENCED);
15 m_PROP_DIRECT_READING = lsp.Direct_Reading;
16 }
17
18

38

3.7. Life Safety Objects with C# BACnet Library

To create and update all LSP and LSZ, a state machine is created in C#. Figure 3.12
illustrates the broad functionality of the state machine. At the startup, a connection to
the PLC is established. Afterwards, if the csc_ready is set to true, the LSP and LSZ
objects are read and grouped. If the flag csc_ready remains false for multiple seconds,
the program enters an error state. After the objects have been successfully loaded, the
BACnet objects are created. From there on, the program queries the value_change flag
at intervals of 500ms. In case the flag is set to true, the flag will be set to false and
the LSP and LSZ data points will be read from the PLC and BACnet objects will be
updated. During read operations from the PLC, the program will set the reading flag to
true to prevent inconsistent data reads.

Connect to Twincat

Connected Error

Read LifeSafetyDataPoints
from Twincat

No

Yes

Twincatdata
ready

NO

Group read data
into

LifeSafetyPointData
and

LifeSafetyZoneData

Yes

Create BACnet-
Objects

Read from Twincat
„Value_changed“

Value_changed Sleep 500ms

Read
LifeSafetyDataPoints

from Twincat

false

true

Group read data
into

LifeSafetyPointData
and

LifeSafetyZoneData

Update BACnet-
Objects

Write to Twincat
value_changed=false

Twincatdata
ready

YES

NO

Figure 3.12: C# BACnet object generation

39

3. Design and Implementation

3.8 C# BACnet Server Results

3.8.1 LSP and LSZ Read Access via BACnet Viewer

The same three BACnet viewers as before are used to test the BACnet objects. Yabe
and the Inneasoft Free BACnet Explorer work fine, all properties are correctly encoded,
readable and CoV notifications work for the PoC fire alarm system. The free viewer from
Cimetrics has problems with the Member_List property of the LSZ. Figure 3.13 shows
the three BACnet Viewer side by side.

(a) BACnet viewer Yabe (b) BACnet viewer Inneasoft

(c) BACnet viewer Cimetrics

Figure 3.13: BACnet viewer comparison

40

3.8. C# BACnet Server Results

3.8.2 C# Program Hardware Requirements

The C# program does not consume many resources when idle. Only when new BACnet
viewers connect, thousands of LSP and LSZ objects are read or a CoV event occurs, CPU
consumption peaks may occur.Memory consumption is low at around 30 MB for 2000
BACnet objects. Figure 3.14 shows the memory and CPU consumption for 2000 objects.
The CPU spikes occurs when a manual call point is pressed and BACnet objects must be
updated and the CoV notifications are sent.

Figure 3.14: C# program hardware requirements

3.8.3 Open Points of the C# BACnet Server

The C# BACnet stack approach is not perfect, for a large number of BACnet objects
the CoV notifications stop working reliably when lots of BACnet objects get updated at
once, some notifications won’t arrive at all or are delayed. However, manually refreshing
the BACnet objects always works.

One time, the whole C# BACnet server went offline. After adding additional synchro-
nization primitives, the problem could not be reproduced. This problem still needs to be
further investigated.

Moreover, intrinsic reporting is not supported out of the box by the library for LSP and
LSZ and is not implemented yet, therefore it must still be added.

The Cimetrics Free BACnet Explorer [22] has problems with the encoding of the LSZ
property Member_List, the other two BACnet viewers had no problems. This issue still

41

3. Design and Implementation

continues to exist and could not be solved, and also exists with the structured view
example available at GitHub [29]. It could not be identified whether the viewer, BACnet
server or a combination of both is the cause of the problem.

42

CHAPTER 4
Conclusion and Further Work

4.1 Beckhoff vs C# BACnet Stack

Both the Beckhoff and C# stack can be used to create a BACnet information model,
although the minimal Beckhoff model is very limited. Only limited Industry 4.0 applica-
tions are possible due to the lack of raw sensor values. The C# Model at least contains
one sensor value that can be used for advanced use cases. The C# Library should support
the addition of proprietary properties, but to do so proprietary property-IDs must be
added to the enum BacnetPropertyIds.

Large fire alarm systems with over 7000 fire alarm elements can not be represented with
the Beckhoff BACnet stack due to space limitations (max 6500), therefore the C# stack
(theoretically PLC limit of 2800000, C# stack tested up to 200000) is better suited for
larger implementations. When looking at interoperability, the C# BACnet server with
LSP and LSZ is a much better option. LSP and LSZ are standardized and therefore
most likely supported by other BACnet devices. The information model of the Beckhoff
BACnet stack is less compatible with other system due to grouping of standardized
objects to represent one fire alarm system element instead of using LSP and LSZ.

The advantage of the Beckhoff stack is the BACnet conformance certificate [30] which
could not be found for the open source C# BACnet stack. Especially for life safety
applications like fire alarm system, certificates are necessary to deploy the BACnet
stack in real world applications. Another downside of the C# BACnet option is, that
two applications need to be maintained, the PLC program and C# program. This also
increases the risk of security vulnerabilities and complicates the deployment of the system.

43

4. Conclusion and Further Work

4.2 Conclusion
This thesis started with an analysis of available BACnet protocol-gateways, revealing
that translations can be achieved in multiple ways, running on an MCU or PC and
using different mapping strategies. These steps were followed by an analysis of the
usability of a PLC to act as a Multiprotocol-Gateway for Fire Alarm Systems. The
gathered information was used to build two BACnet information models, one for the
Beckhoff PLC BACnet stack using grouped standardized BACnet objects and one for an
open-source C# BACnet stack utilizing LSP and LSZ. Both running on a UcIPC with a
software PLC to function as a BACnet Multiprotocol-Gateway. The PoC implementations
show, that both gateways are viable solutions, although the C# model supports a larger
number of BACnet objects and has a higher interoperability due to LSP and LSZ support.
Unfortunately, the C# stack is not running as stable as the Beckhoff BACnet server and
CoV notifications sometimes stop working properly when a high number of elements gets
updated at once. The Beckhoff BACnet server has the advantage of having a BACnet
conformance certificate and no need to operate an additional C# program. However,
the lack of support for LSP and LSZ, the limitation to approx. 5000-6000 elements, and
the lack of access to raw sensor values mean only limited suitability for Industry 4.0 use
cases.

4.3 Further work
Both models can be further improved. The Beckhoff model can be expanded with string
encoded analog values that are added to a description of an already used BACnet object.
That way, memory usage can be kept at a minimum while increasing the usability for
Industry 4.0. Nevertheless, the decoding of the analog value string would be more
complicated for other BACnet devices reading the string compared to accessing an analog
value property.

The used C# BACnet library may be sourced from GitHub instead of NuGet and
extended with proprietary property-IDs to expand the LSP and LSZ with raw sensor
readings. Moreover, intrinsic reporting could be added to the LSP and LSZ.

Additionally, proprietary C# BACnet stacks may be used to create the BACnet objects.
For instance, the proprietary BACnet stack Chipkin [31] or Cimetrics [32] can be
evaluated. These have the advantage of support and better documentation. Even
different programming languages compatible with TwinCAT ADS may be tested to host
the BACnet server.

44

List of Figures

2.1 Zettlerfire UC-8112-LX BACnet converter workflow [10] 7
2.2 NOTIFIER BACnet gateway system architecture [12] 8
2.3 ZigBee BACnet gateway mapping table [13] 9
2.4 BACnet gateway hardware structure and architecture [13] 9
2.5 BMS client and gateway system architecture [14] 10
2.6 EnOcean to BACnet gateway hardware architecture [15] 11
2.7 EnOcean report-telegram to BACnet [15] 12

3.1 System Architecture . 13
3.2 UcIPC Beckhoff C6030 [16] . 14
3.3 State machine . 16
3.4 Supported object types . 17
3.5 Beckhoff BACnet/IP-Server . 19
3.6 Large BACnet information model . 23
3.7 Minimal BACnet information model . 24
3.8 Active alarms multi-state-value-object model 27
3.9 LSP and LSZ grouping . 33
3.10 ISP-IP to C# first version state machine 35
3.11 ISP-IP to C# second version state machine 36
3.12 C# BACnet object generation . 39
3.13 BACnet viewer comparison . 40
3.14 C# program hardware requirements . 41

45

List of Tables

2.1 Life Safety Point properties explanation [6] 5

3.1 ISP-IP Datatype to Beckhoff BACnet object mapping 18
3.2 Life Safety Point required properties . 29
3.3 Life Safety Point intrinsic reporting properties 30
3.4 Bacnet Life Safety State mapping . 33

47

List of Algorithms

3.1 Automapping with revision 12 [19] . 19

3.2 Revision 14 function block declaration 20

3.3 Revision 14 function block updates . 20

3.4 Function block of the multi-value-state information model 26

3.5 Reliability mapping function block . 31

3.6 C# BACnet property definition . 38

3.7 C# LSP constructor . 38

49

Bibliography

[1] Z. Jiang, Y. Chang, and X. Liu, “Design of software-defined gateway for industrial
interconnection,” Journal of Industrial Information Integration, vol. 18, 6 2020.

[2] B. Dong, V. Prakash, F. Feng, and Z. O’Neill, “A review of smart building sensing
system for better indoor environment control,” pp. 29–46, 9 2019.

[3] Hekatron Vertriebs GmbH, “Leistungserklärung Brandmelder Nr.305/2011.”

[4] K. Jakubowski, J. Paś, S. Duer, and J. Bugaj, “Operational analysis of fire alarm
systems with a focused, dispersed and mixed structure in critical infrastructure
buildings,” Energies, vol. 14, no. 23, 12 2021.

[5] Beckhoff Automation GmbH & Co. KG., “Fire Alarm Systems | Schrack Seconet
AG.” [Online]. Available: https://www.schrack-seconet.com/firealarm/

[6] DIN Deutsches Institut für Normung e.V., “DIN EN ISO 16484-5.” [Online].
Available: www.din.de

[7] Thomas Hansemann and Christof Hübner, Gebäudeautomation. Hanser, 2021.

[8] Beckhoff Automation GmbH & Co. KG., “Beckhoff BACnet IP Pro-
tocol Implementation Conformance Statement,” 2021. [Online]. Avail-
able: https://www.bacnetinternational.net/catalog/manu/beckhoff%20automation%
20gmbh/Beckhoff_BACnetIP_PICSen_Rev14_Ver4.0.pdf

[9] Johnson Controls Zettler, “Zettler MXZ BACnet Interface MZX BACnet
Converter,” 2017. [Online]. Available: https://www.zettlerfire.com/Products/Fire/
ZettlerBACNet.asp

[10] ——, “Zettler MXZ BACnet Interface,” 2017. [Online]. Available: https:
//www.tycoemea.com/pdf13/datasht/fire/Zettler/PSF247ZT.pdf

[11] Notifier by Honeywell, “Notifier BACnet Gateway Installation and Operation
Manual,” 2009. [Online]. Available: https://cgproducts.johnsoncontrols.com/MET_
PDF/53372.pdf

51

https://www.schrack-seconet.com/firealarm/
www.din.de
https://www.bacnetinternational.net/catalog/manu/beckhoff%20automation%20gmbh/Beckhoff_BACnetIP_PICSen_Rev14_Ver4.0.pdf
https://www.bacnetinternational.net/catalog/manu/beckhoff%20automation%20gmbh/Beckhoff_BACnetIP_PICSen_Rev14_Ver4.0.pdf
https://www.zettlerfire.com/Products/Fire/ZettlerBACNet.asp
https://www.zettlerfire.com/Products/Fire/ZettlerBACNet.asp
https://www.tycoemea.com/pdf13/datasht/fire/Zettler/PSF247ZT.pdf
https://www.tycoemea.com/pdf13/datasht/fire/Zettler/PSF247ZT.pdf
https://cgproducts.johnsoncontrols.com/MET_PDF/53372.pdf
https://cgproducts.johnsoncontrols.com/MET_PDF/53372.pdf

[12] ——, “Notifier Network Systems.” [Online]. Avail-
able: https://www.securityandfire.honeywell.com/notifier/en-us/-/media/Files/
Notifier/Data-Sheets/DN_6877_pdf.pdf

[13] S. C. Park, W. S. Lee, S. H. Kim, S. H. Hong, and P. Palensky, “Implementation
of a BACnet-ZigBee gateway,” in IEEE International Conference on Industrial
Informatics, 2010, pp. 40–45.

[14] C. V. Bharadwaj, M. Velammal, and M. Raju, “A BMS Client and Gateway Using
BACnet Protocol,” in Advances in Computing and Information Technology, D. C.
Wyld, M. Wozniak, N. Chaki, N. Meghanathan, and D. Nagamalai, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 437–449.

[15] Y. C. Li, S. H. Hong, X. H. Li, Y. C. Kim, and M. Alam, “Implementation of
a BACnet-EnOcean gateway in buildings,” in Proceedings of 2014 International
Conference on Intelligent Green Building and Smart Grid, IGBSG 2014. IEEE
Computer Society, 2014.

[16] Beckhoff Automation GmbH & Co. KG., “C6030-0060 | Ultra-Kompakt-Industrie-PC
| Beckhoff Österreich.” [Online]. Available: https://www.beckhoff.com/de-at/
produkte/ipc/pcs/c60xx-ultra-kompakt-industrie-pcs/c6030-0060.html

[17] ——, “TE1000 | TwinCAT 3 Engineering | Beckhoff Österreich.” [On-
line]. Available: https://www.beckhoff.com/de-at/produkte/automation/twincat/
texxxx-twincat-3-engineering/te1000.html

[18] Schrack Seconet, “TwinCAT ISP-IP Guide.”

[19] Beckhoff Automation GmbH & Co. KG, “Beckhoff information system bacnet
sps-automapping rev12.” [Online]. Available: https://infosys.beckhoff.com/index.
php?content=../content/1031/tcbacnet/html/bacnet_automappingplc.htm&id=

[20] Beckhoff Automation GmbH & Co. KG., “TwinCAT 3 Library BACnet Revision 14
Documentation,Version: 1.0.0.”

[21] Morten Kvistgaard, Frédéric Chaxel, Adam Guzik, Christopher Günther,
Thamer Al-Salek, Lance Tollenaar, and Frank Schubert, “Yet Another Bacnet
Explorer| SourceForge.net.” [Online]. Available: https://sourceforge.net/projects/
yetanotherbacnetexplorer/

[22] Cimetrics Inc., “Cimetrics BACnet Explorer Free.” [Online]. Available: https:
//www.cimetrics.com/products/bacnet-explorer?variant=31119750987870

[23] Inneasoft, “Inneasoft BACnet Explorer Free.” [Online]. Available: https:
//www.inneasoft.com/en/bacnet-explorer/

52

https://www.securityandfire.honeywell.com/notifier/en-us/-/media/Files/Notifier/Data-Sheets/DN_6877_pdf.pdf
https://www.securityandfire.honeywell.com/notifier/en-us/-/media/Files/Notifier/Data-Sheets/DN_6877_pdf.pdf
https://www.beckhoff.com/de-at/produkte/ipc/pcs/c60xx-ultra-kompakt-industrie-pcs/c6030-0060.html
https://www.beckhoff.com/de-at/produkte/ipc/pcs/c60xx-ultra-kompakt-industrie-pcs/c6030-0060.html
https://www.beckhoff.com/de-at/produkte/automation/twincat/texxxx-twincat-3-engineering/te1000.html
https://www.beckhoff.com/de-at/produkte/automation/twincat/texxxx-twincat-3-engineering/te1000.html
https://infosys.beckhoff.com/index.php?content=../content/1031/tcbacnet/html/bacnet_automappingplc.htm&id=
https://infosys.beckhoff.com/index.php?content=../content/1031/tcbacnet/html/bacnet_automappingplc.htm&id=
https://sourceforge.net/projects/yetanotherbacnetexplorer/
https://sourceforge.net/projects/yetanotherbacnetexplorer/
https://www.cimetrics.com/products/bacnet-explorer?variant=31119750987870
https://www.cimetrics.com/products/bacnet-explorer?variant=31119750987870
https://www.inneasoft.com/en/bacnet-explorer/
https://www.inneasoft.com/en/bacnet-explorer/

[24] Beckhoff Automation GmbH & Co. KG., “TC1000 | TwinCAT 3 ADS.” [On-
line]. Available: https://www.beckhoff.com/de-at/produkte/automation/twincat/
tc1xxx-twincat-3-base/tc1000.html

[25] Ela-compil sp. z o.o., “ela-compil/BACnet: BACnet protocol library for .NET |
GitHub.” [Online]. Available: https://github.com/ela-compil/BACnet

[26] ——, “NuGet C#-BACnet Stack.” [Online]. Available: https://www.nuget.org/
packages/BACnet/2.0.4

[27] ——, “BACnet-Example AnotherStorageImplementation | GitHub.” [On-
line]. Available: https://github.com/ela-compil/BACnet.Examples/tree/master/
AnotherStorageImplementation

[28] ——, “BACnet-Example BaCSharpObject.cs | GitHub.” [Online].
Available: https://github.com/ela-compil/BACnet.Examples/blob/master/
AnotherStorageImplementation/BacnetObjects/BaCSharpObject.cs

[29] ——, “BACnet-Example StructuredView.cs | GitHub.” [Online].
Available: https://github.com/ela-compil/BACnet.Examples/blob/master/
AnotherStorageImplementation/BacnetObjects/StructuredView.cs

[30] Beckhoff Automation GmbH & Co. KG., “Beckhoff BACnet conformance certificate.”

[31] Chipkin Automation Systems, “BACnet Stack | Chipkin.” [Online]. Available:
https://www.bacnetstack.com/

[32] Cimetrics Inc., “BACnet Protocol Cimetrics.” [Online]. Available: https:
//www.cimetrics.com/collections/bacstac

53

https://www.beckhoff.com/de-at/produkte/automation/twincat/tc1xxx-twincat-3-base/tc1000.html
https://www.beckhoff.com/de-at/produkte/automation/twincat/tc1xxx-twincat-3-base/tc1000.html
https://github.com/ela-compil/BACnet
https://www.nuget.org/packages/BACnet/2.0.4
https://www.nuget.org/packages/BACnet/2.0.4
https://github.com/ela-compil/BACnet.Examples/tree/master/AnotherStorageImplementation
https://github.com/ela-compil/BACnet.Examples/tree/master/AnotherStorageImplementation
https://github.com/ela-compil/BACnet.Examples/blob/master/AnotherStorageImplementation/BacnetObjects/BaCSharpObject.cs
https://github.com/ela-compil/BACnet.Examples/blob/master/AnotherStorageImplementation/BacnetObjects/BaCSharpObject.cs
https://github.com/ela-compil/BACnet.Examples/blob/master/AnotherStorageImplementation/BacnetObjects/StructuredView.cs
https://github.com/ela-compil/BACnet.Examples/blob/master/AnotherStorageImplementation/BacnetObjects/StructuredView.cs
https://www.bacnetstack.com/
https://www.cimetrics.com/collections/bacstac
https://www.cimetrics.com/collections/bacstac

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Methodology
	Structure of the work

	State of the Art
	BACnet
	Fire Alarm System with BACnet
	BACnet Protocol Gateways

	Design and Implementation
	PLC - Fire Alarm System Communication
	Beckhoff BACnet API
	Beckhoff PLC BACnet Information Model
	Beckhoff BACnet Stack Results
	Life Safety Point and Life Safety Zone Information Model
	Data Transfer TwinCAT to C#
	Life Safety Objects with C# BACnet Library
	C# BACnet Server Results

	Conclusion and Further Work
	Beckhoff vs C# BACnet Stack
	Conclusion
	Further work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

