
Comparing machine learning
models for predicting the future

power output of photovoltaic
systems in Austria

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

David Schmalzer
Registration Number 11809617

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner

Vienna, 1st October, 2022
David Schmalzer Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

David Schmalzer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2022
David Schmalzer

iii

Acknowledgements

First of all I would like to thank my advisor Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang
Kastner who made it possible for me to write about this subject. He gave me quick and
valuable feedback during developing this thesis. Then, I would like to thank my parents,
who always supported me during my studies. Last but not least, I want to thank Sofie
Aumüller for proof-reading.

v

Kurzfassung

Da die Erzeugung von Strom mit Photovoltaikanlagen in den letzten 10 Jahren um
das 20-fache gestiegen ist, wird es immer wichtiger in Erfahrung zu bringen, wie viel
Strom in naher Zukunft erzeugt werden kann. Besonders für Photovoltaikanlagen, die an
das Stromnetz angeschlossen sind, ist es von Vorteil zu wissen, wie viel Strom erzeugt
wird, da die Leistung schwanken kann und daher im öffentlichen Stromnetz schwer zu
handhaben ist. Außerdem wird der Verbrennungsmotor in Autos immer mehr durch
den Elektromotor ersetzt, so dass es für Haushalte, die eine Photovoltaikanlage und
einen Energiespeicher betreiben, von Interesse ist, zu wissen, wie viel Strom an einem
bestimmten Tag zur Verfügung stehen wird. In dieser Arbeit werden verschiedene Ansätze
des maschinellen Lernens zur Vorhersage der Leistungsabgabe einer Photovoltaikanlage
verglichen. Das Ergebnis dieser Arbeit ist eine Web-Anwendung, die verschiedene Graphen
zeigt, die jeweils ein anderes Modell des maschinellen Lernens repräsentieren, um den
Unterschied zwischen der vorhergesagten und der tatsächlichen Leistungsabgabe in
Echtzeit analysieren zu können.

vii

Abstract

Since the generation of photovoltaic power has increased by a factor of 20 in the last 10
years, the importance of knowing how much power is being generated in the near future
increased as well. Especially for photovoltaic systems which are connected to the grid, it
is important to know how much power is being generated, since the power output can
be volatile and is therefore hard to handle for the public power grid. Furthermore, the
combustion engine is getting replaced by the electromotor in cars, thus it could become
important for households operating a photovoltaic system and an energy storage, to
know how much power will be available on a given day. This thesis focuses on comparing
different approaches in machine learning for predicting the power output of a photovoltaic
system. The result of this work is a Web application which shows different graphs, each
representing a different machine learning model, respectively, to analyze the difference of
the predicted power output compared to the real power output in real time.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Goal . 3
1.4 Methodical approach . 3

2 State of the Art 5
2.1 Overview . 5
2.2 RNN . 12
2.3 LSTM . 14
2.4 GRU . 16

3 Implementation 19
3.1 Used Technologies . 19
3.2 Architecture . 20
3.3 LSTM . 24
3.4 GRU . 24

4 Results 25
4.1 LSTM . 26
4.2 GRU . 29
4.3 Web application on Raspberry Pi . 30

5 Summary 35
5.1 Conclusion . 35
5.2 Future Work . 35

List of Figures 37

xi

List of Tables 39

List of Algorithms 39

Bibliography 41

CHAPTER 1
Introduction

1.1 Motivation

The generation of photovoltaic power in Austria has increased by an average of 36.9%
per year in the timeframe from 2005 to 2019. This resulted in a total power generation
of 1.44 TWh in 2018. In total, Austria generated 65 TWh of energy, which means that
2.2% of the energy came from photovoltaic systems [1]. Due to the reduction of power
generation through fossil fuels and the increasing demand of renewable energy sources in
the past years, the importance of predicting the power output of photovoltaic systems
has risen as well. Since photovoltaic systems are volatile concerning the power output
due to weather phenomena or the position of the sun, this poses a difficult problem.

1.2 Problem Statement

When reasoning about naive photovoltaic (PV) power generation, one might assume,
that the power output of PV systems in August should always be higher than in January,
since temperatures and the position of the sun is pretty much always better in August
(at least in Austria). However, Figure 1.1 shows a comparison of the first five days of
January 2020 and August 2020 in Austria. As illustrated on January 3rd 2020, the peak
power output has been higher than on August 3rd 2020. The plot shows data from the
ENTSO-E (European Network of Transmission System Operators for Electricity), which
contains data for the actual solar power generation in Austria [2]. The data is made
available in 15 minute time steps. If we calculate the area under both curves with the
trapezoidal rule, we get a total output of 4892 MW/h for the 3rd of January and 3936
MW/h for the 3rd of August. These values need to be seen with caution, since the data
is available in 15 minute time steps. However, it clearly shows that the power output has
been higher on the 3rd of January.

1

1. Introduction

Figure 1.1: PV power output over the first five days of January and August 2020 in
Austria

This begs the question about the weather condition on those two days. Therefore, one must
look at the historic weather data. At the time of writing, the website wunderground.com
provides free historical weather data [3]. Looking at Hörsching, Upper Austria, we can
see that it has been rainy and cloudy all day. Doing the same for the weather station in
Graz yields that it has been cloudy or light rain all day there. Last but not least going to
Währing, Vienna, also shows that it has been raining pretty much all day. The conclusion
of this is, that even if the position of the sun and the temperatures are better in August,
this does not necessarily mean that the power output is higher than in January. Due to
the fact that solar radiation is crucial for the power output of solar cells, it is probably
useful to integrate values from solar radiation into the prediction.

Therefore, solar irradiance data from the ARAD project[4] was retrieved from the Central
Institute for Meteorology and Geodynamics (ZAMG) to make further tests in this thesis.
ARAD stands for Austrian Radiation and is operated by ZAMG. The general aim
of ARAD is to establish a high-accuracy long-term monitoring network for solar and
terrestrial surface radiation in Austria in order to assess the status as well as the temporal
and spatial changes of radiative fluxes at/to the surface [5]. For this thesis, the global

2

1.3. Goal

radation measurements from Wien Hohe Warte were investigated. The data comes in
10 minute timesteps and range from 2015-01-01 to 2021-09-01. In order to measure
the global radiation, they use the CMP21 and the CM22 Pyranometers from Kipp &
Zonen[5].

1.3 Goal

The goal of this thesis is to use and compare different machine learning methods concerning
their accuracy regarding the prediction of the photovoltaic power output in all of Austria.
The time resolution will be 15 minutes and the prediction horizon will be a one step
ahead forecast. On a large-scale environment, this can help to ensure stability of the
power grid due to the fluctuating nature of PV energy. For a single household, it can
support estimating how much energy can be stored in a potential battery or how much
energy will be sold to the public power grid, thus displaying an estimation of earnings to
the user on a given day.

In order to show the predicted and actual power output to the user, a Web application will
be built. In this application, the different machine learning methods shall be displayed in
separate graphs which will show the actual power generation compared to the predicted
values of the different machine learning models. This Web application will be running on
a Raspberry Pi 4 Model B 8GB. The Web application will continuously be calculating
new predictions for all future timestamps available in 15 minute intervals.

1.4 Methodical approach

A recent study has shown that about 60% of studies in the last 15 years used LSTM (Long
short-term memory) to predict PV output [6]. LSTM is then followed by RNN (Recurrent
neural network) and GRU (Gated Recurrent Unit) which make up for 20% and 13% of
studies, respectively. For the prediction of solar irradiance, there is a distribution of 44%
using LSTM, 25% using RNN and 19% using GRU. This thesis compares the performance
of LSTM and GRU models. Unlike RNN, LSTM alleviates the vanishing gradient problem
[7] and thus should provide better performance. Since GRU is a modification of LSTM it
is used in this thesis instead of RNN even though RNN is used more often compared to
GRU. To reduce statistical outliers every model in every configuration will be trained 5
times and each model gets evaluated. The average of the results for each model will be
calculated and then the average is used as final result.

The photovoltaic power generation data comes from [8], because it is mandatory for
European Member State data providers and owners to submit fundamental information
related to electricity generation, load, transmission and balancing for publication through
the ENTSO-E Transparency Platform.

The solar irradiance data was retrieved from the ARAD project[4][5]. ARAD is a longterm
project which is designed to measure solar and heat radition in Austria at 5 different

3

1. Introduction

locations. In this thesis, the data from Wien Hohe Warte was used. The timerange
from 2019-08-01 00:00:00 to 2020-08-01 00:00:00 was used for training. The models
will then be tested with the timerange from 2020-09-01 13:45:00 to 2020-09-05 10:00:00.
The performance is evaluated based on different metrics described in Section 4. To
automatically train and store the models, a training framework will be built which uses
data from [2]. For the evaluation, a Web application will be made which is capable to
calculate the metrics defined in Section 4. Based on the results, the best performing
models are selected and used in the live view of the Web application.

4

CHAPTER 2
State of the Art

2.1 Overview

Before diving deeper into the RNN and LSTM models, it is important to understand
simpler models. The so-called feedforward neural network [9] should be the simplest
model to understand. It consists of an input layer, one or many hidden layers and a
single output layer. Each layer can have an arbitrary amount of neurons and is connected
to all neurons in the adjacent layer, which can be seen in Figure 2.1.

Now, we can take a look at a single neuron. In Figure 2.2, we can see that there is an

Figure 2.1: Feedforward neural network

5

2. State of the Art

Figure 2.2: Single neuron of a neuronal network [10]

arbitrary amount of inputs labeled x1 to xn. Each of the inputs gets multiplied with
its corresponding weight which are labeled w1 to wn. The resulting values get summed
up and are then passed on to the activation function. Depending on which activation
function is chosen and the input to the activation function, the neuron triggers and passes
on its activation values to the next layer, or the activation function is not triggered and
the neuron does not fire. A simple activation function is the sigmoid function, which is
defined as follows:

sig(x) = 1
1 + e−x

If x approaches negative infinity the result will be 0, if x approaches positive infinity the
result will be 1. For all other values the result is going to be something in between 0 and
1. This proved to work well for binary classification problems, since the function will
trigger and therefore return one if the input is above 1, otherwise it will return 0.

Another more common activation function is the Rectified Linear Unit (ReLU) function.
It is defined as follows:

f(x) = max(0, x)

which is zero for any input smaller or equal to 0 or the input value x for any number
greater than 0. Due to the fact that the derivation of this function is always 0 or some
constant the vanishing gradient problem is not an issue.

During the training of a machine learning model, each of the weights and the bias of a
neuron are adjusted in order to get better results. A bias is a value which gets added to
the input of a given neuron, to ensure that at least some neurons in a layer fire in the
case that the combination of input signals and weights are not triggering the activation
functions of the neurons.

6

2.1. Overview

2.1.1 Cost Function

The cost function is the measurement of how far off the predictions of the network is
compared to the ground truth [11]. Usually the function is defined as follows:

C(w, b) = 1
2n
∑
x

||y(x)− a||2

Here, w denotes the collection of all weights in the network, b all the biases, n is the
total number of training inputs, a is the vector of outputs from the network when x is
input, and the sum is over all training inputs, x [11]. C is representing the quadratic cost
function also known as the mean squared error. Note, that we divide by 2n just because
this will cancel out with the power of 2 when taking the derivative of the cost function
for gradient descent. With the cost function, it is defined that the network is performing
better, if C(w, b) is approaching 0. The further away the cost function is from 0 the
worse the network is performing. Of course, this is dependent on the inputs to the cost
function, so we want to find weights and biases which minimize the cost function. In
order to minimize the cost function, we are going to use gradient descent.

2.1.2 Gradient Descent

Consider the function f(x, y) = x2 + y2. As humans, we can easily see that this function
has its global minimum at x = 0 and y = 0. However a computer would have to solve
this analytically. Since we are dealing with neural networks which can have thousands or
millions of weights and biases as input to the cost function this would result in a huge
amount of computation which would take extremely long and is not feasible. To help
understanding the following equations, we can imagine a ball rolling down to the lowest
point of this function. This point is as mentioned in x = 0 and y = 0 and illustrated in
Figure 2.3.

7

2. State of the Art

Figure 2.3: Sample plot for gradient decent

Mathematics tells us [11] that moving the ball in the direction v1 by ∆v1 and v2 by ∆v2
can be expressed by

∆C ≈ ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2

which shows the changes to the cost function C. Now, the question arises how to choose
∆v1 and ∆v2 to make ∆C negative. In order to accomplish this, we define some notations.
Let ∆v ≡ (∆v1,∆v2)T where T is the transpose operation and let the gradient of C be
the vector of the partial derivatives of v1 and v2 which is written as:

∇C ≡
(
∂C

∂v1
,
∂C

∂v2

)T
This allows us to rewrite the formula for ∆C as:

∆C ≈ ∇C ·∆v

Suppose we take
∆v = −η∇C

η represents the learning rate which is a small positive parameter. Now, we can substitute
∆v in the equation above and we get ∆C ≈ −η∇C · ∇C = −η||∇C||2. Since ||∇C||2 is
always positive and −η always negative it is guaranteed that ∆C ≤ 0 as long as we are

8

2.1. Overview

in the limits of the approximation ∆C ≈ ∇C ·∆v. Now, we can take ∆v = −η∇C to
calculate a value for ∆v, then move the ball by this amount:

v → v′ = v − η∇C

Doing these steps repeatedly until we get to a minimum is called gradient descent.

2.1.3 Backpropagation

Basically, backpropagation is the synonym for ∂C
∂w where C denotes the cost function and

w any weight or bias in the network. Backpropagation tells us how fast the cost changes
if biases or weights are changed [11]. Consider the following neuronal network illustrated
in Figure 2.4.

Figure 2.4: Example network with 4 neurons

The a(L) [11][12] labels describe the activation value of the specific neuron. L describes
the total amount of layers in the network. Note that the expression (L− n) is not an
exponent, it is just a tool for indexing to know which neuron is currently looked at.
Furthermore, let y denote the desired value of the last activation. Now let’s take a
look at the neuron n4 and let’s assume that the actual output of n4 is 0.75 for a given
training example. Also let’s assume that the desired output of the network for this
training example should be y = 1. The cost C0 for a single training example is defined as
C0 = (a(L) − y)2 which in this case would be (0.75− 1)2. The activation a(L) is defined
as a(L) = σ(w(L)a(L−1) + b(L)) where σ() is some activation function like ReLU or tanh.
For simplicity, we call the term within the activation function z(L). Now, the question
arises how C0 can be minimized as far as possible. This can be done by adjusting the
weights and biases.

First, we will focus on understanding how the adjustment of the weight can affect the
cost function. Mathematically expressed we want to know ∂C0

∂w(L) . We know that a small
change to the weight w(L) changes the result of z(L) (1), which changes the result of a(L)

(2), which directly changes the result of C0 (3). Now. we can use this information and
create 3 expressions:

(1): ∂z(L)

∂w(L) (2): ∂a(L)

∂z(L) (3): ∂C0
∂a(L)

These three expressions are actually the chain rule. Multiplying these expressions together
gives us the desired information.

9

2. State of the Art

∂C0
∂w(L)

To see what the actual derivatives of these three expressions are, recall the following
C0 = (a(L) − y)2

a(L) = σ(z(L))
z(L) = w(L)a(L−1) + b(L)

(1): ∂zL

∂w(L) = a(L−1) (2): ∂aL

∂z(L) = σ′(zL) (3): ∂C0
∂a(L) = 2(a(L) − y)

So we can write all of this as:

∂C0
∂w(L) = ∂zL

∂w(L)
∂aL

∂z(L)
∂C0
∂a(L) = a(L−1)σ′(zL)2(a(L) − y)

Keep in mind that this expression is only for one given training example. This needs to
be averaged over all the training examples. The formula for the full cost function is:

∂C

∂w(L) = 1
n

n−1∑
k=0

∂Ck
∂w(L)

which is just for this one specific weight, which is just one component of the gradient
vector ∇C.

Looking at changes for the bias, it is necessary to exchange the first term ∂zL

∂w(L) with
∂zL

∂b(L) . From ∂aL

∂z(L) we see that the derivative is 1 which results in losing the first term of
the original equation

∂C0
∂b(L) = σ′(zL)2(a(L) − y)

From the term z(L) = w(L)a(L−1) + b(L), we can see that we tackled every term besides
a(L−1) which is the activation value of the previous layer. This is analogous to the
calculation for the bias above. We are also going to exchange the first term, this time
with ∂zL

∂a(L−1) , and calculate the new derivative which results in:

∂C0
∂a(L−1) = w(L)σ′(zL)2(a(L) − y)

Since we can not influence the value of the previous activation we can at least store it
and iterate this idea backwards to previous layers. Hence, the term backpropagation is
derived.

Since we looked at a network where there is only one neuron per layer it is necessary
to look at this with a more realistic example. In order to support multiple neurons per

10

2.1. Overview

Figure 2.5: Example network with multiple neurons per layer

layer, the equations mostly do not change too much but it is necessary to introduce some
more indexing. Consider this network and ignore greyed out connections for now:

Since this network has 2 layers the concrete description for the weight connecting n2 and
n4 would be w1

01 if indexing of layers and number of neuron in each layer starts with 0.
Generally speaking, it says it is the weight from the kth neuron in the (l − 1)th layer to
the jth neuron in the lth layer.

The first thing that changes in the mathematics is the definition of the cost. Since we have
multiple neurons in the last layer, we have multiple outputs in our case called y0 and y1
hence the cost is defined as∑nL−1

j=0 (a(L)
j −yj)2. Looking at neuron n4, we have to take into

account that there are 3 weights and activation values from n1, n2 and n3 which we have
to consider in the formula for z(L)

j which in this case would be z(0)
0 . This can be generalized

for each neuron in a layer by z(L)
j = w

(L)
j0 a

(L−1)
0 + w

(L)
j1 a

(L−1)
1 + w

(L)
j2 a

(L−1)
2 + b

(L)
j , thus

we rewrite a(L) = σ(z(L)) to a(L)
j = σ(z(L)

j . With this knowledge, we can now rewrite the
formula which tells us how sensitive the cost is to a specific weight to more generalized
form as well

∂C0

∂w
(L)
jk

=
∂zLj

∂w
(L)
jk

∂aLj

∂z
(L)
j

∂C0

∂a
(L)
j

The formula which tells us the sensitiveness about the previous layers’ activation however
changes a bit more

∂C0

∂a
(L−1)
k

=
nL−1∑
j=0

∂zLj

∂a
(L−1)
k

∂aLj

∂z
(L)
j

∂C0

∂a
(L)
j

This is due to the fact that a neuron in layer L− 1 can influence two or more neurons in
the next layer. For example in the network illustrated in Figure 2.5, we can see that the

11

2. State of the Art

activation value of neuron n2 has influence on neuron n4 and n5 which means it has also
an impact on the activation value of n4 and n5. This is the reason for taking the sum
over the layer L. The formula for the bias stays the same.

2.2 RNN
A Recurrent Neural Network (RNN) introduces cycles in the network, which allows them
to handle the aspect of time. Other applications could be speech synthesis or music
generation. Basically, RNNs are good at solving problems, which rely on knowing the
current and all previous inputs. RNNs use so-called feedback loops which are used to
learn from sequences which can also vary in length. RNNs also require the input to be 3
dimensional. These dimensions can be seen as follows for a time series problem:

• quantity of samples

• quantity of timesteps in a single sample

• quantity of values observed per timestep, also known as features

This is often seen as a triple in the form: [samples, timesteps, features]. On the left-hand
side of Figure 2.6 the basic architecture of a RNN can be seen [13]. It has an input xt
and an output ht. A takes the input and produces the output. The arrow going from
A to A allows the RNN to pass information from one point in the network to the next.
This can be seen, if the network is unrolled which is on the right-hand side of Figure
2.6. This might be looking confusing at first, but it can be thought of copies of the same
network which pass information to its successor. This architecture is what makes this
type of neural network so good for tasks like speech synthesis.

Figure 2.6: Unrolled RNN [13]

However there are two major issues when it comes to RNNs:

1. Learning: Learning in RNNs is done with backpropagation through time, which is
basically just unrolling the network and then applying normal backpropagation for
learning. Due to the unrolling, the network becomes very deep, which increases
the chance of the vanishing or exploding gradient problem to occur. This issue is
discussed in Section 2.2.1.

12

2.2. RNN

2. Long-Term dependencies: The network will not be able to connect relevant in-
formation which is far apart, thus failing to give the correct output. Imagine a
network which should predict the last word of a sentence. A sentence like ’Planets
are rotating around the sun.’ it should be pretty obvious that the result is going to
be ’sun’. Now consider a sentence like ’I am currently studying for my motorcycle
license and I really enjoy driving so far, thus I will probably buy a bike’. In order to
know what will probably be bought, it is necessary to look all the way back to the
word ’motorcycle’, which will be difficult for the RNN. This issue was examined
in more detail by Hochreiter [14], which ultimately resulted in the introduction of
Long Short-Term Memory (LSTM) in 1997 [15]. LSTM Networks are discussed in
more detail in Section 2.3.

2.2.1 Vanishing and exploding gradient problem

In [11], the author examines the speed of learning per hidden layer in the network,
summarized in Figure 2.7.

Figure 2.7: Learning speed per hidden layer [11]

Note that hidden layer 4 represents the last hidden layer which is before the output layer,
which means that layer 4 is the first layer where backpropagation is applied. We can see
that earlier layers in the network are learning slower than later ones. The cause of this is
the vanishing gradient problem, which means that the gradient described in Section 2.1.2
becomes smaller with every hidden layer.

To understand why this problem occurs, consider the network shown in Figure 2.8 and

13

2. State of the Art

the following equation which describes the changes in the cost function C with respect
to changes made with b1

∂C

∂b1
= σ′(z1)× w2 × σ′(z2)× w3 × σ′(z3)× w4 × σ′(z4)× ∂C

∂a4

To see why this equation is correct refer to [11] page 160. Assume that the activation
function σ in this case is the sigmoid function and the weights are initialized using a
normal distribution with mean 0 and standard deviation of 1. Due to the chosen normal
distribution the weights will satisfy |wj | < 1 most of the time. The maximum of the
derivative is at σ′(0) = 1

4 . So multiplying these terms will mostly result in wjσ′(zj) < 1
4 .

Since we have four of these terms in the equation and the result of one such multipli-
cation is almost guaranteed to be less than 1 the result tends to get smaller with every
multiplication, or in other words the result gets smaller the deeper we go into the network.

On the other hand, there is the exploding gradient problem, which can also be de-
scribed with an example using the network shown in Figure 2.8 even if the example is a
bit made up. Assume w2 = w3 = w4 = 100. For the biases, we want that zj = 0, thus
σ′zj = 1/4. zj is defined as zj = wjaj−1 + bj so we choose for the bias bj = −100× aj−1.
Note that aj denotes the output of the previous neuron. Using the assumed values
wjσ

′(zj) becomes 100× 1/4 = 25. Multiplying these values is going to let the gradient
become very large very quickly. This is why it is called exploding gradient.

Figure 2.8: Example network for the vanishing gradient problem

2.3 LSTM
Long Short-TermMemory (LSTM) was introduced in 1997 by Hochreiter and Schmidhuber
[15]. The advangtage of LSTM networks is that they are capable of remembering
information for a longer period of time [13]. A standard RNN will have a simple structure
which could be a single tanh layer which takes the input from the preceding part of the
network, the current input xt and creates an output ht and feeds it to succeeding part of
the network. However, in an LSTM network there are four layers which can be seen in
Figure 2.10. The layers are the three σ symbols and the tanh function.

The main part is the so-called cell state which is represented by the straight line going
from Ct−1 to Ct. Then there are 3 gates which are represented by a sigmoid function
and a pointwise multiplication. These gates are able to regulate how much information

14

2.3. LSTM

is passed through. A value of 1 means let all information through, a value of 0 means let
no information through. The internal structure of the LSTM can be explained in 4 steps.

1. The first layer (from left to right) is the forget gate layer. It takes the inputs
ht−1 xt and outputs a number between 0 and 1 for each number in Ct−1. This is
expressed by ft = σWf · [ht−1, xt] + bf where Wf denotes the weight for the forget
gate, ht−1 the output of the preceding block, and bf the bias for the forget gate.
These notations are also being used for the input gate and the output gate following
in the next steps, only the subscript will change accordingly.

2. The next step is made of two parts, the first one is the input gate expressed by
it = σ(Wi · [ht−1, xt] + bi). The second part is a layer which finds a vector of
new candidates, C̃, for the cell state which is defined as follows: C̃t = tanh(WC ·
[ht−1,xt + bC]). In the following step the result of the input gate and the vector C̃
get combined.

3. The third step is updating the cell state Ct−1. This is done by multiplying ft from
the first step with Ct−1. With this we actually forget everything we wanted to
forget in the first step. Now we add the result of it ∗ C̃t which represents the new
values scaled by how much each state value is updated. Ct is then simply defined
by Ct = ft ∗ Ct−1 + it ∗ C̃t.

4. In the last step the output is decided, which depends on the cell state, but the
cell state Ct will be filtered by tanh first such that the values are scaled between
-1 and 1. Also the output gate calculates what we are going to output as follows
ot = σ(Wo[ht−1, xt] + bo). This leaves us with ht being defined as ht = ot ∗ tanh(Ct)

LSTM was designed to alleviate the the problem of the vanishing gradient discussed in
Section 2.2.1. DiPietro R. et al. [7] explain why LSTM and GRU models handle the
vanishing gradient better than ordinary RNN models in the following way: Looking at
the equation Ct = ft ∗ Ct−1 + it ∗ C̃t which describes the new cell state it is important
to see that there is only one path between Ct and Ct−1 which is modelled by the forget
gate ft. However in the context of some time τ where t > τ we can have exponentially
many paths from Ct to Ct−τ but one of these paths is just the elementwise multiplication
of forget gates. This represents another gradient component which is the product of
diagonal Jacobians with diagonal elements corresponding to the forget gates. Which
means that the gradient can still vanish exponentially over τ , however this is not the
case if the forget gates have elements that are close to 1, because the base will also stay
close to 1. This is the reason, why the bias of forget gates is often initialized to some
positive number like 1 or 2.

Additionally to the "plain" LSTM model there exist various other models for example
LSTM models which introduce peepholes [16] or hybrid CNN-BiLSTM [17] models and
many more variations.

15

2. State of the Art

Figure 2.9: LSTM Operators [13]

Figure 2.10: Detailed LSTM architecture [13]

2.4 GRU

Gated Recurrent Units (GRUs) were introduced in 2014 by Kyunghyun Cho et al. [18].
In their paper, they compared two machine learning models, one being an RNN Encoder-
Decoder and the other being their new gated recurisve convolutional neural network.
Their new network replaces the Encoder part in the first model.

GRUs are a special case of LSTM networks [19]. It was found that performance in speech
signal modeling was similar to LSTM. Also the training time was shorter compared
to LSTM networks and it has fewer parameters since GRUs do not have output gates.
Essentially GRUs use two inputs at a given time, which are the previous input h(t− 1)
and the input vector x(t). Like mentioned earlier. GRU uses only 3 gates which are the
following:

z(t) describes the update gate vector

16

2.4. GRU

r(t) describes the reset gate vector
h̃t describes the resulting memory
h(t) describes the resulting memory

Figure 2.11: Detailed GRU architecture [13]

Mathematically these gates can be expressed in the following way [13]:

zt = σ(Wz · [ht−1, xt])

rt = σ(Wr · [ht−1, xt])

h̃t = tanh (W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

Compared to LSTM, GRU combines the forget and input gates to the single update gate
zt [13]. Also the cell state and hidden state are merged in combination with other smaller
changes.

17

CHAPTER 3
Implementation

3.1 Used Technologies

For the development of the application, various technologies have been used. First of all,
Keras [20] was used to train all of the models. Keras is a deep learning API written in
Python, running on top of the machine learning platform TensorFlow. TensorFlow [21]
is an end-to-end open source platform for machine learning. It has a comprehensive,
flexible ecosystem of tools, libraries and community resources that lets researchers push
the state-of-the-art in machine learning (ML), and developers easily build and deploy
ML powered applications.

For faster training, the data [2] has been stored in an influxDB [22] to retrieve the data
faster. Also potential missing datapoints in the CSV data have been interpolated linearly
before inserting them into the database. After the training of the models is done, a
webserver running on Node.js is providing the trained models.

With all the aforementioned technologies the Web application which is built in angular
can download the desired model. After that the Web application can either evaluate a
model in a specific time range from the data or simulate a live prediction on the data [2].

To show the simulation or evaluation of a model to the user the plotly.js [23] library has
been used. Plotly.js is built on top of d3.js and stack.gl and is free as well as open source.
It is also possible to evaluate all of the models available and export the data as Excel
files which can be used to validate the results in this thesis.

The data which has been used comes from [2] and represents the total photovoltaic
power generation of Austria in the timeframe from 2015-01-01 to 2020-12-31 in 15 minute
timesteps.

19

3. Implementation

3.2 Architecture
This section describes the architecture used to generate and evaluate the machine learning
models. The architecture can be seen in Figure 3.1.

Figure 3.1: Architecture of the implemented application

3.2.1 Data Preparation

The Data Preparation component is implemented with Python and can store two datasets
to the influxDB. First of all, it is used to store the relevant data from [2] in the influxDB.
The relevant data includes the date/time column and the AT_solar_generation_actual
column. In case timesteps are missing in the data, the missing timesteps are interpolated
linearly. The timestamps are in 15 minute intervals. The timesteps are from minute 00
to 15 to 30 to 45 and so on.

The second set of data is from [5] and ranges from the year 2015 to 2021. Every year
camet in its own file so the data was merged to one file. Furthermore, the data was
provided in 10 minute intervals so it was necessary to fit the timesteps in the 15 minute
intervals from the first dataset. This was also done with linear interpolation within
the minutes of 10 to 20 and 40 to 50 to get minute 15 and minute 45 of each hour,
respectively. The relevant data from the ZAMG dataset [5] is the cGLOm column. This
column represents the global radiation which is direct radiation and diffuse radiation
combined. The interpolated data of the second dataset got also inserted to influxDB.

3.2.2 influxDB

influxDB [22] is a timeseries database which allows for fast read and write access. It was
used because it is possible to query the data more easily compared to a CSV file which is
loaded via pandas [24] with Python. Also influxDB provides a useful webinterface which
allows to filter data quickly and it can display the queried data in a graph. Furthermore,
influxDB can run inside a docker container which emphasizes platform independence.

20

3.2. Architecture

Unlike conventional databases, influxDB uses flux instead of SQL which is a functional
data scripting language which is also used for querying data. This scripting language has
been used throughout the project. This is an example of the flux query language:

from(bucket: "photovoltaic_bucket")
|> range(start: -1d)
|> filter(fn: (r) => r._measurement == "mem"
and r._field == "cGLOm")

This query selects measurements from the photovoltaic_bucket in the last day and then
filters for a measurement called "mem" and a field which is called "cGLOm". The bucket
can be seen as a table like in ordinary SQL databases and the filter function acts like a
"where" clause. The influxDB is listening on port 8086.

3.2.3 AI Training Framework

The AI Training Framework is the core part of this thesis. It is implemented in Python
and has multiple purposes. First of all, it makes sure that the timeseries data is present
in the influxDB, otherwise the data gets inserted before anything else happens. This is
done by using the data preparation part of the project. After that it is possible to train
models. It is possible to train either LSTM or GRU models, and for each one can choose
if the training happens with or without solar irradiance data [5]. Also it can be decided,
if just a single model should be generated or if a set of models should be generated. If
the single model is chosen then the user has to fill in a config in the terminal. The single
training option allows to configure the following parameters:

• start date - specifies the startdate for the training date range.

• end date - specifies the enddate for the training date range.

• epochs - specifes the number of times the gradient descent algorithm goes through
the model.

• batch size - specifes the number of samples the gradient descent algorithm goes
through, before internal parameters of the model are updated.

• cut time from dataframe - lets the user choose if specific parts of the date range
should be removed for training (could be used to cut out nighttime to speed up
training time).

• foldername - specifies the name of the folder the generated model is going to be
stored.

21

3. Implementation

After parameter selection, the model is trained and stored. Also the configuration and
duration of the training is saved in the folder of the model. To save the model two
different methods are used. The first one being tensorflowjs version for Python which
can save a Keras model and as second option the model.save() function provided by the
Keras model itself. Exact implementation details of the LSTM and GRU models are
discussed in the LSTM and GRU sections below.
Furthermore, it is possible to generate a set of models automatically. The set consists of
models with the following epochs: 20, 40, 50, 60, 70, 100, 150 and the following batch
sizes: 32, 64, 128. This makes 21 different models. In order to reduce statistical errors
during training and therefore reduce outliers in the results each possible configuration
for a model gets generated 5 times which makes a total of 105 models.

3.2.4 Node.js Webserver

The Node.js webserver component is used as a static file server which provides the models
trained by the AI training framework. The Node.js webserver is serving the models on
port 81 and has 5 different endpoints which provide the models for lstm, lstm with solar
irradiance data, gru and gru with irradiance data, respectively. The last endpoint is used
to show the live simulation. To run the webserver on the Raspberry Pi permanently, the
npm package forever [25] is used. Forever is a simple CLI tool for ensuring that a given
script runs continuously.

Figure 3.2: Frontend after evaluation of a single model

22

3.2. Architecture

Figure 3.3: Interactive graph zoomed in to predicted month

Figure 3.4: Interactive graph zoomed in to a day of the predicted daterange

3.2.5 Frontend

The last part is the frontend which is the second core part of the application. It is used
to evaluate trained models. For the evaluation, the desired model and desired date range
can be selected. After some time, depending on the length of the date range, the results
are displayed on the Web page and a graph is plotted which shows the groundtruth and
the predictions made by the model in the desired date range. It is possible to zoom into
the graph to see the differences of prediction and groundtruth in detail. Additionally,
it is possible to evaluate all models of the same kind at the same time. Therefore, the
frontend has a total of 4 routes corresponding to lstm, lstm with irradiance, gru and gru
with irradiance respectively. When evaluating in batches the results are rendered into a
table. As soon as the batch evaluation is finished the table can be exported as Excel file.

Another core part of the frontend is the live prediction of photovoltaic power output.
The last 7 ground truth values are fed into the model the user has to select. Then, the
application continuously predicts the photovoltaic power output of the next timestep. A
single timestep is, like the groundtruth, in 15 minute intervals. For the proof of concept
developed the timestep is reduced to 5 seconds to see the live graph in action. Every
5 seconds a prediction for the next 15 minute interval is predicted and the time gets
increased by 15 minutes. So the time is speed up.

Lastly every component of the application is platform independent and has been tested

23

3. Implementation

on Windows, macOS and Raspberry Pi OS.

3.3 LSTM
Figure 3.5 shows the structure of the LSTM model used in this thesis. x1, x2, ...xt are
the ground truth values which are given to the model. This is followed by two dense
layers where ud1 and ud2 describe the size of the output of the respective dense layer. In
this model, t was set to 200, ud1 and ud2 to 100 and 7, respectively.

Figure 3.5: Structure of the LSTM model used for evaluation [26]

The LSTM Units use a rectified linear unit as activation function. Due to the struc-
ture of the LSTM model, the data needed to be put into a fitting shape. The input
shape to the LSTM Units is [number_of_input_samples, number_of_timesteps, num-
ber_of_features]. In practise it could look like [35040, 7, 1] where 35040 is the number
of quarter hours in a whole year which is calculated with 96× 365. 7 is the number of
timesteps which are fed into the model at a time and 1 is the number of features. In the
case where the solar irradiance data is also used the shape becomes [35040, 7, 2], since
for every timestep the photovoltaic power output and the solar irradiance data are fed
into the model. As loss function the mean squared error was used. The optimizer which
was used is adam [27]. The optimizer is used to adjust the weights and biases in a neural
network.

3.4 GRU
The structure of the GRU models is almost identically to the LSTM models. Looking
at Figure 3.5, the only difference is that the LSTM units are replaced with GRU units.
This was done to ensure the best comparability possible between the two models.

24

CHAPTER 4
Results

Three different machine learning models have been taken into account. Each of the
models uses a different count of epochs and batchsize. To reduce outliers, every model
has been trained and evaluated 5 times. After that the results have been normalized
using

xnorm = (x− xmin)
(xmax − xmin)

Then, the average of the results has been calculated. Regarding the evaluation the terms
RMSE (root mean squared error), MAPE (mean relative percent error), MAE (mean
absolute error) and COEFF (pearson correlation coefficient) are defined as follows:

MSE = 1
n

(
n∑
i=1

(xi − yi)2)

RMSE =

√√√√ 1
n

(
n∑
i=1

(xi − yi)2)

MAE = 1
n

n∑
i=1
|xi − yi|

MAPE = 100%
n

n∑
i=1
|xi − yi

xi
|

COEFF =
∑n
i=1((xi − x)(yi − y))√∑n

i=1(xi − x)2∑n
i=1(yi − y)2

25

4. Results

All models have been trained in the same timeframe ranging from 2019-08-01 00:00:00 to
2020-08-01 00:00:00. Also, each model has been evaluated in the same timeframe ranging
from 2020-09-01 13:45:00 to 2020-09-05 10:00:00.

Every model has been trained on the following setup:

• CPU: AMD Ryzen™ 7 3700X

• RAM: 32GB DDR4 3200Mhz Corsair VENGEANCE® with XMP enabled

• Mainboard: MAG B550M MORTAR WIFI

• SSD: Samsung 980 1 TB PCIe 3.0 NVMe

• Operating System: Windows 10

Note that it was also tried to train the models on a MacBook Air with the M1 chip, but
these results were note representable, since in the longer runs, especially when training
models above 100 epochs, the laptop struggled with thermal throtteling.

The results below are all single step ahead forecasts which predict the next 15 minute
timeframe. All of the results have been made two times. One time with only one feature
as input which was just the previous time series. The second table of results always
shows the results with two input features where the first one is the previous time series
and the second one the solar irradiance from Wien Hohe Warte.

4.1 LSTM
Since the data in [26] got normalized, the results from Table 4.1 can be normalized
using xmin = 0 and xmax = 544 since 544 is the maximum value in the evaluation
timeframe. xmax = 944 would be the maximum value for the training data. For the
best result of Table 4.1, the normalized values using xmax = 944 are MSE = 0, 010624
RMSE = 0, 003353 MAE = 0, 001939 COEFF = 0, 001059. Comparing the results
with [26] is hard because the authors use a single 4kWp photovoltaic array which is way
more prone to weather phenomena compared to this thesis which uses photovoltaic data
from all of Austria combined.

4.1.1 LSTM with solar irradiance

It is immediately visible that the LSTM models trained with the solar irradiance data as
additional feature performs worse than the models from Table 4.1 and Table 4.3. The
best model which is trained with solar irradiance has an MSE which is 20,7× worse
compared to the 100E-32B LSTM model without solar irradiance data. To understand
the decrease in performance, we take a look at the actual data and the irradiance
data during the testing timeframe in Figure 4.2. The lightblue line shows the current
photovoltaic power output and the purple line shows the current solar irradiance. The

26

4.1. LSTM

LSTM Model results
Model with configuration MSE RMSE MAE COEFF Time
20E-32B 10,36 3,22 1,84 0,99973 117,0s
20E-64B 12,40 3,51 2,15 0,99972 74,0s
20E-128B 12,27 3,49 2,09 0,99972 68,0s
40E-32B 11,58 3,40 1,99 0,99972 233,0s
40E-64B 11,45 3,38 1,99 0,99972 158,8s
40E-128B 10,19 3,19 1,88 0,99973 136,2s
50E-32B 11,44 3,37 1,96 0,99973 301,8s
50E-64B 12,42 3,46 2,04 0,99972 203,8s
50E-128B 11,22 3,35 1,98 0,99972 187,4s
60E-32B 10,94 3,31 1,97 0,99972 373,8s
60E-64B 13,57 3,68 2,17 0,99971 255,0s
60E-128B 11,17 3,33 1,98 0,99972 229,6s
70E-32B 11,51 3,38 1,92 0,99972 429,4s
70E-64B 13,03 3,57 2,06 0,99972 285,8s
70E-128B 12,28 3,49 2,03 0,99972 256,2s
100E-32B 10,03 3,17 1,83 0,99973 626,0s
100E-64B 10,30 3,20 1,83 0,99972 423,2s
100E-128B 10,25 3,20 1,87 0,99973 374,8s
150E-32B 13,98 3,68 2,21 0,99973 954,8s
150E-64B 11,15 3,33 1,92 0,99972 631,2s
150E-128B 10,42 3,22 1,85 0,99973 539,8s
Average 11,52 3,38 1,98 0,99972 326,65s

Table 4.1: Performance of different LSTM models

red boxes mark interesting spots, because the solar irradiance is going down significantly
while the photovoltaic poweroutput stays unaffected. Note that the current photovoltaic
output is measured in MW and the current solar irradiance is measured in W/m2. Since
photovoltaic output stays mostly unaffected by drops of the solar irradiance the question
arises how the model behaves. This becomes clear when looking at an arbitrary day in the
testing timeframe. For the example in Figure 4.1 the timerange from 2020-09-01 13:45:00
to 2020-09-03 10:00:00 was predicted and the day 2020-09-02 was used as illustration
in Figure 4.1. The best LSTM model which was trained with solar irradiance, which
is 20E-64B, was used to do the prediction, which can be seen in Table 4.2. The model
20E-64B is the average of 5 generated models, for the predicition in Figure 4.1 the first
model of the 5 generated models was used. The MSE of the prediction was 160,25, but
the interesting part is how the graph of the groundtruth vs. predicted data looked like.
This can be seen in the top graph of Figure 4.1. Looking at the top graph there is a clear
shift of the orange line to the right when compared to the blue ground truth line. So
it was tested what happens if the prediction line is shifted by one timestep to the left.
This yielded an interesting result, because the prediction line almost perfectly matches

27

4. Results

the groundtruth. This finding suggests that the solar irradiance feature which was fed
to the model during learning was not a good feature for the model to rely on, so the
inputs of this feature are weighted down until it gets almost ignored. Due to that feature
being ignored it seems as if the models then decided to take the last value of groundtruth
which got fed into the model as the next result for the prediction. This would explain
why the prediction line almost perfectly fits the ground truth line after shifting. The
results when shifting the prediction are very close to perfect. MSE: 0,07 RMSE: 0,26:
MAE: 0,15 and a coefficient of 0,99627.

LSTM Models with solar irradiance results
Model with configuration MSE RMSE MAE COEFF Time
20E-32B 209,72 14,48 9,65 0,99634 117,4s
20E-64B 208,12 14,43 9,61 0,99638 81,8s
20E-128B 211,20 14,53 9,68 0,99633 69,0s
40E-32B 209,56 14,48 9,62 0,99635 233,2s
40E-64B 209,95 14,49 9,64 0,99635 167,0s
40E-128B 209,82 14,48 9,65 0,99634 147,0s
50E-32B 209,77 14,48 9,63 0,99635 293,2s
50E-64B 209,85 14,49 9,65 0,99634 208,6s
50E-128B 211,15 14,53 9,69 0,99634 206,2s
60E-32B 209,89 14,49 9,64 0,99634 369,2s
60E-64B 210,71 14,52 9,65 0,99634 256,4s
60E-128B 209,64 14,48 9,64 0,99634 231,2s
70E-32B 210,03 14,49 9,63 0,99634 435,2s
70E-64B 209,98 14,49 9,64 0,99634 299,8s
70E-128B 210,71 14,52 9,66 0,99634 285,0s
100E-32B 209,21 14,46 9,62 0,99635 635,8s
100E-64B 209,76 14,48 9,63 0,99634 397,0s
100E-128B 211,32 14,54 9,65 0,99632 370,8s
150E-32B 209,66 14,48 9,63 0,99634 918,8s
150E-64B 210,00 14,49 9,63 0,99634 565,6s
150E-128B 210,12 14,50 9,64 0,99634 569,4s
Average 209,99 14,43 9,64 0,99634 326,56s

Table 4.2: Performance of different LSTM models trained with solar irradiance data

One reason why the dips in solar radiation are not present in the photovoltaic power
output chart might be due to the fact that Vienna has very little photovoltaic systems
compared to other federate states of Austria. The distribution can be seen in [28]. Also
when looking at the total power output of the photovoltaic systems in [28], we can see
that Vienna is not really relevant compared to other federate states.

28

4.2. GRU

Figure 4.1: Solar model original result vs. shifted result

Figure 4.2: Current photovoltaic output and solar irradiance compared

4.2 GRU

For the GRU models in Table 4.3, we can see a clear winner which is the GRU-150E-64B
model. The MSE of this model is 2,52 below average of all GRU models. Compared to
the LSTM models, its MSE is better by 1,07. Comparing the training times between
the best GRU model and the best LSTM model we get an average of 826,5 seconds for
the GRU-150E-64B model and an average of 326 seconds for the LSTM model. This
means GRU-150E-64B needs 253% more time to train compared to LSTM-70E-32B, on

29

4. Results

Figure 4.3: Photovoltaic systems per 1000 residents in local Austrian communities

the other hand its performance regarding the MSE is 11% better. So the takeway is: if
training time does not matter then the GRU-150E-64B should be used, otherwise the
LSTM-100E-32B.

Looking at all GRU models, we see that they have a better performance on average
compared to the average of all LSTM models.

4.2.1 GRU with solar irradiance

Similar to the results from the LSTM models with solar irradiance the performance
is almost identically bad. Compared to the GRU models which were trained without
solar irradiance data, the average performance is 18.31× worse. Comparing the best
performance of GRU and GRU with solar irradiance data 20E-64B performs 23, 30×
worse than 150E-64B. Looking at the visuals of the results, the prediction vs. ground
truth chart is also almost identical to the shifting observed in Figure 4.1. Due to this
fact, it seems that the GRU models which were trained with solar irradiance data learned
the same behavior as the LSTM models trained with solar irradiance data. A screenshot
of the web application can be seen in Figure 4.4

4.3 Web application on Raspberry Pi
Like stated in the goals section, the Web application has been built and deployed on a
Raspberry Pi 4 Model B 8GB. The Web application got deployed via a Node.js server

30

4.3. Web application on Raspberry Pi

GRU Model results
Model with configuration MSE RMSE MAE COEFF Time
20E-32B 10,95 3,30 1,95 0,99972 151,6s
20E-64B 13,67 3,65 2,15 0,99973 87,4s
20E-128B 11,73 3,42 2,08 0,99972 74,0s
40E-32B 10,83 3,29 1,89 0,99972 267,2s
40E-64B 12,69 3,53 2,06 0,99970 182,4s
40E-128B 11,42 3,37 1,99 0,99972 151,8s
50E-32B 13,38 3,63 2,16 0,99972 361,2
50E-64B 11,74 3,41 1,99 0,99973 251,6s
50E-128B 11,52 3,38 2,04 0,99972 210,4s
60E-32B 10,24 3,20 1,87 0,99972 434,4s
60E-64B 12,18 3,47 2,04 0,99973 300,6s
60E-128B 11,77 3,42 2,03 0,99971 266,2s
70E-32B 16,55 3,97 2,35 0,99973 551,2s
70E-64B 10,66 3,26 1,84 0,99973 364,6s
70E-128B 10,34 3,21 1,88 0,99972 298,4s
100E-32B 10,09 3,17 1,82 0,99973 748,4
100E-64B 10,64 3,26 1,90 0,99974 511,4s
100E-128B 10,36 3,21 1,84 0,99973 440,8s
150E-32B 11,39 3,36 1,93 0,99972 1095,6s
150E-64B 8,96 2,99 1,72 0,99974 711,2s
150E-128B 9,92 3,15 1,79 0,99973 614,0s
Average 11,48 3,375 1,97 0,99973 437,30s

Table 4.3: Performance of different GRU models

running on the Raspberry Pi. The required influxDB and the Node.js webserver which
serves the models is running on a local machine in the network. In the liveview, the user
is able to view the 4 best models of each table in the results of this thesis. The 4 models
predict the current groundtruth step, which is in 15 minute intervals, and the predictions
get rendered in the graph. The user is able to speed up or slow down the simulation and
can stop and resume it. Currently the maximum is about 8 to 10 predictions per second
while rendering the graph and viewing the graph via teamviewer.

31

4. Results

Figure 4.4: Web application running the live simulation on a Raspberry Pi 4 Model B
8GB

32

4.3. Web application on Raspberry Pi

GRU Models with solar irradiance results
Model with configuration MSE RMSE MAE COEFF Time
20E-32B 208,99 14,46 9,63 0,99635 156,4s
20E-64B 208,85 14,45 9,62 0,99636 103,4s
20E-128B 210,75 14,52 9,64 0,99635 74,0s
40E-32B 209,62 14,48 9,62 0,99635 297,6s
40E-64B 210,18 14,50 9,64 0,99635 198,8s
40E-128B 210,51 14,51 9,65 0,99635 194,8s
50E-32B 211,09 14,53 9,65 0,99634 425,4
50E-64B 213,33 14,60 9,68 0,99636 252,0s
50E-128B 209,09 14,46 9,62 0,99635 209,2s
60E-32B 209,69 14,48 9,65 0,99635 460,0s
60E-64B 209,65 14,48 9,63 0,99635 321,8s
60E-128B 210,94 14,52 9,64 0,99635 260,0s
70E-32B 209,85 14,49 9,63 0,99634 570,4s
70E-64B 210,76 14,52 9,64 0,99635 375,0s
70E-128B 209,69 14,48 9,65 0,99634 308,8s
100E-32B 209,60 14,48 9,63 0,99634 746,4s
100E-64B 213,17 14,60 9,68 0,99635 539,8s
100E-128B 209,73 14,48 9,63 0,99634 414,2s
150E-32B 209,92 14,49 9,63 0,99634 1155,6s
150E-64B 209,24 14,47 9,62 0,99635 826,2s
150E-128B 209,63 14,48 9,63 0,99634 688,6s
Average 210,20 14,50 9,64 0,99635 408,50s

Table 4.4: Performance of different GRU models trained with solar irradiance data

33

CHAPTER 5
Summary

5.1 Conclusion
The aim of this thesis was to compare the performance of different types of machine
learning models with different parameters for forecasting the total photovoltaic power
generation in Austria. To accomplish this, 420 models were trained, 105 for each type of
machine learning model, to predict the photovoltaic power output of the next timestep.
The results show that the best performing model on average over 5 models is the GRU
model with 150 epochs and a batchsize of 64 (GRU-150E-64B) with an MSE of 8.96.
It took 711 seconds to train this model which is above the average training time of all
model types. If a short training time matters then other models will suit better. Looking
at the filesize of the models the GRU models are smaller compared to the LSTM models
by about 158KB. The reason why the models trained with additional solar data are so
much worse is due to the fact that the solar irradiance data does not add meaningful
value to the photovoltaic output in this setting, which can be seen in Figure 4.2. The
insight that the additional solar irradiance data from Wien Hohe Warte can worsen the
performance of the models so much is an important takeway of this thesis. Another goal
was to setup a Web application on a Raspberry Pi which shows the predictions of the
models in a live simulation, which was successfully accomplished. Additionally. the Web
application is able to benchmark all models in a custom timerange [29].

5.2 Future Work
In a future extension, more different types of machine learning models like BiLSTM, CNN-
LSTM or transformers can be benchmarked. Additionally to that more features could
be useful to improve the models, especially if multistep-ahead forecasting is introduced.
Also there could be more variety regarding hyperparameters. Additional parameters like
temperature or humidity could be useful, if this data is available from multiple locations
spread all over Austria to exclude local phenomena. Furthermore, the application can be
extended by allowing the user to select which models they would like to view in the live
view.

35

List of Figures

1.1 PV power output over the first five days of January and August 2020 in
Austria . 2

2.1 Feedforward neural network . 5
2.2 Single neuron of a neuronal network . 6
2.3 Sample plot for gradient decent . 8
2.4 Example network with 4 neurons . 9
2.5 Example network with multiple neurons per layer 11
2.6 Unrolled RNN . 12
2.7 Learning speed per hidden layer . 13
2.8 Example network for the vanishing gradient problem 14
2.9 LSTM Operators . 16
2.10 Detailed LSTM architecture . 16
2.11 Detailed GRU architecture . 17

3.1 Architecture of the implemented application 20
3.2 Frontend after evaluation of a single model 22
3.3 Interactive graph zoomed in to predicted month 23
3.4 Interactive graph zoomed in to a day of the predicted daterange 23
3.5 Structure of the LSTM model used for evaluation from [26] 24

4.1 Solar model original result vs. shifted result 29
4.2 Current photovoltaic output and solar irradiance compared 29
4.3 Photovoltaic systems per 1000 residents in local Austrian communities . . 30
4.4 Web application running the live simulation on a Raspberry Pi 4 Model B

8GB . 32

37

List of Tables

4.1 Performance of different LSTM models . 27
4.2 Performance of different LSTM models trained with solar irradiance data 28
4.3 Performance of different GRU models . 31
4.4 Performance of different GRU models trained with solar irradiance data . 33

39

Bibliography

[1] “Energie in Österreich,” pp. 10, 14. https://www.bmk.gv.at/dam/jcr:
f0bdbaa4-59f2-4bde-9af9-e139f9568769/Energie_in_OE_2020_ua.
pdf.

[2] “European network of transmission system operators for elec-
tricity,” https://transparency.entsoe.eu/generation/
r2/actualGenerationPerProductionType/show?name=
&defaultValue=false&viewType=TABLE&areaType=CTY&atch=
false&datepicker-day-offset-select-dv-date-from_input=
D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&
dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&
area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&
productionType.values=B16&dateTime.timezone=CET_CEST&
dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2).

[3] “Weather hörsching, upper austria history (03. august 2020),” https:
//www.wunderground.com/history/daily/at/h%C3%B6rsching/LOWL/
date/2020-8-3.

[4] “Arad,” https://www.zamg.ac.at/cms/de/klima/klimaforschung/
datensaetze/arad.

[5] M. Olefs, D. J. Baumgartner, F. Obleitner, C. Bichler, U. Foelsche, H. Pietsch, H. E.
Rieder, P. Weihs, F. Geyer, T. Haiden, et al., “The austrian radiation monitoring
network arad–best practice and added value,” Atmospheric Measurement Techniques,
vol. 9, no. 4, pp. 1513–1531, 2016.

[6] R. A. Rajagukguk, R. A. Ramadhan, and H.-J. Lee, “A review on deep learning
models for forecasting time series data of solar irradiance and photovoltaic power,”
Energies, vol. 13, no. 24, p. 6623, 2020.

[7] R. DiPietro and G. D. Hager, “Deep learning: RNNs and LSTM,” in Handbook of
medical image computing and computer assisted intervention, pp. 503–519, Elsevier,
2020.

41

https://www.bmk.gv.at/dam/jcr:f0bdbaa4-59f2-4bde-9af9-e139f9568769/Energie_in_OE_2020_ua.pdf
https://www.bmk.gv.at/dam/jcr:f0bdbaa4-59f2-4bde-9af9-e139f9568769/Energie_in_OE_2020_ua.pdf
https://www.bmk.gv.at/dam/jcr:f0bdbaa4-59f2-4bde-9af9-e139f9568769/Energie_in_OE_2020_ua.pdf
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show?name=&defaultValue=false&viewType=TABLE&areaType=CTY&atch=false&datepicker-day-offset-select-dv-date-from_input=D&dateTime.dateTime=03.09.2021+00:00|CET|DAYTIMERANGE&dateTime.endDateTime=03.09.2021+00:00|CET|DAYTIMERANGE&area.values=CTY|10YAT-APG------L!CTY|10YAT-APG------L&productionType.values=B16&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2)
https://www.wunderground.com/history/daily/at/h%C3%B6rsching/LOWL/date/2020-8-3
https://www.wunderground.com/history/daily/at/h%C3%B6rsching/LOWL/date/2020-8-3
https://www.wunderground.com/history/daily/at/h%C3%B6rsching/LOWL/date/2020-8-3
https://www.zamg.ac.at/cms/de/klima/klimaforschung/datensaetze/arad
https://www.zamg.ac.at/cms/de/klima/klimaforschung/datensaetze/arad

[8] “Electricity market transparency,” https://www.entsoe.eu/data/
transparency-platform/.

[9] J. Patterson and A. Gibson, Deep learning: A practitioner’s approach. O’Reilly
Media, Inc., 2017.

[10] G. Keilbar, Modelling Systemic Risk using Neural Network Quantile Regression.
PhD thesis, 08 2018.

[11] M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press San
Francisco, CA, 2015.

[12] Sanderson, “Backpropagation calculus,” 2017. https://www.3blue1brown.
com/lessons/backpropagation-calculus.

[13] C. Olah, “Understanding LSTM networks,” 2015.

[14] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen Netzen,” Diploma
Thesis, Technische Universität München, vol. 91, no. 1, 1991.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[16] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with
LSTM recurrent networks,” Journal of machine learning research, vol. 3, no. Aug,
pp. 115–143, 2002.

[17] M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, “A cnn-bilstm model for document-
level sentiment analysis,” Machine Learning and Knowledge Extraction, vol. 1, no. 3,
pp. 832–847, 2019.

[18] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the proper-
ties of neural machine translation: Encoder-decoder approaches,” arXiv preprint
arXiv:1409.1259, 2014.

[19] Y. Wang, W. Liao, and Y. Chang, “Gated recurrent unit network-based short-term
photovoltaic forecasting,” Energies, vol. 11, no. 8, p. 2163, 2018.

[20] “About keras,” https://keras.io/about/.

[21] “An end-to-end open source machine learning platform,” https://www.
tensorflow.org/.

[22] “influxdata,” https://www.influxdata.com/.

[23] “Plotly javascript open source graphing library,” https://plotly.com/
javascript/.

[24] “pandas,” https://pandas.pydata.org/.

42

https://www.entsoe.eu/data/transparency-platform/
https://www.entsoe.eu/data/transparency-platform/
https://www.3blue1brown.com/lessons/backpropagation-calculus
https://www.3blue1brown.com/lessons/backpropagation-calculus
https://keras.io/about/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.influxdata.com/
https://plotly.com/javascript/
https://plotly.com/javascript/
https://pandas.pydata.org/

[25] “forever,” https://www.npmjs.com/package/forever/.

[26] A. Mellit, A. M. Pavan, and V. Lughi, “Deep learning neural networks for short-term
photovoltaic power forecasting,” Renewable Energy, vol. 172, pp. 276–288, 2021.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[28] “statatlas,” https://www.statistik.at/atlas/?mapid=them_energie_
klimafonds.

[29] “Sourcecode implemented for thesis,” https://github.com/schmalzer/
bachelorthesis-public.

43

https://www.npmjs.com/package/forever/
https://www.statistik.at/atlas/?mapid=them_energie_klimafonds
https://www.statistik.at/atlas/?mapid=them_energie_klimafonds
https://github.com/schmalzer/bachelorthesis-public
https://github.com/schmalzer/bachelorthesis-public

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Goal
	Methodical approach

	State of the Art
	Overview
	RNN
	LSTM
	GRU

	Implementation
	Used Technologies
	Architecture
	LSTM
	GRU

	Results
	LSTM
	GRU
	Web application on Raspberry Pi

	Summary
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

